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With the rapid development of network technology and the ever growing demand on 

networks from both enterprise and network providers, current networks are increasing 

dramatically both in terms of scalability and complexity. However, traditional network 

management approaches (e.g. OSI approach) typically involve hierarchical 

manager/agent topologies and rely upon significant human analysis and intervention, 

both of which exhibit difficulties as scalability and complexity increases.  

The drawbacks of traditional network management approaches limit their application 

to large scale networks. Currently many research groups, projects and academic institutes 

are applying themselves to develop new network management approaches which are high 

in scalability, performance, and intelligence. 

This paper researches an alternative way to perform fault management in large scale 

networks using a semantic publish/subscribe system. A new distributed fault management 

system architecture based on a semantic publish/subscribe paradigm has been proposed; 

and, a new distributed event correlation scheme with guessing ability has also been 

proposed. 

The evaluation of this project shows that the performance of the proposed fault 

management system increases dramatically with the increase of the number of fault 

management servers. We conclude that the proposed distributed fault management system 

holds promise in performing large scale network management. However, more research is 

still needed to be done in order to achieve a system suitable for supporting autonomic 

approaches, which are expected to be core to the next generation of management systems. 
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Chapter 1   
 

Introduction 

 

 

Today the rapid emergence of novel network technologies and network services 

means that current networks get larger, more complex and more heterogeneous. Both 

the type and number of network elements needed to construct a network is increasing 

sharply. Not only traditional routers and switches but also dedicated network elements 

such as storage nodes are being used. In addition, the type and number of services 

provided by a network is also growing rapidly in order to satisfy different 

requirements. Traditional Web Access is not the only service that is being provided by 

provider network. The wide deployment of broadband access technology in the “last 

mile” and optical switch technologies greatly promote the emergency of new services 

such as Voice on IP (VoIP) and Virtual Private Networks (VPN). 

 

In this context, the rapid development of the network both in complexity and 

scalability puts more rigid requirements on its Network Management System (NMS). 

In order to conduct management of the ever expanding network and maintain the 

services running on it, the network management system should have the ability to 

process thousands or even millions of network events per minute. Furthermore, it 

should hold more intelligence and thus relieve network operators from the numerous 

and heavy network management tasks. However, currently network management 

approaches such as OSI proposed manager/agent based network management model 

are mainly using centralized architectures. In centralized network management 

systems, most intelligence, such as event correlation function and fault recovery 

function resides in the centralized manager. This makes the centralized manager the 
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performance bottleneck of the whole system and limits both the throughput and event 

processing speed of the whole management system. Thus the centralized manager is 

no long suitable for the management of large scale network with large numbers of 

network services running upon it.  

 

As the critical part of a Network Management System, the fault management system 

undertakes event correlation, and fault recovery operations. It is the major influence 

that affects the architecture of a Network Management System, and thus it is a major 

factor that affects the scalability and event processing speed of a network 

management system. Therefore, in order to enable a Network Management System 

more suitable for the management of current large scale networks, a more scalable 

and high-performance Fault Management System is urgently required. 

 

Publish/subscribe systems have the potential to address the scalability issues that 

exists in traditional Fault Management Systems. By subscribing its interests to an 

underlying publish/subscribe system, an upper layer application will receive only the 

messages that satisfy its subscribed interests and gets rid of the disturbance of other 

irrelevant messages. In addition, the publish/subscribe system is an “addressless” 

transmission scheme, so no attention needs to be paid on the location of both 

publisher and subscriber, which enables the roaming and distribution of publisher and 

subscriber. All the aforementioned merits of publish/subscribe systems makes it a 

splendid candidate technology to enlarge the scalability of a new Fault Management 

System.  

 

Thus, the research question posed for this dissertation was whether a semantic based 

publish subscribe system could provide the basis for a more scalable Fault 

Management System. 

 

The Fault Management System proposed by this dissertation is novel in the 

architecture it is using and in the fault algorithm that has been developed. It is 
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constructed by combining an existing semantic publish/subscribe system [34, 40], a 

novel distributed correlation scheme developed in the project, and the standards based 

Simple Network Management Protocol (SNMP)[35, 36] that is traditionally used for 

the majority of network management.  

 

SNMP is widely used by Network Management Systems to monitor state of network 

and perform configurations on network elements. Most current network elements 

provide support for SNMP. It keeps the network element states and configuration 

information in Management Information Bases (MIBs), and performs operations on 

information in MIBs through get/set protocol primitives. The SNMP conceals the 

heterogeneity in both hardware and software existing in different network elements 

and makes the network management transparent to the Network Management System. 

Therefore, it was selected to perform the management information transmission in the 

proposed fault management system. 

 

The third part of the solution used in this dissertation is the novel and original event 

correlation scheme that has been designed to perform distributed event correlation. It 

distributes and coordinates the correlation task among multiple correlators that 

operate in parallel and reside on several different servers. By using the distributed 

correlation scheme, a correlation task will be split into several task snippets and have 

them running on several correlator concurrently. This will greatly increase both the 

correlation speed and throughput of a fault management system. 

 

In the implementation, the Fault Management System is architecturally composed of 

three main parts: distributed event correlators, a Knowledge Based Network (KBN) 

and front end servers. The distributed event correlators on which the distributed 

correlation scheme will run are mainly in charge of the root cause reasoning. The 

KBN, as the underlying system, provides a semantic publish/subscribe service to 

upper layer applications. The front end servers will work as interpreters which are 

mainly in charge of the conversion between system specific messages such as SNMP 
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and KBN compatible notifications. Figure 1-1 illustrates the cooperation between the 

three parts. 

 

Correlators 

Front end 

KBN 

System specific message 

Interpreted Notification 

Interpreted Notification 
Fault Recovery Scheme 

Fault Recovery Scheme 

SNMP operations 

 

Figure 1-1 Cooperation between components 

 

The rest of the dissertation is organized as follows. The state of the art of Fault 

Management Systems and Correlation Scheme will be illustrated in section 2. Section 

3 includes some background information, describing the scenario that was studied to 

help understand the type of complexity of networks that exist, and background on the 

technologies used in the project. Section 4 describes the design of the proposed 

system, including the design of the fault management system and detailing the novel 

distributed correlation scheme that has been developed. Scenarios will also be used in 

this section to illustrate the cooperation of different parts in the proposed fault 

management system. The implementation is presented in section 5, followed by the 

evaluation to the proposed fault management system in section 6 describing 

performance measurements that have been undertaken and a feature comparison of 

the approach with the state of the art approaches. Section 7 outlines some of the 

remaining issues and section 8 presents overall conclusions and future work of this 

research. 
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Chapter 2   
 

State of the Art 
 

 

2.1  Event Correlation Schemes 

Event correlation is the most important component in a Fault Management System. It 

condenses received events to a small set of more meaningful events. Furthermore, it 

can also identify the root cause from a set of received symptom events. Current event 

correlation schemes mainly can be categorized as: rule-based scheme, codebook 

approach, finite state machine approach, dependency graph approach, and Artificial 

Intelligence (AI) approaches. 

 

• Rule-based scheme 

Rule-based scheme is a traditional but practical event correlation scheme that uses a 

set of rules to match the events when they arrive at a correlation engine. The 

rule-based approach is a sophisticated technology but easy to understand. The rule has 

strong semantics and can express both causal logic and temporal logic among 

received events. However, it is low in scalability and sensitive to noise. In addition, 

the correlation rule is difficult to construct because the expert knowledge needed to 

create the correlation rules is extensive and hard to gather. Currently many 

commercial fault management systems are constructed based on rule-based scheme or 

rule-based expert systems, such as Event Correlation Service (ECS) in HP OpenView 

[10, 11], SDH network management system [10, 12], Sinergia Expert System [10, 13] 

and so on. 

 

• Codebook approach 
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Codebook approach proposed by S. A. Yemini et al in [6] group all alarms caused by a 

fault into a complete alarm set. Each fault then is assigned a unique “code” which is 

represented through a binary vector. The events caused by a problem will then be 

treated as a “code” that identifies the problem. The correlation process is then turned 

into a “decode” process through determining which “code” has the minimum 

hamming distance with the incoming event set. The use of Boolean operation on 

symptom code makes the correlation process very fast. Besides, it uses minimum 

hamming distance to perform event correlation, thus it is more robust in the face of 

circumstances where events are lost or noise exists in incoming events. However, this 

approach is low in flexibility and scalability. Once the symptom for a fault is changed, 

all the codebook needs to be recompiled. Besides, the codebook approach can not 

correlate temporal events.  

 

C. C. Lo et al in [7] improved the traditional codebook approach by adding in Event 

Causal Graph. The Event Casual Graph works as the knowledge base and from which 

the code for each fault will be generated. This approach alleviated the drawback that 

massive expert knowledge is needed to generate the code for a fault, and change the 

maintenance of codebook into the maintenance of Event Casual Graph. 

 

• Probabilistic Finite State Machine 

The event correlation approach proposed by I. Rouvellou and G. W. Hart in [1] 

models each fault using a Probabilistic Finite State Machine (PFSM). It has the ability 

to handle noisy event sequences, and uses probabilistic theory to select the right 

PFSM for the incoming fault sequence. The PFSM building process for each fault is a 

self-learning process using probabilistic theory, and the association information of 

fault to PFSM can be gathered from other systems or network experts input. This 

algorithm does not assume any knowledge of network structure and can automatically 

recognize the time pattern of alarms associate with a given fault. 

 

• Network Element Dependency Graph 
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Several event correlation schemes are constructed based on Network Element 

Dependency Graph [2, 3]. In these schemes, Network Element Dependency Graphs 

are used to model the functional dependency among the network elements in the 

object managed network.  

 

Positive Information Algorithm proposed by A. T. Bouloutas, etc in [2] is an alarm 

correlation algorithm using network dependency graph. They divided the object 

network into undividable components (either hardware or software), and construct 

dependency graph over the undividable components. Alarms issued by object network 

will be explicitly associated with location information to indicate the component that 

has fault or malfunction. Correlation will then be performed over the Network 

Element Dependency Graph using the information associated with each received 

alarm. Jaesung Choi, et al. in [3] proposed an alarm correlation algorithm that based 

on Positive Information Algorithm (PIA) given by [2], and they expanded the PLA 

algorithm with a new alarm candidate set selection algorithm using alarm casualty 

graph based on OSI managed object. 

 

This approach can easy locate the fault and then use network element dependency 

graph to perform correlation. However, it needs the explicitly carry of location 

information in error messages, which currently in use network management protocols 

such as SNMP do not support for and thus limit the wide use of this approach. 

 

• Deterministic Event Causal Graph/ Event Dependency Graph 

Some Event Correlation approaches [4, 8] use Event Causal Graph to perform 

correlation. These approaches use Event Causal Graph to model the causal 

relationships among events, and then to correlate received events using the modeled 

causal relationships. 

 

M. Hasan in [4] associated a rank with each node in causal graph. When a set of 

events is received, the correlation algorithm will try to deduct the causal relationship 
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using the event causal graph by iteratively select the node un-received node with all 

its immediate successors already existing in the set into the event set. The candidate 

selection process will stop when all the nodes satisfying the conditions been selected 

into the event set. The algorithm will then select the candidates with the highest rank 

as the root cause of the received events. This scheme is similar to codebook approach 

but it has the ability to correlate temporal events. 

 

B. Gruschke in [8] proposed an event correlation graph using event dependency graph. 

Each node in the event dependency graph will be assigned to one of the only two 

states: correct or faulty. The correlation scheme is divided into two steps. First, the 

received symptom event will be mapped to the corresponding node in the event 

dependency graph, and change the state of the node into “faulty”. Second, a search 

algorithm will be started form the original received events and search for the node by 

which all original received symptom event will depend on. The result of the search 

algorithm will then be regarded as the output of event correlation. This approach is 

easy to understand but it requires too much expert knowledge to create the event 

dependency graph, and also there are circumstances that no common dependent 

events exist for the incoming events. Besides, this approach provides no support for 

the correlation of temporal events. 

 

• Artificial Intelligence (AI) approaches 

With the development of AI technology, it is also used in network management to 

perform the management for large scale network with complex management 

operations that can not be conducted by human-beings. 

 

J. F. Huard in [47] proposed an approach that is based on XUNET and introduces the 

probabilistic AI approaches such as belief network. They constructed a separated 

belief network for each fault that could happened in the managed network such as link 

down, no connection and so on for fault identification. Once the small belief networks 

are done, they will be combined into a global belief network. They thought the issues 
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exist in this approach including the binding between physical network elements to the 

belief network modeling, the further researching on the decision engine algorithm and 

the refining and validating of underlying XUNET belief network. 

 

D. W. Guerer, et al in [9] proposed a hybrid AI method that introduces AI 

technologies such as Neural Network, Bayesian Network and Case Based Reasoning 

into fault management. They divided the whole fault management flow into 7 steps: 

(1) alarm collection; (2) maintaining customer satisfaction via intermediate action; (3) 

alarm filtering and correlation; (4) fault diagnosis through analysis and testing; (5) 

generating fault recovery plan, and carry it out; (6) afterward fault elimination test; (7) 

record data and determine the effectiveness of current fault management function. For 

step 3, 4 and 5, one or more AI technologies will be assigned to perform operations 

contained in those steps. Through assigning probabilistic or symbolic AI technologies 

separately to different steps in fault management, this approach has more flexibility 

and capability in fault management than traditional deterministic approach. 

 

Although holding promising, the current development of AI technology especially 

probabilistic AI technology is still not sophisticated enough for commercial use and 

more researches are needed to be put in. 

 

• Hybrid approach 

Some hybrid approaches have also been proposed to unify multiple approaches 

together so that complimentary approaches can bring new benefits when combined.  

 

M. Yu, etc. in [5] proposed a hybrid event correlation by combining rule-based 

reasoning and the codebook approach. The Rule-based reasoning is used in low level 

correlation and is usually used to correlate events that occur within a network device, 

protocol and managed by an event management system or the events among different 

protocol layer but that have simple relationships. The codebook approach, however, is 

used for correlating events from different networks. It is usually used for high level 
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correlation. This approach adopts different correlation for different correlation level 

and scales well. However, it is still possible that there is too much workload in a 

single correlator. 

 

 

2.2  Network Management/Fault Management Architecture 

Currently it is rare to find single dedicated Fault Management Systems, but rather 

fault management is usually implemented as a core component in a Network 

Management System. Therefore, in this section, we will explore the state of the art of 

the architecture of Network Management Systems. 

 

• Centralized 

Centralized Fault Management is currently the most sophisticated and popular 

architecture for fault management. It has a single centralized server, and several 

agents spread in the managed network. The centralized server, or manager, includes 

most of the intelligence of the Fault Management System and thus is the most 

important part of the whole system. The agents, however, will act on behalf of and 

respond to the central manager to carry out the management operations. Because most 

of the intelligence is kept in the central server, this architecture is easy to construct 

and easy to manage. This architecture is suitable for the management of small scale 

networks. However, when applying to large scale network, thousands or even millions 

of events could arrive at the correlation every minute, which is highly possible to 

flood the centralized server. Thus this architecture is not suitable for the management 

of large scale network and the centralized server will become the performance 

bottleneck of the whole system. 

 

OSI management framework [14] is one of the most popular used and sophisticated 

network management frameworks. It is standardized by the International Organization 

for Standardization (ISO). It provides a framework using object-oriented technologies 
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for network management. The architecture it uses is centralized manager/agent 

architecture. The main task of the manager includes issuing directives and receiving 

notifications and the main task of agent include carrying out directives, sending 

responses and emitting events or alarms. Currently many commercial network 

management systems and research such as HP OpenView, and the project proposed in 

[15] are constructed based on this framework. Being standardized a long time ago, 

OSI management framework did not put too much concern on the scalability of the 

managed network. Therefore, its centralized manager/agent architecture is not enough 

for the management for large scale network with thousands or tens of thousands 

network element. 

 

• Hierarchical  

Network Management Systems constructed based on hierarchical architecture have 

several management servers performing management operation on given network 

level, e.g. different protocol stack layer, or given different network domains. Higher 

level servers will then perform management over the whole managed network. This is 

a distributed architecture and can perform well for the management of large networks. 

