
Context Boosting Collaborative
Recommendations

Conor Hayes, Pádraig Cunningham
Computer Science Department,

Trinity College Dublin

Abstract

This paper describes the operation of and research behind a networked application for the
delivery of personalised streams of music at Trinity College Dublin. Smart Radio is a web
based client-server application that uses streaming audio technology and recommendation
techniques to allow users build, manage and share music programmes. Since good content
descriptors are difficult to obtain in the audio domain, we originally used automated
collaborative filtering, a ‘content less’ approach as our recommendation strategy. We
describe how we improve the ACF technique by leveraging a light content-based technique
that attempts to capture the user’s current listening ‘context’. This involves a two stage
retrieval process where ACF recommendations are ranked according to the user’s current
interests. Finally, we demonstrate a novel online evaluation strategy that pits the ACF
strategy against the context-boosted strategy in a real time competition.

1. Introduction
This paper describes a personalised web-based music service called Smart Radio,
which has been in operation in the computer science department at Trinity College
Dublin for the past two years. The service was set up to examine how a
personalised service of radio programming could be achieved over the web. The
advent of on-line music services poses similar problems of information overload
often described for textual material. However, the filtering/recommendation of
audio resources has its own difficulties. Chief amongst these is the absence of
good content description required by content or knowledge based systems. This
drawback is conventionally overcome using collaborative filtering, a technique
that leverages similarity between users to make recommendations. As such it is
often termed a ‘contentless’ approach to recommendation because description of
the items being recommended is not required. Apart from the obvious advantage of
a ‘knowledge–light’ approach to recommendation, ACF is often attributed as being
able find recommendations that would otherwise escape content based
recommender strategies. This is because it relies upon user preferences that may
capture subtle qualities such as aesthetic merit that may escape current content-
based systems. However, ACF does have well documented drawbacks such as the
problem of bootstrapping new users and new content into the system. In this paper
we examine a less documented weakness, that of context insensitivity, and provide
a solution using a light-weight case-based approach. Since our technique imposes a
ranking based on what the user is currently listening to in the system we do not
consider offline approaches to evaluation such as cross validation or measures of
recall/precision appropriate for this situation. Instead we measure whether a user
was inclined to make use of the recommendations presented to them. We evaluate

our approach using a novel on-line methodology in which a pure ACF strategy and
a context boosted ACF strategy are concurrently deployed. We measure how well
both techniques perform and find that context-boosted ACF significantly
outperforms ACF. Section 2 briefly describes the system operation, and introduces
the idea of a playlist, a user-compiled collection of music tracks that we use as the
basic unit of recommendation. In section 3 we introduce some of the principles of
Automated Collaborative filtering (ACF). We point out some of the deficiencies of
using ACF as the sole recommendation strategy, and in section 4 we introduce the
idea of a context and a strategy we use to further refine recommendations made by
the ACF engine. Section 5 describes the integration of our hybrid approach.
Finally, in section 6 we discuss our choice of evaluation methodology and present
our results.

2. Smart Radio
Smart Radio is a web-based client-server application that allows users to build
compilations of music that can be streamed to the desktop. The idea behind Smart
Radio is to encourage the sharing of music programmes using automated
recommendation techniques. As well as this Smart Radio users can always see
their neighbourhood profile, and can elect to receive new programmes from
neighbours they learn to trust. The unit of recommendation in Smart Radio is the
playlist, a compilation of music tracks built by one listener and recommended to
other like-minded listeners. In terms of music delivery it is a better-understood
format than a single song recommendation system. It has the advantage of
allowing a full programme of music to be delivered to the user. In this way, the
work involved in compiling a playlist of music is distributed to other listeners. The
playlist format is also attractive in that it allows individual users to personalise
their own selections of music, with the understanding that these will be passed on
to like-minded listeners. This is often reflected in the titles Smart Radio listeners
give to their playlists. Our original hypothesis was that the playlist format also
would also capture the implicit ‘rules of thumb’ that people may use when putting
together selections of music, such as “don’t mix techno and country”. However,
this hypothesis has yet to be fully tested.

Figure 1. The Smart Radio recommendation panel. Recommended playlists are presented as
an ordered list. By default the first playlist is automatically displayed.

