
A Framework For Evaluating Active Queue

Management Schemes

Arkaitz Bitorika, Mathieu Robin, Meriel Huggard

Department of Computer Science

Trinity College Dublin, Ireland

Email: {bitorika, robinm, huggardm}@cs.tcd.ie

July 16, 2003

Abstract

Over the last decade numerous Active Queue Management (AQM)
schemes have been proposed in the literature. Many of these studies
have been directed towards improving congestion control in best-effort
networks. However, there has been a notable lack of standardised
performance evaluation of AQM schemes. A rigorous study of the
influence of parameterisation on specific schemes and the establishment
of common comparison criteria is essential for objective evaluation of
different approaches.
A framework for the detailed evaluation of AQM schemes is de-

scribed in this paper. This provides a deceptively simple user interface
whilst maximally exploiting relevant features of the ns2 simulator.
Traffic models and network topologies are carefully chosen to fully
characterise the target simulation environment. The credibility of the
results obtained is enhanced by vigilant treatment of the simulation
data. The impact of AQM schemes on global network performance is
assessed using five carefully selected metrics. Thus, the comprehen-
sive evaluation of AQM schemes may be achieved using the proposed
framework.

1 Introduction

More than fifty AQM schemes have appeared in the literature since the
original Random Early Detection (RED) proposal by Floyd and Jacobson
in 1993 [1]. However, AQM is still not widely utilised in the Internet and
the majority of routers are based on basic Drop-Tail queues. The Internet
Engineering Task Force (IETF) recommended the deployment of RED for
the prevention of congestion collapse in 1998 [2].
It has been suggested [3] that the slow pace of AQM deployment is due

to a lack of detailed objective evaluation of the various schemes. The lack

of consistent evaluation criteria to use for such studies has contributed to
this problem.
Recently there have been some studies comparing a relatively small selec-

tion of AQM schemes (e.g. [4,5]). However there is little consistency between
the various studies. This may be explained by the size of the parameter space
to be considered: intrinsic parameters, those relating to evaluation metrics
and those arising from the network scenario being considered must all be
taken into account. Furthermore apparently different results may be ob-
tained from functionally identical, high-level parameterisations if differing
underlying models or simulation techniques are used.
An integrated framework for benchmarking AQM schemes is proposed.

This provides sophisticated capabilities for the evaluation of AQM schemes
using a variety of simulation scenarios. The framework provides an intuitive,
powerful interface to ns2 [6]. To obtain statistically correct results the
framework calculates the required number of simulations, together with the
required time for each simulation, dynamically. The Akaroa framework [7]
uses a different methodology to achieve similar design objectives.
This paper is organised as follows: Section 2 presents the metrics chosen

to evaluate the AQM schemes, while Section 3 outlines the network model
(topology and traffic) used to simulate these schemes. In the following sec-
tion the implementation of the framework is outlined, and ways of improving
the framework credibility are discussed in Section 5. Section 6 presents sam-
ple results and the paper concludes with a discussion on possible refinements
to the proposed framework.

2 Metrics

At the core of the framework are a small number of carefully chosen
performance metrics. These:

• are representative of the end-user experience of network performance.
For example, end-to-end jitter is considered rather than queue length
stability. If router-based metrics are relevant to the understanding
of a given scheme’s behaviour, such comparison should be based on
end-user experience.

• address a wide range of performance issues with a small number of
meaningful metrics; thus reducing the computational overhead and
facilitating the meaningful comparison of schemes.

• reflect the performance of the entire network i.e. they do not depend on
measurements at a single point of the network and so are independent
of the network scenario being considered.

2

Five metrics representing network utilisation, delay, jitter, drop rate, and
fairness have been chosen (see the appendix for more detailed discussion).

2.1 Utilisation metric

This is defined as the percentage of total network capacity utilised during
a simulation run. For a given traffic mix and topology, the network capacity
is defined as the maximum total flow in the network. This provides an upper
bound on the total goodput achievable. To compute the final utilisation
metric, the sum of the aggregate goodput of all flows is divided by the
computed network capacity.

