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Abstract. Events and worlds under historical necessity are re-analyzed as schedules
of eventuality-types. The perfect and non-root modals in Condoravdi 2002 are refor-
mulated, reproducing over schedules the backward time shift in the perfect and the
forward time expansion in modals.

1. Introduction

Just as (semantic) accounts of modality commonly invoke possible worlds, theories of
temporality (eg aspect) often appeal to event[ualitie]s. But what are events? And what
are worlds? We can investigate these questions together in works that combine events with
worlds, such as Condoravdi 2002, henceforth C2. The perfect and non-root (= epistemic or
metaphysical) modals are analyzed in C2 subject to historical necessity (Thomason 1984).
That analysis is recounted briefly in §2. A notion of schedule that subsumes events and
worlds is presented in §3, on the basis of which the perfect and the modals are reformulated
in §4.

To more easily digest the formal details that follow, one of the many linguistic exam-
ples in C2 should help.

(1) He might have won.

We can read (1) epistemically as in (2) or metaphysically as in (3).

(2) He might have, for all I know, won.

(3) He might have, at that stage, won, but he didn’t.

The words ‘might’ and ‘have’ are analyzed in C2 by functions MIGHT and PERF, in terms
of which (1)’s epistemic reading arises from, roughly put,

MIGHT(PERF(he-win))

and (1)’s counterfactual reading from the reversed scoping

PERF(MIGHT(he-win)) .

We spell this out more precisely next.



2. Temporal properties in C2

The semantic set-up in C2 assumes that the following are given:

(i) a set Pt of temporal points/instants linearly ordered by ≺, relative to which the set
Ti of times can be conceived as consisting of non-empty subsets t of Pt (including
singletons) such that for every z ∈ Pt,

z ∈ t whenever x ≺ z ≺ y for some x, y ∈ t

(that is, time is a non-empty ≺-interval that may be open, closed or half-open)

(ii) sets Wo, Ev and St of worlds , of events and of states , respectively, along with a
function τ : (Ev ∪ St) ×Wo → (Ti ∪ {∅}) that specifies the temporal trace τ(e, w) ∈
Ti ∪ {∅} of an event or state e in world w, where

τ(e, w) = ∅ iff e is not realized in w ,

the intuition behind τ(e, w) ∈ Ti being that e is a single token/occurrence in w (as
opposed to a type that recurs in w).

An important difference between events and states appears when specifying, for all worlds
w and times t, the events and states that (might be said to) hold at w, t. These can be
collected in the sets

Ev(w, t) = {e ∈ Ev : ∅ 6= τ(e, w) ⊆ t}
St(w, t) = {e ∈ St : τ(e, w) ∩ t 6= ∅} .

The idea is that at a fixed world w, a state e holds at any non-empty part of τ(e, w),
whereas an event holds at t only if its entire temporal trace is contained in t. (Or, viewed
from outside t, events are bounded while states are not.) To cash this out formally, C2
calls a function P from worlds

(i) eventive if for every world w, P (w) is a unary predicate on events (so P (w)(e) is
either true or false for every event e)

(ii) stative if for every world w, P (w) is a unary predicate on states (so P (w)(e) is either
true or false for every state e)

(iii) temporal if for every world w, P (w) is a unary predicate on times (so P (w)(t) is
either true or false for every time t)

(iv) a property if P is eventive or stative or temporal

and defines a way to turn any property P to a temporal property — viz λwλt AT(t, w, P ),
where

AT(t, w, P ) =





(∃e ∈ Ev(w, t)) P (w)(e) if P is eventive
(∃e ∈ St(w, t)) P (w)(e) if P is stative
P (w)(t) if P is temporal.

AT is used to formalize both the perfect and the modals. A function PERF mapping
properties P to temporal properties is defined by

(PERF P )(w)(t) = (∃t′ ≺ t) AT(t′, w, P )
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where the linear order ≺ on Pt is extended to Ti according to

t ≺ t′ iff (∀x ∈ t)(∀x′ ∈ t′) x ≺ x′.

To analyze modals, a modal base function MB is assumed that maps a world-time pair
(w, t) to a set of worlds, relative to which a function MIGHTMB maps a property P to the
temporal property satisfying

(MIGHTMB P )(w)(t) = (∃w′ ∈ MB(w, t)) AT(t∞, w′, P )

where (expanding time forward, as in Abusch 1998) t∞ is the interval

{x ∈ Ti : (∃y ∈ t) y ¹ x}
(with y ¹ x abbreviating ‘y ≺ x or x = y’). One of the main points of C2 is that the
modal base MB in the “present perspective”

(4) (MIGHTMB(PERF P ))(w)(t) = (∃w′ ∈ MB(w, t))(∃t′ ≺ t) AT(t′, w′, P )

is epistemic, while that in the “past perspective”

(5) (PERF(MIGHTMB P ))(w)(t) = (∃t′ ≺ t)(∃w′ ∈ MB(w, t′)) AT(t′∞, w′, P )

is metaphysical.

