
Building Reliable Mobile Applications with Space-ElasticAdaptation

Mélanie Bouroche, Barbara Hughes and Vinny Cahill
Distributed System Group, Computer Science Department, Trinity College, Dublin

{melanie.bouroche, barbara.hughes, vinny.cahill}@cs.tcd.ie ∗

Abstract

Mobile applications, for example mobile robots, are
playing an increasingly important role in our every-
day lives. Since components of these applications
share their environment with each other and with hu-
mans, they need to coordinate their behaviour to respect
strong safety constraints. Unfortunately, they typically
make use of wireless networks in which real-time com-
munication is highly unreliable, making coordination
particularly challenging.

We present a real-time communication model for
wireless networks that takes into account that commu-
nication might not be reliable. It provides feedback
to mobile components about the state of communica-
tion, so that they can adapt their behaviour accord-
ingly. We show how this model can be used to build
reliable mobile applications in wireless networks: this
involves specifying the safety constraints that need to be
respected, and translating them into constraints on the
behaviour of individual components. To illustrate our
approach, we describe an example from the Intelligent
Transportation Systems domain.

1. Introduction

With the emergence of the ubiquitous comput-
ing vision, we will rely more and more heavily on
computer-enabled devices in our everyday environment.
Such applications will be composed of mobile, au-
tonomous components, which are increasingly able to
do complex tasks and act on their environment. Ex-
amples of such applications are automated guided vehi-
cles (AGV) [1], and other service robots [13], as well
as robots for disaster rescue [5] and, in the future, au-
tonomous cars. Components of these applications share
their environment with other components and humans;
therefore, they need to coordinate their behaviour with

∗This paper was presented at the Mobile Distributed Computing
workshop (MDC 2006)c©IEEE

each other and their environment, to ensure the safety
of all the parties involved. Because the safety of hu-
mans and possibly crucial or expensive infrastructure is
at stake, a delay in coordination can result in a catastro-
phe. Thus, this coordination exhibits hard real-time re-
quirements [7].

To coordinate their actions and ensure that safety
constraints are respected, components can send mes-
sages to each other. Autonomous mobile compo-
nents however typically communicate over wireless net-
works, where communication is inherently less reliable
than in wired networks because of the higher rate of
link failures due to node mobility and varying signal
strength. A number of attempts have been made to adapt
the techniques used in more reliable networks to wire-
less ones. However, these techniques are designed as-
suming continuous connectivity and typically provide
guarantees only when some assumptions about com-
munication hold. For example, a commonly required
assumption (e.g., in [11, 12]) is that communication is
sufficiently good, in other words that there exists a so-
called omission degree, that denotes an upper bound on
the number of losses that may affect a single message.
This assumption, however, might not always be fulfilled
in wireless networks, hence the reliability needed for
such applications might not be provided. Our approach
is to take into account that communication might not
be reliable, and provide feedback to application compo-
nents about the state of communication, so that they can
adapt their behaviour accordingly.

In this paper, we first present a real-time com-
munication model for wireless networks, in which
every communicating application component - or en-
tity - is informed about the state of communication, in
terms of the geographical area around them in which
real-time communication can be guaranteed. In this
model, messages are addressed to (interested) entities
within an area, as opposed to a priori identified enti-
ties. The model is termedspace-elastic, as the space in
which real-time communication is guaranteed (within
an application-specified delay) varies over time. Us-



ing this feedback, entities can adapt their behaviour as
a function of the state of communication, in real-time.
In the second part of the paper, we demonstrate how
the model can be used in an example, first showing
how safety constraints can be specified, and then how
they can be translated into constraints on entity behav-
iour. We conclude the paper with a discussion of related
work.

2. Space-Elastic Model

To allow application components to make progress
in the presence of unreliable communication, we have
designed a communication model in which feedback
about the state of communication is provided to mes-
sage senders. This model exploits the rational observed
in [4], i.e., the relevance of context to a particular ge-
ographical area, to guarantee real-time communication
within a geographical proximity only. This proximity
can be defined either absolutely (via GPS coordinates),
or relatively around the entity (using an anchor point
and a size). In this model, messages are sent to (inter-
ested entities in) a geographical area as opposed to a set
of a priori identified entities. The area in which timely
communication is guaranteed will vary over time de-
pending on the dynamics of the network. Entities send-
ing a message are notified within a given delay of the
area in which this message has been delivered. They
can then adapt their behaviour depending on where the
message has been delivered.

2.1. Specifications

An entity wishing to send a message specifies the
geographical area in which it wishes this message to
be delivered. This area is called theDesired Coverage
(DC), and is used to bound message propagation. The
sender also specifies the maximum latencymsgLatency
within which the messages must be delivered.