3. ACF and its Drawbacks
The first version of Smart Radio used Automated Collaborative Filtering (ACF) as
its recommendation strategy (Hayes & Cunningham 2000). ACF does not attempt
to model any aspect of cognitive psychology as case based reasoning does. Instead
it relies upon implicitly capturing the subtle distinctions people make when
selecting or rejecting from any set of items. Its great strength is that it operates
without using any representations of the items being filtered, relying instead on the
pooled preference data from positively correlated users to recommend or reject
from the resources available. As such it has been referred to as ‘word of mouth’
filtering (Shardanand and Maes 1995), ‘people to people correlation’ (Schafer et
al. 1999) and a ‘contentless’ approach to filtering or recommendation (Resnick et
al. 1994, Balabanovic & Shoham 1997); Even more so than CBR, it is used to as a
recommendation strategy where the knowledge acquisition bottleneck is severe.

 item A item B item C item D item E item F item G
 User 1 0.6 0.6 0.8 ? ? 0.8 0.5
 User 2 ? 0.8 0.8 0.3 0.7 ? ?
 User 3 0.6 0.6 0.3 0.5 ? 0.7 0.5
 User 4 ? ? ? ? 0.7 0.8 0.7

Table 1. The table illustrates user-preference data the type of data used in ACF systems.
Although this type of data is ordered, this ordering is not used in the ACF algorithm.

One serious drawback to ACF is that it is not sensitive to a user’s interests at a
particular moment. Even though a user’s preference data is an ordered set of
ratings collected over time, the data is treated in an accumulative fashion by the
ACF algorithm. The sparsity of the data necessitates taking all ratings into account
in order to make sound correlations with other users. However, the resulting
recommendation set will contain a mix of items reflecting each user’s accrued
interests. This may not be a real drawback if we are using ACF as a passive filter.
However, where ACF is required to produce recommendations on demand, its lack
of sensitivity to the users current interests may cause frustration and distrust. For
instance if a user is engaged in specialised activity, such as reading documents on a
particular subject, or listening to music of a particular genre many of the
recommendations will be inappropriate and untimely. The problem is complicated
by the fact that many ACF recommender systems operate in domains where there
is very little content description, making it difficult to ascertain the transitions
between interests of a particular type As we illustrate in figure 2, our goal is to
enhance the usefulness of an ACF based system by using a lightweight content-
based strategy like CBR to rank ACF recommendations according to the user’s
current interests. The darker shaded cases in the diagram indicate ACF
recommendations that are most similar to the user’s current context. In the next
section we explain the concept of context, a representation of the user’s interests at
a particular moment and we present our case-based representation of playlist
context. In section 5 we present our hybrid ACF system which uses a novel
MAC/FAC retrieval strategy.

Figure 2. The ACF module selects a subset of the case base. A second stage retrieval
process then ranks these primed cases according to their similarity to the user’s listening
context. This is indicated by the darker shaded cases on the right.

4. Context boosted ACF
This concept of isolating localised interest has been referred to in user-modelling
research as context. It is a slippery term that has a wider variety of meanings as it is
also used to describe sets of environmental parameters in the area of ubiquitous
computing (Schlit et al 1994). Our use of the term is similar to what would be
termed ‘task context’ within the same community. This is a description of the
explicit goals, tasks, actions, background and activities of the user at a particular
time and place. The objective to isolating context in user-modelling is that tasks
being undertaken by the user may be anticipated and a portion of the work carried
out automatically in advance. An example of such a technique is Watson (Budzik
et al. 1998) an application which monitors the user’s current writing or reading
behaviour on desktop applications such as Microsoft Word or Windows Explorer,
and using information retrieval techniques for content analyses, automatically
issues requests to search engines in order to retrieve related material. Another such
is Letizia (Liebermann 1995, Liebermann et al. 2001), an application that tries to
predict the most relevant links the user should explore based on the pages he or she
has viewed in the previous session. Letizia operates concurrently while the user is
browsing, building a keyword based user profile of the current browsing session. It
downloads linked pages and generates a score for each link based on the user-
profile. Letizia presents a recommendation set of links that indicate a preference
ranking according to the current state of the profile. The objective is to recommend
a certain percentage of the currently available links. Both Watson and Leitizia
have been termed ‘Reconnaisance’ applications (Liebermann et al. 2001). In both
cases the user-profile is a short-term representation of the user’s current interests
designed to capture the context of the current task undertaken by the user. The
context is a content-based representation of items currently being used. This can be
viewed as an approximation of a task-based representation where the user’s
explicit task goals are known. Obviously the approximation is noisy because it is
based upon an implicit concept of the user’s interests. If the user digresses or
switches subject while researching a topic, both reconnaissance aides will require
time to respond. However, the advantage of an implicitly generated profile is that
the user does not need explicitly to describe his/her goals, prior to working.
Measuring the success of the short-term user profile is a difficult issue. The