2.2 Delay metric

The average end-to-end delay experienced by the packets. The average
over all the packets in an individual flow is first computed and from these
the average over all flows is calculated.

2.3 Jitter metric

(see appendix for more information) This is based on the variance of the
overall delay of packets. First the coefficient of variation of the delay for
each flow is computed and these values are then averaged over all flows.

2.4 Drop metric

This represents the percentage of packets dropped. It includes packets
dropped due to the AQM policy (early drops) as well as those dropped due
to buffer overflow. We do not differentiate between these as they have the
same impact on the end-user experience.

2.5 Fairness metric

The “fair share” of each flow is computed statically by reference to the
capacity of the network using the fairness metric proposed by Jain et al. [8].
If each flow gets its fair share of the network capacity, the metric value is
1; this value decreases if resources are shared unevenly between the flows
(see [8] for details).

3 Simulation Scenarios For AQM Evaluation

One critical factor in the design of an evaluation framework is the choice
of simulation environment. A network scenario may be defined by two el-
ements: a static network topology and the traffic mix that flows amongst
its nodes. The topology and the traffic mix offer a wide parameter space

3

to be modelled. The model chosen to address a specific research issue –
AQM performance in this case – should incorporate as many of the essential
characteristics of the Internet as possible.

3.1 Network Topology

FTP

HTTP

UDP

Router Router1.5 Mbps
10 ms delay

HTTP

10 MbpsVariable delay

UDP
Sink

FTP
Sink

HTTP
Sink

HTTP
Sink

10 M
bps

Varia
ble d
elay

Figure 1: Dumbbell Topology

The effects of different queueing algorithms on performance in a single-
gateway scenario can be evaluated using a Dumbbell topology, see Figure 1.
This configuration is well understood and widely implemented, and hence
has been chosen for preliminary testing of the evaluation framework.
Three parameters are used to define the Dumbbell topology: the band-

width of the bottleneck link, its propagation delay and the range of per-flow
round-trip times (RTTs). The latter is one of the parameters frequently
overlooked in common simulation scenarios. The different RTTs between
TCP flows impacts on the share of a router queue that a flow obtains [9].
Measurement studies have shown that RTTs found on the Internet can vary
widely, with most RTTs in a range between 15 and 500 ms [10].

3.2 Traffic Mix

Creating a realistic model of Internet traffic necessitates the use of a large
parameter set. These parameters are obtained from measurement studies
[10, 11] of Internet traffic.
A typical traffic mix used for the evaluation of router-queue manage-

ment algorithms is that of long-lived FTP bulk-transfers. This mix is not
representative of current Internet traffic: this is dominated by a high propor-
tion of short-lived Web flows, or dragonflies, and a low number of long-lived
transfers, or tortoises (which generate a large percentage of the traffic on
the network) [11].

4

The effect of traffic that does not use end-to-end congestion control on
network performance and throughput fairness should not be neglected [12].
The evaluation framework provides for the inclusion of such UDP traffic
in any simulation scenario whilst the default traffic mix contains mainly
Web-like traffic with background FTP and UDP flows.

4 Framework Implementation

The architecture of the framework is made up of two key components: a
high-level interface for specifying simulation scenarios and experiments, and
an engine for running several simulations in parallel.

4.1 High-level Interface

ns2 is the de-facto standard network simulator for Internet research.
However, ns2 limits its higher-level functionality to a scripting interface.
One of the requirements of the proposed evaluation framework is that it
should be able to address research issues with a minimum of configuration
or scripting complexity. In doing so it should address questions like:

• What is the effect of increasing non-responsive UDP traffic on network
performance and flow throughput fairness?

• How well do Active Queue Management schemes perform under dif-
ferent Web traffic loads?

• How sensitive to parameter settings is the performance of a given AQM
scheme?