Depending on the state of communication (pres-
ence, density and partitioning of nodes, and quality of
the wireless links), it might not be possible during some
period of time to deliver a message to all interested en-
tities within the desired coverage. Therefore, the size
of the area in which timely delivery of messages is pro-
vided, called theActual Coverage (AC(t)), will change
over time. In the worst case, no communication is possi-
ble; this corresponds to AC(t)=0. The sender is notified
of changes in the size of the actual coverage, within a
bounded time,adaptNoti f . Therefore, an entity knows
within msgLatency + adaptNoti f after sending a mes-
sage, the area in which it has been delivered.

Depending on the feedback about the state of

Figure 1. Different coverages of the Space
Elastic Model

communication, the sender can adapt its behaviour.
If the actual coverage becomes smaller than one or
more thresholds (calledCritical Coverage(s) (CC)), the
sender might need to take into account that it cannot
communicate in a area wide-enough to maintain safe
operation, and might need to adapt its behaviour. Vari-
ations of the actual coverage around the desired and the
critical coverage are shown in Figure 1.

2.2. Guarantees

In this model, guarantees about real-time commu-
nication are provided to both message sender and re-
ceivers. Senders are guaranteed to be able to communi-
cate with a given latency within a specified coverage,
and to be notified if this coverage changes, within a
given time delay. On the other hand, entities present
within the actual coverage at the delivery time of a mes-
sage of a type in which they have expressed interest,
are guaranteed to receive it. We define that an entity
is present within the actual coverage once it is able to
receive messages after arriving in the communication
coverage. This will take an implementation-dependent
time, present, which might be necessary to include the
entity in the real-time route for example. We will see
in the next section that these guarantees are easily ex-
ploitable to ensure system-wide safety constraints while
allowing progress of entities.

2.3. Implementation

An implementation of the Space-Elastic Model,
in the form of an event-based middleware called RT-
STEAM [6, 10], has been designed and is currently be-
ing implemented. RT-STEAM is a real-time version
of STEAM (Scalable Timed Events And Mobility) [9],
which uses the SEAR (Space-Elastic Adaptive Rout-



Figure 2. Pedestrian traffic light

ing) real-time routing and resource reservation protocol,
over the TBMAC (Time-Bounded Mac Access Con-
trol) protocol [2]. While implementation details are not
within the scope of this paper, it might be noted that the
implementation is advanced enough to demonstrate that
this model is implementable.

3. Specifying the Safety Constraints

In the remainder of this paper, we show how to use
the space-elastic model to build reliable safety-critical
applications in wireless networks. We demonstrate the
process using a scenario from the traffic management
domain.

In the automotive industry, much work has been
done on intelligent, computer-assisted driving. The
goals of these research efforts include enhanced com-
fort of both driver and passengers, and more impor-
tantly, improved safety and a better utilisation of road
resources to alleviate congestion. The next step in this
direction is the development of autonomous cars. We
can imagine a pedestrian traffic light that would warn
cars when pedestrians need to cross the street. This so-
lution might be more efficient than using sensors only,
and would be applicable on protected road stretches.

3.1. Scenario Description

We assume that cars and traffic lights are fitted with
GPS and wireless communication facilities. It is not as-
sumed that cars are aware of the position of traffic lights
a priori. The protocol for safe driving (following the
road and avoiding collisions with other cars) is outside
the scope of this scenario.

The goal of this scenario is for the traffic light to
turn red - to allow pedestrians to cross - as soon as pos-
sible after they press the request-to-cross button. In this
scenario, the safety constraint is that no pedestrian be
killed when crossing at a red light. This requires that
no car passes through a red traffic light. We can also
define some liveness requirements such as the fact that

pedestrians should be able to cross as soon as possible,
and cars should make progress. This enables us to ex-
clude the simplistic solution that cars remain stopped.
This example includes both fixed and mobile entities
in a safety critical application, and is therefore repre-
sentative of a class of application based on mobile au-
tonomous entities.

3.2. Actions and States

A first step in building an application is to enumer-
ate the different types of entities taking part in the ap-
plication, as well as their possible states and actions.

This scenario involves two types of entities: traffic
lights and cars. Without loss of generality, we consider
only the states red and green for the traffic light (in this
description, when we mention the colour of the light,
it is always the one intended for cars and not pedestri-
ans). Periodically, the traffic light reassess it state; it can
choose to either stay in its current state or to switch to
the other state. Therefore their are four possible actions
for the traffic light: (i) switching from red to green,(ii)
staying green,(iii) switching from green to red, and(iv)
staying red. We assume that cars, on the other hand, can
either(i) travel at its maximum speed,(ii) brake,(iii) be
stopped or(iv) accelerate. The state of a car can be de-
scribed as the action that it is undertaking, its position,
speed and direction.

