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Abstract 

This paper describes the operation of and research behind a networked application for the 
delivery of personalised streams of music at Trinity College Dublin.  Smart Radio is a web 
based client-server application that uses streaming audio technology and recommendation 
techniques to allow users build, manage and share music programmes. Since good content 
descriptors are difficult to obtain in the audio domain, we originally used automated 
collaborative filtering, a ‘content less’ approach as our recommendation strategy. We 
describe how we improve the ACF technique by leveraging a light content-based technique 
that attempts to capture the user’s current listening ‘context’. This involves a two stage 
retrieval process where ACF recommendations are ranked according to the user’s current 
interests. Finally, we demonstrate a novel online evaluation strategy that pits the ACF 
strategy against the context-boosted strategy in a real time competition. 

1. Introduction 
This paper describes a personalised web-based music service called Smart Radio, 
which has been in operation in the computer science department at Trinity College 
Dublin for the past two years. The service was set up to examine how a 
personalised service of radio programming could be achieved over the web. The 
advent of on-line music services poses similar problems of information overload 
often described for textual material. However, the filtering/recommendation of 
audio resources has its own difficulties. Chief amongst these is the absence of 
good content description required by content or knowledge based systems. This 
drawback is conventionally overcome using collaborative filtering, a technique 
that leverages similarity between users to make recommendations. As such it is 
often termed a ‘contentless’ approach to recommendation because description of 
the items being recommended is not required. Apart from the obvious advantage of 
a ‘knowledge–light’ approach to recommendation, ACF is often attributed as being 
able find recommendations that would otherwise escape content based 
recommender strategies. This is because it relies upon user preferences that may 
capture subtle qualities such as aesthetic merit that may escape current content-
based systems. However, ACF does have well documented drawbacks such as the 
problem of bootstrapping new users and new content into the system. In this paper 
we examine a less documented weakness, that of context insensitivity, and provide 
a solution using a light-weight case-based approach. Since our technique imposes a 
ranking based on what the user is currently listening to in the system we do not 
consider offline approaches to evaluation such as cross validation or measures of 
recall/precision appropriate for this situation. Instead we measure whether a user 
was inclined to make use of the recommendations presented to them. We evaluate 



our approach using a novel on-line methodology in which a pure ACF strategy and 
a context boosted ACF strategy are concurrently deployed. We measure how well 
both techniques perform and find that context-boosted ACF significantly 
outperforms ACF. Section 2 briefly describes the system operation, and introduces 
the idea of a playlist, a user-compiled collection of music tracks that we use as the 
basic unit of recommendation. In section 3 we introduce some of the principles of 
Automated Collaborative filtering (ACF). We point out some of the deficiencies of 
using ACF as the sole recommendation strategy, and in section 4 we introduce the 
idea of a context and a strategy we use to further refine recommendations made by 
the ACF engine. Section 5 describes the integration of our hybrid approach. 
Finally, in section 6 we discuss our choice of evaluation methodology and present 
our results. 

2. Smart Radio 
Smart Radio is a web-based client-server application that allows users to build 
compilations of music that can be streamed to the desktop. The idea behind Smart 
Radio is to encourage the sharing of music programmes using automated 
recommendation techniques. As well as this Smart Radio users can always see 
their neighbourhood profile, and can elect to receive new programmes from 
neighbours they learn to trust. The unit of recommendation in Smart Radio is the 
playlist, a compilation of music tracks built by one listener and recommended to 
other like-minded listeners. In terms of music delivery it is a better-understood 
format than a single song recommendation system. It has the advantage of 
allowing a full programme of music to be delivered to the user. In this way, the 
work involved in compiling a playlist of music is distributed to other listeners. The 
playlist format is also attractive in that it allows individual users to personalise 
their own selections of music, with the understanding that these will be passed on 
to like-minded listeners. This is often reflected in the titles Smart Radio listeners 
give to their playlists. Our original hypothesis was that the playlist format also 
would also capture the implicit ‘rules of thumb’ that people may use when putting 
together selections of music, such as “don’t mix techno and country”. However, 
this hypothesis has yet to be fully tested.  

