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Abstract

Pervasive computing environments have proven difficult
to develop in a form that supports the integration and or-
ganisation of devices and applications in a spontaneous
and transparent manner. This is partly due to the highly
dynamic and unpredictable nature of these types of envi-
ronments, and is often further hampered by the limited re-
sources found on devices. In this paper we present a highly
decentralized method of organising the components of a
pervasive computing environment, supporting spontaneous
interaction between entities and providing robust-system
wide behavior. Our inspiration for this work stems from
nature and the observations made by the French biologist
Grassé on how social insects co-ordinate their actions using
indirect communication via the environment, a phenomenon
that has become known as stigmergy. In the stigmergic ap-
proach there are fewer dependences between entities allow-
ing for the incremental construction and improvement of
solutions without adversely effecting the rest of the perva-
sive computing environment. The approach is encapsulated
in Cocoa, a framework that supports the use of stigmergy
to build self-organising environments that promotes the au-
tonomy of entities. Experiences in using Cocoa have shown
that entities can be integrated into a pervasive environment
in a spontaneous manner and that co-ordinated behavior
can emerge.

1. Introduction

Pervasive computing looks beyond the age of the per-
sonal computer to a time when every-day devices will be
embedded with technology and connectivity. The goal for
pervasive computing is to use these devices to transform
physical spaces into interactive environments that can react
in an intelligent manner, but do so in a way that is unobtru-
sive.

Developing pervasive computing applications to disap-
pear into the fabric of our society requires the consideration
of new and alternative approaches to system design. In this
paper we introduce one such approach. We propose to meet
the challenges of supporting the highly dynamic and unpre-
dictable nature of pervasive environments by using swarm
intelligence techniques, in particular, the powerful natural
co-ordinating mechanism known as stigmergy [8]. This al-
lows us to harness the robust, self-organising mechanisms
observed in distributed natural systems such as social insect
colonies.

The approach is encapsulated in Cocoa, a framework
that exploits these techniques to support self-organising en-
vironments that encourage the autonomy of entities. De-
signed to both support and complement the use of stig-
mergy, the framework employs a distributed architecture or-
ganised in a peer-to-peer fashion. To ease the implementa-
tion and deployment we have also designed a programming
abstraction encapsulated in a high-level scripting language.
It generalises the methodologies used by social insects to
construct a society of autonomous entities capable of re-
sponding to the environment in a stigmergic manner.

1.1. Stigmergy

In 1959, the French biologist, Grassé observed that so-
cial insects could co-ordinate their actions through the envi-
ronment without having to directly communicate with each
other. They do this using a phenomenon known as stig-
mergy [8]. He also noticed that the local interactions be-
tween insects resulted in the emergence of a strong colony-
wide behavior. Holland et al also noted [9] that stigmergy
provides a mechanism that allows the environment to struc-
ture itself through the activities of the entities within the
environment. The state of the environment, and the current
distribution of entities within it, determines how the envi-
ronment and the entities will change in the future. This
approach provides a robust, self-organising environment,



which can co-ordinate its behavior in a highly decentral-
ized manner. It is important to stress that individual entities
have no particular problem solving knowledge, and that co-
ordinated behavior emerges due to the actions of the soci-
ety. It also worth noting that while no direct communication
is used between individual entities, communication is still
maintained through the medium of the environment.

The phenomenon of stigmergy has been used in a num-
ber of computer related projects, from robotics [9], to pat-
tern detection and classification [3], to communication net-
works [11]. The goal of this work is to use the principles
of stigmergy to create highly adaptive environments that al-
low for the incremental construction and improvement of
solutions without adversely effecting the rest of the envi-
ronment.

1.2. Road map

The rest of this paper is organised as follows: the next
section investigates the use of stigmergy within a pervasive
environment and outlines the main concepts used in the de-
sign of Cocoa. Section 3 and 4 describe the architecture.
Section 5 details the implementation of the Cocoa frame-
work. Section 6 describes the experiences of using Cocoa in
a mobile, wireless environment. The paper closes by look-
ing at some of the related work in this field of research.