 

Telecommunication Management Network (TMN) [16, 17] is a framework that is 

defined for telecommunication network management and inter-communication. This 

framework is defined by ITU-T M.3000 series. It is constructed based on OSI 

management network, however, it has extended the OSI manager/agent management 

approach into hierarchical architecture. The building block that is defined in TMN, 

called the Operations System (OS), could be the manager of one peer building block, 

and it can also be the agent of another peer building block. This extension greatly 

increases the scalability and flexibility of this management framework when 

performing fault management and can be applied to the management of large scale 

network. 

 

• Hybrid 
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Some projects adopt the use of hybrid architecture. For example, the architecture used 

in the Madeira project [18], which is used for the management of wireless mesh 

network, combines peer-to-peer architecture with hierarchical architecture. In this 

project the management intelligence is distributed among the whole managed network 

into each network element. Peer network elements will be grouped into a cluster 

within which the peer-to-peer approach will be used. A cluster header will be selected 

from each cluster, which plays not only a peer role within the cluster, but also a head 

peer that communication with higher layer clusters. Clusters will be organized into a 

hierarchical architecture and there is a (or several) cluster in the highest management 

level which will be in charge of the management of the whole network. This approach 

can provide better scalability and robustness than using peer-to-peer structure or 

hierarchical structure alone, and besides it can improve the performance management 

operations such as fault correlation or fault recovery. 
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Chapter 3   
 

Project Background 
 

 

3.1  Background scenario and scenario modeling 

In order to inform the research of the project a particular scenario was studied in order 

to understand the characteristics of the kind of complex networks that need to be 

managed. The scenario chosen was that of fault monitoring that would be needed for 

Border Gateway Protocol Multi-protocol Label Switching Virtual Private Network 

(BGP/MPLS VPN) [20, 43, 44, 45]. For verifying the feasibility of the designed 

solution and in order to have a target future real-world test, a simplified real world 

scenario (Figure 3-1) based on BGP/MPLS VPN was constructed. 
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Figure 3-1 Scenario network 

As illustrated by Figure 3-1, this network has 5 routers in total. The PE1, R1 and PE2 

lthough this is a very simple network architecture, but there are massive number of 

 

are routers in provider backbone network and provide support for MPLS. The 

Customer network is connected to the provider backbone network using router CE1 

and CE2. On the service level, two Label Switching Paths (LSPs) are constructed with 

LSP_1 as (PE1, R1, PE2) and LSP_2 as (PE2, R1, PE1). One VPN is set up to 

connect two geographically separated customer network into one network. We assume 

that this VPN is constructed using BGP/MPLS VPN and over LSP_1 and LSP_2. 

 

A

diverse events that can be issued both the hardware and software level of this 

architecture. Figure 3-2 partially lists the events that can occur in the scenario network. 

These events, or notifications, will be illustrated using a format as 

EventName_SenderName. 

VRF 

PE 1 
R 1 

VRF 

PE 2 

I1 

I1 

I2 

I1 I2 

I1 

I2 

I1 

L1 

L2 L3 

L4 

CE 1 CE 2 

Customer Network 
Customer Network 

PE: Provider Edge 
CE: Customer Edge 
I: Interface 
L: Link 
VRF: Virtual Routing and Forwarding table 
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Figure 3-2 Events that can occur in the scenario network 

Observable Alarms: 
1a. linkDown_If_PE1_1 
1b. linkDown_If_PE1_2 
1c. linkDown_If_PE2_1 
1d. linkDown_If_PE2_2 
1e. linkDown_If_R1_1 
1f. linkDown_If_R1_2 
2a. mplsXCDown_PE1 
2b. mplsXCDown_PE2 
2c. mplsXCDown_R1 
3a. mplsL3VpnVrfDown_If_PE1_1 
3b. mplsL3VpnVrfDown_If_PE2_2 
4a. mplsLdpSessionDown_R1 
4b. mplsLdpSessionDown_PE1 
4c. mplsLdpSessionDown_PE2 
5a. mplsTunnelDown_PE1 
5b. mplsTunnelDown_PE2 
5c. mplsTunnelDown_R1 
6. mplsBlackHoleDetected 
7. Lsp_PE1_PE2_down 
8. Lsp_PE2_PE1_down 
9. VPN1_disconnection 

Hardware Level: 
1. If_PE1_1_down 
2. If_PE1_2_down 
3. If_R1_1_down 
4. If_R1_2_down 
5. If_PE2_1_down 
6. If_PE2_2_down 
7. Power_PE1_down 
8. Power_PE2_down 
9. Power_R1_down 
10. Lk_CE1_PE1_disconnect 
12. Lk_PE1_R1_disconnect 
13. LK_R1_PE2_disconnect 
14. Lk_PE2_CE2_disconnect 
 

Software Level 
1. Vrf_PE1_If1_misconf 
2. Vrf_PE2_If2_misconf 
3. Bgp_cmpnt_PE1_down 
4. Bgp_cmpnt_PE2_down 
5. Ldp_cmpnt_PE1_down 
6. Ldp_cmpnt_R1_down 
7. Ldp_cmpnt_PE2_down 
8. Ilm_PE1_misconf 
9. Ilm_R1_misconf 
10. Ilm_PE2_misconf 
11. Mpls_fwding_cmpnt_PE1_down 
12. Mpls_fwding_cmpnt_R1_down 
13. Mpls_fwding_cmpnt_PE2_down 
14. Vpn_cmpnt_PE1_down 
15. Vpn_cmpnt_PE2_down 
 

 

ne fault occurring in the managed network will trigger multiple events. For example, O

link L2 down can cause the issue of event linkDown_If_PE1_2, linkDown_If_R1_1, 

mplsXCDown_PE1, mplsXCDown_R1, mplsTunnelDown_PE1, 

mplsTunnelDown_R1, VPN1_disconnection, LSP_PE1_PE2_down, 

LSP_PE2_PE1_down, etc. These events are all caused by the failure on link L2 and 

can be regarded as the symptom of link L2. In order to figure out this root cause from 

a set of symptom events, the relationship between symptom and root causes should be 

established to enable event correlation. In the proposed system, this relationship will 

be modeled using the Event Correlation Graph, which is constructed using an 

ontology and models all necessary fault information on the managed network into the 

fault management system. The Event Correlation Graph will be kept in the knowledge 
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base of the proposed fault management system. Figure 3-3 gives an example Event 

Correlation Graph which can figure out the root cause for the symptom event such as 

VPN1_disconnection, LspBroken_PE1_PE2 etc. For the sake of simplicity, only some 

of the events are used to construct the Event Correlation Graph in Figure 3-3. The 

graph needed for real-world use will be much larger and more complex than the one 

in Figure 3-3. 

 

 
Figure 3-3 Example Event Correlation Graph 

 

.2  Technology Background 

ocabularies and their meanings, with explicit, expressive, and 

 

3

3.2.1  Ontology 

Ontologies are about v

well-defined semantics – possibly machine-interpretable [24]. According to the 
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definition given above, we can get that ontologies are a set of concepts as well as the 

relationship between them. These are usually implemented through classes, relations, 

properties attributes, and values, which are called resources. Figure 3-1 from [23] 

shows an ontology example. 

 

 
Figure 3-4 An ontology example 

 

s illustrated by Figure 3-4, the ellipses represent objects, the arrows represent 

n ontology model can be represented by various formats. Three formats are the most 

A

relations and the squares represent literal values. Usually, resources in ontology are 

represented by URIRef [25]. 

 

A

common used: graph representation, triple statement representation and XML 

representation [27, 28]. Graph representation uses different shapes to represent 

different concepts and uses arrows which represent relations link them up. Figure 3-4 

is an ontology that represented using graph. Triple statement representation uses a 
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statement which consists of a subject, a predicate, and an object to represent 

relationship between concepts. The statement representation is a verbal format of 

graph representation, and reads more like human language. The XML representation 

uses XML syntax for writing ontology. This representation is much more difficult for 

human to understand, but varieties of XML parsers enable the machine processing of 

ontology. Thus the mature standard and wide use makes XML an excellent media for 

ontology. 

 

Many languages are developed to model ontology. They distinguish to each other not 

WL is used to construct the routing ontology for underlying transmission 

only in vocabularies, but also in the semantics representation ability. Resource 

Description Framework [23, 24, 26, 27, 28] is an simplest level ontology. It is 

developed to describe resources, for example, images or audio files and so on. RDF is 

weak at semantic representation for it only describe a concept and provide little 

support for the inference relationships between concepts, thus RDF Schema [23, 24, 

29] is developed to as an extension to RDF. RDFS is language layered on top of RDF. 

It provides vocabularies such as rdfs:Class or rdfs:Property for defining concepts, 

besides, class concepts can relate to each other using subclass/superclass relationship, 

which enhanced the semantic representation ability of RDF. Web Ontology Language 

[22, 24, 28] has more vocabularies to express concepts and relationships between 

them than RDF and RDFS. OWL is constructed over RDFS, and some of vocabularies 

used in OWL already exist in RDF or RDFS. Otherwise terms are introduced by OWL. 

Vocabularies in OWL are further fined grained and are entitled with more semantics 

than RDF and RDFS. For example, OWL provides terms to express transitive 

relationship, inverse relationship, and symmetric relationship and so on, which all can 

not be expressed in RDFS. Currently, OWL has three versions – OWL Lite, OWL DL 

and OWL Full and OWL DL and OWL Full support for more terms than OWL Lite. 

 

O

middleware because of the requirements from underlying middleware. Besides OWL 

is also selected to construct the expert knowledge file for event correlation in the 
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evaluation implementation, which can also be done much easier through XML. 

However, OWL is still selected to model the correlation expert knowledge in the view 

of its reasoning ability could be used by expert knowledge base in the future work. 

 

3.2.2  Publish/Subscribe system 

] is an appealing message transmission 

ubject-based publish/subscribe system is regarded as the earliest publish/subscribe 

emantic publish/subscribe system is a recently proposed. It extends CBN by the 

Publish/Subscribe System [31, 32, 33, 34

paradigm for it is both asynchrony and inherent loose coupling. A publish/subscribe 

system is usually composed of three components: publishers, subscribers and 

publish/subscribe middleware. Rather than sending messages explicitly to receivers 

by their address, publisher simply pushes messages into underlying middleware 

without the knowledge of subscribers’ address (publish). The middleware will then 

classify messages into classes, and routing the classified messages to subscribers who 

paid interests in. In order to receive messages, subscribers do not need to keep 

senders’ (publishers’) addresses. It only needs to inform the underlying middleware 

the message classes it interests in (subscribe). 

 

S

system [32], which assigns predefined subjects to each message, and the underlying 

middleware routes messages according to the subject it belongs to. Content Based 

Network [31, 32, 33], however, assigns several tags to each event with each tag 

describing the information from specific aspect, and the underlying then can route the 

message according to the information carried in tags. Figure 3-5 is an example 

publication for CBN. CBN put more flexibility in the message routing, and currently 

many systems or technologies are developed or proposed after CBN, such as Elvin in 

[33] and Siena in [31] and so on. One thing worth mentioning that the underlying 

transmission middleware used in this project is an extension to Siena. 

 

S

addition of ontology reasoning. Knowledge-Based Network (KBN) proposed in [34, 
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40] is a semantic publish/subscribe system that constructed based on CBN. It added 

ontology reasoning ability into CBN through the addition of ontology reasoning 

engine and thus events can be routed within KBN using “less specific”, “more 

specific” and “ontology equal” ontological operations. With ontology reasoning, KBN 

can be more flexible than CBN in event routing, and upper layer application can pay 

less attention to the addressing issue and thus increases the scalability of upper layer 

application. 

 

 

Figure 3-5 Example Publication for CBN 

Stock = NYSE 
Price = 98.56 
Volume > 1000 

 

his project chooses KBN as its underlying message transmission system, which can 

.3.3  Simple Network Management Protocol 

ation layer protocol that is 

NMP perform network management using manager/agent structure, which is also the 

T

decouple elements in managed network from fault management servers in the 

proposed fault management system, and thus increases the flexibility and scalability 

of the proposed fault management system. 

 

3

Simple Network Management Protocol [35, 36] is an applic

proposed by Internet Engineering Task Force (IETF), which is part of internet 

protocol suite. It is widely used by Network Management Systems to perform 

management on network elements. Currently three versions SNMP are in use, they are 

SNMPv1, SNMPv2 and SNMPv3. 

 

S

reason why OSI use the manager/agent structure. Manager will perform network 

management through issuing request to agents and receiving response from them. 

Agents are a small piece of software that resides on each manageable network 
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elements. It will receive requests from manager and then turn the received protocol 

PDU into the real operations on the management information. The agent addresses the 

heterogeneity among network elements, and makes the management transparent to 

upper layer Network Management System. 

 

SNMP consists of three parts: an application layer protocol, a management 

he management information database schema in SNMP is termed the Structure of 

anagement Information is stored as managed objects in the management 

information database schema, and managed data objects. The application layer 

protocol is mainly used by Network Management Systems to perform management 

operations [39] on management information that kept in managed elements. Currently, 

operation supported by SNMP includes Get Request, Set Request, Get Next Request, 

Get Bulk Request, Response Request, SNMP Trap, and Inform Request. The former 4 

requests are originated from manager; whilst the last three operations are originate 

from agents. SNMP Trap (or Notification) is a mechanism that an agent proactively 

sends management information to the manager. It is usually used by agent to inform 

the occurrence of error or malfunction in managed network elements. The SNMP Trap 

will be considered as the main carrier of fault that occurred in managed network in 

this project. 

 

T

Management Information (SMI) [37]. It is a subset of Abstract Syntax Notation One 

which is a joint standard for describing data structure for encoding, representation, 

transmission and decoding data. SMI provides a set of rules for describing the 

structure of managed information independent to underlying network and machine 

specific encoding. The SMI is mainly divided into three parts: Module definition, 

Object definition and Notification definition. For more detailed description on SMI 

please refer to [37]. 

 

M

information database which is termed as Management Information Bases (MIBs). It 

defines the managed objects that describe the behaviour and configuration 
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information of a given entity such as a SNMP protocol entity [41], a TCP entity [42], 

or an IP entity and so on. IETF gives some standard MIBs definitions in Request for 

Comments (RFC) documents. Besides, companies will also provide their own MIBs 

for the management of their products. 

 

Besides SNMP, other management standards such as Distributed Management Task 

.3.4  BGP/MPLS VPN 

43, 45] is a packet switching technology. In MPLS 

nlike conventional IP forwarding, where the assignment of FEC is by performing 

Force (DMTF) Common Information Model (CIM) are developed for network 

management. However, the simplicity has won SNMP a wide support from Network 

Elements such as Routers, Switches and so on, and thus a great number of network 

management systems perform network management using SNMP. For its simplicity 

and wide support, SNMP instead of other management approach such as CIM is 

selected to carry the management information and perform management operations. 

 

3

Multiprotocol Label Switching [

forwarding paradigm, every packet will be forwarded in the MPLS network using the 

“Forwarding Equivalence Classes” assigned to it. 

 

U

the “longest matching” for the destination address of each arrived packet separately at 

each IP router, each packet will only be analyzed once at the ingress router of the 

MPLS network, and then be assigned a header with a label which represents the FEC. 

Packages will then be forwarded in the MPLS network by switching old label with 

new label without further analysis. At the egress router MPLS header will be removed 

form the package and the original package will be then forwarded to outside network, 

e.g. customer network. Because all forwarding in MPLS network is driven by label, 

this makes the forward speed much faster than traditional conventional network layer 

forwarding [43]. 
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BGP/MPLS VPN [20, 44] is a technology that service provider uses MPLS based IP 

his project is constructed aiming at perform fault management over MPLS VPN and 

backbone to provide Virtual Private Networks (VPNs) services to customers. The 

VPN routes will only be kept in a data structure termed as Virtual Routing and 

Forwarding (VRF) in the router that reside at the edge of MPLS, and VPN routes will 

be propagated in the MPLS using Boarder Gateway Protocol (BGP) [46]. By doing 

this, the VPN routes knowledge will be transparent to the inner MPLS router. After 

VPN constructed, customer networks located at different geographical location will 

then be regarded in a single private network and access to each other. 