problem boils down to analysing the correctness of the ranking produced
according to their relevance to the user profile. Whereas analyses of recommender
systems have been reliant on off-line machine learning evaluation, ranking
problems such as these are not as easily studied in on offline manner. In section 6
we present an evaluation technique suited to measuring the success of contextually
motivated recommendations.

4.1 Contextualising by instance
The primary recommendation strategy in Smart Radio is ACF. However, ACF is
not sensitive to the user’s current interests. So while the user is listening to jazz
music, he/she is as likely to receive an electronica playlist as he is a jazz playlist.
The objective to context-guided ACF is to recommend items based on neighbour
endorsement as before, but to promote those items that may be of interest to the
user based on his/her current context. Unlike the examples of the reconnaissance
aides described earlier, which used information retrieval analyses to build a short-
term user profile, the Smart Radio domain suffers from a deficit of content
descriptions. Our goal is to enhance the ACF technique where very little content is
freely available, and where the knowledge engineering overhead is kept to a
minimum. The content descriptors we use are found in a few bytes of information
at the end of the mp3 file. The type of information available is TrackName,
artistName, albumName, genre and date. However, since this information is often
voluntarily uploaded to sites such as the CD database (www.cddb.com), track
information has to be scanned for inaccuracies in spelling and genre assignation.
Furthermore, we do not use the potentially useful date feature since it is often
missing or inaccurate.

4.1.1 Context Event

Smart Radio is a closed domain with a finite number of playlist resources. By
playing a playlist the user triggers a context event. The contents of the playlist are
assumed to indicate the user’s current listening preference. We term this
contextualising by instance. In the taxonomy suggested by Lieberman, this is a
“zero input” strategy in which the system uses a short term, implicit representation
of the user’s interests (Lieberman et al. 2001). Rather than extracting features from
the playlist in a manner similar to Watson or Letiza, we transform the playlist
representation into a case-based representation where the case features indicate the
genre/artist mixture with in the playlist. Since the playlist is a compilation the goal
is to capture the type of music mix, using the available features that would best
indicate this property. Using the playlist format we are thus able to produce a much
richer composite representation of the music being listened to than if we were
looking solely at track descriptions.

4.1.2 Case Representation

We have two feature types associated with each track, genre_ and artist_.
The semantics we are trying to capture by our case representation is the
composition of a playlist in terms of genre and artist, where we consider genre to
be the primary feature type. The most obvious way to represent each case is to

have two features, artist and genre that contain an enumeration of the genres
or artists in each feature. However, this case representation does not adequately
capture the idea of a compilation of music tracks, in that it ignores the quantities of
each genre/artist present in the playlist. Our case description must contain the
quantities of individual genre and artists within each playlist. Furthermore, our
case representation should not ignore retrieval issues. Even though we only have
two features, the enumerated set of values for each feature means that similarity
matching will require an exhaustive search through the case base. Since many
cases will have no genres or artists in common, this is highly inefficient. Our goal
is to produce a case representation that allows us to index closely matching cases,
so that retrieval takes place only over the relevant portion of the case base. Finally,
since one of the advantages of an instance-based representation is the ease with
which explanations can be derived from retrieved cases, our case representation
should be an intuitive depiction of what constitutes a compilation of music tracks.

