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Abstract: Ensemble research has shown that the aggregated output of an 
ensemble of predictors can be more accurate than a single predictor. This is true 
also for lazy learning systems like Case-Based Reasoning (CBR) and k-Nearest-
Neighbour. Aggregation is normally achieved by voting in classification tasks 
and by averaging in regression tasks. For CBR, this increased accuracy comes 
at the cost of interpretability however. If we consider the use of retrieved cases 
for explanation to be one of the advantages of CBR then this is lost in an 
ensemble. This is because a large number of cases will have been retrieved by 
the ensemble members. In this paper we present a new technique for 
aggregation that obtains excellent results and identifies a small number of cases 
for use in explanation. This new approach might be viewed as a transformation 
process whereby cases are transformed from their feature based representation 
to a representation based on the predictions of ensemble members. This new 
representation produces very accurate predictions and allows a small number of 
similar neighbours to be identified.  

1   Introduction 

A major development in Machine Learning (ML) research in recent years is the 
realisation that ensembles of models can offer significant improvements in accuracy 
over single models.  To define an ensemble we need two elements: a set of properly 
trained classifiers and an aggregation mechanism that composes the single predictions 
into an overall outcome. Typically, the aggregation process will be a simple average 
or a simple majority vote over the output of the ensembles, e.g. (Breiman, 1996). 
However, it may also be a complex linear or non-linear combination of the 
component predictions, e.g. (Jacobs et al., 1991, Heskes, 1998).  

Whatever the aggregation process, it has implications for interpretability if the 
ensemble is composed of lazy learners (Cunningham & Zenobi, 2001). This is very 
important for domains such as medical decision support where interpretability plays a 
fundamental role. For instance Ong et al. (1997) and Armengol et al. (2001) describe 
CBR systems for medical decision support where the use of retrieved cases in 
explanation plays a central role (see also (Leake, 1996) on explanation in CBR).  

                                                            
1 This research was carried out as part of the MediLink project funded under the PRTLI 

programme of the Irish Higher Education Authority.  



CBR allows for the use of the retrieved cases in explanation as follows: 
“The system predicts that the outcome will be X because that was the 

outcome in case C1 that differed from the current case only in the value of 
feature F which was f2 instead of f1. 

In addition the outcome in C2 was also X …” 
Explanation in these terms (i.e. expressed in the vocabulary of the case features) will 
not always be adequate, but in some situations such as in medical decision support it 
can be quite useful. However if the prediction is coming from an ensemble of CBR 
systems rather than a single system there is no longer a small number of cases to use 
for explanation.  

So there appears to be a fundamental incompatibility between the ensemble idea 
and the interpretability of CBR. By definition, the ensemble is an order of magnitude 
more complex than a basic CBR system with an extra layer of processing (i.e. 
aggregation) between the cases and the proposed solution. In (Zenobi & Cunningham, 
2001) we have argued that the effectiveness of ensembles stems in part from the 
ensemble performing an implicit decomposition of the problem space with ensemble 
members specializing in local regions of the space. Presumably an explanation of the 
output of the ensemble should also reflect the way the ensemble has modeled the 
problem space.  

In this paper we present a new approach to the ensemble aggregation process that 
obtains excellent results and identifies a small number of cases for use in explanation. 
This new approach might be viewed as a representation transformation process 
whereby cases are transformed from their feature-based representation to a 
representation based on the predictions of ensemble members (see section 3). If this 
representation is used for prediction using a simple nearest neighbour approach (we 
call this Meta kNN) it has a generalization accuracy comparable to that of the 
ensemble. We argue that this is because it accesses the model of the problem domain 
that is implicit in the ensemble. This view is supported by the fact that the Meta kNN 
shows very high fidelity to the ensemble predictions. The evaluation in section 4 also 
shows that this Meta kNN classifier produces very accurate predictions and allows a 
small number of similar neighbours to be identified. But first, the process of 
aggregating a set of case-based classifiers into an ensemble is described in the next 
section. 

2   Ensembles of k-Nearest Neighbour Classifiers 

It is well known that ensembles of predictors can improve on the performance of a 
single predictor (Hansen & Salmon, 1990; Krogh & Vedelsby, 1995; Breiman, 1996). 
This improvement depends on the members of the ensemble being diverse; a 
characteristic that arises naturally with decision trees or neural networks trained using 
different data sets. Indeed the ensemble has the added advantage of overcoming this 
instability problem. k-Nearest-Neighbour (k-NN) classifiers do not have this 
instability so producing an ensemble that will show an uplift requires another 
approach. The most common way to do this is to base the ensemble members on 
different feature subsets (Ho, 1998; Guerra-Salcedo & Whitley, 1999a, 1999b). 