 

Figure 1. The Smart Radio recommendation panel. Recommended playlists are presented as 
an ordered list. By default the first playlist is automatically displayed. 



3. ACF and its Drawbacks 
The first version of Smart Radio used Automated Collaborative Filtering (ACF) as 
its recommendation strategy (Hayes & Cunningham 2000). ACF does not attempt 
to model any aspect of cognitive psychology as case based reasoning does. Instead 
it relies upon implicitly capturing the subtle distinctions people make when 
selecting or rejecting from any set of items. Its great strength is that it operates 
without using any representations of the items being filtered, relying instead on the 
pooled preference data from positively correlated users to recommend or reject 
from the resources available. As such it has been referred to as ‘word of mouth’ 
filtering (Shardanand and Maes 1995), ‘people to people correlation’ (Schafer et 
al. 1999) and a ‘contentless’ approach to filtering or recommendation (Resnick et 
al. 1994, Balabanovic & Shoham 1997); Even more so than CBR, it is used to as a 
recommendation strategy where the knowledge acquisition bottleneck is severe.  

  item A item B item C item D item E item F item G 
 User 1 0.6 0.6 0.8 ? ? 0.8 0.5 
 User 2 ? 0.8 0.8 0.3 0.7 ? ? 
 User 3 0.6 0.6 0.3 0.5 ? 0.7 0.5 
 User 4  ? ? ? ? 0.7 0.8 0.7 

Table 1. The table illustrates user-preference data the type of data used in ACF systems. 
Although this type of data is ordered, this ordering is not used in the ACF algorithm. 

One serious drawback to ACF is that it is not sensitive to a user’s interests at a 
particular moment. Even though a user’s preference data is an ordered set of 
ratings collected over time, the data is treated in an accumulative fashion by the 
ACF algorithm. The sparsity of the data necessitates taking all ratings into account 
in order to make sound correlations with other users. However, the resulting 
recommendation set will contain a mix of items reflecting each user’s accrued 
interests. This may not be a real drawback if we are using ACF as a passive filter. 
However, where ACF is required to produce recommendations on demand, its lack 
of sensitivity to the users current interests may cause frustration and distrust. For 
instance if a user is engaged in specialised activity, such as reading documents on a 
particular subject, or listening to music of a particular genre many of the 
recommendations will be inappropriate and untimely. The problem is complicated 
by the fact that many ACF recommender systems operate in domains where there 
is very little content description, making it difficult to ascertain the transitions 
between interests of a particular type As we illustrate in figure 2, our goal is to 
enhance the usefulness of an ACF based system by using a lightweight content-
based strategy like CBR to rank ACF recommendations according to the user’s 
current interests. The darker shaded cases in the diagram indicate ACF 
recommendations that are most similar to the user’s current context. In the next 
section we explain the concept of context, a representation of the user’s interests at 
a particular moment and we present our case-based representation of playlist 
context. In section 5 we present our hybrid ACF system which uses a novel 
MAC/FAC retrieval strategy. 



 

Figure 2. The ACF module selects a subset of the case base. A second stage retrieval 
process then ranks these primed cases according to their similarity to the user’s listening 
context. This is indicated by the darker shaded cases on the right. 

4. Context boosted ACF 
This concept of isolating localised interest has been referred to in user-modelling 
research as context. It is a slippery term that has a wider variety of meanings as it is 
also used to describe sets of environmental parameters in the area of ubiquitous 
computing (Schlit et al 1994). Our use of the term is similar to what would be 
termed ‘task context’ within the same community. This is a description of the 
explicit goals, tasks, actions, background and activities of the user at a particular 
time and place. The objective to isolating context in user-modelling is that tasks 
being undertaken by the user may be anticipated and a portion of the work carried 
out automatically in advance. An example of such a technique is Watson (Budzik 
et al. 1998) an application which monitors the user’s current writing or reading 
behaviour on desktop applications such as Microsoft Word or Windows Explorer, 
and using information retrieval techniques for content analyses, automatically 
issues requests to search engines in order to retrieve related material. Another such 
is Letizia (Liebermann 1995, Liebermann et al. 2001), an application that tries to 
predict the most relevant links the user should explore based on the pages he or she 
has viewed in the previous session. Letizia operates concurrently while the user is 
browsing, building a keyword based user profile of the current browsing session. It 
downloads linked pages and generates a score for each link based on the user-
profile. Letizia presents a recommendation set of links that indicate a preference 
ranking according to the current state of the profile. The objective is to recommend 
a certain percentage of the currently available links. Both Watson and Leitizia 
have been termed ‘Reconnaisance’ applications (Liebermann et al. 2001). In both 
cases the user-profile is a short-term representation of the user’s current interests 
designed to capture the context of the current task undertaken by the user. The 
context is a content-based representation of items currently being used. This can be 
viewed as an approximation of a task-based representation where the user’s 
explicit task goals are known. Obviously the approximation is noisy because it is 
based upon an implicit concept of the user’s interests. If the user digresses or 
switches subject while researching a topic, both reconnaissance aides will require 
time to respond. However, the advantage of an implicitly generated profile is that 
the user does not need explicitly to describe his/her goals, prior to working. 
Measuring the success of the short-term user profile is a difficult issue. The 