The case representation we used in Smart Radio is illustrated in table 2. The case
captures the composition of the playlist in terms of the quantity of genres and artist
present. This representation allows each case to be indexed in a retrieval-efficient
memory structure such as a case retrieval net which we discuss in section 5. The
case mark-up demonstrated in table 2 is an example of CBML v1.0, Case Mark-up
Language, which we developed to represent case data in distributed web
applications (Hayes, Doyle & Cunningham 1998).

<case>
<casedef casename="playlist_930">
<attributes>
 <attribute name="genre_1">1</attribute>
 <attribute name="genre_11">2</attribute>
 <attribute name="genre_17">3</attribute>
 <attribute name="genre_7">4</attribute>
 <attribute name="artist_1201">1</attribute>
 ...
</attributes>
</casedef>
</case>

Table 2. A CBML representation of the playlist.

4.2 Feature Weights
The transformed playlist has two types of feature, genre_ features and artist_
features. The maximum number of features in a playlist is 20 where it is composed
of 10 separate genres and 10 artists. The minimum number of features a playlist
can have is two, in which case the playlist contains tracks by the same artist, and
with the same genre. The currently playing playlist is used as the target for which
we try and find the most similar cases available in the recommendation set. Playlist
similarity is determined by matching the proportions of genre and artist contained
in a playlist. When calculating playlist similarity we apply two sets of weights to
theses features.

4.2.1 Feature Type Weight

The first, the feature type weight, is general across each query and represents the
relative importance of each type of feature. We consider the genre_ type more
important in determining the property of playlist mix and allocate it a weight of
0.7. The artist_ type features receive a 0.3 weighting. The reason for this is
that artist features are essentially used to refine the retrieval process, boosting
those playlists that match well on the genre_ type features. This is particularly
pertinent where a target playlist contains a lot of tracks by one artist. Playlists that
match well on the genre_ features are then boosted by the contribution of the
artist_ features, pushing those lists with the artist to the top of the resultset.
The artist_ features also implicitly designate the degree of mix of the target
playlist. A playlist with one or two artists and one or two genres will match
playlists with a similar mix while a playlist with a larger selection of genres and
artists will tend to match similarly eclectic playlists. However, we recognise that
the weights allocated to each feature type are based only on our view of playlist
similarity. This is an inexact science based on a subjective analysis, and certainly
different weight proportions per listener could be allocated were we able to easily
capture each listener’s outlook on playlist similarity. Stahl (2001) and Branting
(2003) have proposed some techniques for determining local similarity measures,
but in the context of Smart Radio it is difficult to see how these could be applied
implicitly i.e. without explicitly asking the user to rate how well playlists are
matched.

4.2.2 Feature Query Weight

The second weight, the feature query weight, is query specific and is determined
by the composition of the target playlist. The feature query weight represents the
degree of importance of each feature in determining similarity. The feature query
weight for feature i of type t , is given as

,

,

t i

t i

j

j t

f
wf

f
∈

=
∑

[1]

where ,t if is the value for feature i of the target case. The denominator is the

summation of values for features of type t. The overall weight, ow, for each feature
is the product of the feature type weight and the feature query weight.

ow = feature_type_weight * feature_query_weight

Accordingly, the similarity weights for the features in the case in table 2 are given
in table 3:

Feature feature_type_weight *

feature_query_weight

Weight

genre_1 0.7 x (1/10) 0.28
genre_11 0.7 x (2/10) 0.21
genre_17 0.7 x (3/10) 0.21
genre_7 0.3 x (4/10) 0.12
artist_1201 0.3 x (1/10) 0.03

Table 3. The table illustrates how weights are calculated on a per query basis

4.3 Similarity Metric
The similarity measure we use is given by equation 3. This measure, which is a
modified form of a similarity measure known as the weighted city block measure
(Equation 4), was chosen because it works well in matching cases where missing
values occur. As we see from table 2 and table 3 the target case defines the feature
(and feature weights) required in each query. Hence, on a query basis many
playlist cases can be considered to have missing attribute values with respect to the
target case. However, since each case is fully specified in its own right, many
matching cases may contain genre_ features that are not relevant to the query.
Even though the candidate case may closely match the target in terms of the
features they have in common, the presence of irrelevant (or unsuitable) features
may mean that the case is less useful than another case that only contains the target
features. For this reason we apply a similarity adjustment, c, to each retrieved case
that depends on the proportion of the playlist containing the genre features
specified by the target (see Equation 5). This weight diminishes similarity scores
that are based on a partial match with the genre_ features of the target, and
preserves similarity scores that are based on full matches.