Again, it has been shown that the improvement due to the ensemble depends on the 
diversity of the members (Ricci & Aha, 1998;Cunningham & Carney, 2000; Zenobi 
& Cunningham, 2001).  
Figure 1 shows how such an ensemble of k-NN classifiers would operate. Assume 
that the ensemble members are based on different feature subsets and these subsets 
have been chosen to maximize diversity and minimize error (see section 2.1). In this 
example there are m classifiers and k is set to 3. The task is binary classification with 
black corresponding to 1. The first classifier retrieves 2 black and one white example. 
By simple voting this will predict black (1) as the output; alternatively a fuzzy or 
probabilistic prediction might be produced as follows: 
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Fig.1.  The aggregation process in an ensemble of k-Nearest Neighbour Classifiers. 

This is the probability of example x having class cj, where K is the set of k nearest 
neighbours of x, kc, is the class of k,  d() is the distance function and 1() returns 1 iff 
its argument is true (Wettschereck et al. 1997). A probabilistic prediction of 0.67 
would translate to a prediction of 1 that would be passed to the aggregation process. 
Alternatively the prediction of 0.67 could be passed for aggregation. The relevance of 
this is that the aggregation process will perform averaging for continuous predictions 
and voting for binary predictions. These alternatives generalize to the multi-class 
situation in a straightforward manner. In the evaluations presented in this paper it is 
the continuous (probabilistic) value that is passed to the aggregation step. Then the 
prediction of the ensemble is a weighted sum of the component predictions: 
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where pi is the probabilistic prediction of the ith member – in our implementation the 
weights are equal and sum to 1.    
The key point in presenting this example is to show that a large number of cases 
contribute to the prediction of the ensemble. For example, in an ensemble of 25 
classifiers each retrieving 5 neighbours, 125 neighbours will be retrieved. Clearly 
there will be duplicates in this set but with the prediction from each classifier being 
made on the basis of a different feature subset, it is very likely that the nearest 
neighbours for one particular classifier will not be the same as for another. When the 
neighbours from all members are put together in a “pool” it is not clear which ones 
are the most representative. We might rank based on frequency of occurrence but that 
is unlikely to be a complete solution. In section 3 we present our Meta k-NN solution 
to this problem but first we complete the discussion on ensembles with an account of 
how to train ensembles of k-NN classifiers in order to maximise diversity.  

2.1 Training with Diversity 

It is well known that the potential for an ensemble to be more accurate than its 
constituent members depends on there being diversity in the ensemble. If all ensemble 
members agree, there is no uplift due to the ensemble; instead it is important for the 
ensemble members to be right (and wrong) in different areas of the problem space 
(Zenobi & Cunningham, 2001).  

For classification the most commonly used error measure is a simple 0/1 loss 
function, so a measure of diversity (ambiguity) on a single prediction is:  
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where ai(xj) is the ambiguity of the ith classifier on example xj and the two arg max 
functions return respectively the ith classifier and the ensemble predicted class. Thus 
the contribution to diversity of an ensemble member i as measured on a set of N 
examples is: 
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So an ensemble trained to minimize the error of individual members while 
maximizing this contribution to diversity will be very effective. An algorithm to do 
this for ensembles of k-NN classifiers based on different feature subsets is described 
in (Zenobi & Cunningham, 2001). The details of this algorithm will not be repeated 
here but the basic principles are as follows. Each ensemble member is defined by a 
feature mask identifying the features that are ‘turned on’ in that member. The training 
of the ensemble involves searching through the space of all feature masks to identify a 
set of masks that maximizes the diversity and minimizes the error of individual 
members. This search involves flipping bits in the masks and testing to see if they 
produce an improvement in error or diversity. Since there is clearly a tradeoff 



between error and diversity a threshold is used within which small deteriorations in 
one measure are tolerated for the sake of significant improvements in the other (see 
(Zenobi & Cunningham, 2001) for details). 

This process produces an ensemble of k-NN classifiers based on different feature 
subsets that is very accurate but difficult to interpret due to the potentially large 
number of cases involved in generating a solution. 

In the evaluation presented in section 4 two different approaches to producing 
ensembles of k-NN classifiers are evaluated. These are called: 

• AmbHC: the method described here that uses diversity (i.e. ambiguity+hill-
climb) 

• HC:  search for feature masks is based on error only, does not consider 
diversity. 

In both these scenarios the aggregation for the ensemble is done using the weighted 
sum described in equation 2 (ensemble members are assigned equal weights).  

3   The Meta k-Nearest-Neighbour Aggregation Technique 

Consider a database consisting of a set of n cases, each one described by f features 
(see Table 1). For simplicity suppose all the features are normailsed numerical and 
that the outcome is a simple binary classification mapped to the classes 0 and 1. 