problem boils down to analysing the correctness of the ranking produced 
according to their relevance to the user profile. Whereas analyses of recommender 
systems have been reliant on off-line machine learning evaluation, ranking 
problems such as these are not as easily studied in on offline manner. In section 6 
we present an evaluation technique suited to measuring the success of contextually 
motivated recommendations. 

4.1 Contextualising by instance 
The primary recommendation strategy in Smart Radio is ACF. However, ACF is 
not sensitive to the user’s current interests.  So while the user is listening to jazz 
music, he/she is as likely to receive an electronica playlist as he is a jazz playlist. 
The objective to context-guided ACF is to recommend items based on neighbour 
endorsement as before, but to promote those items that may be of interest to the 
user based on his/her current context.  Unlike the examples of the reconnaissance 
aides described earlier, which used information retrieval analyses to build a short-
term user profile, the Smart Radio domain suffers from a deficit of content 
descriptions. Our goal is to enhance the ACF technique where very little content is 
freely available, and where the knowledge engineering overhead is kept to a 
minimum. The content descriptors we use are found in a few bytes of information 
at the end of the mp3 file. The type of information available is TrackName, 
artistName, albumName, genre and date. However, since this information is often 
voluntarily uploaded to sites such as the CD database (www.cddb.com), track 
information has to be scanned for inaccuracies in spelling and genre assignation. 
Furthermore, we do not use the potentially useful date feature since it is often 
missing or inaccurate.  

4.1.1 Context Event 

Smart Radio is a closed domain with a finite number of playlist resources. By 
playing a playlist the user triggers a context event. The contents of the playlist are 
assumed to indicate the user’s current listening preference. We term this 
contextualising by instance. In the taxonomy suggested by Lieberman, this is a 
“zero input” strategy in which the system uses a short term, implicit representation 
of the user’s interests (Lieberman et al. 2001). Rather than extracting features from 
the playlist in a manner similar to Watson or Letiza, we transform the playlist 
representation into a case-based representation where the case features indicate the 
genre/artist mixture with in the playlist. Since the playlist is a compilation the goal 
is to capture the type of music mix, using the available features that would best 
indicate this property. Using the playlist format we are thus able to produce a much 
richer composite representation of the music being listened to than if we were 
looking solely at track descriptions. 

4.1.2 Case Representation 

We have two feature types associated with each track, genre_ and artist_. 
The semantics we are trying to capture by our case representation is the 
composition of a playlist in terms of genre and artist, where we consider genre to 
be the primary feature type. The most obvious way to represent each case is to 



have two features, artist and genre that contain an enumeration of the genres 
or artists in each feature. However, this case representation does not adequately 
capture the idea of a compilation of music tracks, in that it ignores the quantities of 
each genre/artist present in the playlist. Our case description must contain the 
quantities of individual genre and artists within each playlist. Furthermore, our 
case representation should not ignore retrieval issues. Even though we only have 
two features, the enumerated set of values for each feature means that similarity 
matching will require an exhaustive search through the case base. Since many 
cases will have no genres or artists in common, this is highly inefficient.  Our goal 
is to produce a case representation that allows us to index closely matching cases, 
so that retrieval takes place only over the relevant portion of the case base. Finally, 
since one of the advantages of an instance-based representation is the ease with 
which explanations can be derived from retrieved cases, our case representation 
should be an intuitive depiction of what constitutes a compilation of music tracks. 