1

(,)
p

i i

i

i

a b
sim A B c w

range=

−
= ∑ [2]

1

(,)
p

i i

i

i

a b
sim A B w

range=

−
=∑ [3]

_ _ _ arg _

_ _ _

num tracks with t et genre
c

total number of tracks
= [4]

5. Integrating Context Ranking and ACF
Integrating the ACF procedure and similarity-based context ranking requires
weighing up a number of factors. Burke suggests that a hybrid strategy must be a
function of the characteristics of the recommender systems being combined (Burke
2002). For content and collaborative recommender systems this is largely dependent
on the quantity and quality of data available. Another factor is the history of the
application: is it new, in which case both techniques are untested, or is the proposed
hybrid an enhancement of an already running system. For historical and logistical
reasons the quantity and quality of the ACF data in the Smart Radio system is greater
than the content data. Smart Radio has a greater amount of ACF data because it was
originally designed and run as an ACF–based playlist recommender system (Hayes &
Cunningham 2000). Content-based recommendation systems at least require a
content extraction process and, in the case of knowledge-based system, they may also
require a knowledge engineering process (Burke 2002). The content extraction
process in Smart Radio involved mining the ID3 tags in each mp3 file which
contained the genre_ and artist_ information. As such it was a lightweight,
inexpensive process. Although, the information it yielded was not particularly rich
the alternatives in the music domain are costly. While annotated music databases are
available, license fees are prohibitively expensive reflecting the man-hours and
knowledge required to keep up to date with the shifting music scene (AllMusic
2002). Automatically extracting meaningful features from music files is still a hot
research topic. Researchers in a sister project to the Smart Radio project are seeking
to automatically extract features from mp3 files using signal analysis which they then
use to classify music tracks (Grimaldi, Cunningham, Kokaram 2003). The extraction
technique, which is computationally intensive, extracts 143 low level features
characterising the rhythm and frequency ranges of each music track. Although some
promising results have been obtained, these features are not in a human
understandable form, and a knowledge engineering task may need to be carried out
on them before they can usefully be employed in a recommender system.

5.1 ACF/Content-Based Cascade architecture
The content-based strategy in Smart Radio was never designed as a stand-alone
recommendation strategy. Rather it evolved through our identification of the problem
of insensitivity to user-context in version 1.0 of the system. For this reason, the
content-based strategy was always designed as an augmentation of the primary ACF
strategy. Since one of the benefits of ACF is its ‘knowledge light’ approach to
recommendation, our goal in designing a hybrid, content-based approach was to
augment the ACF process with a similarly lightweight content-based strategy. Within
the taxonomy of hybrid strategies suggested by Burke, the Smart Radio hybrid is best
described as a Cascading system. This involves a staged process where one
technique produces a candidate set which is then refined by a secondary process.
Burke identifies the EntréeC system as the only other hybrid system using a
Cascading strategy. In the EntréeC system, a content rich, knowledge-based system
is the primary means of recommendation. A light ACF system is employed to decide

between tied recommendations produced by the first stage by promoting those
recommendations that have been ‘endorsed’ by EntréeC users. The Smart Radio
system, on the other hand, uses ACF as its primary recommendation strategy that is
then refined by a content-based process. As a result of this, SmartRadio is an
automated recommendation system whereas EntreeC requires the user to explicitly
enter the terms of their restaurant requirements. SmartRadio is the only example in
the literature of this type of automated recommendation system. The SmartRadio
approach is to use the full user profile for ACF recommendations but to then refine
these recommendations based on similarity to the current context. The
implementation of this strategy is a type of MAC/FAC retrieval well known amongst
CBR researchers (Gentner & Forbus 1991). In a novel slant on this we integrate the
ACF process into this retrieval strategy.