Table 1.  A sample data set of n cases each described by f features. 

 Feature 1 Feature 2 … Feature f CLASS 
Case 1 0.23 0.16 … 0.98 0 
Case 2 0.14 0.56 … 0.32 1 
Case 3 0.45 0.16 … 0.42 0 

… … … … … … 
Case n 0.56 0.18 … 0.0 1 

 
Suppose we train an ensemble of m k-NN classifiers differing on the feature subset 
chosen as described in section 2.1. For the training data, each classifier will return a 
class prediction (in the form of a probability between 0 and 1). It is then possible to 
associate a new n × m matrix with this ensemble, where in the position (i,j) is stored 
the prediction given by the classifier j for the case i.  In other words each case is 
described by a new set of features representing how the ensemble (through each one 
of its classifiers) sees the case. An example of such a matrix is shown in Table 2. The 
arrows indicate what would have been the final prediction if the classifier were used 
on its own. 

This new matrix is a transformation of the data that in some sense reflects how the 
ensemble has modelled the problem domain. It also suggests a new two-stage process 
of classification. In the first stage a target example is presented to the ensemble as 
before. In the second stage the outputs of the ensemble members is used as a 
representation of the case in a Meta k-NN classification process. The case-base for the 
Meta k-NN process is the transformed data shown in Table 2. 



 

Table 2.  A transformation of the data shown in Table 1 based on the outputs of the m 
classifiers in the ensemble. 

 Classifier 1 Classifier 2 …  Classifier m CLASS 
Case 1 0.95   1 0.08   0 … 0.21   0 0 
Case 2 0.67   1 1.0     1 … 0.0     0 1 
Case 3 0.21   0 0.19   0 … 0.69   1 0 

… … … … … … 
Case n 0.61   1 0.32   0 … 0.15   0 1 

 
This Meta k-NN classifier has excellent accuracy – equivalent to that of the 

ensemble and has the added advantage that a small number of cases are identified for 
use in explanation.  

4 Evaluation and Discussion 

In this section we present an experimental study of the aggregation technique we have 
described in section 3. This evaluation shows two things: 

i. Using the Meta k-NN aggregation technique we obtain performance 
(accuracy) that is comparable to that obtained with the standard weighted 
average technique. This is shown by a comparison of the generalization 
errors of both the techniques. 

ii. The Meta k-NN technique, which is a single classifier working with a 
transformed representation produced by the ensemble, models the problem 
domain in a way that is very similar to the ensemble on which it is based. 
This is shown by measuring the fidelity of the predictions from the Meta k-
NN technique to the predictions given by standard aggregation technique.   

Since these evaluations are very computationally intensive we present results on only 
four datasets, three from the UCI repository (Pima Indians, Heart Disease, Cylinder) 
and the Warfarin data-set described in (Byrne et al., 2000).  

We have focused for simplicity on binary classification problems (in the case of 
Warfarin we have turned it into a 2-class task). The Meta k-NN aggregation technique 
is easily generalized to the case of n-classes.  We have also considered datasets that 
do not have a skewed class distribution, as simple 0/1 error measures are questionable 
for datasets with very unbalanced class distributions. 

In the following set of four figures (Fig. 2, 3, 4 and 5) we show the first of the two 
studies mentioned above; each figure refers to a different data set. For a complete 
comparison we have applied to each dataset both the HC and AmbHC training 
algorithms described in (Zenob i& Cunningham, 2001). Using these we have trained 
ensembles of 25 k-NN classifiers (k =5). The generalization error of each ensemble 
was determined using 5-fold cross validation. This entire process was repeated 2 or 3 
times and the results averaged since the hill-climbing strategy is quite sensitive to the 
initial condition.  
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Fig. 2.   Results for Heart data 

 
The diagrams show the generalization error of the Meta k-NN aggregation strategy 
(both for ensembles trained with HC and AmbHC) plotted against the number of 
retrieved neighbours kM. It is important to distinguish kM from k, which is the number 
of retrieved neighbours for any single classifier in the ensemble. It is worth noting 
that the choice of this kM is completely unrelated to the choice of k. 
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Fig. 3.   Results for Pima data 

 



To facilitate comparisons we also show the generalization error of the standard 
weighted average technique (both for ensembles trained with HC and AmbHC) and 
the average generalization of the component classifiers in the ensembles. These four 
figures appear as horizontal lines as they obviously do not depend on the value of kM.  
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Fig. 4.  Results for Warfarin data 
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Fig. 5.  Results for Cylinder data 

 