The case representation we used in Smart Radio is illustrated in table 2. The case 
captures the composition of the playlist in terms of the quantity of genres and artist 
present. This representation allows each case to be indexed in a retrieval-efficient 
memory structure such as a case retrieval net which we discuss in section 5. The 
case mark-up demonstrated in table 2 is an example of CBML v1.0, Case Mark-up 
Language, which we developed to represent case data in distributed web 
applications (Hayes, Doyle & Cunningham 1998).  

<case> 
<casedef casename="playlist_930"> 
<attributes> 
  <attribute name="genre_1">1</attribute> 
  <attribute name="genre_11">2</attribute> 
  <attribute name="genre_17">3</attribute> 
  <attribute name="genre_7">4</attribute> 
  <attribute name="artist_1201">1</attribute> 
  ... 
</attributes> 
</casedef> 
</case> 

Table 2. A CBML representation of the playlist. 

4.2 Feature Weights 
The transformed playlist has two types of feature, genre_ features and artist_ 
features.  The maximum number of features in a playlist is 20 where it is composed 
of 10 separate genres and 10 artists. The minimum number of features a playlist 
can have is two, in which case the playlist contains tracks by the same artist, and 
with the same genre. The currently playing playlist is used as the target for which 
we try and find the most similar cases available in the recommendation set. Playlist 
similarity is determined by matching the proportions of genre and artist contained 
in a playlist. When calculating playlist similarity we apply two sets of weights to 
theses features. 



4.2.1 Feature Type Weight 

The first, the feature type weight, is general across each query and represents the 
relative importance of each type of feature. We consider the genre_ type more 
important in determining the property of playlist mix and allocate it a weight of 
0.7. The artist_ type features receive a 0.3 weighting. The reason for this is 
that artist features are essentially used to refine the retrieval process, boosting 
those playlists that match well on the genre_ type features. This is particularly 
pertinent where a target playlist contains a lot of tracks by one artist. Playlists that 
match well on the genre_ features are then boosted by the contribution of the 
artist_ features, pushing those lists with the artist to the top of the resultset. 
The artist_ features also implicitly designate the degree of mix of the target 
playlist. A playlist with one or two artists and one or two genres will match 
playlists with a similar mix while a playlist with a larger selection of genres and 
artists will tend to match similarly eclectic playlists. However, we recognise that 
the weights allocated to each feature type are based only on our view of playlist 
similarity. This is an inexact science based on a subjective analysis, and certainly 
different weight proportions per listener could be allocated were we able to easily 
capture each listener’s outlook on playlist similarity. Stahl (2001) and Branting 
(2003) have proposed some techniques for determining local similarity measures, 
but in the context of Smart Radio it is difficult to see how these could be applied 
implicitly i.e. without explicitly asking the user to rate how well playlists are 
matched. 

4.2.2 Feature Query Weight 

The second weight, the feature query weight, is query specific and is determined 
by the composition of the target playlist. The feature query weight represents the 
degree of importance of each feature in determining similarity. The feature query 
weight for feature i of type t , is given as  
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Accordingly, the similarity weights for the features in the case in table 2 are given 
in table 3: 

Feature feature_type_weight * 

feature_query_weight 

Weight 

genre_1 0.7 x (1/10) 0.28 
genre_11 0.7 x (2/10) 0.21 
genre_17 0.7 x (3/10) 0.21 
genre_7 0.3 x (4/10) 0.12 
artist_1201 0.3 x (1/10) 0.03 