Configuring and running the simulations that will address these issues
using ns2 is a time-consuming process. It involves writing OTcl scripts for
establishing the simulation scenarios in ns2, running numerous simulations
and processing the output from ns2 to obtain results. Even though sample
scripts are available for these tasks, running simulations, writing ns2 scripts
and processing the output combine to make the process extremely time
consuming. Moreover, ns2 does not provide any functionality to perform
the output data analysis necessary to obtain credible simulation results.
Poorly chosen network scenarios may further limit the usefulness of the

results obtained and may even invalidate the results if the parameters chosen
are unrealistic.
Our framework uses ns2 as its “simulation engine” but provides a high

level interface to it. The system has been initially targeted for AQM evalu-
ation but can equally be used to address other network performance evalu-
ation questions. It incorporates a Python API [13] offering two main func-
tional groupings:

5

• An Experiment comprises a set of simulations that have a common set
of fixed parameters and one variable parameter. The fixed parameters
may be either user-specified or predefined default values. Experiments
provide functionality for running the associated simulations and they
calculate network performance metrics using the output data. For
each simulation model a set of replications is run with independent
streams of random numbers. From metrics values obtained in those
replications estimates of mean values and their associated relative error
level is reported.

• The Report provides the main interface to the framework. It comprises
a simplified way of specifying a set of experiments and obtaining re-
sults: The user specifies one or more parameter spaces to explore and
the framework configures and runs the required ns2 simulations.

The following sample script code illustrates how the framework may be
used to obtain a report showing how a UDP traffic flow with increasing load
affects network performance:

report = Report()

report.addPlotParam(’scenario.cbrBitrate’,

range(0, 10.1))

report.addFixedParam(’stopTime’, 20)

report.generate()

This five-line script will create and run eleven ns2 simulations for each
supported AQM scheme. For each scheme the rate of offered UDP traffic
will vary between 0 and 10 MB/s. Once all the simulations have finished,
and their output parsed, a report is generated summarising the network
performance.
The framework supports numerous parameters, making it a powerful,

high-level interface for carrying out simulation-based network performance
experiments.

4.2 Parallel Simulation Engine

The evaluation framework may require several simulations to be per-
formed for each set of results generated. It is common to find ns2 simula-
tion scenarios requiring several minutes to finish using current workstation
technology. Production of a report typically requires a large number of sim-
ulations to be performed. Hence, using a single workstation to generate
reports is extremely time consuming.
Sequential network simulators have been extended to run on parallel

computers [14]. Our approach differs in that we obtain economies of scale
by parallelising each experiment at the granularity of one simulation. Us-
ing the proposed framework typically involves running several simulations

6

Parallel Runner
Controller
Process

Slave Listener 1

NS Process
XML-RP

C

Renderer Trace Parser

OTcl Traces

Slave Listener 2

NS Process

XML-RPC

Renderer Trace Parser

OTcl Traces

Figure 2: Parallel Simulation Engine architecture

for each experiment. Substantial speed advantages may be obtained from
distributing the load amongst a set of networked workstations. Individual
simulations still run using a standard sequential ns2 simulator thus provid-
ing good scalability without the need for modification of the ns2 software.
Figure 2 illustrates the architecture of the framework when using the

parallel simulation engine with two “slave” hosts. The “slaves” execute the
simulations and parse the output traces. The controller process commu-
nicates with the slaves using XML-RPC, a remote procedure call protocol
based on HTTP and XML. The controller sends scenario parameters with
the requests and the slaves reply with a summary of the results of the sim-
ulation. Once all the simulations have finished and their results have been
collected, the framework calculates experiment-level network performance
metrics.

5 Improving the framework credibility

As real networks increase in size and complexity, simulation is becom-
ing the most important tool used for network performance evaluation. A
recent survey by Pawlikowski et al. [15] found that stochastic discrete-event
simulation (as implemented by ns2) was used in over half the studies pub-
lished. While some have advocated better simulation models for Internet
research [3], there seems to be little concern regarding the analysis and
credibility of simulation results. It has been argued [15] that a credibil-
ity crisis exists due to the widespread lack of correct analysis of simulation
output data.
In this section the statistical techniques and procedures implemented

7

in the framework are described. These may be used to obtain meaningful
results from simulation-based network performance studies.