The contrasting modal bases in (4) and (5) is traced in C2 to historical necessity,
according to which (metaphysically) the past is completely settled, and only the future
is open to branching. This view can be formalized by bundling together at every time t,
worlds that are identical on all previous times t′ ≺ t. This bundling is effected through a
a family {'t}t∈Ti of equivalence relations 't on Wo indexed by times t such that

(H1) whenever w 't w′ and t′ ≺ t, w 't′ w′

and

(H2) for every temporal property P̂ of interest ,

P̂ (w)(t) iff (∀w′ 't w) P̂ (w′)(t) .

The qualification “of interest” in (H2) is necessary to allow for branching in the future; oth-
erwise, 't’s satisfying (H2) must be equality, in view of uninteresting temporal properties
such as those given, for every world w, by

(∀w′ ∈ Wo)(∀t ∈ Ti) P̂ (w′)(t) iff w′ = w .

To rule out a metaphysical reading of (4), it suffices that we count among the P̂ ’s the
temporal predicate λwλt AT(t, w, P ), for P in (4). The argument then comes down to the
assumption that for all worlds w and times t,

(6) (∀w′ ∈ MB(w, t)) w 't w′

provided MB is a metaphysical modal base, in which case (4) reduces to (PERF P )(w, t).
By contrast, in (5), a metaphysical modal base need not render MIGHTMB superfluous.
And as for epistemic readings, condition (6) fails (unless everything about the past is
known).
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3. Scheduling eventive and stative properties

To investigate what a world might be, let us see just what it contributes to semantic
interpretation. Toward that end, let EP be a set of symbols for eventive and stative
properties, and let Φ be a set of formulas that includes EP (⊆ Φ). An interpretation of Φ
relative to world-time pairs can be encoded as a relation |= ⊆ (Wo × Ti) × Φ. We might
define ‘w, t |= Ṗ ’ as in the previous section according to (7).

(7) w, t |= Ṗ iff AT(t, w, P )

An obvious alternative to (7) is (8).

(8) w, t |= Ṗ iff ∃e[P (w)(e) & τ(e, w) = t]

(7) weakens the equality τ(e, w) = t in (8) to τ(e, w) ⊆ t in case P is eventive, and to
τ(e, w) ∩ t 6= ∅ in case P is stative. With this slack, it follows that eventive and stative
properties P which hold at t hold at any t′ ⊇ t

AT(t, w, P ) and t ⊆ t′ imply AT(t′, w, P ) .

A case of special interest is the time expansion t∞ ⊇ t in MIGHT, on which C2’s claim
that “there is no tense in the scope of the modal” rests. In particular, PERF does not, in
the scheme of C2, operate on tense (in natural language). Afterall, PERF is based on a
predicate, AT, that is sensitive to the difference between events and states. On temporal
properties P , however,

(PERF P )(w)(t) = (∃t′ ≺ t) P (w)(t′)

and it is difficult to discern any divergence from the Priorian past tense operator. An
attempt will be made in the next section to show that the concerns of C2 are, in fact,
better served by (8).

Whichever of (7) or (8) is adopted, it will prove useful to pass from a world w to the
function sw : Ti → Power(EP) given by

sw(t) = {Ṗ ∈ EP : w, t |= Ṗ}

for t ∈ Ti. We can then define for every t̂ ∈ Ti, an equivalence relation 't̂ ⊆ Wo×Wo by

w 't̂ w′ iff (∀t ¹ t̂) sw(t) = sw′(t) .

Conditions (H1) and (H2) for historical necessity are met, at least if the temporal properties
“of interest” in (H2) are restricted to those with symbols in EP. Focussing on functions
from Ti to Power(EP), let us define for all s, s′ : Ti → Power(EP) and t̂ ∈ Ti,

s Rt̂ s′ iff (∀t ¹ t̂) s(t) = s′(t) .

If we identify a world w with sw, then condition (6) from the previous section yields

MB(s, t) ⊆ {s′ : s Rt s′} .