 

T

the real-world scenario is given in section 3.1. 
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Chapter 4   
 
Distributed Fault Management System 
 

 

4.1  Physical Architecture 
Physically, the whole system (Figure 4-1) is designed to be composed of three main 

types of components: fault management servers, Knowledge Based Network (KBN), 

and front end servers. They will work together to provide the fault management 

services for the managed network. 
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FMN 

FE1 

FE2 FE3 

Provider Backbone Network 

CN 

KBN

OSS 
Messages 

SNMP Traps 
Directives 

FMN: Fault Management Network 
CN: Customer Network 
FE: Frond End 

CN CN CN 

Figure 4-1 Physical architecture 

 

4.1.1  Fault Management Servers 

Fault Management Server (FMS) is the dedicated server that works as a service 

container. Services such as event correlation service, fault recovery service, logging 

service will run on it. A FMS can have multiple roles for example correlator, fault 

recovery policy holder, etc. The role for a FMS is determined by the context: when we 

talk about fault correlation, a correlator means a FMS, and so it is the same with other 

roles. 

 

The managed network will be modeled from different aspects for different services in 

FMS. For example, all its events will be modeled as Event Correlation Graph for 
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event correlation use; in addition, all the directives that are supported by its elements 

will be modeled as fault recovery policy base for fault recovery use, and so on. All 

this expert knowledge will be kept into knowledge base that provides all required 

expert knowledge for services running on an FMS. 

 

Multiple FMSs can form a Fault Management Network (FMN). The FMN is 

organized using hierarchical structure and each FMS within the FMN will assume the 

responsibility of providing the fault management at a given level and providing 

“processed” fault information, e.g. correlation result, for a higher level FMS. High 

level FMS will collect the “processed” fault information from low level FMSs and 

perform a correlation at a broader view. When distributing the fault management task 

within FMN, instead of being kept in every single FMS, the knowledge base will also 

be spread over the whole FMN with each FMS keeping the part it requires. 

 

4.1.2  Front End Servers 

Because messages from outside network can not be directed forwarded in KBN, there 

should be a dedicate server to translate messages from outside to KBN notification, in 

order to enable the forwarding of these messages. The Front End (FE) takes this 

responsibility that provides the mapping service between messages from outside 

systems, e.g. managed network, Operation Support Systems (OSSs), etc, and KBN 

compatible notifications. It works as a translator between outsider and the proposed 

fault management system. Instead of understanding the incoming messages, the FE 

only needs to perform the mapping between headers of incoming message and KBN 

notification tags. The mapping relationships are encoded using a policy approach so 

that they are replaceable and are easy to deploy. 

 

Tags in KBN header varies with the type of messages. However, some common tags 

will exist in all KBN notifications. For example, in the current design 

“Message_Type”, “Sender_Id” and “Payload” are three common tags. 
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The mapping process is a process of wrapping incoming messages by KBN headers. 

The mapping will not affect the content carried in original message, and the original 

message itself will also be carried in KBN notification as the value of a common tag 

“payload”. Tags in KBN header are only used for forwarding use in KBN. Once the 

KBN notification has been forwarded to the destination FMS, the KBN header will 

then be striped in Event Normalizer which we will mention to in section 4.2.1.1 and 

the original message will be delivered to upper layer services in FMS. 

 

4.1.3  KBN 

The KBN works as the underlying system and provides a semantic publish/subscribe 

message transmission mechanism for the inter-connection of FMSs and FEs. Every 

functional node running on it, e.g. FMS and FE, will work as a publisher or a 

subscriber or both a publisher and a subscriber. 

 

An ontology that is constructed based on Event Correlation Graph will be used as the 

routing ontology for KBN. It will reside on every KBN node, and ontology 

comparison will be performed between the element in the routing ontology and the 

incoming message. 

 

FMSs connect to each other using KBN and thus form a FMN. In order to get only 

their interested fault messages and “processed” fault information, the FMS will put a 

corresponding subscription to KBN so that these messages can be propagated to them, 

so it is the same with FE. We will give a detailed introduction to this later on in the 

next section. 

 

 

4.2  Software Architecture 
This section will give a full description on the software level architecture of the 
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proposed fault management system. Most software design of the proposed fault 

management system resides in the FMS and FE. Currently, only the design of FMS 

has been accomplished, so in this section, only the architecture of FMS will be given. 

 

4.2.1  Software Architecture of FMS 

As shown in Figure 4-2, an FMS is composed of 4 main components: Service 

Organizer, Configuration Manager, Knowledge Base and Event Normalizer. The 

Event Normalizer will decode the incoming messages and dispatch the incoming 

message to the right model; The Knowledge base stores all the expert knowledge on 

the managed network and fault management; The Service Organizer provides a 

running environment for fault management services; The Configuration Manager will 

be in charge of configuration operations. In the following text, we will give a detailed 

description of these 4 components. 

 

Event Normalizer 

Event 
Correlator 

Trouble 
Shooter 

Service Organizer 

Topology 
update 
Module 

Configuration Manager 

Knowledge Base 

… Subscriptio
n Manager 

… 

 

Figure 4-2 FMS Architecture 

 

4.2.1.1  Event Normalizer 

The Event Normalizer is the lowest components in the FMS architecture. It lies just 

above KBN and works as the adapter that between upper layer services and KBN. Its 

main task is to convert the KBN notification into upper layer services understandable 

message objects or operations and vice versa. 
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As illustrated by Figure 4-3, the Event Normalizer mainly contains 5 parts; they are 

Message Processing Model (MPM), Event Dispatcher, Incoming Message Queue, 

Outgoing Message Queue, and Message Repository. Every incoming message will be 

buffered in the Incoming Message Queue. The Event Dispatcher will then fetch the 

message from Incoming Message Queue and dispatch it to corresponding Message 

Processing Model according to the KBN tags carried by the message. The Message 

Processing Model is in charge of the encoding of message objects or service 

operations into network stream and the decoding of stream formatted messages into 

message objects or service operations. Every Message type that supported by this 

FMS should have a Message Processing Model (MPM) registered in the Event 

Normalizer. After being processed by Message Processing Model the outgoing 

message will then be buffered in the Outgoing Message Queue waiting for being 

pushed into KBN. 

 

One thing worth mentioning is that some messages, such as SNMP trap message, can 

not be simply discarded after being processed by the Message Processing Model, for 

some information in the message could be used by other components such as trouble 

shooter in the future,. Therefore, these messages should be kept in the Message 

Repository, and for each message that is kept in the Message Repository, a number 

will be assigned to uniquely identify this message within the whole FMN. In order to 

avoid the infinite increasing on the size of this repository, a message collector will be 

running every given time period to collect the message that have not been use more 

than a given time. Instead of discarding the collected message, they will be kept in a 

message database for other use. 
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Figure 4-3 Design of Event Normalizer 

 

4.2.1.2  Knowledge Base 

The Knowledge Base stores all the expert knowledge such as correlation rules, events, 

fault recovery policies, etc, in it, and provide access interface for upper layer services. 

It works like the “hard drive” of a computer and provides information for “processor” 

(upper layer services).  

 

As illustrated by Figure 4-4 the Knowledge Base mainly consists of two parts: the 

knowledge files and the access interface. Knowledge files are the files that carry the 

expert knowledge, such as correlation rules, event information, and fault recovery 

policies and so on. Different type of expert knowledge will be stored using different 

formats in different knowledge files or event database. The proposed fault 

management system does not define the storage format for each type of expert 
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knowledge and it can be defined by the implementation. For example, in the 

evaluation implementation of the proposed fault management system, the correlation 

rules and event information are encoded using OWL and are kept in an ontology file.  

 

Correlation Rules 
and Events 

TSECG Driver 

Fault Recovery 
Policies 

FR Driver Other Driver 

Other Knowledge 
File 

Knowledge Base 
 

Figure 4-4 Design of Knowledge Base 

 

Instead of defining the format of expert knowledge, a set of interfaces are defined for 

the access of expert knowledge. For each expert knowledge file that will be directly 

used by upper layer services, a driver class which implements the corresponding 

interface must be provided in order to enable the access to the expert knowledge 

stored in specific format. In the evaluation implementation of the proposed fault 

management system, a knowledge base access interface named as 

TopologySpecificEventCorrelationGraph is defined for the access to correlation rules 

and the information of events issued by the managed network, which is encoded using 

OWL in ontology file. By defining the access interface the implementation detail of 
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expert knowledge will become transparent to the upper layer service, thus making the 

update of knowledge base more flexible. 

 

4.2.1.3  Service Organizer 

The Service Organizer provides the execution environment, such as message queue 

and inter-service communication variables and so on, for fault management services. 

Furthermore, it will also chain the services it holds into a service chain to perform 

fault management. From the implementation point of view, the service organizer 

could be implemented as a process and the services could be implemented as the 

threads that spawned from the service organizer process. 

 

Different services may require a different environment. Therefore, as an environment 

provider, the design of service organizer varies with the type of services it holds. 

However as an environment provider for fault management service, there is a 

common denominator for all the different designs. It has to provide the environment 

for at least two core services: Fault Correlator and Trouble Shooter. Figure 4-5 

illustrates the common denominator design for the Service Organizer. 
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Figure 4-5 Common Denominator design of Service Organizer 

 

32 



As illustrated by Figure 4-5, the common denominator design of Service Organizer 

provides the running environment for two core services. The environment includes a 

Correlation Message Queue, where both the received correlatable events and 

correlation results will be kept. The Event Correlator will select the correlation 

candidates, e.g. correlation result and correlatable events from the correlation message 

queue, besides the Trouble Shooter will also select the correlation result that should be 

addressed from the correlation message queue to perform fault recovery operation. To 

avoid the infinite expansion of the correlation message queue, the Message Collector 

is provided by Service Organizer to maintain the Correlation message queue by 

removing the messages that are regarded as garbage messages. The criteria that 

whether messages in the correlation message queue can be regarded as garbage 

message are defined by policies. A very important criterion for the garbage message 

for example would be whether the occurrence time of this message has exceeded a 

given time period.  

 

4.2.1.4  Event Correlator 

Event Correlator is one of the core services that will on the service organizer. It will 

provide the event correlation service for the fault management, which is the 

prerequisite service for trouble shooting.  

 

The proposed fault management system does not provide a unified interface for the 

creation of services. Therefore, in order to add a new service, for example, fault 

logger, into the service organizer given by Figure 4-5, the whole service organizer has 

to be updated from code level to hold the new service and to provide the running 

environment for it. Figure 4-6 shows the design of event correlator and its dependent 

components.  
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Figure 4-6 Design of Event Correlator Service and its dependent components 

 

s illustrated by Figure 4-6 Event Correlator service contains two main parts: Event 

fter the Correlation Thread finishes its correlation task, the correlation result will be 

.2.1.5  Trouble Shooter 

or, Trouble Shooter is one of the core services in the 

A

Correlator and Correlation Thread. The main tasks of Event Correlator are to analysis 

the messages in the Correlation Message Queue, get the correlation tasks and then 

assign the tasks to the Correlation Thread. The Correlation Threads, which are the 

threads spawned from Event Correlator and implement a distributed correlation 

scheme, will accept the task assigned by Event Correlator and then perform 

correlation on it.  

 

A

either echoed into Correlation Message Queue if it could be used by the other 

correlation in this FMS, or be exported into KBN if it could be used by correlation in 

other FMS. We will come to the distributed correlation scheme later on in section 4.3.  

 

4

As with the Event Correlat

proposed fault management system. It will generate the fault recovery operations 

according to the fault recovery policies stored in the knowledge base using the 

Event Correlator 

Correlation Message Queue 
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correlation results. 

 

A correlation result can either be used by correlator to perform further correlation or 

s mentioned before, the fault recovery policies are stored in Knowledge Base using 

 should be noted that trouble shooter of the proposed fault management system has 

.2.1.6  Configuration Manager 

figuration manager is a unified name for all the 

be used by trouble shooter to perform trouble shooting, thus a method should be used 

to address this conflict. In this current design, a timer will be used to address this 

problem. For the further correlation has higher priority than trouble shooting (If a 

correlation result could be used for other correlation, that means an even bigger 

problem needs to be correlated using this correlation result, which obviously has 

higher priority than just solve this minor problem.), the trouble shooter can not use a 

correlation result to perform trouble shooting process until the timer for this 

correlation result expired. Once a correlation result is selected to perform trouble 

shooting process, the trouble shooter will inform the sender of this correlation result 

that this correlation result can be addressed (The correlation result only carries the 

information for correlation, which is not enough for trouble shooting. Thus the fault 

recovery operation should be generated and performed in the FMS that originally 

receive the events, e.g. SNMP trap, from managed network). Because the correlation 

result is generated hierarchically from a low level event correlator to a high level 

event correlator, this process will be performed reverse to the correlation process from 

high level trouble shooter to low level trouble shooter.  

 

A

dedicated files. Therefore, the fault recovery operation should access the Knowledge 

Base via its access driver. As they are kept in a file, the policies can easily be updated 

or replaced, which increases the flexibility of the proposed fault management system. 

 

It

not been well defined yet, and further definition should be considered future work. 

 

4

Unlike the service organizer, the con
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configuration management modules such as Knowledge base update module, 

subscription manager and so on. There is not a concrete module or subsystem named 

as configuration manager. 

 

A FMS can have multiple Configuration Managers to perform different configurations 

.2.1.7  Subscription Manager 

ory Configuration Manager for the proposed fault 

 

of the FMS. However, the Subscription Manager is a compulsory Configuration 

Manager, and it has to be implemented by all implementation of the proposed fault 

management system. 

 

4

Subscription Manager is a compuls

management system. It controls all the messages including correlation events, 

inter-FMS communication messages and so on that can be received by the FMS. The 

subscription manager performs its task by undertaking subscribe/unsubscribe 

operations of its interests upon the KBN. Figure 4-7 is an example of how 

subscription manager controls the correlation task of a correlator. 
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Figure 4-7 Subscription manager controls the correlation task 

 

As illustrated in Figure 4-7, Correlator A will perform correlation over event A and 

correlation result (A, B), which is provided correlator B; The correlator B will 

perform correlation over event set (A, B, C, D, E, F, G, H, I, J, K, L), and then provide 

the correlation result of event A and B to correlator A. In order to have correlator A 

and correlator B perform the above mentioned correlation task, the subscription 

manager of correlator A and B will put subscriptions like those in Figure 4-8 to KBN 

node.  

 

 

 or read from a configuration file. All the subscriptions for different messages, 

.g. correlation message, fault recovery message, and so on, will be kept in a vector. A 

set of operations such as subscribe, unsubscribe and modify subscription and so on 

will be provided by the subscription manager to the on-the-fly subscription 

management.  

 

A more automatic subscription manager which provides the support to Plug and Play 

(PnP) FMS could be designed by adding in a new configuration manager that can 

listen both for the addition and removal of a FMS through a heartbeat beacon, and 

{(event @= Z), (message_type=correlatable_event)} 
{(event@=A), (message_type=correlation_result)} 
{(event@=B), (message_type=correlation_result)} 

(a) Subscriptions put by correlator A 

{(event@>A), (message_type=correlatable_event)} 
{(event@>B), (message_type=correlatable_event)} 

(b) Subscriptions put by correlator B 

Figure 4-8 Subscriptions of correlator A and correlator B 

 

The subscription can be either input to the KBN by a system operator from the user 

interface

e
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then automatically adjusts its subscription according to the subscription of the newly 

added or removed FMS. 

 

The design of subscription manager has not been fully finished as yet, and in the 

current evaluation implementation the subscription manager can only control its 

interests by reading subscriptions from a configuration file. 