From the figures shown above we can make a few observations. First, there is a 
confirmation of the fact that ensembles trained with AmbHC and using the standard 
aggregation approach have a better generalization error that those trained with a 
simple HC, even though the average error of the component classifiers are 
considerably worse. This is no surprise, and simply shows once again that diversity 
plays a crucial role in the ensemble performance. 
Second, the Meta k-NN aggregation technique performed on ensembles trained with 
AmbHC scores comparable or better results to the weighted average aggregation 
technique for larger values of kM. As a general trend we observe that already for 
values of kM between 5 and 7 the result obtained by Meta k-NN is comparable to a 
weighted average on ensembles trained with HC (i.e. a score about between 1% and 
2.5% worse than the one for AmbHC), with the great advantage of retrieving a small 
set of cases for explanation. When we increase the value of kM up to 25 the Meta k-
NN technique outperforms (except in the Heart dataset) ensembles trained with 
AmbHC and using the standard aggregation technique. In this case the set of retrieved 
neighbours is large (but still smaller than that retrieved by a classic aggregation 
technique) and has the important capability of giving a coherent ranking to the cases 
retrieved.  
Third, the  Meta k-NN aggregation technique performed on ensembles trained with 
simple HC scores generally worse generalization errors than the one performed on 
ensembles trained with AmbHC. A possible explanation for this phenomenon can be 
the fact that classifiers trained with HC have a lower diversity, so they carry less 
“rich” information about the problem domain, than the ones trained with AmbHC; 
when the Meta k-NN case-base is created it is possible that the columns (classifiers’ 
predictions) show a higher dependence in the case of HC. The only exception to this 
is the Cylinder dataset where the AmbHC approach has no clear advantage over the 
HC technique. This is probably due to the large number of features in this dataset (38) 
and the consequent ‘natural’ diversity that exists even in ensemble members trained 
using HC.  
Figure 6 shows the second study mentioned at the beginning of this section. It 
compares the fidelity of the Meta k-NN classifiers with the corresponding AmbHC 
ensemble. We do not consider the HC ensemble because it (and the corresponding  
Meta k-NN classifier) have poorer accuracy.  
We have plotted for all four datasets the figures for fidelity between the predictions 
given by the Meta k-NN and standard aggregation technique. This is calculated as a 
binary error (0 if the two predictions match, 1 if they don’t) and is plotted against 
increasing values of  kM. 
From this figure it is clear that the fidelity is high. After kM=5 already all the datasets 
(except Cylinder) score a fidelity over 95% (error less than 5%) and for two of the 
datasets the fidelity goes up to 98% and more as kM increases.  We can reasonably 
argue that the problem domain decomposition in the case of the two different 
aggregation strategies is nearly equivalent.  



5.  Conclusions and Future Research 

Ensembles have had a big impact on Machine Learning research in recent years 
because they bring significant improvements in accuracy and stability. Another 
development in ML research is the emphasis on interpretability explanation. This is 
probably due to the increased interest in Data Mining where the emphasis is as much 
on insight as prediction. Because ensembles introduce an extra layer of complexity 
they make explanation much more difficult. In this paper we have presented a 
technique that reconciles these two things – at least for lazy learning systems.    
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Fig. 6.  Fidelity error of the Meta k-NN classifiers to the ensemble on which they are based. 

The 10% and 5% error lines are shown for comparison. 
 

We have introduced a new technique, Meta k-NN, that performs the aggregation 
step when using an ensemble. This technique obtains good results, comparable to the 
standard averaging approach to aggregation in terms of generalization error, and 
allows us to identify a small set of cases for use in explanation. Even though large 
vales of kM are required to provide good accuracy this is not a problem as the set of 
cases are ranked and the top ranking cases can be used for explanation.  

In conclusion, we have introduced a new aggregation process that might be used in 
two modes: 
i. Use Meta k-NN to produce the prediction and to identify cases for use in 

explanation. This would be appropriate when Meta k-NN showed to have a 
generalization accuracy equal to that of the standard aggregation technique.   

ii. Use the standard aggregation technique to produce predictions and use Meta 
k-NN to identify cases for explanation – the high fidelity would allow for this. 
This would be appropriate when the accuracy of Meta k-NN was poorer than 
the standard aggregation.  



5.1.  Future Work 

Since the key benefit we claim for this technique is its ability to select cases for use in 
explanation we need to evaluate the usefulness of the cases retrieved. We have access 
to domain experts in the Warfarin domain and in other medical domains and we will 
perform a study where these experts will rate the relevance of the retrieved cases.  

The accuracy of Meta k-NN might further be improved by performing feature 
subset selection. Some of the features (i.e. ensemble member predictions) are 
probably more informative than others and deleting some features may improve 
performance.  
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