5.1 Analysis of a single run

The framework should obtain steady-state values for the five metrics
described in section 2, however for one single run of the simulation, two
significant problems are encountered:

• The estimation of the steady-state value is biased by use of an atypical
initial state (i.e. empty queues and links).

• Once the initial, transient, phase is over, it is necessary to determine
how long the simulation run should be in order to obtain a good ap-
proximation to the steady-state mean.

Possible methods for overcoming these problems are now discussed.

5.1.1 Initial Transient

The network model simulated is empty and idle at beginning of the
simulation: all queues are empty and no traffic enters the network. These
initial conditions usually introduce a bias as they are unrepresentative of the
desired steady state. Different methods have been proposed to remove this
warm-up period: Pawlikowski [16] presents 11 different methods which can
be used to estimate the initial transient, while recent studies [17,18] present
graphical, heuristic or statistical methods.
To compute the length of the initial transient, a simple heuristic devel-

oped by White [19] is used. This method, called the Marginal Confidence
Rule (MCR), selects the truncation point that minimises the width of the
confidence interval about the truncate sample mean. If x1, x2, · · · , xN is the
set of points measured during the simulated time, the optimal truncation
point i ∈ [1, N] is defined as:

i = arg min
0≤i<N

[

zα
2

σi(X)√
N − i

]

, (1)

where zα
2

the value of the unit normal distribution with a 100(1−α)% con-
fidence interval, and σi(X) is the sample standard deviation of the sequence
xi+1, · · · , xN .
The confidence α is fixed; hence zα

2

is constant and equation 1 may be
written as:

i = arg min
0≤i<N

[

σ2
i (X)

N − i

]

. (2)

8

Figure 3 shows how the convergence to steady-state value is ensured by
the use of MCR to remove the initial, biased values. The sample average
calculated without initial bias converges after 10 seconds, while after 40
seconds of simulated time, the effect of the initial biasing on the sample
average is still apparent.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 5 10 15 20 25 30 35 40 45

D
el

ay
 m

et
ric

 (s
)

Time (s)

Delay evolution for one replication

initial bias
no bias

Figure 3: MCR truncation of the initial bias

This method is applied to the five different averages of interest. As may
be seen in figure 4, the bias introduced by the initial transient is different
for each metric. The truncation point used is taken as the maximum of the
five truncation points.

5.1.2 Simulation Run-length

To use the replication/deletion approach (described below) Law and Kel-
ton [20] recommend a simulation time much larger than the length of the
initial transient, to ensure that sufficient data has been collected. In the
implementation described, the truncation point is computed every k points,
introduced to avoid the computation of MCR, which can be intensive, at
every point. The simulation is halted when the truncation point i is such as
N > p× i (p has been set to 5 in the current version of the framework).

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 m
et

ric
 v

al
ue

Time (s)

Metrics evolution for one replication

drop
delay
jitter

utilization
fairness

Figure 4: Convergence of the five metrics, with initial transient (the sample
averages are normalised to their value at t = 40s).

5.2 Multiple Replications

Many network simulation studies construct a model, select performance
metrics and conclude with a single simulation run to obtain results. The
use of random values from particular distributions as simulator inputs means
that the results obtained from a single simulation run are just the realisations
of random variables [20].
Figure 5 illustrates how the point values obtained for an individual per-

formance metric can vary considerably between statistically independent
simulation runs. Hence, it is essential to use multiple independent repli-
cations of the same simulation model and proper statistical analysis of the
resultant output data. This lowers the probability of obtaining erroneous
results to an acceptable level and improves the credibility of the results
obtained.
When using multiple independent replications, the number of replica-

tions n can be established beforehand, using the fixed-sample-size proce-
dure [20] method. When n is fixed, a point estimate and confidence interval
for the mean µ = E(X) may be obtained (where X represents the values
that the metric of interest takes in different replications).
A point value X(n) can be used to estimate the mean µ and hence a