2. A Proposal

The idea of simple behaving insects, with little mem-
ory or ability to exhibit any real intelligence, maps well
onto pervasive computing where small devices with lim-
ited resources are spread across the environment. The in-
direct communication mechanisms harnessed by social in-
sects provides a means for decoupling devices and appli-
cations. Having fewer dependences between components
allows the overall system to be less fragile and more stable
to disturbances in the environment. The system can grow
organically and decay gracefully with the environment, as
new devices are added and old ones upgraded or removed,
without having an adverse effect on the overall system. The
spontaneous interaction of devices and applications can be
achieved as communication is done through the common
medium of the environment. The use of stigmergy allows us
to harness the robust, self-organising, coordinating mecha-
nisms of social insects, which is perhaps the most desirable
attribute for any pervasive computing environment.

We propose to use the principles of stigmergy to create
a framework for pervasive computing environments, where
context information of surrounding entities provide a com-
mon medium for the indirect communication mechanisms
used by entities. The social insects observed by Grassé are
represented as entities within the framework. An entity is a

person, place, or object as defined by Dey [6]. Co-ordinated
behavior in the Cocoa framework arises from entities ob-
serving their environment and reacting to the received con-
text information according to some rules. Context informa-
tion is any information that can be used to characterize the
situation of an entity [6].

To apply the concept of stigmergy in a pervasive environ-
ment we must first define a process that adapts the behavior
of individual entities to reflect changes in the local envi-
ronment. Figure 1(a) represents the context of every entity
in the pervasive environment at a particular time. It is the
global context

���������
of the environment. All information

contained in
���	�
���

is not required by each individual entity,
as the behavior of an entity is only dictated by the context of
its local environment. Figure 1(b) illustrates a subset of the
context information required by an entity. It represents the
local environment and defines the entity’s contextual view����
��������

, as defined in equation 1. It holds all context in-
formation in

� � �����
that is relevant to the situation of entity��� at time

�
. An entity’s context

�����������
is included in entity� � ’s contextual view if the entity is within a certain proxim-

ity. The notion of proximity is used to define what the local
environment of an entity is. This is captured in equation 1
where the function � � ������� � � is used to determine proximity
and returns

��� � � if entity ��� is within the required proximity
of entity � � .

� � 
��������"!$#�� � �%�
����&'� � �(�
����)*���	������+ � � ������� � �"!,��� � �'-
(1)

The behavioral set . , shown in figure 1(c), represents a
finite set of behaviors that the entity can perform. For ex-
ample, a light can either turn itself on or off, or a jukebox
play music, pause, or stop playing. The behavioral set de-
fines how an entity behaves in the pervasive environment.
The last stage of the process dictates how individual enti-
ties behave. Equation 2 defines the function / for mapping� � 
 � �����

onto 0 � . � 1.
� � 
1�
���

represents the collection of
all contextual views. This function maps the entity’s con-
text information from the local environment onto a behav-
ior, thus initiating a stigmergic response to the environment.

�2&'��� 
	3 0 � . �
(2)

The proximity function � , the behavioral set . , and the
/ function provide the three primitives used by the frame-
work to define how individual entities behave in response to
changes in the local context state of the environment. Over
time system-level behaviors may emerge as different enti-
ties change their behavior in response to the changing be-
haviors of other entities.

1The power set of behavioral set 4 .
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Figure 1. Using Stigmergy in a Pervasive Environment

3. Cocoa2 Architecture

It has been necessary to develop technologies to both
support and complement the use of stigmergy. The frame-
work has been designed as a distributed architecture orga-
nized in a peer-to-peer fashion. Each node in the architec-
ture represents an entity in the pervasive environment. The
acquisition of context information uses a collaborative ap-
proach, whereby each entity acquires their own context and
shares it with other entities in its locality. This distributes
the process of capturing context information across the en-
vironment and at the same stage enhances each entities un-
derstanding of their environment. The primitives defined in
the previous section are used to manage the collated context
and define the mechanisms for determining entity behav-
ior. The communication drivers provide a decoupled com-
munication model that distributes events between entities.
Binding the framework together is a scripting language. In
the following sections we describe the the main components
- context acquisition, stigmergy runtime, script - of each
node, as shown in figure 2.

Entity


Network - Lan, IEEE 802.11, Lonworks


Communication Drivers


Sensor
 Context Acquisition
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Figure 2. Cocoa Architecture

3.1. Context Acquisition

Sensors are an integral part of any context acquisition
system and true to Mark Weiser’s vision [21] we foresee an

2CO-ordinated COntext Awareness

environment over which sensors are widely distributed. In
the Cocoa environment each entity has a number of sensors
associated with it. These are used to determine the context
of the entity. An open interface is provided so that different
techniques or models can be plugged into the framework to
interpret the sensor data. It is possible to use simple IF-
THEN rules, or sensor fusion techniques such as Bayesian
networks, or any other technique that may be suitable.