 

 

4.3  Dist

4.3.1  Scheme background 

hical location. By doing so, each Network Element in the managed 

etwork needs to be explicitly configured so that all its fault events can be routed to 

ation result for high level 

orrelation, and the whole correlation task for the managed network will then be 

erformed hierarchically. There is neither tight couple between managed network and 

 storm. All fault events will 

hen be routed in the FMN 

ributed Correlation Scheme 

The correlation scheme proposed in the project is a pure distributed scheme. Current 

distributed correlation schemes, such as the one used in Madeira project [18, 19], 

perform distributed correlation by applying current centralized correlation scheme at 

different level of the managed network or different network domain resided at 

different geograp

n

the right FMS; or, all the fault events are forwarded to the FMS using broadcast in the 

network. There are explicitly drawbacks in those two aforementioned forwarding 

schemes: either there is a tight coupling between the managed network and specific 

FMS (explicitly configuration) or there is high possibility to cause event storms 

(broadcasting). 

 

The proposed distributed correlation scheme distributes a single correlation task 

among the whole FMN, and each FMS within the FMN will take part of the 

correlation. The low level correlator will provide the correl

c

p

specific FMS nor the high possibility of causing an event

be pushed into the FMN which is based on KBN, and t
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according to the subscription of specific FMSs. By adding the PnP feature into FMS, 

ll be used to evaluate the candidate correlation results. 

the failure in one specific FMS can not disable the whole fault management system. 

Another FMS will assume the correlation task of the failed FMS by adjusting its 

subscription and have all the events that are originally forwarded to the failed FMS 

re-route to this FMS. By doing so, rather than disable the whole fault management 

system, the failure of a FMS will only degrade slightly the performance of the 

proposed fault management system. 

 

Besides this pure distributed feature, the proposed correlation scheme can also 

perform the correlation under the circumstance where some correlation symptoms are 

lost. When performing the correlation under this circumstance, several factors with 

given weight wi

 

4.3.2  Scheme Overview 

The whole running process of the event correlator will be divided into time scales. 

Each time scale is called a correlation window. The length of a correlation window is 

adjustable. Usually a high level correlator will have a longer correlation window than 

a low level correlator. Event correlation will be started immediately after a correlation 

window ends. Figure 4-9 gives an overview to the event correlation process. 
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Figure 4-9 Overview of event correlation 

 

4.3.3  Technolog efinition 

s a new correlation scheme, some new terminologies are defined in order to fully 

 

Once the correlation has started, the event correlator will first select correlation tasks 

from the correlation message queue using Correlation Task Analysis which will be

introduced in the next section. The selected correlation tasks will then be assigned to 

the correlation threads. Correlation Thread will then perform event correlation using 

the proposed event correlation scheme. After correlation, the correlation result will be 

either exported to a higher level correlator or echoed back into the correlation 

message queue. In the next section, a detailed description will be given to this 

correlation scheme. 

 

y Background and Terminology D

A

and clearly describe this correlation schemes. Besides some new calculation rules are 

defined to support the proposed correlation scheme. In this section, these definition 

and calculation rules will be introduced. 

 

• Event, Observable Event and Non-Observable Event 

An event represents the occurrence of something in the managed network. An event 

… CW n CW n+1 … 

EC … EC n 

Correlation Result (export/echo) 

EC n+1 

CMQ … CMQ n CMQ 

CMQ snapshot 

EC: Event Correlation 
CW: Correlation Window 
CMQ: Correlation Message Queue 
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could indicate the occurrence of a severe fault or simply a change of configuration in 

the managed network. Some events have a dedicated message sent out when they 

ccurred; these events are called Observable Event. Some events have no dedicated 

 Events. 

nly be deduced from the occurrence of 

spBroken_PE1_PE2. 

 
Figure 4-10 Example Event Correlation Graph 

 

As illustrated by Figure 4-10, the Event Correlation Graph is a Direct Acyclic Graph 

o

message to indicate their occurrence; these events are called Non-Observable

The occurrence of non-observable events can only be deduced from the occurrence of 

other events that are caused by the non-observable events. For example, in the 

real-world scenario modeled in Figure 3-3, event XCRuined_PE1 is a non-observable 

event, and its occurrence state can o

L

 

• Event Correlation Graph 

The Event Correlation Graph models the managed network from the events and their 

relationships point of view. It represents symptom/cause relationships between events 

that issue from the managed network. These expert knowledge will be used in the 

event routing in KBN and subscription management in FMS. Figure 4-10 is an event 

correlation graph with 13 events. 

 

A B

C D E F 

K G L H I

Z

J 
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(DAG). Every Node represents an event and the arrow between two nodes represents 

the correlation relationship, for example, C can correlation to K, C can correlation G, 

and so on. 

 

Event Correlation Graph constructed in this project is similar in shape and semantics 

with those used in [4, 8]. However, instead of being used directly for event correlation 

Event Correlation Graph in this project is used for event routing in KBN and 

subscription management in FMS. As mentioned in section 3.2.1, the Event 

Correlation Graph in the implemented fault management system will be modeled 

using OWL. 

 

 Symptom and Cause 

ymptom of a third event(s).  

e only refer to the phrases Global Root Cause and Local Root Cause when 

rrelation Rule and calculating Correlation Table, which we 

ent Correlation Graph that FMS holds; if an 

vent is a Global Root Cause, then this event is the root cause of the whole Event 

•

If the occurrence of event A causes the occurrence of event B, we will say “event B is 

the symptom of event A”, or “event A is the cause of event B”. The symptom/cause 

relationship is not absolute. An event(s) can be the cause of another event(s), while it 

can be the s

 

• Root Cause, Global Root Cause and Local Root Cause 

Root Causes are causes that have no further causes. That is to say, a root cause can not 

be the symptom of another event. They are usually the where the fault is and what we 

need as the output of the correlation. For example, events K, G, L H, I and J are the 

root causes of the Event Correlation Graph given by Figure 4-10 

 

W

calculating the Direct Co

will refer to in the following text. When an Event Correlation Graph is spread over 

several FMSs, each FMS will hold part of the Event Correlation Graph (this will be 

done through subscription manager). If an event is a Local Root Cause of an FMS, 

then the event is root cause within the Ev

e
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Correlation Graph. 

 

• Correlation Rule Set 

Correlation Rule is the text representation of Event Correlation Graph. It has more 

semantics than the Event Correlation Graph. The Event Correlation Graph can not 

present the “and” relationship, namely, there is no way to distinguish “A can 

 

either conjunction “∧” or disjunction “∨”. 

ew rules can be generated by calculating old rules. There are some calculation rules 

(these “rules” are not correlation rules; they are the “rules” in mathematics) for the 

correlation rules, which we will refer to later on in the following section. 

re

correlate to C and D” and “A can correlate to C or D” in the Event Correlation Graph. 

However, this can be easily represented using correlation rule “A->C∧D”. Therefore, 

the event correlator in the proposed fault management system uses Correlation Rule 

Set instead of Event Correlation to perform event correlation, and Event Correlation 

Graph will be used only for Correlation Task Analysis, Subscription Management and 

Event Routing. Figure 4-11 is the Correlation Rule Set that generated from Event 

Correlation Graph given by Figure 4-10. 

 

Z -> A∧B 
A -> C∧D, A -> E 
B -> E, B -> F 

C -> K, C -> G 

E -> H 
F -> I∧J 

D -> L, D -> G 

Figure 4-11 Correlation Rule Set representation of Figure 4-10 

 

“A -> C∧D” is a correlation rule, which means “A can correlate to C and D”. The 

arrow “->” is the correlation operation which means “can correlate to”. Terms on 

the left of the arrow are the symptom of this correlation rule, and terms on the right of 

the arrow are the cause of this correlation rule. The symptom and cause are composed 

of events that relate to each other using 

N
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• Correlation Event Level 

Correlation Event Level is the level that this event locates in the Event Correlation 

Graph, the calculation of Correlation Event Level is given below: 

ccording to this correlation event level calculation equation, we can get that in 

⎩
⎨
⎧

∈+
∈

=
)(,1))(max(

0
)(

Acausebotherwiseblvl
CauseGlobalRootAif

Alvl  

A

Figure 4-10 lvl(A)=2, lvl(C)=1 and lvl(K)=0. 

 

• Correlation Depth 

The correlation depth of a correlation rule is the level that this correlation rule covers. 

We assume that R represents a correlation rule; sympt(R) represents the symptom of 

correlation rule R; cause(R) represents the cause of this correlation rule. The 

calculation of Correlation Depth is given below: 

)))((min()))((max()( RcauselvlRsymptlvlRdpth −=  

According to this correlation depth calculation equation, dpth(A->C∧D)=1 and 

The correlation rule set directly generated from Event Correlation Graph are called 

base correlation rule set. All rules in the base rule set should be atomic, namely, they 

ule set. The Basic Correlation Rule Set 

ill be stored in knowledge base and be accessed using the access interface provided 

root causes). It is named as direct 

dpth(A->(C∧D)∨H)=2. 

 

• Basic Correlation Rule Set 

are not generated by the calculation of other rules, and besides their correlation depth 

must be 1. Figure 4-11 is a base correlation r

w

by knowledge base. 

 

• Direct Correlation Rule 

A Direct Correlation Rule (DCR) is the correlation rule whose cause is composed of 

root causes (either local root causes or global 
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correlation rule because it can be directly used for correlation. The Direct Correlation 

 DCR for event A is A->(K∧L)∨G∨H, and the DCR for 

vent B is B->(I∧J)∨H. 

 Event Branch Radius 

dicates the time period from the time when the root event 

 than the later one. 

culation rules 

∧>−∧
=
otherwiseRcauseRcauseRsymptRsympt

RsymptRmpt
)2()1()2()1(

)2()1(
 

Rule can be gained by calculating the rules in the base correlation rule set. For 

example in Figure 4-11, the

e

 

• Correlation Branch 

The correlation branch of an event is a set of events that contains all the events that 

can cause this event, including both root causes and intermediate events. For example, 

in Figure 4-10, the Correlation Branch for event A is {A, C, D, K, L, G, E, H}, and the 

Correlation Branch for event B is {B, F, I, J, E, H}. 

 

•

The Event Branch Radius in

occurs to the time when the last event in the branch set is received. This value relate 

to the size of branch set and the underlying network delay. For example, in Figure 

4-10, under the normal condition the Branch Radius of branch set {K, C} is the time 

that K occurs to the last event (maybe K, maybe C) is received by a Correlator. The 

branch set {K, C} should have a lower radius than the branch set {K, C, A} for the 

size of former one is small

 

• Correlation Rule cal

Two calculation rules are defined for the calculation of Correlation Rules. The whole 

correlation schemes are constructed based on these two rules. 

Merging Rule: Given correlation rule R1 and R2, let R3=merge(R1,R2), then: 

⎨
⎧ ∨>−

=
syifRcauseRcauseRsympt

R
)2()1()1(

3
⎩

 

Substitution Rule: Given correlation rule R1 and R2, R1 can be substituted by R2, iff 

eRsymptRcausee =∈∃ )2(),1( . If R1 can be substituted by R2, let  
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R1=sympt(R1)->(sympt(R2)∧term1∧…)∨(term2∧term3∧…)∨(…). 

Then after substitution  

R1=sympt(R1)-> (cause(R2)∧term1∧…)∨(term2∧term3∧…)∨(…). 

After the substitution, the cause(R1) needs to be normalized to the “and or” format. 

 

Figure 4-12 gives an example of how the merging rule and substitution rule will be 

e DCR of event A in Figure 4-11. 

 

 calculation using merging rule and substitution rule 

4.3.4  Correlation Task Analysis 

nt correlator 

mediately after the correlation window ends. 

 

The correlation message queue can still be modified by other components such as 

Message Processing Model and so on. Therefore, in order to keep the consistency of 

the event set of Correlation Task Analysis. A snapshot of the correlation message 

queue will be taken immediately after the correlation window ends and the 

Correlation Task Analysis will be performed on the “snapshot” of the correlation 

message queue.  

used in rule calculation. It calculates th

 

1. Merge A -> C∧D and A -> E: 
A -> (C∧D)∨E = A -> (C∨E)∧(D∨E) 
2. Merge C -> K and C -> G: 
C -> K∨G 
3. Merge D -> L and D -> G: 
D -> L∨G 
4. Substitute A -> (C∨E)∧(D∨E) by C -> K∨G and D -> L∨G 

5. Substitute A -> (C∨E)∧(D∨E) by E -> H 
A -> (K∨G∨H)∧(L∨
6. Normalize, applying distribution rules to causes, we can get: 

A -> (K∨G∨E)∧(L∨G∨E) 

G∨H) 

A -> G∨H∨(K∧L) 

Figure 4-12 DCR

 

Correlation Task Analysis is the operation that selects correlation task from 

correlation message queue. It is the first operation performed by eve

im
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Task Analysis 

elation task. In this step, only correlatable event will be considered. 

he symptom selection process will use the Event Correlation Graph and only the 

symptom that can not be covered by other correlatable events in this snapshot will be 

selected as the symptom. In Figure 4-13 (a), two symptoms will be selected: event A 

and event B. Then for each selected symptom, an empty task will be created (Figure 

4-13 (b)). Second, the empty correlation task will be populated by the correlatable 

events or correlations results in the snapshot. This step will be performed by 

comparing the correlation branch of the selected symptoms with elements in the 

A I J F B C->K D L 

(a) Snapshot of correlation message queue 

A    

B    

Empty Task: 

Empty Task: 

(b) Symptom selection 

A D L C->K 

B F I J 

Populated Task: 

Populated Task: 

(c) Populated correlation tasks 

Figure 4-13 Correlation 

 

We assume that a snapshot of the correlation message queue is given by Figure 4-13 

(a) and the correlatable events and correlation results in this snapshot are based on 

Event Correlation Graph given by Figure 4-10.  

 

When the event correlator starts the Correlation Task Analysis, it will first select the 

symptoms for corr

T
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snapshot, and then populating the empty task with the correlatable event/ correlation 

result that both in the correlation branch and the snapshot. For example, the 

correlation branch for symptom A is {A, C, D, E, K, G, L, H}. After comparing the 

received elements in the snapshot with the correlation branch of A, the empty 

correlation task of A will be populated with event/correlation result (C->K, D, L), and 

so it is the same with the correlation task of B. The outcome correlation tasks of the 

Correlation Task Analysis are given by Figure 4-13 (c). 

 

After Correlation Task Analysis, each generated correlation tasks on which the 

correlation will be carried out will then be assigned to a correlation thread. 

 

4.3.5  Correlation Schemes 

This correlation scheme uses the calculation of correlation table to perform 

correlation. Three weig re the belief degree of 

 correlation result. Because of the introduction of correlation table and weighted 

hted belief factors will be used to measu

a

belief factor, this correlation scheme will treat the element missing correlation and 

normal correlation the same way. 
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Figure 4-14 Three correlators example 

 

The whole correlation calculation scheme can mainly be divided into the following 5 

steps: DCR calculation, correlation table initialization, delay correlation, event 

guessing, and post-correlation processing. In the remainder of this section, a detailed 

description will be given for each of these steps, using the example provided in Figure 

4-14 to aid the description.  

 

As illustrated in Figure 4-14, there are three FMS running in the FMN. There is a 

correlator running on each FMS and each correlator takes the responsibility for the 

correlation of part of the whole Event Correlator Graph, which is illustrated in Figure 

4-14 by boxes of different colors. The circles are the events that this correlator 

interests and the dash circles are the correlation results that this correlator interests. 

The circles that are marked in grey represent that these events are received, and 

A B

E F

K G L

H I J 

Correlator 2 

A B

Z

Correlation Result of A 

Correlator 1 

Correlation Result of B 

D C 

D C 

Correlation Result of C 
f B 

Correlator 3 

Correlation Result o
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circles that are marked in white represent that these events have not been received yet 

or they are non-observable events. 

 

We will mainly concentrate on the correlation process of correlator 2 hereafter, and 

the following assumptions will be made for correlator 2: 

• The export event set is {A, B}, which means the correlation result of symptom A 

and B will be exported into KBN to higher level correlator. 

• The local root cause set is {C, D, H, I, J}. 