We shall see in the next section how to do away with the pesky time subscript t in Rt, and
get the time expansion t∞ in MIGHT to drop out. The key is to generalize from (total)
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functions (from Ti to Power(EP)) to partial functions. With that in mind, let us define
a schedule to be a partial function from Ti to Power(EP). The schedule sw induced by w
can be constructed from schedules se,w induced by eventualities e that are realized in w
(i.e. τ(e, w) 6= ∅). Assuming (8), we need only set for such e’s,

dom(se,w) = {τ(e, w)} and se,w(τ(e, w)) = {Ṗ ∈ EP : P (w)(e)}

in order to establish (9) for all t ∈ Ti.

(9) sw(t) =
⋃{se,w(t) : e ∈ Ev ∪ St and τ(e, w) = t}

It is possible also under (7) to derive (9), assuming a natural definition of se,w that I leave
to the interested reader.

4. Sharpening the perfect and the modals

The backward shift ‘∃t′ ≺ t’ effected by (PERF P )(w)(t) can be recreated in a version
pErf of PERF that replaces time t by an eventuality (= state or event) e, with

(pErf P )(w)(e) iff ∃e′[e′ ⊃⊂ e & P (w)(e′) & Pcs(w)(e)]

where

(i) ‘e′ ⊃⊂ e’ is the abutment condition in (for example) Kamp and Reyle 1993 stating
that e′ is temporally located immediately prior to e

and

(ii) Pcs is some contextually determined stative property that (notably) Steedman has
argued constrains the consequent state (e′′) of a P -eventuality (e′).

PERF effectively chooses Pcs to be vacuous, with Pcs(w)(e) true for all worlds w and states
e. In general, abutment corresponds to a successor relation succ on times t, t′

succ(t′, t) iff t′ ≺ t & ¬(∃t′′ ∈ Ti)(t′ ≺ t′′ ≺ t)

in a transcription of pErf over to |= ⊆ (Wo× Ti)× Φ

w, t |= perf ϕ iff w, t |= ϕcs and ∃t′[succ(t′, t) & w, t′ |= ϕ]

(where, for an inductive construal, ϕcs must be less |=-complex than ϕ). Applying AT
to define ‘w, t |= Ṗ ’ according to (7) would fail to insure that a consequent state comes
immediately after the eventuality of which it is a consequence, defeating the tightness that
succ adds to ≺. In this sense, pErf/perf is a finer instrument than PERF. But can it do
the job on modals that PERF does?

To show that it can, it will be convenient to combine world-time pairs w, t (used by
|= to interpret Φ) into a schedule sw,t obtained by restricting sw to times that are in a
precise sense no later than t

sw,t = {(t′, α) ∈ sw : t′ is no later than t} .
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An obvious candidate for “no later than” is the reflexive closure ¹ of ≺
t′ ¹ t iff t′ = t or (∀x′ ∈ t′)(∀x ∈ t) x′ ≺ x .

The problem is that for the applications below to MIGHT, ¹ is too restrictive; for instance,
[0, 1] 6¹ [0, 2] under the usual ordering of real numbers. Let us choose instead the pre-order
¹◦ on Ti defined by

t′ ¹◦ t iff t′ ¹l t & t′ ¹r t

where ¹l insures that the left boundary of t′ is no later than that of t

t′ ¹l t iff (∀x ∈ t)(∃x′ ∈ t′) x′ ¹ x

[ iff t ⊆ t′∞ ]

while ¹r attends to the right boundaries

t′ ¹r t iff (∀x′ ∈ t′)(∃x ∈ t) x′ ¹ x .

That is, over ≺-intervals [left ′, right ′] and [left , right ],

[left ′, right ′] ¹◦ [left , right ] iff left ′ ¹ left & right ′ ¹ right .

(The pre-orders ¹l, ¹r and ¹◦ are known as the Smyth, Hoare and Plotkin pre-orders
induced by ≺, respectively; Plotkin 1981.) Clearly,

t′ ¹ t implies t′ ¹◦ t .

Now, let us call a schedule s a sked if s = st for some t ∈ dom(s), where st is the restriction
of s to times ¹◦ t

st = {(t′, α) ∈ s : t′ ¹◦ t} .

It is easy to see that if s = st for some t ∈ dom(s), then that t must be
⋂ {t′ ∈ dom(s) : (∀t′′ ∈ dom(s)) t′′ ¹r t′}

which we henceforth denote last(s) — intuitively, the least, latest time in dom(s).

Next, having truncated schedules to skeds, let us replace the world-time pairs (w, t)
in |= by skeds sw,t. Given a set Σ of skeds, we repackage |= into a relation |=Σ ⊆ Σ × Φ,
where for all s ∈ Σ, Ṗ ∈ EP and ϕ ∈ Φ,

s |=Σ Ṗ iff Ṗ ∈ s(last(s))

s |=Σ Perf ϕ iff s |=Σ ϕcs & ∃s′[s′ ⊆ s & succ(last(s′), last(s)) & s′ |=Σ ϕ] .