Table 3. The table illustrates how weights are calculated on a per query basis 

4.3 Similarity Metric 
The similarity measure we use is given by equation 3. This measure, which is a 
modified form of a similarity measure known as the weighted city block measure 
(Equation 4), was chosen because it works well in matching cases where missing 
values occur. As we see from table 2 and table 3 the target case defines the feature 
(and feature weights) required in each query. Hence, on a query basis many 
playlist cases can be considered to have missing attribute values with respect to the 
target case. However, since each case is fully specified in its own right, many 
matching cases may contain genre_ features that are not relevant to the query. 
Even though the candidate case may closely match the target in terms of the 
features they have in common, the presence of irrelevant (or unsuitable) features 
may mean that the case is less useful than another case that only contains the target 
features. For this reason we apply a similarity adjustment, c, to each retrieved case 
that depends on the proportion of the playlist containing the genre features 
specified by the target (see Equation 5). This weight diminishes similarity scores 
that are based on a partial match with the genre_ features of the target, and 
preserves similarity scores that are based on full matches.  
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5. Integrating Context Ranking and ACF  
Integrating the ACF procedure and similarity-based context ranking requires 
weighing up a number of factors. Burke suggests that a hybrid strategy must be a 
function of the characteristics of the recommender systems being combined (Burke 
2002). For content and collaborative recommender systems this is largely dependent 
on the quantity and quality of data available. Another factor is the history of the 
application: is it new, in which case both techniques are untested, or is the proposed 
hybrid an enhancement of an already running system.  For historical and logistical 
reasons the quantity and quality of the ACF data in the Smart Radio system is greater 
than the content data. Smart Radio has a greater amount of ACF data because it was 
originally designed and run as an ACF–based playlist recommender system (Hayes & 
Cunningham 2000). Content-based recommendation systems at least require a 
content extraction process and, in the case of knowledge-based system, they may also 
require a knowledge engineering process (Burke 2002).  The content extraction 
process in Smart Radio involved mining the ID3 tags in each mp3 file which 
contained the genre_ and artist_ information. As such it was a lightweight, 
inexpensive process. Although, the information it yielded was not particularly rich 
the alternatives in the music domain are costly. While annotated music databases are 
available, license fees are prohibitively expensive reflecting the man-hours and 
knowledge required to keep up to date with the shifting music scene (AllMusic 
2002). Automatically extracting meaningful features from music files is still a hot 
research topic. Researchers in a sister project to the Smart Radio project are seeking 
to automatically extract features from mp3 files using signal analysis which they then 
use to classify music tracks (Grimaldi, Cunningham, Kokaram 2003). The extraction 
technique, which is computationally intensive, extracts 143 low level features 
characterising the rhythm and frequency ranges of each music track. Although some 
promising results have been obtained, these features are not in a human 
understandable form, and a knowledge engineering task may need to be carried out 
on them before they can usefully be employed in a recommender system.  

5.1 ACF/Content-Based Cascade architecture 
The content-based strategy in Smart Radio was never designed as a stand-alone 
recommendation strategy. Rather it evolved through our identification of the problem 
of insensitivity to user-context in version 1.0 of the system. For this reason, the 
content-based strategy was always designed as an augmentation of the primary ACF 
strategy.  Since one of the benefits of ACF is its ‘knowledge light’ approach to 
recommendation, our goal in designing a hybrid, content-based approach was to 
augment the ACF process with a similarly lightweight content-based strategy. Within 
the taxonomy of hybrid strategies suggested by Burke, the Smart Radio hybrid is best 
described as a Cascading system. This involves a staged process where one 
technique produces a candidate set which is then refined by a secondary process. 
Burke identifies the EntréeC system as the only other hybrid system using a 
Cascading strategy. In the EntréeC system, a content rich, knowledge-based system 
is the primary means of recommendation. A light ACF system is employed to decide 



between tied recommendations produced by the first stage by promoting those 
recommendations that have been ‘endorsed’ by EntréeC users. The Smart Radio 
system, on the other hand, uses ACF as its primary recommendation strategy that is 
then refined by a content-based process. As a result of this, SmartRadio is an 
automated recommendation system whereas EntreeC requires the user to explicitly 
enter the terms of their restaurant requirements. SmartRadio is the only example in 
the literature of this type of automated recommendation system. The SmartRadio 
approach is to use the full user profile for ACF recommendations but to then refine 
these recommendations based on similarity to the current context. The 
implementation of this strategy is a type of MAC/FAC retrieval well known amongst 
CBR researchers (Gentner & Forbus 1991). In a novel slant on this we integrate the 
ACF process into this retrieval strategy. 