• The correlation result of event C, and D has already been received before 

correlation window of correlator 2 ends. 

• Two correlation threads, say Thread-1 and Thread-2, are running on correlator 2, 

and Thread-1 is responsible for the correlation task {A, C->K, D->L}, and 

Thread-2 is responsible for the correlation task {B, F, I, J}. 

• All events except G are observable events. 

• The base correlation rule set is given in Figure 4-11. 

These assumptions are not fixed, and they may be changed during the following 

description, but I will in changed. 

y merging and substituting rules in the base correlation 

le set with each other. The DCR calculation process will stop when all the events in 

form explicitly if assumptions has been 

 

4.3.5.1  Direct Correlation Rule calculation 

Direct Correlation Rule calculation is the first step after the correlation thread started. 

It calculates the DCR for the symptom of the correlation task (In Thread-1 the 

symptom of its correlation task is event A, and in Thread-2 the symptom of its 

correlation task is event B) b

ru

its cause are in local root cause set, and then take the calculation output as the DCR 

of an event. An example calculation process has already been given in Figure 4-12 

and here we will not give this process again. The DCR for event A and B are: 

 A -> H∨(C∧D) 

 B -> H∨(I∧J) 
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4.3.5.2  Correlation Table Initialization 

As mentioned before, the whole correlation process is performed by calculating the 

orrelation table. This step will initialize the correlation table used in the future 

Res lements Elements 

c

calculations. 

 

Potential 

ult 

Lost 

Number 

Guessed 

Number 

Mis-match 

Number 

Lost 

Elements

Guessed 

E

Used 

A->H 1 1 2 H H A 

A->C∧D 0 0 0 None None A, C, D 

Table 4-1 Initial Correlation Table for Thread-1 

As 

Pot mber, Used Elements, 

sult column contains the 

 correlation result. The value 

nsidered as 

otential results. For example, in Thread-1, there are totally two potential results: 

rom the DCR of Thread-1: A -> 

the lost 

 lost number should be 1. For potential result A->C∧D, the 

 {A, C, D}, so there is no lost element and then the lost number 

 

illustrated in Table 4-1, each correlation table contains 7 columns, and they are: 

ential Result, Lost Number, Guess Number, Mis-match Nu

Guessed Elements and Lost Elements. The Potential Re

correlation equations that have the potential of being the

of this column is gained from the DCR generated in the last step. All terms that are in 

the cause of the DCR and connected using “or” operator will be co

p

A->H and A->C∧D, which are generated f

H∨(C∧D).  

 

The Lost Number column indicates the number of lost events/correlation results 

(notice: only observable events are considered) for this potential result, and these lost 

elements will be kept in the column Lost Elements. These two columns will be filled 

in through comparing the required elements for this potential result with the elements 

in the assigned task. For example, in Thread-1, the correlation task is {A, C->K, 

D->L}, and the required elements for potential result A->H is {A, H}, so 

element is H, and the

required elements are
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should be 0. 

 

Similar to Lost Elements and Lost Number, the Guessed Elements and Guessed 

Number indicate the elements (notice: both observable and non-observable events will 

ll be considered) that need to be guessed for this potential result and its number. This 

or y co e m r this esult with the 

ion ta e ts requ is es  

eived in the corr tion task l be regard . For example, 

, r potential result A->H, the guessed elements should be H and the 

guessed number sh ere is no guessed 

lement and therefore the guessed number is 0. It seems that the Lost Elements and 

ts for potential result A->H is A, and the used elements for potential 

sult A->C∧D are {A, C, D}.  

the Lost Elements, Guessed Elements and Used Elements are only the identity 

a

is also perf

correlat

med b

sk assign

mparing th

d. Elemen

 required ele

 that are 

ents fo

ired by th

potential r

potential r ult but did

not rec ela wil as Guessed Elements

in Thread-1  fo

ould be 1, and for potential result A->C∧D, th

e

Lost Number will always hold the same value with the Guessed Elements and 

Guessed Number. The main difference between the Lost Elements/ Lost Number and 

the Guessed Elements/ Guess Number is that Lost Elements/ Lost Number do not 

consider the Non-observable Event but the Guessed Elements/ Guessed Number do. 

 

The Used Elements column indicates the elements that have been used for the 

potential result. The elements in the Used Elements are the elements that exist both in 

the required elements for the potential result and in the correlation task. For example, 

the used elemen

re

 

The Mis-match Number is the number that the required elements fail to match the 

correlation task. For example, the mis-match number for potential result A->H is 2, 

and the mis-match elements are C and D; the mis-match number potential result 

A->C∧D is 0 because all required elements of A->C∧D match the correlation task.  

 

Notice should be paid that, in practice, the event itself will not be kept in the Lost 

Elements list, Guessed Elements list or Used Elements list. The elements that kept in 
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numbers that globally uniquely identify these elements. 

weight(Mis-matching Number)=3; 

 factors mainly determine the belief degree 

om event matching degree point of view, they can represent the belief degree of this 

otential Lost Guessed Mis-match Lost Guessed Used 

 

The Lost Number, Guessed Number, and Mis-match number are the three selected 

weighted belief factors for a potential correlation result. They are selected as the 

belief factors for the reason that they represents the event matching degree of the 

correlation task to the potential correlation result from different aspects separately. 

Lost Number represents the how many observable events are missing is this potential 

correlation result is selected as the correlation result, the Guessed Number 

supplements the Lost Number with non-observable result, and the Mis-matching 

Number represents how many event in correlation task will not be used if this 

potential correlation result is selected as the final correlation result. Different weights 

will be assigned to these belief factors: 

 

weight(Lost Number)=2; 

weight(Guessed Number)=1; 

 

Currently there are no well-defined criteria for determining the belief factors and 

setting the weight for them, and thus currently selected belief factors can not fully 

represent the belief degree of the correlation task to a potential correlation result. 

However, for the currently selected belief

fr

potential result to some extent. The identification of criteria for determining the belief 

factor and their weight setting has been left for future work. Table 4-2 gives the initial 

correlation table for Thread-2.  

 

P

Result Number Number Number Elements Elements Elements 

B->H 1 1 3 H H B 
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B->I∧J 0 0 0 None None B, I, J, F 

Table 4-2 Initial Correlation Table for Thread-2 

ts or correlation results listed in the listening 

st. The waiting time period is called a delay window. The length of the delay window 

is configurable. Third, after the delay window expired, the correlation thread will then 

detect the Correlation Message Queue whether there are events/correlation results that 

liste ere are, the correlation thread will go fetching 

ese events/correlation results, and add these newly received events/correlation 

relation task of Thread-1 is {A, D->L} and the initial 

orrelation table will become the one given by Table 4-3.  

l 

umber 

 

umber 

h 

umber ments ments ments 

 

4.3.5.3  Delay Correlation 

Delay Correlation will be performed when there is no Correlation Table Entry in the 

initial correlation table. It will delay the whole correlation process by a given time 

period, waiting for the guessed element.  

 

The Delay Correlation will be performed in three steps. First, a listening list will be 

calculated by aggregating all the guessed elements in all the correlation table entry of 

initial correlation table. Second, the correlation thread will wait for a given time 

period waiting for the receiving of even

li

d in the listening list received. If th

th

results into the its correlation task and then re-initialize the correlation table. 

 

An example will be used to explain these three steps. In order to explain this better, 

we will slightly change the assumption made for correlator 2. Instead of being 

received before the correlation window ends, we assume that only the correlation 

result of D has been received before the correlation window ends and the correlation 

result of C is received soon after the correlation window of correlation 2 ends (within 

the delay window). Then the cor

c

 

Potentia

Result 

Lost 

N

Guessed

N

Mis-matc

N

Lost 

Ele

Guessed 

Ele

Used 

Ele
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A->H 1 1 2 H H A 

A->C∧D 1 A, D 1 0 C C 

Table 4-3 Initial Correlation Table for Thread-1 when C is received after correlation 

window 

 has its Guessed Number as 0. Therefore the 

elay correlation for Thread-1 (Table 4-3) will be performed. The listening list is for 

titution of two correlation 

quation, but also the merging of other columns of two correlation table.  

r to c l ti erg s,

 

According to what mentioned earlier in this section, the delay correlation will be 

performed when no correlation table entry

d

this delay is {H, C}, and we assume that the delay window is 1000ms. After delay 

window ends, Thread-1 will detect that the correlation result of C has already been 

received in the correlation message queue. It will then add the correlation result of C 

into the correlation task, and the correlation task for Thread-1 will become {A, C->K, 

D->L}. After these, the correlation table will be re-initialized using the new 

correlation task, and the correlation table will become the one given in Table 4-1. 

 

The delay correlation will only be performed once during the whole correlation 

process for a correlation task. A more detailed description on the necessity of delay 

correlation and the setting of delay window will be given in section 4.3.6. 

 

4.3.5.4  Correlation Result Merging 

After the first three steps, an initial correlation table has already been generated. 

However, the causes of the potential correlation results in the initial correlation table 

are all local root causes, so they can not be used as the final correlation result. In order 

to gain the final correlation result, we have to substitute the local root causes in the 

potential correlation results with the correlation results received from low level 

correlator. This merging process includes not only the subs

e

 

In orde learly exp ain correla on result m ing proces  we will first enrich the 
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example we  using. A w assum on is made here: 

 t on its w  to corre or 3, so the relation result of C is sing 

 

Table 4-5.  

are  ne pti

• Event K los ay lat cor  a gues

correlation result. The correlation result of event C and D is given in Table 4-4 and

 

Potential 

Result 

Lost 

Number 

Guessed 

Number 

Mis-match 

Number 

Lost 

Elements 

Guessed 

Elements 

Used 

Elements 

C->K 1 1 0 K K C 

C->G 0 1 0 None G C 

Table 4-4 Correlation Table in Correlation Result of C 

 

Potential 

Result 

Lost 

Number 

Guessed 

Number 

Mis-match 

Number 

Lost 

Elements 

Guessed 

Elements 

Used 

Elements 

D->L 0 0 0 None None D, L 

Table 4-5 Correlation Table in Correlation Result of D 

y one. The 

bstitution algorithm is given by pseudo-code in Figure 4-15, and in Figure 4-16 an 

  if(canBeSubstituteBy(tmp_entry, correlation_result)){ 

 

The merging process will be performed by merging the initial correlation table by 

entries from the correlation tables of the received correlation results one b

su

example is given illustrates this process: 

 

output_correlation_table = new correlation_table(); 

for(dst_entry in init_correlation_table){ 

 tmp_table = new correlation_table(); 

 tmp_table.add(dst_entry); 

 for(tmp_entry in tmp_table){ 

  for(correlation_result in correlation_task){ 

 

      received_correlation_table = getCorrelationTable(correlation_result); 
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// merge the entry in initial correlation table with received 

    // replace the entry with the newly merged table 

tmp_table.replace(tmp_entry, merged_table); 

ese y,  th t of tm ain

e ();

// reset correlation_result 

correlation_result. et(); 

} 

} 

put_ n_ Al le); 

 

 Result merging process 

n Figure 4-15, this process will not stop until there 

tion table can be substituted. 

//correlation table 

merged_table = merge(tmp_entry, received_correlation_table); 

    // r

tmp_

t tmp_entr

ntry.reset

 iterate from

 

e star p_table ag  

res

} 

out correlatio table.add l(tmp_tab

} 

Figure 4-15 Correlation Result Substitution algorithm 

 

A->H 

A->C∧D 

C->G 

C->K 

A->H 

A->G∧L 

Figure 4-16 Correlation

 

According to the algorithm given i

is no more correlation table entry in the initial correla

 

The merge() function in Figure 4-16 is the core function of the merging process. It 

= 

CR of C Initial Correlation Table Outcome Correlation Table 

A->K∧L 
CR of D 

D->L 

CR: Correlation Result 
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merges the correl

with the correlat eived correlation results, for example, src_table. 

Each entry in the . The 

utc me f t is m le. 

A description to t  the remaining text of 

is ection. 

 

The merge of pot mple substitution processing. The potential 

result of dst_entry will be substituted by the potential result of each entry in src_table. 

For example, A->C∧D will be substitute by two potential result C->G and C->K, 

thus generate two new entry with A->G∧D and A->K∧D as their potential result 

resp ly. 

 

e merge of guessed element, used element, and lost elements are simply merging 

these three elem  Lost Number 

ill gained by simply getting the size of the respective newly merged element set. The 

number should be bles for Thread-1 

nd because there is no received correlation result for Thread-2, therefore correlation 

otential Lost Guessed Mis-match Lost Guessed Used 

ation table entry in original correlation table, for example, dst_entry, 

ion table in the rec

 src_table will be merged with the dst_entry column by column

o o  o h erging is a new correlation table with the same size with src_tab

he merging of different column will be given in

th  s

ential result column is a si

ective

Th

ent sets respectively. The new Guessed Number and

w

new Mis-matching Number equals the difference between the size of merged 

correlation task set and the size of merged used elements. If this different is negative, 

then the Mis-matching will be set to 0. For example, for the merging of A->C∧D 

with C->K, the merged Guessed Elements is {K}; the merged Lost Elements is {K}; 

the merged Used Elements is {A, C, D}; the new Guessed Number is 1; the new Lost 

Number is 1; as to the new mis-matching number, the merged correlation task is {A, 

C, D}, and the merged Used Elements is {A, C, D}, so the merged mis-matching 

0. Table 4-6 lists the new merged correlation ta

a

table for Thread-2 is the same with Table 4-2. 

 

P

Result Number Number Number Elements Elements Elements 
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A->H 1 1 3 H H A 

A->G∧L 1 1 0 G C A,C,D,L 

A->K∧L 1 1 0 K K A,C,D,L 

Table 4-6 Correlation Table for Thread-1 after Correlation Result Merging 

 

4.3.5.5  Event Guessing 

fter Correlation Result Merging if there is still potential result whose causes are not 

le of Correlation Result Merging. 

A

the global root cause, the event guessing process will then start. The main idea of 

Event Guessing process is to generate a guessing correlation result for each 

non-global root cause in the potential result under the assumption that no event has 

been received, and then merge each guessing correlation result with the outcome 

correlation tab

 

In order to explain this clearer, assumption will be made that the correlation result for 

C lost during its way to Correlator 2. Therefore, after Correlation Result Merging the 

Correlation Table should be as Table 4-7. 

 

Potential 

Result 

Lost 

Number 

Guessed 

Number 

Mis-match 

Number 

Lost 

Elements

Guessed 

Elements 

Used 

Elements 

A->H 1 1 2 H H A 

A->C∧L 1 1 0 C C A, D, L 

Table 4-7 Correlation Table for Thread-1 after Correlation Result Merging (Correlation 

Result of C lost) 

 

In the correlation table shown in Table 4-7, there is one event, e.g. C, in potential 

result A->C∧L does not belong to global root cause, and then the event guess process 

ill start. First, the guessing correlation result for event C will be generated under the 

n t  even  r le

w

assumptio

 

hat no t has been eceived (Tab  4-8). 
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Potential 

mber mber 

atch 

mber 

t 

ments 

essed 

ments 

d 

Result 

Lost 

Nu

Guessed 

Nu

Mis-m

Nu

Los

Ele

Gu

Ele

Use

Elements 

C->K 2 2 0 C, K  C, K None 

C->G 1 2 0 C C, G None 

Table 4-8 Guessing Correlation Result for event C 

esult Number Number Number 

Lost 

Elements

Guessed 

Elements 

Used 

Elements 

 

After generating the guessing correlation result, all guessing correlation results (Table 

4-8) will then be merged with the outcome correlation table generated from 

Correlation Result Merging (Table 4-7) using the same method introduced in section 

4.3.5.4. The result correlation table is given in Table 4-9. 

 

Potential Lost Guessed Mis-match 

R

A->H 1 1 2 H H A 

A->G∧L 1 2 0 C C, G A, D, L 

A->K∧L 2 2 0 C, K C, K A, D, L 

Table 4-9 Correlation Table for Tread-1 after Event Guessing process 

 Pos ti ss

st-co ation pr ssing ma y includes the following operations: removing 

d rrelation esult, gen ating correlation result and echoing/exporting 

 

fter the correlation table is generated from the event guessing process, all entries 

 only A-> K∧L, A->G, and 

->H are supported correlation result. 