This approach allows Cocoa to tailor the process of cap-
turing context information for each entity. Over time an en-
tity may change their model to suit different environmental
parameters. For example a model may change if a person
moves from his car to the office, or if the framework finds
that there less computational resources available. The mod-
ular aspect of this approach ensures that entities are capable
of adapting the process of acquiring context information to
suit the environment.

What is important to note at this stage is that an entity
only acquires context information about themselves and not
other entities. The model determines what they are doing,
where they are located, and any other information that may
be useful in describing the entity’s situation. The wider con-
textual picture is gained from entities sharing their context
information with other entities. This they achieve by broad-
casting their context to other entities in their local environ-
ment. The dissemination of the context information ensures
that entities can build up a picture of their local environ-
ment, and hence gain a better understanding of it. It also
distributes the process of capturing context information and
provides entities with a shortcut in sensing their local envi-
ronment.

3.2. Stigmergy Runtime

The component presented in this section provides the
runtime environment for the entity. It uses the intermedi-
ate objects produced by the scripting component (YABS) to
initialise the component. It is responsible for managing the
entity’s contextual view and for triggering the stigmergic re-



sponses of the entity. It provides the implementation of the
three primitives - � , . and / - as described in section 2 and
the runtime environment for this process.
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Figure 3. Stages used in runtime environ-
ment.

Each cycle of the runtime environment is composed of
three stages as illustrated in figure 3. The first stage re-
trieves the context information from the environment and
updates the entity’s contextual view,

� � 
 � �
���
. An entity’s

context information,
��� � �����

, is included in the contextual
view when � , the proximity function returns true. This in-
dicates that the entity in question is within the proximity
specified by the entity.

The second stage implements the / function, which con-
sists of a series of mappings between the entity’s contextual
view and the behavioral set. The stage operates over a num-
ber of cycles gathering information from the entity’s con-
textual view. At each cycle it propagates the state of the
mappings and determines if one has been triggered.

The final stage is responsible for invoking the behaviors
associated with any of the triggered mappings. It takes the
implementation of the behavior and it passes the parameters
indicated to it by the script. This may include values from
the script or context information that needs to be derived
from the entity’s current contextual view. Once the param-
eters for the behavior have been determined then behavior
can be invoked by the runtime environment.

3.3. Script - YABS 3

Scripts are used to define the stigmergic responses for an
entity and are responsible for generating the intermediate
objects for the stigmergy runtime. The foundation for the
language is built upon the three primitives: � , . and / . The
language defines the proximity function. It specifies the be-
haviors that an entity is capable of performing and provides
an method of mapping an entity’s contextual view onto its
behavioral set. We start by outlining the basic structures

3Yet Another Behavioral Script
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Figure 4. Script inheritance hierarchy.

and capabilities of the language and then continue to detail
some of the more fundamental aspects of the language.

Overview YABS uses an interpreter that takes a text file
containing a description of the desired behaviors. These are
translated it into an intermediate form that can be executed
by the stigmergy runtime. The behaviors described in the
text file characterises how a particular type of entity behaves
in the environment and may be reused by all entities of that
type.

d e s k l i g h t ex tends o b j e c t { . . . }

Listing 1. Declaring the start of a script.

The example shown in listing 1 defines a script for an
entity of type desklight. Any desklight entity can use the
behaviors described in the script to regulate how it behaves.
It is possible to inherit behaviors from another script by ex-
tending a preexisting script. In the example above, the desk-
light inherits behaviors from object.

As you might expect inheritance relationships form a
tree-like hierarchical structure. The inheritance hierarchy
for this language, as see in figure 4, is influenced by the
presence of four predefined scripts - entity, object, person,
place - which enforces some structure on the hierarchy. The
choice of scripts is influenced by the definition used by Dey
[6] in defining an entity, where he defines it to be a person,
place, or object. The inheritance relationships in the hierar-
chy are used within the script to determine the type of the
entity in question.