As for MIGHT, the idea roughly is to use, for a metaphysical reading, the modal base

MB(s) = {s′ : s Rlast(s) s′}
where Rt is as defined back in §3. More precisely, let v◦ be the binary relation between
skeds s, s′ such that

s v◦ s′ iff s′ = s ∪ {(t, α) ∈ s′ : t 6¹◦ last(s)} .

That is,

s v◦ s′ iff s ⊆ s′ & (∀t ∈ dom(s′)− dom(s)) t 6¹◦ last(s) .

Let us say s′ is an end extension of s to mean s v◦ s′, which we shall also write s′ w◦ s.
An end extension s′ of s shifts neither the left nor right boundaries of last(s) backward.
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(10) s v◦ s′ implies last(s) ¹◦ last(s′) .

For a metaphysical reading 〈meta〉ϕ of might ϕ, let

s |=Σ 〈meta〉ϕ iff (∃s′ w◦ s) s′ |=Σ ϕ

for s ∈ Σ. How do we choose an end extension s′ of s (indicated above by ‘∃s′ w◦ s’) to
match the effect in MIGHT of AT and the temporal expansion last(s)∞? This is trivial
if AT is built into |= as in (7), since last(s) ¹◦ last(s)∞. But what about (8), for which
there is no predicate AT on which to shove the search/existential quantifier? Under (8), s′

must be chosen so that last(s′) coincides precisely with the temporal trace τ(e, w) that in
MIGHT, AT locates relative to last(s)∞. Assuming

(†) such a choice can be made for eventualities e for which τ(e, w) ⊆ last(s)∞

there is still the case of states e for which τ(e, w) 6= τ(e, w) ∩ last(s)∞ 6= ∅. But for such
states e, it suffices that there be some state e′ identical to e except that

τ(e′, w) = τ(e, w) ∩ last(s)∞ (⊆ last(s)∞)

for then we can appeal to (†). The proliferation of states required here is, I think, a small
price to pay to eliminate AT. Afterall, it is the divisible/point-like character of states, as
opposed to the interval-like nature of events, that lies behind the different treatment AT
accords to states and events. This brings us back to the assumption (†) that any event or
state e such that τ(e, w) ⊆ last(s)∞ can be captured by an end extension s′ of s. In fact,
we cannot under the present set-up count on (†), but only (‡)
(‡) for any eventuality e such that last(s) ¹◦ τ(e, w), there is an end extension s′ of s

such that last(s′) = τ(e, w).

Under (‡), end extensions of s need only zero in on eventualities e that shift the right
endpoint of last(s) forward

last(s) ¹r τ(e, w) ,

in addition to the left
last(s) ¹l τ(e, w)

(the latter being τ(e, w) ⊆ last(s)∞). I am not aware of any arguments for retracting the
right endpoint of last(s), the very idea of which runs counter that of possibilities unfolding
as time marches inexorably forward. Given that the left endpoint of last(s) cannot move
to the left, one can only pull the right endpoint of last(s) back so far before the interval
becomes empty. In particular, if last(s) is so small as to be point-like, then there may not
be any room left for its right endpoint. This is the case for the explanation given in C2 for
the contrast between the optional forward shift of modals on states (illustrated by (11))
and the obligatory forward shift for events (as in (12)).

(11) She might be here (right now/tomorrow).

(12) She might talk.

Whereas a point-like state in (11) can fit into last(s), a talk-interval for (12) would not.
Leaving out the modal and concentrating on ‘now’, there is pressure to pass from an
interval-like event to a point-like state in (13).
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(13) A man [?walks/is walking] in the park.

Turning to an epistemic reading of MIGHT, and recalling (10), let us agree that for
s ∈ Σ,

s |=Σ 〈epis〉ϕ iff ∃s′[last(s) ¹◦ last(s′) & s′ |=Σ ϕ] .

If the set Σ (relative to which |= is defined) is understood as the common ground , it is
natural to define a dynamic/context-change interpretation where context = Σ. Asserting
ϕ at t updates Σ to

Σϕ,t = {s ∈ Σ : (∃s′ ∈ compatibleΣ(s))(last(s′) = t & s′ |=Σ ϕ)}

where compatibleΣ(s) is the subset of Σ compatible with s

compatibleΣ(s) = {s′ ∈ Σ : (∃s′′ ∈ Σ)(s v◦ s′′ & s′ v◦ s′′)} .

Information grows by narrowing the range Σ of possibilities

Σϕ,t ⊆ Σ .