 

4.3.5.6 t-correla on proce ing 

The Po rrel oce inl

unsupporte  co  r er

correlation result. 

A

that are unsupported for this correlation will be removed. For example, in Table 4-9 

the entry A->G∧L is unsupported for this correlation and will be removed from the 

correlation table in the Post-correlation processing process. For the all-in-one 

correlation rule for A is A->(K∧L)∨G∨H, and thus

A

60 



 

In the corre l g 

tion ult message. In this step only the entry with its Guessed Nu as 0 

 encl to co lation res . If the Guessed Numbe  entrie t 0, 

then the whole co esult message. 

Po elatio o  process for t d correlation 

s, an e ad  term

el  correlation mechanism and delay w  ana

ir mstance at the ar l of necessary correlation elements are sparse, 

which c ocation 

f Event Guessing Process, which both increases the workload of the correlator (event 

rk than normal correlation) and decreases the 

he circumstance of sparse arrival of correlation elements can be caused by two main 

. 

lation resu t generatin process, the correlation table will be enclosed into 

correla res mber 

will be osed in rre ult r of all s are no

rrelation table will be enclosed into the correlation r

 

The generated correlation result message can be either echoed back into correlation 

message queue, or exported to higher level correlator, which depends on whether the 

symptom event of the correlation result/correlation table is in the export event set of 

this correlator. 

 

After the 

task end

st-corr

d the corr

n, the wh

lation thre

le correlation

 will then

he assigne

inate.  

 

4.3.6  D ay indow lysis 

There are c cu s th riva

ould cross two correlation windows. This could cause the frequent inv

o

missing correlation does much more wo

accuracy of correlation result. Therefore, some efforts should be made to reduce the 

frequent invocation of event guessing process. 

 

T

reasons: network congestion and the difference of correlation windows among 

different correlators. The first reason is unpredictable and difficult to cater for, as it is 

caused by underlying network and is out of the control of the proposed fault system. 

However, the second reason is predictable and most sparse arrivals are caused by it. 

Therefore, a way should be found to reduce the frequency of invocation of Event 

Guessing process caused by this reason
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Delay Correlation is introduced to address this issue. Its main idea is to delay its 

correlation for a time period waiting for the un-received correlation elements. An 

example will be given here to explain the arrival pattern of correlation results. 

 

In most cases, as illustrated in Figure 4-17 (a), if an error occurred in managed 

network and was received during the correlation window m, and correlation window 

m will ends within the time scale of correlation window n, then both the symptom  
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Figure 4-17 Event Arrival Patterns for event correlation 

 

events triggered by the error and the correlation result calculated by Correlator C can 

be received within correlation window n. Correlator A can then calculate the root 

 

 

Correlator A 

Correlator C CW m CW m+1 … 

Error 

Events 

CW n CW n+1 CW n+2 … 

Normal Correlation 

Events Correlation Results 

(a) Normal Case 

Correlator A 

Correlator C CW m CW m+1 … 

Error 

Events 

CW n CW n+1 CW n+2 … 

Events Correlation Results 

Event Missing 

Correlation 

(b) Event Missing Correlation 

CW m-1 

Correlator A 

Correlator C CW m CW m+1 … 

Error 

Events 

CW n CW n+1 CW n+2 … 

Events 
Guessed Correlation 

Results 

(c) Worst Case 

CW m-1 

Event Missing 

Correlation 

Delay Correlation 

 

Delay Correlation 



cause of the received events without the invocation of event guessing process soon 

after correlation window n terminates.  

 

However, there are circumstances that a low level correlation window crosses two 

adjacent high level correlation windows. As illustrated in Figure 4-17 (b), the 

correlation window m in correlator C cross both the correlation window n and 

correlation window n+1 in correlator A. Thus the symptom events caused by a 

network error can be received within correlation window n in correlator A. however, 

the correlation result that are necessary for the correlation n will not be available until 

correlation window n+1. Under this circumstance, unnecessary element guessing 

process will be called because of the delay arrival of low level correlation result. 

 

This circumstance can be partially avoided by adopting delay correlation. If the delay 

correlation mechanism is adopted, when the normal correlation can not be performed, 

the correlation thread will first delay the correlation for a configurable time period 

waiting for the un-received correlation elements (both low level correlation results 

and delayed correlation events). If enough un-received correlation elements are 

received during the delay period, event guessing could be avoided. 

 

There are currently no well-defined criteria for setting the length of a correlation 

window. However, the max-bound for the length of correlation window will be 

analyzed here in the remaining text. Figure 4-17 (c) gives the worst case under which 

the longest time should be delayed. In Figure 4-17 (c), the events for correlator A is 

received during the correlation window n-1, but the event for correlator C is received 

during the correlation window m-1. For the start times of correlation window m-1 is 

slightly later than the end time of correlation window n-1, according to the delay 

correlation me rmed. If very 

nfortunately, the elements received by correlator c in correlation window m-1 are not 

chanism given before, delay correlation will be perfo

u

enough for normal correlation, so the correlator c will also perform delay correlation. 

Therefore, under the worst case, if the correlator is going to keep the invocation of 
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Event Guessing Process at the lowest level, the delay time for correlation A should be 

calculated like this:  

delay(correlator A) = cw(correlator C) + delay(correlator C)  

If we apply this to a more general circumstance, the longest delay time for correlator c 

(at the lowest possibility of invocation of Event Guessing Process) at correlator level i 

should be set to: 

 delayi(c)=max(cwi-1(e)+delayi-1(e))  )(csubBranche∈  

 

C1 

C2 C3 

C4 C5 C6 

 

Figure 4-18 FMN topology 

 

For example, in the FMN given in Figure 4-18 the max delay for C1 at level 2 should 

be: 

delay2(C1)=max((cw1(C2)+delay1(C2)), (cw1(C3)+delay1(C3))) 

 

Substituting delayi-1(e) by max(cwi-2(f) + delayi-2(f)) f∈subBranch(e) iteratively, we 

can calculate the delay for correlator c at level i should be: 

∑
−

=
∈

+=
1

0
0)(

))((max)()(
i

k esubBranchpki pdelayecwcdelay  e is the correlator that holds the max 

delay at level k. 
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There is no low level correlator below level 1 correlator, so delay0(p) should be set to 

e f correlator p at level 

ay of a correlator to the max delay, the correlation precision will 

 delay maybe mu e 

onsumed by event guessing. Therefore, a tradeoff should be made between the 

 

fault management system pro he newly modified network 

omponents, all related expert knowledge files, e.g. Correlation Rule, Routing 

pdated manually and re-compiled. Although the modification of components in 

the  updating would 

e a heavy and error-prone task. 

anism is proposed. The 

self-updating mechanism will be performed y

connectivity monitor, service monitor and hardware monitor and so on as outside OSS 

th event branch radius of branch of events in export event set o

0. 

  

If we set the del

increase however the time consumed by ch longer than the tim

c

correlation precision and correlation latency, and to select a property value for the 

correlator. 

 

 

4.4  Correlation Expert Knowledge self-updating mechanism 
Correlation Rules, Information on Correlation Event and Routing Ontology for KBN 

are three main expert knowledge types for event correlation. However the expert 

knowledge are network components (hardware, software and services) related.

Therefore, the modification in any components will cause these expert knowledge 

types to go out of date, and thus will cause the newly modified component not to be 

managed by the proposed fault management system. In order to enable the proposed 

vide fault management for t

c

Ontology, Correlation Event Information, and Fault Recovery Policies would need to 

be u

managed network may not be very frequent, the knowledge base

b

 

In order to address this issue, a self-updating mech

 b  adding network monitors such as 
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to the fault management system, and have them monitor different layers (hardware, 

responding network monitor will notice it, and then send a modification message 

he proposed fault management system. 

nomy. Besides, an application module that holds the self-updating 

lgorithm will be designed and developed. This module will work as a configuration 

anager in the proposed fault management system. 

software and service) of the managed network. Once there is a modification in the 

managed network, either caused by error or network operators’ configuration, 

cor

to t

 

In the proposed fault management system, several knowledge files as well as their 

access drivers that assist the updating of the aforementioned knowledge will be added, 

such as conceptual event correlation graph, components dependency graph, managed 

object taxo

a

m

 

Currently this self-updating mechanism has not been well defined. Therefore, instead 

of a detailed design only high level verbal descriptions are available here. Thus the 

self-updating feature is listed as future work. 
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Chapter 5   
 

Implementation 

of the SNMP simulator, the 

plementation of event correlator and the implementation of knowledge base will be 

5.1  Overview 
The implementation of the proposed fault management system followed the following 

steps: implementation of the simulator, design of the format of expert knowledge file 

and implementation of knowledge base, and finally, implementation of the event 

correlator. An implementation level architecture of this system is given in Figure 5-1. 

 

 

 

This chapter describes a partial implementation to the system described in chapter 4. 

The primary purpose of the implementation was to evaluate the distributed event 

correlation scheme that was designed. In the following subsections, the software and 

development environment, the implementation 

im

introduced. 

 

 

Fault Management System 

ie.tcd.cs.kbnms.correlator 

ie.tcd.cs.kbnms.knowledgebase 

ie.tcd.cs.kbnms.normalizer 

KBN 
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Figure 5-1 Implementation level architecture of this system 

architecture in Figure 5-1 is slightly different from the 

u 4-2. The package ie.tcd.cs.kbnms.correlator is the 

izer and Event Correlator service running on it; 

gebase is the implementation of the Knowledge 

ase; the package ie.tcd.cs.kbnms.normalizer is the implementation of the Event 

ormalizer. As this implementation is an evaluation version of the distributed 

ion implementation was Java based using: JDK version 1.5 build 11; the 

ersion of KBN used to support the running of the system is 3.0; and the IDE used for 

ftware development was Eclipse 3.2. All code, configuration files, and ontology 

ccompanying CD.  

 

traps) sent from the managed network. This simulator has been used in the evaluation 

to send synthetic SNMP traps wrapped by KBN notification. This simulator was 

developed based on SNMP4J 1.8.2 which is a java version SNMP implementation and 

extSiena which is the implementation of underlying KBN 3.0. Figure 5-2 illustrates 

the workflow of the event simulator (represented by ie.tcd.cs.taiw.extsnmp4j). 

 

 

The implementation level 

esign given in Fig re d

implementation of the Service Organ

the package ie.tcd.cs.kbnms.knowled

B

N

correlator scheme, the Trouble Shooter has not been implemented, and for the sake of 

simplicity the Subscription Manager has been implemented by the class 

SubscriptionManager.class and has been put into the package 

ie.tcd.cs.kbnms.normalizer. 

 

This evaluat

v

so

files can be found in the a

 

 

5.2  Simulator Implementation 
An event sender has been implemented to simulate the error messages (using SNMP
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Figure 5-2 Implementation level architecture of event simulator 

 

As illustrated in Figure 5-2, the whole work flow includes three steps:  

. Figure 5-3 gives a sample SNMP trap 

rapped by a KBN notification. 

) Constructing SNMP package and encoding the package into Basic Encoding Rule 

(BER) [21] stream. This step will be done by calling Pdu.encodeBER() in package 

org.snmp4j. The code snippet listing below illustrates the how a PDU is created. 

(1) Reading synthetic SNMP field value from configuration file named traps.conf. Its 

format is given in Appendix B. Each SNMP field in traps.conf will be read according 

to its intrinsic data type, for example, the “community” field will be read as a string, 

the “error index” field will be read as Integer

w

 

Figure 5-3 SNMP trap wrapped by KBN notification 

 

(2

KBN 
notifications 

ie.tcd.cs.taiw.extsnmp4j 

traps.conf 
SNMP4J KBN 

string trap string trap BER stream BER stream KBN 
notifications 

Event=https://www.cs.tcd.ie/~taiw/ontology/200
MessageType=1 

7/8/22/RoutingOnt.owl#C 

Sender="192.168.0.2" 
SeqNo=1197308787787505792 
Payload="\2474\002\004b\030\350'\002\001\000\002\001\0000&0\r\006\b+\006\
001\002\001\001\003\000C\00170\025\006\n+\006\001\006\003\001\001\004\00
1\000\006\a+\006\001\002\201\024\001\000\000\000\000\000\000\000\000\000\0
00" 
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/* Creating PDU */ 

PDU pdu = new PDU(); 

pdu.setType(pduType); 

pdu.setRequestID(new Integer32(reqID)); 

pdu.setErrorStatus(errStatus); 

pdu.setErrorIndex(errIdx); 

pdu.addAll(vbs); 

(3) Constructing a KBN notification and publishing it into the KBN. This step is done 

by constructing a ThinClient that connects to the KBN server, and then uses the 

publish() method to publish a notification. The code listing below gives an illustration 

as to how notifications are published. 

/* creating 

hinClient Client = null; 

Client.publish(n); 

 

 

5.3  Service Organizer Implementation 
The package ie.tcd.cs.kbnms.correlator is the implementation of Service Organizer. 

For the sake of simplicity, the evaluation implementation incorporates both the Even

Correlator servi  5-4 gives the 

plementation level architecture of Service Organizer. 

ThinClient and publish notification */ 

T

try{ 

 Client = new ThinClient("tcp:127.0.0.1:1234"); 

}catch(InvalidSenderException e){ 

 System.err.println("FrontendSimulator Error: can not create KBN \ Client."); 

 return; 

} 

t 

ce and Service Organizer into this package. Figure

im
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ie.tcd.kbnms.correlator 

Correlation Result 

CorrelationThread.class 

 
Figure 5-4 Implementation level architecture of event correlator 

Queue is the implementation of Correlation Message Queue. 

e evaluation implementation, it uses a java ArrayList to store all correlation 

ll correlation elements (including 

n result) inherit from one same interface 

tion 

lation result, such as getEvent() and getOccurrenceTime() and so on. 

 addition, inheriting from one same interface enables correlation events and 

an be kept in a single Correlation Message Queue. 

he class EventCorrelator and class CorrelationThread implements the Event 

multi-threaded event 

tCorrelator will select 

thin. The code listing below 

lustrates the correlation task analysis process and the assignment of correlation tasks 

 

Class CorrelationMessage

In th

elements it receives from lower layer components. A

correlation event and correlatio

Correlatable.class. This interface contains some common operation for correla

event and corre

In

correlation results c

 

T

Correlator service. They work together and implement a 

correlation service. As mentioned in section 4.3.4, the Even

correlation tasks from CorrelationMessageQueue after a correlation window ends and 

then assign the selected correlation tasks to idle CorrelationThreads. All correlation 

elements that are selected into correlation tasks will be removed from correlation 

message queue to keep the CorrelationMessageQueue 

il

EventCorrelator.class 

CorrelationMessageQueue.class 

Snapshot of CorrelationMessageQueue 

orrelation Task C Correlation Result 

Correlatable Event/Correlation Result 
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to CorrelationThreads. 

while(true){ 

 /* waiting for correlation window elapse */ 

 correlationWindowElapse(); 

 /* reset terminated correlation thread */ 

 resumeTerminatedThreads(); 

 if(CMQRef.isEmpty()){ 

  System.out.println("INFO (EventCorrelator): No correlatable message in \ 

Correlation Message Queue, enter another correlation round.\n"); 

  continue; 

 } 

/* if t f current 

correlation thread */ 

} 

he correlation message queue is not none, gain a snapshot o

 CMQCopy = CMQRef.copy(); 

 /* perform correlation task analysis */ 

 getAllCorrelationBranches(); 

if(TaskList.isEmpty()){ 

 /* no correlation tasks is gained */ 

  System.out.println("INFO (EventCorrelator): TaskList is null, enter another \ 

correlation round."); 

  continue; 

 

 /* assign correlation task to correlation thread */ 

 generateCorrelationThread(); 

} 

 

The Correlation for each correlation task will be performed in each CorrelationThread 

following the following 6 steps: (1) generating direct correlation rule; (2) initializing 

correlation table; (3) checking whether a delay correlation is needed; (4) merging 

correlation result into correlation table; (5) checking whether an event guessing 

73 



process is needed; (6) post-correlation process. The code listing below illustrates how 

are organized from a high point of view. For more detail on each step, 

pl lator.CorrelationThread. 