Contained in the script are descriptions of the three prim-
itives - � , . and / - introduced earlier in this paper. To-
gether these primitives define how a particular type of entity
behaves in the environment.

Proximity Function � , the proximity function can be de-
fined as either a radius, polygon, or symbolic area around
an entity. The context of entities entering this region will
be inserted into the entity’s contextual view. In the first ex-
ample shown in listing 2 the proximity is set to a 5 meter
radius around the entity. The next example uses pairs of co-



(a) Polygon
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Figure 5. Proximity

ordinates to define a polygon: the unit of measurement is
meters, and the reference point for the polygon is the posi-
tion of the entity. The polygon defined by the sample code
is illustrated in figure 5(a).

prox imi ty ( 5 ) / / c i r l e
prox imi ty ( 5 5 , 5 5 , 5 10 ,5 , 5 10 ,20 ,10 ,20 ,10 ,5 ,5 , 5 5) / / po lygon
prox imi ty ( F32 ) / / s y m b o l i c l o c a t i o n

Listing 2. Code for proximity functions.

Figure 5(b) shows the use of symbolic proximity, where
a predefined area can be used to specify the proximity
around an entity. This type of proximity is useful when
there is a strong definable boundary, such as room, or build-
ing. It helps filter out interference from entities which are
near by, but are not involved in the current situation i.e. are
outside the boundary. The last example shown in listing 2
illustrates how this kind of proximity can be defined in the
script, where it is set to an office called F32.

behav ior on = " i e . t c d . c s . l i g h t o n "
behav ior o f f = " i e . t c d . c s . l i g h t o f f "

Listing 3. Declaring behaviors.

Behavioral Set . , the behavioral set defines the set of
possible behaviors that can be performed by the entity. The
implementation of a behavior is not done in the script, but
in Java following a particular API defined by Cocoa. The
script declares behaviors that a particular type of entity can
perform. In this instance the example shown in listing 3
indicates that the behaviors are either on or off, which in
this case represents behaviors for turning a light on or off.
When the behavior is invoked it executes the Java object
that defines the specific behavior.

S Function The primary function of the script is to map
an entity’s contextual view onto the behavioral set. This

is achieved by first defining context information that is of
interest to the entity. These can be thought of as contextual
predicates that are true if found to be in the entity’s current
contextual view. The code shown in listing 4 is one such
example.

c o n t e x t v i n n y p e r s o n
v i n n y p e r s o n . p e r s o n =" Vinny "
v i n n y p e r s o n . l o c a t i o n ="O’ R e i l l y House , F32 "
v i n n y p e r s o n . a c t i v i t y =any
v i n n y p e r s o n . t ime =" l u n c h t ime "
v i n n y p e r s o n . j o b =" t e a c h e r "
v i n n y p e r s o n . music=" rock "

Listing 4. Declaring context information.

In this sample code the context called vinnyperson is de-
clared. The keyword person defines the context vinnyper-
son as person with name of Vinny. It is also possible to
identify a place or an object and by using the any operator
you can specify any person, any object, or any place. The
location keyword indicates a position or area that is of in-
terest to the entity. It is possible to use GPS coordinates,
relative coordinates, or symbolic information such as the
“O’Reilly House, F32”, as used in this example. The activ-
ity keyword defines what an entity is doing. This could be a
person walking to work, a desklight turned on, or a printer
printing. In this example the entity is interested in Vinny
doing any activity. The time keyword indicates a period,
or point in time. This can be specified as an absolute time
such as “Thu Mar 18 21:58:36 GMT 2004”, or symbolic
time such as “lunch time”. It must be noted that while sym-
bolic context information can be used it needs to be agreed
upon beforehand.

The script uses Dey’s [6] concept of primary and sec-
ondary context information. Primary context information
being the identity, location, activity and time of the entity,
while secondary context information describes any other in-
formation which helps define an entity’s situation. In the
script secondary context information is declared by speci-
fying any key/value pairing. In the coding sample above the
vinnyperson context declares two such pieces of context in-
formation. The first describing the what job Vinny does and
the second specifies what music he likes to listen to.

After declaring context information of interest to the en-
tity it is time to use the information to map the entity’s
contextual view onto the behavioral set. In the example
shown in listing 5 the mapping is accomplished when prede-
fined context information is matched onto the entity’s cur-
rent contextual view. In other words when the context vin-
nyperson and darkroom are a subset of the current contex-
tual view. On obtaining a match the behavior can then be
triggered. In this case the on behavior is invoked when a
person named Vinny is in a dark room.



map [ v innype r son , darkroom ] onto {
on ( )

}

Listing 5. Example of mapping statement.