5.2 MAC/FAC
Gentner and Forbus’s MAC/FAC (Many Are Called but Few Are Chosen) retrieval
technique has its origins in cognitive science where it was suggested as a model of
the memory access exhibited by human beings. The technique involves a two-stage
retrieval in which the MAC component provided a relatively inexpensive wide search
of memory based on a surface representation of the problem. The FAC stage pruned
the results from the MAC stage using a much more rigorous, examination of the
structural representation of each case. In applied case based reasoning the technique
has become understood as a two-stage retrieval in which a wide net search is
followed by a refinement stage. Our use of the term is in this context. Our
implementation of the two-stage retrieval is novel in that the first stage (MAC) is
carried out by the ACF module, which returns a set of results, of which we need to
decide which is the most pertinent to our user context. The second stage (FAC)
involves finding matches to the context probe in the result set.

5.3 Case Memory
The Smart Radio case memory consists of the total number of playlists in the system
organised as a case retrieval net with each case represented in terms of its constituent
genre_ and artist_ features. Each playlist case can be considered to have
missing features since it is impossible for a single playlist to contain all possible
genre_ and artist_ features. As illustrated in figure 3, the case retrieval net
structure will only link those cases with features in common. This ensures optimal
retrieval while only traversing the relevant portions of case memory (Lenz 1999).

Figure 3. A schema of the playlists indexed using a case retrieval net.

As we describe in chapter 3, the ACF module also operates in a novel
implementation of a case retrieval net. The output for the ACF module is a set of
candidate playlists. These are the playlists the system has found using the resources
of the ACF neighbourhood. The key idea at this point is that only a portion of these
may be particularly relevant to the user at this time. Each retrieved playlist has a
caseIndex which refers to the playlist case retrieval net. The set of candidate
caseIndexes primes a subset of the case retrieval net. The context playlist is then
presented as a target case. The retrieval mechanism uses a spreading activation from
the target case spreads only through the primed subset of the case retrieval net.
Those programmes that have highest activation after this process are those that are
most similar to the target playlist. The overall activation metric is the similarity score
calculated using equation 5.5. The top 5 playlists are then ranked according to their
activation score.

5.4 Presenting Recommendations
The presentation strategy employed by Smart Radio is to give the user a list of ten
recommended playlists per page. Smart Radio users can view the contents of any
playlist with a single mouse click,. By default the top recommended playlist is
displayed automatically. The further a list is from the top the less likely the user
will view it (Swearingen & Sinha 2001). For this reason, the 5 most similar
playlists to the context playlist out of the user’s overall recommendation set are
displayed at the top of the Smart Radio home page. Users quickly understand that
the top 5 recommendations are particularly relevant to their listening interests at
the time. After the first five playlists the recommended lists are displayed
according to the predicted vote of the ACF module. As we shall see in the next
section we amend this presentation strategy when we are evaluating the efficacy of
our context-based recommendations.

6. Evaluation
Increasingly, there has been a demand for objective evaluation criteria for online
Recommender systems. This stems from a difficulty in evaluating which
recommender is better than another, and in judging which criteria to use when

making this evaluation. The most common evaluation approaches are performed off-
line using techniques from machine learning and information retrieval such as cross
validation, Leave-One-Out evaluation and measures of recall/precision. However,
these techniques are not suitable for measuring the success of a recommender
strategy like the content-boosted ACF that produces a ranking based on user actions
at a particular time. To be sure that our new hypothesis is working we need to
perform a comparative analysis of how it performs against a pure ACF strategy. We
draw attention to the fact that evaluation has to measure whether real people are
willing to act based on the advice of the system. Unlike the off-line analysis, this
methodology plays one recommendation strategy against the other in an on-line
setting and measures relative degree of success of each strategy according to how the
user utilises the recommendations of either system. This framework doesn't measure
absolute user satisfaction but only relative user satisfaction with one system over
another. Our evaluation methodology draws upon an on-line evaluative framework
for recommender systems which we have earlier defined (Hayes et al. 2002). In the
interests of space we only discuss issues related to our current evaluation and refer
the reader to the earlier paper for a fuller discussion. Our evaluation environment
consists of a real on-line application used by a community of users, with a well-
defined recommendation task using a specific user interface. The application is
serviced by two competing recommendation strategies: ACF and content-boosted
ACF. In order to be able to gauge a relative measure of user satisfaction with the two
strategies, it is necessary to log the user interactions with respect to the
recommendation engines. By comparing usage of the recommendations, it will be
possible to say which strategy performed better than the other. In order to isolate the
recommendation strategies we keep other aspects that might influence user
satisfaction (interface, interaction model) the same. The proposed methodology can
be seen as a competition between two different approaches to solving the same
problem (in this case, winning user satisfaction) in which the winner is defined by
how the user makes use of recommendations. We define three evaluation policies.

