<table>
<thead>
<tr>
<th>Module Code</th>
<th>e.g. EEU22E10, CSxxxxxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>2E10 ENGINEERING DESIGN IV: PROJECT</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Glenn Strong, Francois Pitie, Kerstin Ruhland</td>
</tr>
</tbody>
</table>

Module Learning Outcomes

On successful completion of this module, students will be able to:

- **LO1.** Apply the engineering process of problem solving.
- **LO2.** Design a simple autonomous vehicle to meet a well-defined specification.
- **LO3.** Clearly demonstrate group working, including task sub-division and integration of individual contributions from the team.
- **LO4.** Plan a project, meeting all interim deliverables.
- **LO5.** Implement project tracking and code version control.
- **LO6.** Apply knowledge of the health and safety requirements of electronic circuit board construction.
- **LO7.** Recognise issues to be addressed in a combined hardware and software system design.
- **LO8.** Develop skills in the areas of quantitative analysis, scientific reasoning and communication.
- **LO9.** Develop practical experimental skills in electronic circuit testing.
- **LO10.** Develop practical experimental skills in software system testing.
- **LO11.** Explore and defend their design decisions, critique their own design.
- **LO12.** Evaluate the outcome of their achievements given the original specification.
- **LO13.** Demonstrate organised and concise report writing skills.

Module Content

The 2E10 Engineering Design IV module introduces the challenge of electronic systems design. The project is an example of ‘hardware and software co-design’ and the scale of the task is such that it requires teamwork and a co-ordinated effort. Each group has access to the basic shell of a vehicle that includes the motor assemblies, battery holders and sensors. The completed system should comprise of a computer controlled autonomous vehicle with motor driven wheels and position sensors. The motors and the position sensors should operate under control from a programmable microcontroller and the vehicle should communicate with a base station using a wireless standard module.

The objectives of this module are:

- to apply basic principles of science and engineering to Conceive, Design, Implement and Operate (CDIO) an autonomous vehicle;
- to introduce group working and project planning;
• to introduce the principles of circuit construction and the health and safety issues associated with electronic circuit construction and the adoption of test procedures;

• to introduce the principles of software systems design including user interface design and control software for wireless communications;

• to analyse the design and optimise it with respect to manufacturability and testing;

• to introduce the requirements of project documentation, circuit drawings and software documentation;

• to introduce project reporting and presentation.

Teaching and Learning Methods

The module is taught using a combination of lectures, demonstration laboratories and through project sessions at which advisors are present. As a 10 ECTS course, the average individual student effort should be 200-250 hours spread over the semester.

55 of these will be actual contact hours. Thus all students, as individuals and as groups, are also expected to undertake extensive independent research and development work on the project.

Assessment Details

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Brief Description</th>
<th>Learning Outcomes Addressed</th>
<th>% of total</th>
<th>Week set</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td>Project plan, interim report, final report</td>
<td>e.g. LO1, LO2, LO3, LO4, LO5</td>
<td>26%</td>
<td>1</td>
<td>3, 7, 12</td>
</tr>
<tr>
<td>Demo</td>
<td>Group demo and interview</td>
<td>e.g. LO5, LO6</td>
<td>50%</td>
<td>1</td>
<td>8, 12</td>
</tr>
<tr>
<td>Lab demos and updates</td>
<td>In-lab demonstrations</td>
<td></td>
<td>14%</td>
<td>1</td>
<td>Each week</td>
</tr>
<tr>
<td>Individual exam</td>
<td>In class test</td>
<td></td>
<td>10%</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

Reassessment Details

Individual project

2 [TEP Guidelines on Workload and Assessment](#)
Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Contact Hours (scheduled hours per student over full module), broken down by:</th>
<th>44 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>22 hours</td>
</tr>
<tr>
<td>laboratory</td>
<td>44 hours</td>
</tr>
<tr>
<td>tutorial or seminar</td>
<td>0 hours</td>
</tr>
<tr>
<td>other</td>
<td>0 hours</td>
</tr>
</tbody>
</table>

Independent study (outside scheduled contact hours), broken down by:

<table>
<thead>
<tr>
<th></th>
<th>66 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>preparation for classes and review of material (including preparation for examination, if applicable)</td>
<td>10 hours</td>
</tr>
<tr>
<td>completion of assessments (including examination, if applicable)</td>
<td>174 hours</td>
</tr>
</tbody>
</table>

Total Hours

250 hours

Recommended Reading List

Datasheets, project handbook, and other resources distributed on Blackboard.

Module Pre-requisites

Prerequisite modules: list module codes

Other/alternative non-module prerequisites: e.g. A knowledge of Java or C++ and some basic experience with the Arduino platform.

Module Co-requisites

Module Website

Blackboard

Last Update

1/8/2019 by Your Name