4. Mapping

The previous sections outlined the main components of
the Cocoa and demonstrated the process of triggering a be-
havior for an entity on encountering a specific situation de-
scribed by fragments of context information. The recogni-
tion of this particular instance in time is often not sufficient
to capture the broader sense of what has occurred and it is
necessary to find a more expressive means of performing
the mapping that can take into account what has occurred
beforehand. Influence by the work of Allen [2] and that of
Pinhanez et al’s interval scripts [17], we look at a method
which models the relationships between intervals of time to
capture these type of situations.

4.1. Allen’s Temporal Intervals

An interval of time is a length of time marked off by two
distinct points in time, representing the start and end of the
interval. In [2, 1], Allen introduced a model that made it
possible to describe the relationship between two intervals
of time. He showed that there are 13 such possible relation-
ships, as summarised in figure 6.
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Figure 6. Interval relationships

Given any two intervals of time it is possible to use one
of the relationships illustrated in figure 6 to describe how
they are related. For instance, if we take a story such as the
following:

John was not in the room when I touched the
switch to turn on the light.

we could use Allen interval algebra to describe the above
story as follows:

S overlap or meet L
S is before, meet, is imeet,
or ibefore R

where / is the time touching the switch, � is the time the
light was on, and 6 is the time that John was in the room.

The importance of Allen’s work stems from its ability
to provide a mechanism for describing the relationships be-
tween intervals without having to explicitly mention the in-
terval duration or specifying the relationships between the
intervals extremities. These characteristics are of signifi-
cant value when it comes to describing the temporal rela-
tionships of events in a pervasive computing environment
and especially when you consider the imprecise nature of
these type of environments.

4.2. Scripting Temporal Intervals

Based on Allen’s interval algebra the script uses the
primitive relationships defined by Allen to describe tempo-
ral relationships between events in a pervasive environment.
Entity behavior is then trigger on observing the events in the
correct temporal sequence. The predefined contexts defined
in section 3.3 are used as a means for describing events and
hence the intervals of time for when these events are valid.
The script specifies the relationships between intervals by
defining a sequence of predefined contexts. The interval is
active if the context is a subset of the entity’s current con-
textual view. Once the intervals have occurred as indicated
by the script the mapping can occur and behavior can be
triggered.

map [ con tex tB , con tex tA ] [ c o n t e x t B ] onto { . . . }

Listing 6. Mapping using temporal intervals.

For the purpose of further illustration we use an example
to explain in more detail the use of Allen’s interval algebra
in the script. The sample code shown in listing 6 demon-
strates the use of intervals in the mapping statement. It uses
the predefined contexts contextA and contextB to describe
two different intervals of time. The relationship between
the intervals can be defined as contextA start contextB, as
per Allen’s interval algebra. The square brackets demarcate
the start and end of the intervals, and defines the relation-
ship between them.

In determining whether a mapping has been trigger the
runtime environment investigates each subsequent contex-
tual view to determine if intervals are active. An interval is
deemed active when equation 3 is satisfied. In other words
when

� � , a predefined context, is a subset of the entity’s cur-
rent contextual view -

�	��
��������
. Meaning that when the in-

formation specified in
� � is also contained in the context of

an entity that is held in the entity’s current contextual view.
When the intervals are found to be active in the correct tem-
poral sequence as that described in the mapping, then it is at
this stage that the behavior can be triggered. In the example



above, the interval contextB and contextA must be initially
be active is the same contextual view and for subsequent
contextual views until interval contextA becomes inactive,
which at this stage will trigger the behavior.

� �"7 � � 
 � �
���
(3)

It is also feasible to use the other 12 relationships defined
by Allen in the mapping statement. For instance, in the first
example shown in listing 7 contextA is before contextB. The
symbol [ ] indicates that no interval is active at this period of
time. The other example shows the that contextA overlaps
contextB.

/ / c o n t e x t A b e f o r e c o n t e x t B
map [ con tex tA ] [ ] [ c o n t e x t B ] onto { . . . }
/ / c o n t e x t A o v e r l a p s c o n t e x t B
map [ con tex tA ] [ con tex tA , c o n t e x t B ] [ c o n t e x t B ] onto { . . . }

Listing 7. Other mappings using intervals.