/ 

CR

ull; 

 needed, perform delay correlation */ 

orrelation(ct); 

 

 relation table given new elements are fetched */ 

/* m into correlation table */ 

Vec r<

ocess is needed, perform event guessing process */ 

Correlation(newCT)){ 

T = performElementMissingCorrelation(newCT); 

 

ng removing illegal potential correlation result, 

rink correlation table, generating correlation result and exporting correlation result 

r echoing it back into correlation message queue */ 

these 6 steps 

ease refer to code in class ie.tcd.cs.kbnms.corre

/* generating direct correlation rule *

D  = getDirectCorrelationRule(); 

Vector<CorrelationTableEntry> ct = n

while(Delayed == false){ 

 /* initialize correlation table */ 

 ct = initCorrelationTable(); 

 /* if delay correlation is

 delayC

if(HasNewElement == true){ 

 /* re-initialize cor

  ct = initCorrelationTable(); 

 } 

} 

erging correlation result 

to CorrelationTableEntry> newCT = 

populateCorrelationTableWithCorrelationResults(ct); 

/* if event guessing pr

if(needElementMissing

 newC

}

/* post-correlation processing, includi

sh

o

removeUnsupportCorrelationTerm(newCT); 

newCT = shrinkCorrelationTable(newCT); 

CorrelationResult finalCR = genCorrelationResult(newCT); 

procCorrelationResult(finalCR); 
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This package contains most of the intelligence of the proposed fault management 

system, and its development and debugging took the longest time in the whole 

Base Implementation 
s t rsion focused on the distributed correlation 

 the Knowledge Base mainly concentrates on the 

ge such as event 

 and Event Correlation Graph and their access driver. 

 Rules were encoded into the ontology named as 

 named as 

 can be found in the accompanying CD. 

e event information of an event mainly includes some relevant topology specific 

UUID, its OID and so on. The 

ow the event information for the event A in 

68.0.11</sender> 

geFaultDelay> 

  <isAbsoluteRootCause 

e</isObservable> 

">A</displayString> 

development phase.  

 

 

5.4  Knowledge 
A his implementation is an evaluation ve

scheme, the implementation of

design and implementation of the format of expert knowled

information, correlation rules

Event information and Correlation

tsecg.owl, and the Event Correlation Graph was encoded into the ontology

RoutingOnt.owl. All these ontology files

 

Th

information of an event, for example, its sender, its 

ontology snippet listing below illustrates h

Figure 4-10 is organized. 

<Event rdf:ID="A"> 

    <sender rdf:datatype="&xsd;string">192.1

    <averageFaultDelay rdf:datatype="&xsd;int">30</avera

  

rdf:datatype="&xsd;boolean">false</isAbsoluteRootCause> 

    <multiSymptom rdf:datatype="&xsd;boolean">false</multiSymptom> 

    <isObservable rdf:datatype="&xsd;boolean">tru

    <displayString rdf:datatype="&xsd;string

    <mapTo rdf:datatype="&xsd;string" 
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>https://www.cs.tcd.ie/~taiw/ontology/2007/8/22/RoutingOnt.owl#A</mapTo> 

e="&xsd;string" 

       >0b34e3e8-aaaf-4f63-b1c9-fd9247a8a31f</uuid> 

/Event> 

/CorrelationRule> 

icEventCorrelationGraph which works as the common 

Topology Specific Event Correlation Graph. This driver is 

ding semantic web 

d by a class called 

resented 

epresent the 

n relationship 

or correlation rules are represented by two 

merge() and substituteBy()) in class CorrelationEquation. Besides, the 

absorbtion rule and duplication rule from propositional logic are also introduced into 

    <oid rdf:datatype="&xsd;string" 

        >1.3.6.1.2.148.11</oid> 

    <uuid rdf:datatyp

 

<

 

The correlation rule is represented using two slots – cause and symptom – of an 

ontology class CorrelationRule. The ontology snippet listing below shows the 

ontology encoding of correlation rule A->C∧D. 

<CorrelationRule rdf:ID="CorrelationRule_40"> 

    <cause rdf:resource="#C"/> 

    <cause rdf:resource="#D"/> 

    <symptom rdf:resource="#A"/> 

<

 

The access driver for tsecg.owl is implemented by class 

TopologySpecificEventCorrelationGraphImpl.class. This class implements the 

interface TopologySpecif

access interface for 

implemented using Jena, which is a java framework for buil

application.  

 

In this implementation, Correlation Rule is represente

CorrelationEquation.class. The “and or” format of cause and symptom are rep

the combination of two supportive classes that are designed to r

disjunction relationship (Disjunction.class) and conjunctio

(Conjunction.class). The calculation rules f

methods (
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this implementation to support correlation rule calculation. 

 

The routing ontology (in RoutingOnt.owl) is constructed using OWL 

 implementation it is mainly used by KBN 

Subscription Manager to 

bscription management. It is constructed after the example given in Figure 

-10. The ontology snippet from routing ontology listing bellow gives an example 

C"/> 

f rdf:resource="#D"/> 

/owl:Class> 

t Normalizer Implementation 
he normalizer implementation includes the implementation of Outgoing Message 

subclass/superclass relationship. In this

nodes to route trap messages in KBN and it is also used by 

perform su

4

how events are organized in this ontology. It lists all events that as the “subclass” of 

event C. 

<owl:Class rdf:ID="C"> 

    <rdfs:subClassOf rdf:resource="#A"/> 

</owl:Class> 

<owl:Class rdf:ID="G"> 

    <rdfs:subClassOf rdf:resource="#

    <rdfs:subClassO

<

<owl:Class rdf:ID="K"> 

    <rdfs:subClassOf rdf:resource="#C"/> 

</owl:Class> 

 

 

5.5  Even
T

Queue, Event Dispatcher and Message Processing Model. For the sake of simplicity, 

the evaluation implementation did not implement the Incoming Message Queue, and 

besides, the implementation of subscription manager (SubscriptionManager.class) has 

also been incorporated into the event normalizer. 

 

The Outgoing Message Queue and Event Dispatcher are implemented by class file 
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OutgoingMessageQueue.class and MessageProcessor.class separately. The design 

vel Message Processing Model is implemented by two interfaces and one abstract 

areOutgoingMessage() is in charge of compiling KBN notifications from 

ssIncomingMessage(), however, will do more than just turn 

 ability to understand the content of the 

ge and then perform corresponding operations according to the content 

e code snippet list bellow illustrates how the incoming 

by processIncomingMessage() in 

fication and construct message object */ 

 = (CorrelatableMessage)MP.parse(n); 

ull){ 

return; 

 

geProcessingModel simply put the 

ceived SNMPTrapMessage into correlation message queue. 

In this evaluation implementation only two Message Processing Models are 

le

class; they are MessageProcessingModel, MessageParser and Message (abstract class). 

The abstract class Message represents the message object. All message types that need 

to be supported by the proposed fault management system should inherit from this 

class. The interface MessageParser is mainly in charge of encoding/decoding 

messages between network stream and message object. The MessageProcessingModel 

contains two methods: prepareOutgoingMessage() and processIncomingMessage(). 

The prep

message object. The proce

a notification into message object. It has the

received messa

of received message. Th

SNMPTrapMessage is processed 

SNMPTrapMessageProcessingModel. 

/* parsing noti

CorrelatableMessage msg

Correlatable crrMsg = msg.asCorrelatable(); 

if(crrMsg == n

 

}

/* perform corresponding operation to the message */ 

CorrelationMessageQueue.getInstance().add(crrMsg); 

 

In the evaluation implementation, the SNMP trap message will only be used for 

correlation, so currently instead of performing content analysis the 

processIncomingMessage() of SNMPTrapMessa

re
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implemented to support the normal running of distributed event correlation scheme; 

they are SNMP Message Processing Model and Correlation Result Message 

Processing Mode. Figure 5-5 introduces the architecture of event normalizer at 

implementation level.  

 

 

Normalizer 

lementation Issues 
is implementation version is mainly developed for the evaluation of the proposed 

ing the implementation mainly 

d correlation scheme. 

) There were always concurrent access exceptions thrown when debugging the 

 and reimplemented to 

ecrease the granularity of object lock. 

Figure 5-5 Implementation Level architecture of Event 

 

 

5.6  Imp
Th

correlation scheme. Therefore, issues encountered dur

reside in the developing and debugging of the distribute

(1

multi-threaded event correlation scheme. For simplicity to address this, I simply set 

all methods in correlation message queue and its queue entry using synchronized 

keyword. Although easy this method however degrades the performance of the code. 

In the future this critical section will be carefully analyzed

d

(2) The circumstance that two correlation tasks could the same correlation event was 

SNMPMessageParser.class 

SNMPMessageProcessingModel.class 

KBN 

MessageProcessor.class 

CorrelationResultMessageParser.class 

CorrelationResultMessageProcessingModel.class 

Enco

SN

ded SNMP Message 

MPTrapMessage 

Encoded SNMP Message 

ie.tcd.cs.kbnms.normalizer 

CorrelationResultMessage 

OutgoingMessageQueue.class
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not noticed at the beginning of the development, which assumes only one correlation 

task has the “shared” event. I address this problem by using a counter to indicate how 

many tasks will use this event, and then divide the correlation task analysis into two 

steps: scan step and event fetching step. The counter will be added by twice in the 

an step if two tasks will use this event, and in the event fetching the event will be 

duplicated to every correlation task before it being removed. 

(3) Besides the above mentioned two issues during the implementation period, the 

usage of new tools such as Jena and snmp4j required significant effort, especially as 

these were new to me. 

 

sc
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Chapter 6   
 

Evaluation 

onducted in two parts: performance benchmark and feature 

omparison. In the performance benchmark part, test cases were set up and carried out 

under different architectures and configurations in order to gather the performance 

statistics of the proposed correlation scheme. Analysis was then undertaken on these 

performance statistics in order to get its performance feature. The feature comparison 

part was conducted from two perspectives: the architecture and the correlation scheme. 

The architecture comparison compares the functional features between systems with 

different architecture, e.g. centralized architecture and peer-to-peer architecture; the 

correlation scheme comparison compare the proposed correlation scheme with current 

existing several correlation algorithms such as rule-based scheme, codebook scheme 

and Artificial Intelligence based scheme from the functional point of view. 

 

 

6.1  Performance Benchmark 
A Performance Benchmark was designed to test the timing performance of the 

proposed event correlation scheme. A correlation graph with 13 events and a 

maximum correlation depth of 4 was constructed. Test cases were constructed in 

accordance with this correlation graph. A test case set included 13 test cases which 

tested the performance of either normal correlation or event missing correlation at 

different correlation depth was constructed. The correlation scheme was written in 

Java and was compiled by jdk1.5.0_11. The benchmark environment is listed in table 

6-1, and all test cases is listed in appendix A. 

 

 

The Evaluation was c

c
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CPU: Intel Celeronm 1.7GHz 

Memory: 768MByte 

Operating System: Microsoft Windows XP SP2 

Java Environment: JDK1.5.0 build 11 

KBN Version: 3.0 

Table 6-1 Benchmark environment. 

 

ing illegal 

orrelation table entry, shrinking correlation table and pushing correlation result into 

BN. The Average Correlation Time is the total time that a correlation thread takes to 

 Direct Correlation Rule Calculation 

Time, Correlation Table Calculation Time and Post-correlation Processing Time.  

 

These evaluation criteria are selected mainly for the reason that they can represent the 

correlation speed of the proposed correlation scheme. Furthermore, each the selected 

evaluation criterion represent a critical step in the whole correlation phase. Thus by 

correlation, we can have a clear picture of which step needs further improvement in 

order to improve the performance of the whole correlation. 

6.1.1  Benchmark Criteria, Methodology and Results 

Benchmark metrics for the proposed correlation scheme include Average Correlation 

Time, Average Branch Selection Time, Direct Correlation Rule Calculation Time, 

Correlation Table Calculation Time, and Post-correlation Processing Time. The 

Average Branch Selection Time is the time that the correlator selects correlation tasks 

from correlation message queue, and assigns them to correlation threads. The Direct 

Correlation Rule Calculation Time is the time that a correlation thread spends on 

calculate direct correlation rule, the correlation table calculation time is the time that a 

correlation thread spends on calculating correlation table and the Post-correlation 

Processing Time is the time that the correlation thread spends on remov

c

K

perform the correlation for a task. It is the sum of

observing the percentage of a specific correlation step occupies in the whole 
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The performance test was conducted under two architectures – single centralized 

and multip d correlators – in order to gain the performance 

po  applied to different architecture. 

e  than 20 times. For each time, all the 

 bench  metrics were measured. After the 20 rounds execution for 

one test case, an arithmet etric was calculated. All 

test cases in the test case set were carried out in the performance test on single server, 

 cases from the 

test case set are selected to conduct performance test over multiple correlator. Table 

6-2 lists the result of performance test on single correlator and Table 6-3 lists the 

result of performance test over multiple correlators. All metrics in Table 6-2 and Table 

6-3 are represented using millisecond and because both KBN node and correlators are 

running on the same machine and sharing a single CPU time in this simulation, the 

statistics gained from this performance benchmark will be slightly larger than those 

from real-world use. 

 

Test Case 

Name 

Time Time 

ime 

correlator le distribute

statistics of the pro sed correlation scheme when

All test cases wer  carried out more

aforementioned mark

ic mean value for each benchmark m

and because of the feature of distributed correlation, only several test

Number of 

Thread 

Average Branch 

Selection Time 

Average 

Correlation 

DCR 

Calculation 

Correlation Table 

Calculation Time 

Post-correlation 

Processing T

Norm_2_2 1 10.5 23 18.74 1.03 4.64 

Norm_2_3 1 11.0 26.05 19.95 1.85 5.42 

Thread-1 64.55 40.05 1.32 23.52 Norm_2_4 25 

 Thread-2 32.55 18.55 1.07 13.04

Norm_3_3_a   1 25.05 120.14 94.64 1.85 25.49

Norm_3_3_b   1 27.1 79.15 54 1.42 23.41

Norm_3_4_a 1 25.5 65.04 44.09 1.23 24.46 

Thread-1 217.69 179.23 3.82 48.25 Norm_3_4_b 

1.53 44.31 Thread-2 

46.67 

123.85 76.92 
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Norm_3_5 1 30.53 127 100 1.46 30.42 

Thread-1 210.59 177.06 5.32 40.33 Norm_3_7 

Thread-2 

48.24 

114.71 71.76 1.94 43.68 

Norm_4_5  1 48.39 322.21 278.65 1.76 43.24

Norm_4_13 1 50.42 325.33 283.25 2.13 40 

EMC_2_2  1 10.2 1031.59 19.41 1.25 11.03

EMC_2_3 1 13.53 1025.76 18.75 2.11 9.41 

Table 6-2 Test case execution result over 1 correlator 

 

umber of 

orrelator/Thread 

Average 

Branch 

Selection Time

Average 

Correlation 

Time 

DCR 

Calculation 

Time 

Correlation 

Table 

Calculation Time

Post-correlation 

Processing 

Ti

Test Case 

Name 

N

C

me 

Norm_3_5 2/2 33.00 113.00 86.00 3.2 22.00 

Norm_3_5 2/3 28.75 31.00 73.19 48.81 1.88 

Norm_4_13 3/4 51.75 51.67 59.33 51.75 1.67 

Table 6-3 Test case execution result over multiple correlators 

6.1.2  tatistics 

• Average Branch Selection Tim

The major factors that affect the A erage Branch Selection T  are the number of 

correlation branches that exist in co tion me

in each selected correlation branch, as well as the depth of the selected correlation 

branch. By examining Table 6-2 we can know that the unit Average Branch Selection 

Time is approximate 11ms/branch for a correlation depth of 2, 25ms/branch for a 

correlation depth of 3 and 48ms/branch for a correlation depth of 4. In addition, the 

test cases with two correlation branches have their Average Branch Selection Time 

e erage Branch Selection Time of the same 

m_2_4 has its Average Branch Selection Time as 25m

which is o times as the unit A ch tion Ti 1ms), and it is

 

S Analysis 

e 

v ime

rrela ssage queue, and the number of event 

value two tim s the value of unit Av

correlation depth, e.g. Nor s, 

 tw verage Bran  Selec me (1  the 
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sa  with Nor _b and No _7. The nt Missi rrelation put 

af Av Branch Se Time heref e EMC_2_2 

EMC_2_3 hold the same Average Branch n Tim th Norm_2_2 

N _2_3.  