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40 45

Fa
irn

es
s

m
et

ric

Time (s)

Fairness evolution for different replications

Replication 0
Replication 1
Replication 2
Replication 3

Figure 5: Evolution of the Fairness metric over simulated time for different
replications of a simulation

100(1− α)% confidence interval for µ can be found:

δ(n, α) = X(n)± tn−1,1−α/2

√

S2(n)

n
, (3)

where X(n) is the estimated mean, S2(n) is the sample variance and
t(n,α) is the Student’s t distribution.
The main disadvantage of the fixed-sample-size procedure is that it does

not allow a predefined confidence interval half-length to be calculated. If a
specific error or precision is desired for the estimated mean X(n) then the
number of replications n must be calculated dynamically.
The framework implements a method for dynamically deciding the num-

ber of replications required. The procedure used aims to be able to obtain an
estimate mean X for µ with a relative error γ (0 < γ < 1) and a confidence
of 100(1 − α)%, where α and γ are specified initially. The relative error is
defined as γ = |X − µ|/|µ|, hence the percentage error in X is 100γ%.
A sequential procedure for determining the number of replications n has

been implemented in the framework. It starts with an initial number of repli-
cations n0 = 10, sets n = n0 and computes the estimated meanX(n) and the
confidence interval half-length δ(n, α) given by (3). If δ(n, α)/|X(n)| ≤ γ′,

11

the relative error is below our desired threshold, so the current X is used as
the point estimate for the mean metric value µ and no more replications are
added. The current approximate 100(1 − α)% confidence interval is given
by

I(α, γ) = [X(n)− δ(n, α), X(n) + δ(n, α)]. (4)

The number of replications n is incremented by 1 until a value of n is reached
for which δ(n, α) is below the predefined threshold.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40 45

Fa
irn

es
s

m
et

ric

Time (s)

Fairness evolution for different replications

Average (with confidence interval)
Replication 0
Replication 1
Replication 2
Replication 3

Figure 6: Fairness metric value over time without initial transient bias and
estimated average with confidence interval.

Figure 6 shows how the metric values evolve over the simulation run
length once the bias introduced by the initial warm-up period has been
eliminated. The estimated mean for the fairness metric with its associated
confidence interval is also plotted on this graph. When comparing this graph
with figure 5 it can be seen how the deletion of the initial transient improves
the stability of the fairness values.
The sequential procedure for determining the number of replications,

when used in conjunction with the technique described in the previous sec-
tion for eliminating initial transient bias, is known as the replication/deletion
approach [20].

12

6 Study of the fairness of RED

The main purpose of the framework is to study the differences between
AQM schemes. A full evaluation of these algorithms is outside the scope of
this paper, rather we wish to demonstrate the use of the framework and its
performance evaluation metrics.
The RED algorithm [1] and its more recent variant, RED-PD [21] (RED
with preferential dropping), are studied in this experiment. Drop-tail queue
is also considered as it is the basic scheme implemented in current Internet
routers. The algorithms considered are:

• Drop-Tail: standard drop-tail queue. Packets are dropped only when
buffer overflow occurs.

• RED: the “current version” of RED, implemented in ns2 by its authors.
It includes the gentle version (no discontinuities in the drop probability
function), and improved parameter settings.

• RED-PD: RED with preferential dropping [21], adds another layer to
RED, detecting and penalising non responsive flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Fa
irn

es
s

M
et

ric

UDB Bitrate (Mb/s)

Fairness with different UDP bitrates

RED-PD
DropTail

RED

Figure 7: Fairness Metric

The experiment is based on a simple dumbbell scenario. The parameters
being used are:

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

D
ro

p
M

et
ric

UDP Bitrate (Mb/s)

Drop rate with different UDP bitrates

RED-PD
DropTail

RED

Figure 8: Drop Metric

• Bottleneck bandwidth: 10Mb/s

• Bottleneck delay: 10ms

• RTT range: 20ms− 460ms

This experiment examines the effect of the proportion of unresponsive traffic
(UDP in this case) on performance. We focus here on the drop and fairness
metrics
Figures 7 and 8 show that the more recent improvement of RED —

RED-PD — achieved its design objectives: RED with preferential dropping
provides for more fairness, by the more aggressive dropping of incoming
UDP packets. While RED is more aggressive than regular Drop-Tail, it ex-
hibits comparable fairness.
The high level framework interface allows for the easy setup of such ex-
periments: the graphs produced in this section are taken from the report
generated by a ten-line python script.