By using Allen’s interval algebra we provide a more ex-
pressive means of performing mappings that take into ac-
count what has occurred beforehand and not just what has
happened at a particular point in time. While it does in-
crease the complexity of the script, it is felt that the increase
expressiveness gained by the using Allen’s interval algebra
outweighs the additional difficulty in scripting the behaviors
of entities.

4.3. Runtime

The stigmergy runtime monitors the state of the map-
ping in the second stage of the runtime environment. This
stage operates over a number cycles, gathering information
on when each interval starts and finishes. Over time the re-
lationships between the intervals can be built up and it is
at this stage that it is possible to determine whether the ob-
servations satisfy the constraints declared in the mappings.
In the runtime environment this process starts by first tak-
ing the interval relationships defined in the mapping and
dividing them into slots as illustrated in the example shown
in figure 7. The process starts at the first slot, where the
entity’s current contextual view is used to determine if the
next slot is valid. A slot is valid if the intervals defined in
that slot are active and the remaining intervals are found not
to be active. If this is the case then it is possible to move
to that slot. To remain in this slot it must be valid in all
subsequent contextual views, unless the next slot is valid
in which case we move to that slot. If the slot is not valid
then the process starts again at the first slot. On reaching
the last slot the relationships between the intervals has been
satisfied and the mapping can be triggered by the runtime
environment, at which stage the whole process starts again.
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Figure 7. Interval slots.

5. Implementation

The current prototype of the Cocoa framework has been
implemented in Java. The framework uses a modular de-
sign to aid both the extensibility and flexibility of the frame-
work. This allows different components to be loaded at run-
time depending on the entity and the environmental config-
uration. Each entity runs in its own computational space,
although entities may be located on the same device they
do not necessarily have to. The stigmergy runtime and the
scripting language are implemented as described in previ-
ous sections.

For the context acquisition component a number of mod-
els have been implemented using the Cocoa framework.
Models, as was described in section 3.1, are pluggable com-
ponents that can be inserted into the framework at runtime
for interpreting sensor data. The current generation of mod-
els typically aggregate the data from sensors to determine
the context of entities. Other sensor fusion techniques can
be used though at present have not been implemented.

In the current implementation it is also possible to plug-
in different communication drivers to suit both the middle-
ware requirements and network configuration. This makes
it easier to modify the system to suit different environ-
ments. Communication drivers can be based on publish,
subscribe mechanisms, tuple spaces, or other communica-
tion paradigms that provide a decoupled communication
model. The Cocoa framework currently uses a driver based
on Steam [13].

Steam is an event-based middleware service that has
been designed with pervasive computing in mind. More
specifically, it is intended for use within mobile environ-
ments using wireless ad-hoc networks. Steam exploits a
number of novel techniques which allow it to operate suc-
cessfully within these type of environments. In particular,
it uses geographical information to limit the propagation of
events through the environment ensuring scalability and the
timely delivery of events. There is also no centralised com-
ponents within steam and subscription to events are made
dynamically to producers as entities move through the en-
vironment. Events can also be filtered on the proximity of
one entity to another. The steam event service was chosen



as it best suited the environment that Cocoa is presently be-
ing deployed in. A more detail description of steam can be
found at [13].

6. Evaluation

Westland Row is a street located in the heart of Dublin,
Ireland. The street is about 250 meters long, and accom-
modates a number of cafes, newsagents, shops, pubs, and a
train station. It is a busy street, with commuters, shoppers,
cars, and buses transcending it on a daily basis. A wire-
less ad-hoc network has been deployed on Westland Row,
with a number of access points placed along the street. The
access points form a sparse population of wireless network
nodes and can be configured to create a variety of network
models. The current model uses AODV [14] as the ad-hoc
routing protocol for the network and uses a gateway node to
access the Internet. The network is part of another project
investigating the use ad-hoc networks in urban areas.

Westland Row provides both a challenging, and an in-
teresting testing ground for evaluating pervasive computing
applications. We use it as means of examining Cocoa and
have developed and deployed a number of entities along
Westland Row. To observe how the entities behaved we ran
a number of scenarios. The following is a typical example:
Peter and Vinny arrange to meet in Westcoast for coffee one
morning. Coming from opposite ends of the street they meet
at the entrance of the cafe, where they entered and have cof-
fee. The following sections describes some of the key en-
tities used in the scenarios and outlines our experiences in
using such a framework.