3.3. Compatibility

We will say that two states or actions are compat-
ible when entities in these states (or undertaking these
actions) do not violate the safety constraints. The safety
constraints can then be specified using the compatibility
of states of entities.

In our example, the safety constraint is that no car
should go through a red light. So this means that if the
traffic light is green, its state is compatible with all the
possible states that a car can be in. Similarly, if a car
is stopped, it state is compatible with all possible states
that a traffic light can be in. Such actions are called
fail-safe.

On the other hand, if the traffic light is red, (i.e., if it
is either remaining red or switching to green), the safety
constraints might be violated, if a car is too close to the
traffic light and is not stopped. Therefore the actions
remaining red for the traffic light and going at its maxi-
mum speed for the car, for example, are not compatible.
The compatibility of the different actions of traffic light
and car entities are summarised in Table 1.

The states of a car going at its maximum speed and
of a red traffic light can be compatible, however, if they



Table 1. Action compatibility matrix for the traf-
fic light scenario

R
em

ai
n

in
g

g
re

en

S
w

itc
h

in
g

to
re

d

R
em

ai
n

in
g

re
d

S
w

itc
h

in
g

to
g

re
en

Going at Vmax X X χ χ
Braking X X χ χ
Stopped X X X X

Accelerating X X χ χ

are far enough apart. In this case, the car is not con-
cerned by the traffic light. This is an example of the rel-
evance of proximity for entities: entities are only inter-
ested in the actions of entities around them. The states
of the car and the red traffic might become incompati-
ble if they come closer, this is why their actions are not
compatible.

Using the notion of states and action compatibility,
we can specify the safety constraints of this scenario, in
terms of incompatibilities that should be avoided: the
states of a car and a traffic light are compatible unless
they are close (for some application-specific definition),
the traffic light is red, and the car is not stopped.

4. Translating the Safety Constraints

We have seen in the previous section that the safety
constraints can be specified in terms of action and state
incompatibilities that it is sufficient to avoid to ensure
that the safety constraints will not be violated. We
present in this section how this can be achieved, through
a notion of responsibility.

4.1. Defining Responsibility

When an incompatibility between the states of two
entities can arise, at least one of these entities should en-
sure that it does not. We say that this entity is responsi-
ble for this incompatibility. A responsible entity should
be assigned for every possible inconsistency. Responsi-
bility can be attributed to entities of a certain type, or to
entities in a certain role. This notion allows a distributed
enforcement of the safety constraints, as the system-
wide safety constraints are translated into requirements
on individual entities behaviours, without the need for a
central component.

To ensure that the incompatibility for which they
are responsible will not occur, responsible entities have
three possibilities: they can delay their actions, adapt
their behaviour, or transfer their responsibility. We will
detail each of these possibilities below.

4.1.1. Delaying actions.A mechanism for a responsi-
ble entity to ensure that the incompatibility it is respon-
sible for will not happen, is to delay an action that can
trigger this incompatibility. It can delay its action until
it gets information that it is safe to undertake it, or until
it has warned all other entities that it will undertake it.

4.1.2. Adapting its behaviour. A responsible entity
can adapt its behaviour, i.e., perform an action other
than the one planned, to ensure that at all times the in-
compatibility for which it is responsible will not occur.
For this purpose, it can use information about its envi-
ronment and other entities (information known a priori,
received in messages, or acquired by sensors).

4.1.3. Transferring its responsibility. An entity can
ensure that no incompatibility will happen by sending
messages to other entities, informing them about a pos-
sible incompatibility. Using the space-elastic model, the
entity will send the messages to all interested entities in
its vicinity. This is particularly appropriate, as entities
that should be informed of the possible incompatibility
might not be identified a priori.

After sending a message, the entity is notified in
real-time about the area in which it has been delivered,
and can assess whether this area is sufficient, or
whether it should use other means to ensure that the
incompatibility will not arise. Note that an entity
sending a message is notified about the delivery area,
but not whether there was an entity within this area, so
it does not know whether any entity actually received
the message. Therefore, entities having received
the message become responsible to ensure that no
inconsistency arises with the entity that sent it, which
corresponds to atransfer of responsibility. This transfer
is however only partial (as the responsible entity
remains responsible for the inconsistency in relation to
other entities).