5.2 MAC/FAC 
Gentner and Forbus’s  MAC/FAC (Many Are Called but Few Are Chosen) retrieval 
technique has its origins in cognitive science where it was suggested as a model of  
the memory access exhibited by human beings. The technique involves a two-stage 
retrieval in which the MAC component provided a relatively inexpensive wide search 
of memory based on a surface representation of the problem. The FAC stage pruned 
the results from the MAC stage using a much more rigorous, examination of the 
structural representation of each case. In applied case based reasoning the technique 
has become understood as a two-stage retrieval in which a wide net search is 
followed by a refinement stage. Our use of the term is in this context. Our 
implementation of the two-stage retrieval is novel in that the first stage (MAC) is 
carried out by the ACF module, which returns a set of results, of which we need to 
decide which is the most pertinent to our user context. The second stage (FAC) 
involves finding matches to the context probe in the result set. 

5.3 Case Memory 
The Smart Radio case memory consists of the total number of playlists in the system 
organised as a case retrieval net with each case represented in terms of its constituent 
genre_ and artist_ features. Each playlist case can be considered to have 
missing features since it is impossible for a single playlist to contain all possible 
genre_ and artist_ features.  As illustrated in figure 3, the case retrieval net 
structure will only link those cases with features in common. This ensures optimal 
retrieval while only traversing the relevant portions of case memory (Lenz  1999). 



 

 

Figure 3. A schema of the playlists indexed using a case retrieval net. 

As we describe in chapter 3, the ACF module also operates in a novel 
implementation of a case retrieval net. The output for the ACF module is a set of 
candidate playlists. These are the playlists the system has found using the resources 
of the ACF neighbourhood. The key idea at this point is that only a portion of these 
may be particularly relevant to the user at this time. Each retrieved playlist has a 
caseIndex which refers to the playlist case retrieval net. The set of candidate 
caseIndexes primes a subset of the case retrieval net. The context playlist is then 
presented as a target case. The retrieval mechanism uses a spreading activation from 
the target case spreads only through the primed subset of the case retrieval net.  
Those programmes that have highest activation after this process are those that are 
most similar to the target playlist. The overall activation metric is the similarity score 
calculated using equation 5.5. The top 5 playlists are then ranked according to their 
activation score.  

5.4 Presenting Recommendations 
The presentation strategy employed by Smart Radio is to give the user a list of ten 
recommended playlists per page.  Smart Radio users can view the contents of any 
playlist with a single mouse click,. By default the top recommended playlist is 
displayed automatically. The further a list is from the top the less likely the user 
will view it (Swearingen & Sinha 2001). For this reason, the 5 most similar 
playlists to the context playlist out of the user’s overall recommendation set are 
displayed at the top of the Smart Radio home page. Users quickly understand that 
the top 5 recommendations are particularly relevant to their listening interests at 
the time. After the first five playlists the recommended lists are displayed 
according to the predicted vote of the ACF module. As we shall see in the next 
section we amend this presentation strategy when we are evaluating the efficacy of 
our context-based recommendations. 

6. Evaluation 
Increasingly, there has been a demand for objective evaluation criteria for online 
Recommender systems. This stems from a difficulty in evaluating which 
recommender is better than another, and in judging which criteria to use when 