6.1. Entities

Creating a pervasive environment with Cocoa starts by
identifying the key entities in the environment. Then us-
ing YABS to define their behavior in response to the con-
textual stimuli of the local environment. The development
process for an entity comprises three main steps: the first
determines whether there is a suitable model for acquiring
context information for the entity. If there is not, one needs
to be created for the entity. The second step, requires the
implementation of the behaviors for the entity, if such im-
plementations are not available. The last step is to create
a script that defines the behavior of the entity. The current
society of entities are as follows:

Punter was one of the first type of entity to be developed
for Westland Row. The entity represents a person on the
street, whether they are shopping, having coffee, or com-
muting to work along the street. No behaviors were im-
plemented for punter as Cocoa cannot change the behavior
of a person. Even though Cocoa triggers no behaviors for

this entity it is still necessary to represent the average per-
son in the Cocoa environment, the reason being to allow
other entities absorb their context. The context information
typically comprised of the person’s name, location, time,
musical preferences. In the Westland Row environment the
punter entity runs a on mobile device - PDA, laptop - asso-
ciated with a person.

Siopa is the Irish word for shop and in the Westland Row
pervasive environment is the type of entity used to repre-
sent the different the shops and cafes along the street. The
current implementation of the siopa entity is quite basic,
only capturing a very limited amount of context informa-
tion about itself and has no behaviors associated with it.
These type of entities run on PC104 devices embedded into
Westland Row.

Firefox is a web browser that provides information about
the environment. The current implementation uses the Fire-
fox browser from the Mozilla Foundation to display infor-
mation associated with entities. One behavior has been im-
plemented for the firefox entity, called display, it opens a
web page on the Firefox browser. The behavior is triggered
when someone is nearby and when information is available
to display. With the setup of the ah-hoc network on West-
land Row it is possible to open pages located on the net-
work, as well as those external to it. In the current setup
firefox entities ran on the same device as punter entities.

Jukebox, as the name might suggest, is an mp3 player.
Two behaviors have been implemented for the jukebox,
called play and stop. In the current implementation the stop
behavior is triggered when no one is the vicinity of the juke-
box to listen to the music. The play behavior is triggered
when a person is near the jukebox. The genre of music
played depends on what the majority of people prefer to
listen to. This is determined by observing the context infor-
mation from punter entities, in particular the musical pref-
erences of the entities. While this is the current behavior of
the jukebox entity it can be modified to react differently to
the environment. For instance, it could play different music
depending on location, or it could always play what the mi-
nority of the people like to listen to. The jukebox entity ran
on a laptop with speakers using the xmms mp3 player.

In all we deployed two punters entities, five siopa’s rep-
resenting some of the shops, cafes on the street, two firefox
entities associated with each person, and a jukebox located
in one of the cafes halfway down the street.

6.2. Experiences

From running a number scenarios on Westland Row we
have observed some encouraging behaviors. The siopa en-
tities along Westland Row remained passive to changes in
their environment, which was as expected due to the cur-
rent implementation of the siopa entity. Though the fire-



fox entities, which were sometimes carried around by peo-
ple would display information about the shops as they walk
by. They would also display information to users about the
songs being played on the jukebox entity. For instance in
the scenario described in the previous section, the firefox
entities displayed information on the music being played as
Peter and Vinny entered the cafe. The jukebox entity, with
its collection of music, would tailor the selection played de-
pending on the users in it’s vicinity. In the scenario above as
Peter and Vinny entered the cafe shop the jukebox started to
play more folk music to reflect the preferences of the users
in the cafe.

It appears that entities can co-ordinate their behavior
through the environment. However, in the current gener-
ation of entities co-ordination is restricted due to the limit
number of entities involved, but we believe with a richer so-
ciety of entities it would be possible to achieve much more.
The benefit of using stigmergy was also observed through
the indirect communication mechanisms used by the phe-
nomenon. It was possible to add new entities, remove or
upgrade old ones from Westland Row without adversely ef-
fecting of rest of the street. This allowed for the environ-
ment to be built incrementally and solutions to be improved
on over time. There were fewer dependence between enti-
ties, which appeared to make the overall system less fragile
and more stable to disturbances in the environment.