The reader familiar with Veltman 1996 may note that 〈epis〉ϕ (but not 〈meta〉ϕ) is a test
in that

Σ〈epis〉ϕ,t = Σ or Σ〈epis〉ϕ,t = ∅

under natural assumptions on Σ. This can be put down to the fact that for all s, s′ ∈ Σ
such that last(s) = last(s′),

s |=Σ 〈epis〉ϕ iff s′ |=Σ 〈epis〉ϕ .

5. Conclusion

The thrust of the present work is to treat events and worlds uniformly as schedules of
eventuality-types, where the set of eventuality-types is written EP above, and a schedule
is a partial function from times to subsets of EP. Times are conceived as intervals in order
to accommodate events and the time extension t∞ that C2 builds into the semantics of
modalities. A pre-order ¹◦ is defined on times, relative to which schedules are truncated
into skeds, and skeds are related by end-extensions/v◦. Under the structure provided by
v◦, a sked is a schedule that for some time t, essentially associates with every time t′ ¹◦ t
what McCarthy and Hayes 1969 call a situation, “a complete state of the universe at” t′.
The assumption here of completeness for all times t′ ¹ t is crucial for the analysis above
of modalities under historical necessity.

Stepping beyond worlds and modalities, over to events, the relation v◦ generalizes
to a partial order v on schedules defined by

s v s′ iff dom(s) ⊆ dom(s′) and (∀t ∈ dom(s)) s(t) ⊆ s′(t)

where ‘s v s′’ is read: s has information content less than or equal to that of s′. This
partial order is in line with equation (9) in §3. Indeed, under v, schedules can be viewed
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as forcing conditions in the sense of Keisler 1973, with worlds as generic sets , provided a
suitable notion of consistency is defined on the (power)set of eventuality-types. (Details in
Fernando 2002, where v links worlds to events, as conceived in, for example, Moens and
Steedman 1988 and Steedman 2000.) To get at such a notion of consistency, an attempt is
made above to eliminate the use in C2 of AT, allowing, as it does, mutually inconsistent
eventuality-types to hold within the same interval. That is, for all worlds w, times t,
eventualities e, e′ and eventuality-properties P, P ′,

P (w)(e) & P ′(w)(e′) & t ⊇ τ(e, w) ∪ τ(e′, w) imply AT(t, w, P ) & AT(t, w, P ′) .

The two uses of ∃ in

(MIGHTMB P )(w)(t) = (∃w′ ∈ MB(w, t)) AT(t∞, w′, P ) ,

one binding w′ and another buried in AT, are merged in

s |=Σ 〈meta〉ϕ iff (∃s′ w◦ s) s′ |=Σ ϕ ,

refining the time expansion t∞. But before putting AT away, let us consider a universal
variant of MIGHT, called WOLL, that C2 defines as

(WOLLMB P )(w)(t) = (∀w′ ∈ MB(w, t)) AT(t∞, w′, P ) .

The universal forms

s |=Σ [meta]ϕ iff (∀s′ ∈ Σ)[s v◦ s′ implies s′ |=Σ ϕ]

s |=Σ [epis]ϕ iff (∀s′ ∈ Σ)[last(s) ¹◦ last(s′) implies s′ |=Σ ϕ]

fail to capture the ∀∃ complexity that AT gives to WOLL. Nor is it enough to translate ϕ
to 〈meta〉ϕ before applying [meta] and [epis]

s |=Σ [meta]〈meta〉ϕ iff (∀s′ ∈ Σ)[s v◦ s′ implies (∃s′′ w◦ s′) s′′ |=Σ ϕ]

s |=Σ [epis]〈meta〉ϕ iff (∀s′ ∈ Σ)[last(s) ¹◦ last(s′) implies (∃s′′ w◦ s′) s′′ |=Σ ϕ]

as s′′ may have to be chosen between s and s′. That is, we must reject the simple forms
[meta]ϕ and [epis]ϕ in favor of

s |=Σ [meta]′ϕ iff (∀s′ ∈ Σ)[s v◦ s′ implies

(∃s′′ w◦ s)(compatibleΣ(s′, s′′) & s′′ |=Σ ϕ)]

s |=Σ [epis]′ϕ iff (∀s′ ∈ Σ)[last(s) ¹◦ last(s′) implies

(∃s′′ w◦ s)(compatibleΣ(s′, s′′) & s′′ |=Σ ϕ)]

where the predicate compatibleΣ (defined for the context change interpretation in §4)
matches s′ up with s′′. Merging quantification on worlds with time may no longer seem so
appealing. For all the slack it introduces, there is something quite irresistible about how
AT sorts worlds from times.
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