In our example, the responsibility for ensuring the
safety constraints can be attributed to traffic lights.
They will use both a transfer of responsibility and a de-
lay on some of their actions. Every traffic light will
send periodic messages to cars, informing them about
its geographical position, its state, a time stamp for the
message, and possibly a planned state change (i.e., a
description of the change and the time at which it is
planned to happen). Traffic lights will also delay ac-



tions that might raise an incompatibility (i.e., turning
red) until they are sure that cars have been warned (and
therefore that it is safe to do so).

4.2. Contracts

A responsible entity can use a combination of the
three mechanisms mentioned to ensure that the incom-
patibility for which it is responsible will not occur. This
must be decided a priori, and can be seen as an implicit
contract between the responsible entity and other enti-
ties, which summarises what entities can expect of each
other. Contracts can include transfer of responsibility or
not, and can include the possibility for an entity receiv-
ing a message from a responsible entity to give feed-
back.

In our example, every traffic light will send mes-
sages to cars when it is red, early enough so that they
will have time to stop before the light. It will also warn
cars when it turns to red early enough so that they have
time to either pass through the light before it is red or
stop. The specific parameters of this contract will be
derived in the next paragraph.

4.3. Deriving the Parameters of the Contract

These contracts can be translated into geographical
zones around entities. For example, the constraint that
a traffic light will warn incoming cars that it is red early
enough to allow them to stop, can be translated into a
constraint on the zone in which communication must
be guaranteed. More specifically, the traffic light needs
to be able to communicate with cars in a zone that is big
enough so that cars will have time to receive a message
and stop before passing through the traffic light. This
requires that it sends message at least over a zone of di-
ameterDpresent + Dperiod + DO_reaction , whereDduration

denotes the maximum distance travelled by a car during
the timeduration, present is the time required for an
entity to become present once it has entered the actual
coverage,period is the period of the traffic light mes-
sages, andDO_reaction is the braking distance of cars.

If a message is not delivered in a big enough zone,
the traffic light needs to prevent incompatibilities in an-
other way, by adapting its behaviour: it should turn (or
remain) green. Therefore, the traffic light should also
send messages far enough so that it will have time to be
notified if the message is not delivered, and react to it by
switching to green if it was red, or cancelling its change
to red if it was not. Hence, the traffic light needs to
communicate over an area composed of two rectangles

(one on each approach) of length:

CC = Dpresent + Dperiod (1)

+max(DO_reaction,
DadaptNoti f + DR_reaction) ,

whereadaptNoti f is the time required for the traffic
light to be notified of an adaptation, andR_reaction is
the maximum time required by the traffic light to re-
act to an adaptation notification (i.e., switching back to
green, or canceling switching to red). This corresponds
to the critical coverage as defined in the space-elastic
model; if communication cannot be guaranteed in this
area, the traffic light has to adapt its behaviour. The
critical coverage is drawn with large dotted lines in Fig-
ure 2.

The delay with which the traffic light should warn
cars that it will turn to red can be deduced similarly. Be-
fore actually turning to red, the traffic light has to ensure
that all cars have received a message in time for them to
stop. This requires that the actual coverage be bigger
than the critical coverage. We will therefore distinguish
two cases, depending on whether or not a message con-
taining its intention to turn to red is delivered in an area
bigger than the critical coverage (as calculated above)
or not.

If the traffic light is notified that a message has been
delivered in an area bigger that the critical coverage,
it needs to ensure that the cars will have had time to
receive the message and react before they arrive at the
traffic light. If we assume that the car has a constant
deceleration over its breaking distance, it will take 2×

O_reaction for the car to stop. Therefore, if we define∆
as the time required between the sending of the message
and the time that the traffic light can turn to red, this
implies:

∆ ≥ msgLatency +2×O_reaction . (2)

If the message is delivered in an area smaller than the
critical coverage, the traffic light has to change its plan
and stay green. The traffic light should still have time
to be informed of this change, and react to it (cancel the
switching to red). This implies:

∆ ≥ msgLatency + adaptNoti f + R_reaction . (3)

∆ represents the delay that the traffic light has to
wait between announcing a switch to red and actually
switching to red. Therefore, to meet the liveness re-
quirements,∆ should be minimised. So from (2) and
(3), we deduce:

∆ = msgLatency + max(2×O_reaction,

adaptNoti f + R_reaction) .



If this condition is respected, when there is no critical
adaptation before the event deadline all the cars present
in the critical coverage will receive the message in time
for them to stop; and when there is a critical adaptation
the traffic light will be notified early enough so that it
will not turn to red. Therefore, this condition is suffi-
cient for the traffic light to switch safely to red.