making this evaluation.  The most common evaluation approaches are performed off-
line using techniques from machine learning and information retrieval such as cross 
validation, Leave-One-Out evaluation and measures of recall/precision. However, 
these techniques are not suitable for measuring the success of a recommender 
strategy like the content-boosted ACF that produces a ranking based on user actions 
at a particular time. To be sure that our new hypothesis is working we need to 
perform a comparative analysis of how it performs against a pure ACF strategy. We 
draw attention to the fact that evaluation has to measure whether real people are 
willing to act based on the advice of the system. Unlike the off-line analysis, this 
methodology plays one recommendation strategy against the other in an on-line 
setting and measures relative degree of success of each strategy according to how the 
user utilises the recommendations of either system. This framework doesn't measure 
absolute user satisfaction but only relative user satisfaction with one system over 
another.  Our evaluation methodology draws upon an on-line evaluative framework 
for recommender systems which we have earlier defined (Hayes et al. 2002). In the 
interests of space we only discuss issues related to our current evaluation and refer 
the reader to the earlier paper for a fuller discussion. Our evaluation environment 
consists of a real on-line application used by a community of users, with a well-
defined recommendation task using a specific user interface. The application is 
serviced by two competing recommendation strategies: ACF and content-boosted 
ACF.  In order to be able to gauge a relative measure of user satisfaction with the two 
strategies, it is necessary to log the user interactions with respect to the 
recommendation engines. By comparing usage of the recommendations, it will be 
possible to say which strategy performed better than the other. In order to isolate the 
recommendation strategies we keep other aspects that might influence user 
satisfaction (interface, interaction model) the same.  The proposed methodology can 
be seen as a competition between two different approaches to solving the same 
problem (in this case, winning user satisfaction) in which the winner is defined by 
how the user makes use of recommendations. We define three evaluation policies. 

Presentation policy: The recommendations in Smart Radio are presented as an 
ordered list (figure 1). For evaluative purposes we interleave items from each 
strategy. Since the item presented first in a recommendation set is considered to have 
priority, access to this position is alternated between each recommender strategy after 
each playlist ‘play’ event. 

Evaluation policy: defines how user actions will be considered evidence of 
preference of one algorithm over the other. In this case a preference is registered for 
one strategy over the other when a user plays a playlist after selecting it from the 
recommendation set. 

Comparison metric: defines how to analyse the evaluative feedback in order to 
determine a winner. The simplest way is to count the number of rounds won by the 
competing systems.  However, certain algorithms, such as collaborative filtering, may 
only start to perform well after sufficient data has been collected.  Therefore, we also 
need to analyse the performance curve of each system rather than a cumulative score. 



 

6.1 Results 
The results refer to the listening data of 46 users who played a total of 606 playlists 
during the 65day period from 08/04/2003 until 12/06/2003. The graph in figure 4 
shows the source of playlists played in the system for this period. The 
recommendation category was by far the most popular means of finding playlists. 
The category with the next highest score, the past playlists category, is a bit unusual 
since people have to have chosen a playlist from one of the other categories first 
before they can choose it again from their past playlists. In this case 15 of the past 
lists chosen were originally recommendations made within the period. We should 
also note that building playlists from scratch or explicitly searching for playlists 
should not be considered ‘rival’ categories to the recommendation category since an 
ACF based system requires users to find a proportion of new items from outside the 
system itself. 

 

Figure 4. The source of playlist played in Smart Radio during the evaluation period. 

Figure 5 illustrates the cumulative breakdown of recommendations between pure 
ACF recommendations and context boosted ACF for the period.  From a total of 
313 playlists played 190 were sourced from content boosted recommendations, 
while 110 came from normal ACF recommendations. 
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Figure 5. The cumulative scores for the ACF vs. context boosted ACF analysis 

The final graph shows the proportions of ACF vs. context boosted 
recommendation analysed on a weekly basis for the period. The context boosted 
ACF continually outperformed the pure ACF recommendation strategy. In order to 
check that these results were consistent throughout the evaluation period we 
divided the period into 10 intervals of one week. The graph in figure 6 illustrates 
that the content-boosted ACF out performed normal ACF in each interval. 
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Figure 6. The graph demonstrates that the context-boosted ACF continually performed 
better than the pure ACF strategy throughout the evaluation period 

7. Conclusion 
In this paper we introduced the Smart Radio system, a community-based 
recommendation service where users compile and share music playlists with the 
aide of an automated collaborative filtering system. However, since ACF 
techniques are insensitive to the user’s current listening preferences we have used 
a lightweight content-based retrieval mechanism to rank recommendations 
according to their relevance to the user.  The principle idea is that the user’s most 
recent interests are represented as a target case.  The ACF module primes a portion 



of the Case Retrieval Net memory. Using the spreading activation mechanism of 
the Case Retrieval Net, the ACF recommendations are then ranked according to 
their similarity to the target case. We evaluated our strategy with an online 
methodology in which both algorithms simultaneously competed. Our data would 
suggest that the context boosted ACF significantly out performs standard ACF.  
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