7 Future Work

The framework may be extended in several ways.

14

The caching of results would yield significant performance enhancements:
one simulation, of even the simplest dumbbell scenario, can take several
minutes; while detailed experiments, involving higher bandwidth flows, can
take several hours to run. Caching previous results in a database would
enable the framework to be used for much more complex network simulation
scenarios, thus increasing its utility as a research tool.
More complex network topologies should also be supported. These may

include the “reverse-dumbbell” topology with multiple congested gateways
[22] and realistic Internet-like topologies such as power-laws [23]. It is
planned to extend the framework so that it can interface with other network
simulators such as GloMoSim or OPNET. This will allow the framework to
seamlessly validate results across multiple simulators.

8 Conclusion

A framework for objective comparison and evaluation of AQM schemes is
described. It incorporates five carefully chosen metrics characterising overall
network performance. The highly configurable tool allows for easy explo-
ration of the parameter space and provides consistent assessment of different
AQM schemes making it an invaluable resource for AQM performance eval-
uation.

Acknowledgements

This work has been supported by Enterprise Ireland Basic Research
Grant, SC/2002/293.

References

[1] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397–413, Aug. 1993.

[2] B. Braden et al., “Recommendations on queue management and
congestion avoidance in the internet,” RFC 2309, Apr. 1998.

[3] S. Floyd and E. Kohler, “Internet research needs better models,” in
Proc. HotNets-I. ACM, Oct. 2002.

[4] C. Zhu, O. Yang, J. Aweya, M. Ouellette, and D. Montuno, “A
comparison of active queue management algorithms using the OPNET
modeler,” IEEE Communications Magazine, vol. 40, no. 6, pp. 158–
167, June 2002.

15

[5] G. Iannaccone, C. Brandauer, T. Ziegler, C. Diot, S. Fdida, and
M. May, “Comparison of tail drop and active queue management
performance for bulk-data and web-like internet traffic,” in Proc.
ISCC. IEEE, July 2001.

[6] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in
network simulation,” IEEE Computer, vol. 33, no. 5, pp. 59–67, May
2000.

[7] G. Ewing, K. Pawlikowski, and D. McNickle, “Akaroa2: Exploiting
network computing by distributing stochastic simulation,” in Proc.
ESM’99. International Society for Computer Simulation, June 1999,
pp. 175–181.

[8] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems,” Digital Equipment Corporation, Tech. Rep. DEC-TR-301,
Sept. 1984.

[9] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks - part 1: One-way traffic,” ACM Computer
Communication Review, vol. 21, no. 5, pp. 30–47, Oct. 1991.

[10] M. Allman, “A web server’s view of the transport layer,” ACM
Computer Communication Review, vol. 30, no. 5, Oct. 2000.

[11] N. Brownlee and K. Claffy, “Understanding Internet traffic streams:
Dragonflies and tortoises,” IEEE Communications Magazine, vol. 40,
no. 10, pp. 110–117, Oct. 2002.

[12] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the Internet,” IEEE/ACM Transactions on Networking,
vol. 7, no. 4, pp. 458–472, Aug. 1999.

[13] G. van Rossum, “Python language website,” http://www.python.org.

[14] H. Wu, R. M. Fujimoto, and G. Riley, “Experiences parallelizing
a commercial network simulator,” in Winter Simulation Conference,
Dec. 2001.

[15] K. Pawlikowski, H.-D. Jeong, and J.-S. Lee, “On credibility of simula-
tion studies of telecommunication networks,” IEEE Communications
Magazine, vol. 40, no. 1, pp. 132–139, Jan. 2002.