Presentation policy: The recommendations in Smart Radio are presented as an
ordered list (figure 1). For evaluative purposes we interleave items from each
strategy. Since the item presented first in a recommendation set is considered to have
priority, access to this position is alternated between each recommender strategy after
each playlist ‘play’ event.

Evaluation policy: defines how user actions will be considered evidence of
preference of one algorithm over the other. In this case a preference is registered for
one strategy over the other when a user plays a playlist after selecting it from the
recommendation set.

Comparison metric: defines how to analyse the evaluative feedback in order to
determine a winner. The simplest way is to count the number of rounds won by the
competing systems. However, certain algorithms, such as collaborative filtering, may
only start to perform well after sufficient data has been collected. Therefore, we also
need to analyse the performance curve of each system rather than a cumulative score.

6.1 Results
The results refer to the listening data of 46 users who played a total of 606 playlists
during the 65day period from 08/04/2003 until 12/06/2003. The graph in figure 4
shows the source of playlists played in the system for this period. The
recommendation category was by far the most popular means of finding playlists.
The category with the next highest score, the past playlists category, is a bit unusual
since people have to have chosen a playlist from one of the other categories first
before they can choose it again from their past playlists. In this case 15 of the past
lists chosen were originally recommendations made within the period. We should
also note that building playlists from scratch or explicitly searching for playlists
should not be considered ‘rival’ categories to the recommendation category since an
ACF based system requires users to find a proportion of new items from outside the
system itself.

Figure 4. The source of playlist played in Smart Radio during the evaluation period.

Figure 5 illustrates the cumulative breakdown of recommendations between pure
ACF recommendations and context boosted ACF for the period. From a total of
313 playlists played 190 were sourced from content boosted recommendations,
while 110 came from normal ACF recommendations.

ACF vs Context Bosted ACF Cumulative Score for the
period 08/04/2003 until 12/06/2003

110

190

13
0

50
100

150

200

Playlist Source

nu
m

be
r o

f '
pl

ay
'

im
pr

es
si

on
s ACF recommendation

Context
Recommendation

New user artist
recommendation

Figure 5. The cumulative scores for the ACF vs. context boosted ACF analysis

The final graph shows the proportions of ACF vs. context boosted
recommendation analysed on a weekly basis for the period. The context boosted
ACF continually outperformed the pure ACF recommendation strategy. In order to
check that these results were consistent throughout the evaluation period we
divided the period into 10 intervals of one week. The graph in figure 6 illustrates
that the content-boosted ACF out performed normal ACF in each interval.

ACF vs Context boosted ACF

0
10
20
30
40
50

Wee
k 1

Wee
k 2

Wee
k 3

Wee
k 4

Wee
k 5

Wee
k 6

Wee
k 7

Wee
k 8

Wee
k 9

Wee
k 1

0pl
ay

lis
t '

pl
ay

' i
m

pr
es

si
on

s

ACF
Context

Figure 6. The graph demonstrates that the context-boosted ACF continually performed
better than the pure ACF strategy throughout the evaluation period

7. Conclusion
In this paper we introduced the Smart Radio system, a community-based
recommendation service where users compile and share music playlists with the
aide of an automated collaborative filtering system. However, since ACF
techniques are insensitive to the user’s current listening preferences we have used
a lightweight content-based retrieval mechanism to rank recommendations
according to their relevance to the user. The principle idea is that the user’s most
recent interests are represented as a target case. The ACF module primes a portion

of the Case Retrieval Net memory. Using the spreading activation mechanism of
the Case Retrieval Net, the ACF recommendations are then ranked according to
their similarity to the target case. We evaluated our strategy with an online
methodology in which both algorithms simultaneously competed. Our data would
suggest that the context boosted ACF significantly out performs standard ACF.