In developing the entities described in the previous sec-
tion we noted that the scripting language successfully man-
aged to separate the computational side of acquiring and
managing context information with the compositional side
of developing pervasive computing applications. The clear
separation allows the developer to concentrate on imple-
menting the behavior of individual entities rather than the
lower system levels. We also observed that the traditional
concept of a pervasive computing application shifts some-
what when using Cocoa, as the focus for development is
centered on the entity and not solely on any particular ap-
plication. The applications per say emerge from the perva-
sive environment as the entities move and reorganise them-
selves.

7. Related work

In recent times there has been considerable amount of
work done towards supporting the development and cre-
ation of applications for pervasive computing environments.
For example the TEA (Technology for Enable Awareness)
[20] project uses a scripting mechanism to preform basic
actions. The actions can be performed when entering a con-
text, when leaving a context, and while in a certain con-
text. Their framework concentrates on adapting the behav-
ior of small devices such as mobile phones. The Aware
Home Research Initiative [12] uses the Context Toolkit [7]

to capture context information. The MUSE [4] infrastruc-
ture uses Jini based services in combination with bayesian
networks to fuse raw sensory information into context infor-
mation. There is also Pinhanez’s interval scripting language
[18]. Based on PNF-networks [15] it has help Pinhanez
et al to create interactive environments such as SingSong
[17] and It/I [16]. Pinhanez’s PNF-networks are based on
Allen [2] temporal intervals. Another project called RCSM
(Reconfigurable Context-Sensitive Middleware) [22] pro-
vides an object-based framework for supporting context-
sensitive applications. Its context-aware interface defini-
tion language (CA-IDL) is used to generate context sen-
sitive objects. These objects run on a customized ORB,
which supports communication and context-awareness be-
tween the objects. The Gaia [19] project also uses a high
level scripting language called LuaOrb [5]. Based on the
interpreted language Lua [10], it provides language bind-
ing between Lua and CORBA, COM and Java. The project
uses the scripting language to program and configure their
concept of a pervasive computing environment called active
space. While also providing the developer with a means
of co-ordinating the activities of entities within the active
space environment.

Our approach differs from the above in that we look to at
using swarm intelligence techniques to facilitate the emer-
gence of pervasive computing environment for collection
of independent entities. The novelty of the approach stems
from the use of stigmergy and how local contextual infor-
mation can be used as the only communication medium for
controlling the behavior of entities in a pervasive computing
environment.

8. Summary and future work

We have argued that the use of swarm intelligence tech-
niques, such as stigmergy, can help in the construction of ro-
bust pervasive computing environments. Section 2 detailed
how the phenomena of stigmergy could be used in these
types of environments. Cocoa exploits these techniques to
provide a framework which cultivates a self-coordination
mechanism for pervasive computing environments. Sec-
tions 3 and 4 provided a detail description of the architec-
ture.

Although early results seem promising, there is still sub-
stantial further work in validating and improving the Cocoa
framework. The range and extent at which the system wide
behaviors can emerge from a pervasive environment is still
not fully understood. There is a need for a wider range of
entities to be developed and deployed so that the mecha-
nisms and implications of using stigmergy can be fully un-
derstood. We are currently developing a number of entities
and we hope to provide a more complete picture in the near
future.



One of our mains concerns at the present time is in the
manner that context information is defined. For one entity to
understand another entity’s situation it must understand the
meaning of the context information being sent. Currently
there is the concept of primary context information, which
is well understood and defined, and secondary context infor-
mation which consists of key/value pairing that are open to
interpretation. To tackle the problem we are in the process
of defining an ontology of context information that can be
used in Cocoa. Our other concern is the privacy of entities.
Even though context information is kept in the local envi-
ronment, and that entities have full control over the infor-
mation being propagated privacy may still be a concern and
other methods of securing the information may be required.
Another concern is that although we provide an attractive
programming abstraction for developing pervasive comput-
ing environments we have yet to validate the expressiveness
of YABS. There is a need to develop range of applications
to show that a full complement of applications can be im-
plemented.

Our research into using swarm intelligence techniques in
pervasive environments has so far been encouraging and we
continue to develop Cocoa and hope to expand the range
environments in which it can operate in the coming months.
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