[16] K. Pawlikowski, “Steady-state simulation of queueing processes: A
survey of problems and solutions,” ACM Computing Surveys, vol. 22,
no. 2, pp. 123–169, June 1990.

16

[17] J. R. Linton and C. M. Harmonosky, “A comparison of selective
initialization bias elimination methods,” in Winter Simulation
Conference, vol. 2, Dec. 2002, pp. 1951–1957.

[18] S. Robinson, “A statistical process control approach for estimating the
warm-up period,” in Winter Simulation Conference, vol. 1, Dec. 2002,
pp. 439–446.

[19] J. K. Preston White, “An effective truncation heuristic for bias
reduction in simulation output,” Simulation, vol. 69, no. 6, pp.
323–334, Dec. 1997.

[20] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis,
3rd ed. McGraw Hill, 2000.

[21] R. Mahajan and S. Floyd, “Controlling high bandwidth flows at
the congested router,” AT&T Center for Internet Research at ICSI
(ACIRI), Tech. Rep. TR-01-001, Apr. 2001.

[22] K. Anagnostakis, M. Greenwald, and R. Ryger, “On the sensitivity of
network simulation to topology,” in Proc. MASCOTS’02. IEEE, Oct.
2002, pp. 117–126.

[23] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in SIGCOMM’99. ACM, Sept.
1999, pp. 251–262.

17

A Appendix

In this appendix, we defined the metrics for a single simulation run.

A.1 Notation

The total simulation time is denoted by τ and the network capacity by
C. During τ there are F active flows indexed by i ∈ [1, F]. For flow i, we
define the following variables:

• Si, the total size of the data received

• S′i, the total size of the data sent

• Ni, the number of packets received

• µi, the average delay, weighted by packet size

• νi, the weighted variance of the delay

A.2 Metric Definitions

The five metrics used for network performance evaluation are:

A.2.1 Utilisation metric

∑F
i=1 Si

Cτ
(5)

A.2.2 Fairness metric

(

∑F
i=1 Si

)2

F
∑F

i=1 S
2
i

(6)

A.2.3 Delay metric

∑F
i=1 Siµi
∑F

i=1 Si

(7)

A.2.4 Jitter metric

∑F
i=1

Siνi
µi

∑F
i=1 Si

(8)

18

A.2.5 Drop metric

1−
∑F

i=1 Si
∑F

i=1 S
′
i

(9)

A.3 Computation of the Metrics

Consider flow i, i ∈ [1, F]. For all received packet p, p ∈ [1, Ni], we may
find the delay experienced by the packet di,p and its size si,p by analysis of
the output trace file.
To simplify the calculations of the delay and jitter metrics, dummy vari-

ables Ai and Bi are computed:

Ai =
Ni
∑

p=1

si,p

and

Bi =
Ni
∑

p=1

si,p di,p

Ai, Bi, Ni, Si, and S′i, are computed incrementally while parsing the trace
file generated by ns2.

The utilisation, fairness and drop metrics may be easily computed using
Si and S′i in the given formulae (resp. in equations 5, 6, and 9). While from
equation 7, it is noted that the delay metric depends on:

Si µi = Bi (10)

Finally, we need to compute Siνi
µi
in order to evaluate the jitter metric

using equation 8. The weighted delay variance νi is given by:

νi =
Ni

Ni − 1
×
∑Ni

p=1 si,p (di,p − µi)
2

Si
.

Hence,

Siνi
µi

=
Ni

Ni − 1
×
∑Ni

p=1 si,p (di,p − µi)
2

µi

=
Ni

Ni − 1
×

∑Ni
p=1 si,p d

2
i,p

µi
+ µi

Ni
∑

p=1

si,p − 2
Ni
∑

p=1

si,p di,p

and using the predefined variables Ai and Bi this may be simplified to:

Siνi
µi

=
Ni

Ni − 1

(

Ai Si

Bi
−Bi

)

. (11)

19