References
1. Stahl, A. (2001). Learning Feature Weights from Case Order Feedback. Proceedings of the 4th International

Conference on Case-Based Reasoning, ICCBR 2001
2. Branting, L. K. (2003). Learning Feature Weights from Customer Return-Set Selections. The Journal of

Knowledge and Information Systems (KAIS). To appear, 2003.
3. Budzik, J., Hammond, K.J., Marlow, C.A., and Scheinkman, A. (1998) Anticipating information needs:

Every day applications as interfaces to Internet Information sources. In proceedisngs of the 1998 Worlds
Conference on the WWW, Internet ,and Intranet

4. Lieberman, H., Fry, C., and Weitzman, L., "Exploring the Web with Reconnaissance Agents,"
Communications of the ACM, Vol. 44, No. 8, August 2001.

5. Lieberman H, 1997. Letiza: An Agent That Assists Web Browsing” in Proceedings of the International Joint
Conference on Artificial Intelligence IJCAI-95.(Montreal 1995).

6. Hayes, C., Cunningham, P. (2001) SmartRadio–community based music radio; Knowledge Based Systems,
special issue ES2000, Volume 14, Issue3-4, June 2001, Elsevier

7. Shardanand, U., and Mayes, P., (1995) Social Information Filtering: Algorithms for Automating 'Word of
Mouth', in Proceedings of CHI95, 210-217.

8. Schafer, J.B., Konstan, J.A., and Riedl, J. 1999. Recommender Systems in E-Commerce. In ACM
Conference on Electronic Commerce (EC-99), pages 158-166.

9. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. An Open Architecture for Collaborative
Filtering of Netnews. pages 175--186. ACM Conference on Computer Supported Co-operative Work, 1994.

10. Balabanovic, M., Shoham, Y. (1995) Learning Information Retrieval Agents: Experiments with Automated
Web Browsing, in AAAI Spring Symposium on Information Gathering, Stanford, CA, March 1995

11. Schlit B. et al, Context-Aware Computing Applications, IEEE Wokshop on Mobile Computing Systems
and Applications 1994

12. Burke, R. (2002) Hybrid Recommender Systems: Surveys and Experiments in User Modeling and User-
Adapted Interaction 12(4): 331-370; Nov 2002. Kluwer press.

13. Allmusic (2002). E-mail correspondence on licensing arrangements for the access to the allmusic.com
database

14. Grimaldi, M., Cunningham, P., Kokaram, A. (2003) An Evaluation of Alternative Feature Selection
Strategies and Ensemble Techniques for Classifying Music. Technical report TCD-CS-2003-21, Computer
Science Department, Trinity College Dublin.

15. Gentner, D., and Forbus, K. D. 1991. MAC/FAC: A model of similarity based access and mapping. In
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Erlbaum

16. Lenz, M., (1999) Case Retrieval Nets as a model for building flexible information systems. PhD dissertation,
Humboldt University, Berlin. Faculty of Mathematics and Natural Sciences.

17. Swearingen, K., Sinha, R., (2001) Beyond Algorithms: An HCI Perspective on Recommender Systems,
ACM SIGIR Workshop on Recommender Systems.

18. Hayes, C., Massa, P., Avesani, P., Cunningham, P., (2002) . An on-line evaluation framework for
recommender systems in the proceedings of the IWorkshop on Recommendation and Personalization
Systems, AH 2002, Malaga, Spain, 2002. Springer Verlag.

	Introduction
	Smart Radio
	ACF and its Drawbacks
	Context boosted ACF
	Contextualising by instance
	Context Event
	Case Representation

	Feature Weights
	Feature Type Weight
	Feature Query Weight

	Similarity Metric

	Integrating Context Ranking and ACF
	ACF/Content-Based Cascade architecture
	MAC/FAC
	Case Memory
	Presenting Recommendations

	Evaluation
	Results

	Conclusion
	References