4.4. Achievable Timing

From (1), the value of the critical coverage can
be derived: for example, for a maximum car speed of
50 km/h, and a message period of 16 s, the critical cov-
erage is around 250 m, which is within the transmission
range of a typical wireless (e.g. IEEE 802.11b) trans-
mitter. Therefore it is realistic to assume that timely
communication can be assured within the critical cov-
erage most of the time. Furthermore, with these values,
it can also be derived that once red, the traffic light is
assured to stay red for at least 15 s, which appears to be
sufficient for pedestrians to cross (it is a value observed
at traffic lights in Dublin).

5. Related Work

A number of attempts [3, 8] have been made to
adapt the methods used in more reliable networks,
typically group communication, to wireless networks.
However, the guarantees offered are only probabilistic
and are not suitable for safety-critical applications, fur-
thermore, these do not offer timeliness guarantees.

Real-time systems typically rely on a synchro-
nous model assumption (described for example in [14]),
whose two main assumptions are that processing times
and message-delivery delays are bounded. This model,
however, is not realistic for wireless networks, where
communication is highly unreliable. A more realis-
tic model, called quasi-synchronous, has been sug-
gested [14]. In this model, the assumption coverages
are weakened, i.e., there is a known non-null probabil-
ity that an assumption does not hold.

A protocol for ensuring real-time communica-
tion in dynamic wireless networks assuming a quasi-
synchronous model has been proposed in [15]. In this
work, communication is guaranteed with a varying la-
tency. This paradigm is suitable for a class of appli-
cations, calledtime-elastic, which can execute in a de-
graded mode when communication cannot be guaran-
teed at the required latency. However, time-elastic ap-
plications are, by definition, not hard real-time.

6. Conclusion

In this paper, we introduced an alternative real-time
communication paradigm for dynamic wireless net-
works. This model provides hard real-time guarantees
over a varying geographical area. We demonstrated
how to use the model to build reliable applications for
dynamic wireless networks. The example presented
might seem simplistic, but captures many crucial
aspects, such as the presence of both mobile and fixed
entities and a strong safety constraint that should be
respected at all times. We studied the use of the space-
elastic model for a variety of application scenarios. It
generalises to scenarios including interactions between
mobile components of different types. It appears that
translating the safety constraints on requirements on
entities and parameters for the space-elastic model is
not trivial, and we are in the process of characterising
a general model to do so, which could be supported by
tools for application designers.

The authors are grateful to SFI for their support under
Investigator award 02/IN1/I250.

References

[1] J. Cawkwell. A visually guided agv for use as passenger
transport in urban areas. InITSC, 2000.

[2] R. Cunningham and V. Cahill. Time bounded medium
access control for ad hoc networks. InPOMC, 2002.

[3] R. Friedman. Fuzzy group membership. InFuture Di-
rections in Distributed Computing, 2003.

[4] H. Hartenstein, B. Bochow, A. Ebner, M. Lott,
M. Radimirsch, and D. Vollmer. Position-aware ad hoc
wireless networks for inter-vehicle communications: the
fleetnet project. InMobiHoc, 2001.

[5] S. Hirose and E. F. Fukushima. Development of mobile
robots for rescue operations.Adv. Robotics, 16(6), 2002.

[6] B. Hughes, R. Meier, R. Cunningham, and V. Cahill.
Towards real-time middleware for vehicular ad hoc net-
works. InVANET, 2004.

[7] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. 1997.

[8] J. Luo, P. T. Eugster, and J.-P. Hubaux. Pilot: Probabilis-
tic lightweight group communication system for ad hoc
networks.IEEE Trans. Mobile Comput., 3(2), 2004.

[9] R. Meier and V. Cahill. Exploiting proximity in event-
based middleware for collaborative mobile applications.
In DAIS, volume 2893 ofLNCS, 2003.

[10] R. Meier, B. Hughes, R. Cunningham, and V. Cahill. To-
wards real-time middleware for applications of vehicular
ad hoc networks. InDAIS, volume 3543 ofLNCS, 2005.

[11] E. Nett and S. Schemmer. Reliable real-time communi-
cation in cooperative mobile applications.IEEE Trans.
Comput., 52(2), 2003.



[12] E. Nett and S. Schemmer. An architecture to support
cooperating mobile embedded systems. InComputing
Frontiers, 2004.

[13] R. D. Schraft. Mechatronics and robotics for service
applications.IEEE Robot. Automat. Mag., 1(4), 1994.

[14] P. Verissimo and C. Almeida. Quasi-synchronism: a step
away from the traditional fault-tolerant real-time system
models.IEEE TCOS Bulletin, 7(4), 1995.

[15] P. Verissimo and C. Almeida. The timely computing
base model and architecture.IEEE Trans. Comput.,
51(8), 2002.