 

By comparing the corresponding test case in T 2 and  6-3, we can k

that when applied to multiple corr e A Branch ction Time cha

little, so the di verage Branch 

election Time. 

b from the ly ajor cause that affects 

the Average Branc he  of correlation and the b a 

relation round.  applied gle correlator, the in verage 

ction T ith depth fo nentia mental m  power 2, 

on Time

incremental m

2*),1(),(
dpthunitABSTbrchdpthABST

brchdpthABSTbrchdpthABST
+−

me m_3_4 rm_3  Eve ng Co little 

fects on erage lection , and t ore th and 

Selectio e wi and 

orm

able 6-  Table now 

elators, th verage  Sele nges 

stribution of correlation puts little affects on the A

S

 

A conclusion can e made 

h Selection is t

previous ana

 depth

sis that the m

ranch number in 

cor  When on a sin crease of A

Branch Sele ime w llows expo l incre odel of

and the increase of Average Branch Selecti  with branch number follows linear 

odel (Figure 6-1). 

 

−
),( brchdpthABST = )()1,(
=

 

ch Selection Time incremental model Figure 6-1 Average Bran

 

• Average Correlation Time, DCR Calculation Time, Correlation Table Calculation 

Time and Post-correlation processing time 

The Average Correlation Time is the sum of DCR Calculation Time, Correlation Table 

Calculation Time and Post-correlation processing time. As indicated by Table 6-2, 

when applied to a single correlator, the Correlation Table Calculation Times for all 

test cases vary little with the correlation branch; the length of Post-correlation 

Processing Time relate mainly to the length of correlation result, and it also varies 

little with the correlation depth. The DCR calculation time, however, occupies most of 

the Average Correlation Time, and it varies significantly with the number of event 
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existing in the correlation branch and correlation depth. Therefore the DCR 

calculation time is the major cause that affects the length of the Average Correlation 

Time when the proposed correlation scheme is applied on single correlator. 

 

However, when applied on multiple correlators, there is a significantly performance 

T st Case Name Number of DCR Calculation Average Correlation 

improvement in the proposed correlation scheme. By comparing the corresponding 

executing result in Table 6-2 and Table 6-3, we can know that all the test case result 

improves significantly. The performance improvements are listed in Table 6-4. 

 

e

Correlator/Thread Time Decrease (%) Time Decrease (%) 

Norm_3_5 2/2 14.00% 11.02% 

Norm_3_5 2/3 51.19% 42.37% 

Norm_4_13 3/4 81.73% 81.76% 

Table 6-4 Performance Improvement 

 

All test cases have significant performance improvement when carried out over 

multiple correlators. The more correlators and threads this correlation is distributed, 

the higher performance it will improve. According to the proposed correlation scheme, 

multiple se arallel the 

orrelation by having low level correlation finished within the correlation window of 

leve or high level correlation. Therefore the 

rvers can distributed the DCR calculation process and p

c

high level correlation, and then both simplify the DCR calculation process for high 

l correlation and save the correlation time f

overall time for normal correlation can be greatly improved and the delay put by 

underlying infrastructure will then become the major cause that affect the correlation 

time and correlation accuracy. 

 

One thing worth mentioning is that the Average Correlation Time of Element Missing 

Correlation takes more than 1000 milliseconds and much larger than that of normal 
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correlation. This is because the lost event triggered the delay correlation, and the 

delay time is set to 1000 milliseconds for all test cases. After removing the delay time 

from the Average Correlation Time for Element Missing Correlation, the statistics for 

lement Missing Correlation are nearly the same as normal correlation for the 

ximum 

vents number that this proposed correlation scheme can afford at a given correlation 

ac

 

eatur omparison 
d faul ent system i istributed fault ent system. 

When speaking about th eans that not only 

e architecture of the organizational structure is distributed, but also the correlation 

OSI network management model and Madeira project – are selected to conduct the 

parison. OSI network management model use the manager/agent architecture with 

most management intelligence residing in manager. This architecture can reduce the 

applied to small scale network, the centralized architecture may have better 

E

proposed correlation scheme processing the normal correlation and element missing 

correlation using the same approach. 

 

Pressure and accuracy testing will be conducted in the future to test the ma

e

speed and accur y. 

 

6.2  F e C
The propose t managem s a pure d  managem

e pure distributed fault management, it m

th

scheme is distributed and thus has the ability to distribute a single correlation task 

over multiple event correlators. In the following text, comparisons between the 

proposed fault management scheme and other existing fault management schemes 

from both the architecture point of view and correlation scheme point of view will be 

given. 

 

6.2.1  Architectural Comparison 

In the architecture comparison section, two projects with two typical architectures – 

com

complexity and difficulty for the deployment of network management system. When 
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performance than distributed architecture, because the distributed architecture will put 

a lot delay on the transmission of management information between management 

servers. However, because of the centralized architecture, the manager has to process 

all the management messages from its agents. Therefore the centralized manager puts 

a performance bottleneck in the whole system and makes the whole system less robust 

facing the event storm. The proposed fault management system uses a pure distributed 

rchitecture, thus it has better event correlation abilities and higher event receive 

he Madeira project, however, adopts the hybrid peer-to-peer architecture, that is to 

ure with peer-to-peer architecture. This can 

ment server from been attacked by malicious codes or hackers, which can not 

e provided by traditional network. Thus the proposed fault management system can 

a

abilities. These make the proposed fault management much faster than centralized 

network management model in root cause reasoning and more robust in dealing with 

the event storm. 

 

T

say, it combines the hierarchical architect

provide better performance in event correlation and can provide a high throughput for 

the network event. The Madeira project was directly constructed on traditional 

network transport protocol and the current development of publish/subscribe system 

could put a negative affect on the throughput of the proposed fault management 

system. Therefore, the throughput of the proposed fault management system could be 

less than this project. However, the intrinsic feature of publish/subscribe system – 

only the subscribe notification can be forwarded to the subscriber – can protected the 

manage

b

provide a higher security level than Madeira project. 

 

It is clear that the centralized management model is more suitable for the management 

of small scale network, but it is difficult to deal with the management of large scale 

network because of its centralized architecture and low throughput. The proposed 

fault management system could be lower in event throughput than distributed network 

management system constructed directly on traditional network, but it is higher in 

security, and with the development of publish/subscribe technology and hardware the 
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throughput could be promoted to an acceptable level. 

 

6.2.2  Correlation Scheme Comparison 

In this section, a comparison between the proposed event correlation scheme with 

currently existing event correlation schemes is provided. Traditional rule based 

correlation, code book based correlation and artificial intelligence based correlation 

will be selected to perform the comparison. 

 

Traditional rule based correlation scheme will match the incoming event with rules 

until the matching reaches a static state. Therefore, a large amount of expert 

nowledge is required to construct the knowledge base and correlation rule. Besides, 

lity in expanding its correlation 

bility. The proposed correlation approach has more flexibility in performance 

k

the incoming event should be accurate. Any lost or delay in the event will cause the 

failure of correlation. The proposed correlation scheme, however, provide a scheme to 

automatically populate the knowledge base and correlation rules, and its Delay 

Correlation approach and Element Missing Correlation approach make the correlation 

available even under the circumstance that events are delayed or even lost. 

 

Codebook approach is similar to traditional rule based approach, but it is much higher 

in correlation speed and is more robust in facing with the delay and lost of events, 

because of it uses minimum hamming distance to determine the correlation result. The 

correlation speed of codebook approach may have faster correlation speed than the 

proposed correlation approach when applied to one correlator. However, the codebook 

approach can not be distributed and has less flexibi

a

expansion. It can have its correlation speed and event throughput increased by simply 

plugging in new correlator and sharing the correlation task. Besides, another 

drawback existing in Codebook approach is that it can not handling temporal event. 

The proposed correlation scheme handle temporal event by adding in a temporal event 

monitor. Once the incoming event satisfies the given temporal policies, a temporal 

89 



event will be issued. 

 

The Artificial Intelligence correlation scheme is a correlation scheme that radically 

 large scale network. However, the AI 

pproach is a promising approach applied to network management. Its self-learning 

backs and 

erits. It expresses an exponential increase of the Average Branch Selection Time 

different from rule based approach and codebook approach. It mainly uses the 

Bayesian Network and causal graph to perform the correlation, and it is currently still 

under research. Most AI correlation scheme is still centralized approach, so they still 

low in event throughput when applied to

a

ability can greatly reduce the time of Delay Correlation and increase the accuracy of 

Element Missing Correlation. Therefore, it is the future work of this project to add in 

AI technologies to perform correlation. 

 

 

6.3  Evaluation Conclusion 
From both the performance benchmark point of view and the feature comparison 

point of view, the proposed fault management approach has both draw

m

with the correlation depth increases. This is obviously not scalable and will affect the 

max correlation depth in a single FMS. Besides, for the proposed correlation scheme 

perform correlation by iteratively calculating correlation table, its correlation speed 

could be lower than codebook approach (using Boolean operator compare only once) 

in single correlator. However this correlation scheme uses adjustable weighted belief 

factor to determine the correlation result, which has more flexibility and accuracy in 

determine the correlation result than just using hamming distance. Furthermore, when 

distributed among multiple FMS, there will be a dramatic performance promotion in 

the correlation speed. Its distributed architecture, high correlation speed on multiple 

correlators, high security level, high throughput, supporting for Element Missing 

Correlation, automatically knowledge base modification ability, and the capability to 

allow easy plug in of correlators makes it a promising approach. 
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Chapter 7   
 

 

 

Issues and future work of the proposed fault management system mainly reside in the 

distributed correlation scheme. For example, currently there are no well defined 

criteria for the setting of the length of c

Issues 

orrelation window for a given correlator. The 

ngth of correlation window for a correlator will greatly affect both the speed and 

recision of a correlation. A too big correlation window could increase the correlation 

 for an error, and a too small correlation 

r an error but will decrease correlation 

est time to regard a 

le

p

precision but will increase the response time

window will improve the response time fo

precision. The criteria for finding a tradeoff between the response time and correlation 

precision have not been set up yet, and for current implementation, the setting of 

correlation window is manually undertaken by the system administrator. A 

self-learning process could be added into the proposed system to find the best length 

for correlation window for correlator. 

 

The second issue is the setting of the length that a correlation event/ correlation result 

can stay in correlation message queue. The adoption of a correlation window will 

mean some “too late” received correlation event/ correlation result will be dead (will 

not be used by other correlation) in the correlation message queue, which means they 

will not be used by other correlation anymore. Furthermore, the echoed correlation 

result may not be used by other correlations. According to the current design, the 

message collector will run periodically to recycle those dead correlation events; and 

the trouble shooter will also run periodically to pick the out-of-date correlation results 

to perform fault recovery process. However, how long is the b
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correlation event/ correlation result as dead is an issue that exists in the current 

roposed system. If the length for this is too long, the correlation message queue will 

affect the performance of event correlator; on the other 

t/ correlation event may be recycled or used by trouble 

they could be used by other correlation. Criteria for setting the “dead 

 be set up to find a best trade off between the length of correlation 

essage queue and the hit rate. 

rease the delay put by KBN. Currently there is 

ot a good solution to address this issue. 

p

become too long and thus 

and, the correlation resulh

shooter before 

length” should

m

 

There is no well-defined criteria for selecting the belief factors for correlation result 

and their weight, and therefore the currently used belief factors (Guessed Number, 

Lost Number, Mis-matching) and weight can not perfectly represent the belief degree 

of a correlation result. Thus the identification of criteria for selecting the belief factors 

and their weight is required urgently. 

 

The current correlator controls the part of the Event Correlation Graph on which its 

correlation is going to perform by putting subscriptions to the underlying KBN node. 

Therefore, if the Event Correlation Graph that the correlator is going to perform 

correlation on is too fragile, a great number of subscriptions will be put to KBN in 

order to precisely describe its interests, which will greatly increase the comparison 

time performed by KBN and thus inc

n
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Chapter 8   
 

 

Conclusion and Future work 

tion to the proposed fault management system 

as been finished, and a simulator has also been implemented.  

lem by both the managed network and fault 

anagement system. Furthermore, the event filtering mechanism of KBN can 

increase the robustness of the fault management system to a certain extent when in the 

face of event storms. 

 

The distributed correlation scheme is another highlight of this research. This 

correlation scheme is a pure distributed correlation scheme which distributes a single 

correlation task over a whole correlator network. This can have one correlation 

running parallel on several correlators and increase the correlation performance. 

 

8.1  Achievements 
This research partially achieves its original goal. A new architecture of a fault 

management system that runs on a semantic publish/subscribe system is proposed. In 

addition, a pure distributed correlation scheme with high fault tolerant capability has 

been proposed. A partial implementa

h

 

 

8.2  Highlights 
There are two highlight in this research. First, this research incorporates the semantic 

publish/subscribe mechanism into a fault management system, which shifts the 

addressing mechanism of events to the underlying infrastructure. Thus no attention is 

needed to be paid to the addressing prob

m
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Besides, the correlation behaviour is controlled by subscription and thus the 

orrelation behaviour of a correlator can be simply changed by changing the 

rt of event correlation graph. This increases the flexibility 

e he enhancement of performance of this fault management 

8.3  Future work 
and implementation of the 

orithm as well as its 

lated expert knowledge bases should be developed. In addition, support from other 

SS systems, such as service monitor, connection monitor or hardware monitor and 

ed. 

 departed correlator will be soon taken by other correlators. The 

nP feature can decrease the dependency of the whole fault management system to 

c

subscription to a different pa

f the system and enabl s to

system through adding in new correlators. 

 

 

Further work could be done to finish the design 

self-updating mechanism proposed in section 4.4. This enables the proposed fault 

management system to have the ability to be informed when changes have been made 

in the management network and then perform changes to the corresponding expert 

knowledge in the knowledge base. In order to enable the self-updating mechanism of 

the proposed fault management system, a new self-updating alg

re

O

so on should also be provid

 

The PnP feature proposed in section 4.2 will also be another candidate for future work 

of the proposed fault management system. By the addition of a PnP feature, the 

correlator can be added into a correlator network without too much explicit 

configuration; and in addition, other correlators can be made aware of the leaving of a 

correlator, either because of fatal failure or being removed by system administrator, 

and thus the job of the

P

specific correlators, and thus makes the system more autonomous in handing the fatal 

fault that may arise in the fault management system. 

 

The addition of AI technologies such as belief network into the correlation algorithm 
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is also a meaningful future work to this project. The probabilistic theory can be used 

to calculate the belief degree while performing event guessing process; this can 

greatly improve the hit-rate of guessing correlation. The self-learning mechanism can 

also be used in this system to partially address the timing issue introduced in chapter 7. 

For example, the length of correlation window, delay window can then be set 

ynamically through the self-learning ability.  

uture work, unfinished aspects of the design should be 

d

 

Besides the aforementioned f

completed, for example, the architecture design of Front End; the design and 

implementation of the Trouble Shooter, the fault recovery policies file, and the fault 

recovery access driver. 
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Appendix A   
 

Design of Test Cases 

Number of Branch 

 

 

Name Correlation Depth Number of Event 

Norm_2_2 2 2 1 

Norm_2_3 2 3 1 

Norm_2_4 2 4 2 

Norm_3_3_a 3 3 1 

Norm_3_3_b 3 3 1 

Norm_3_4_a 3 4 1 

Norm_3_4_b 3 4 2 

Norm_3_5 3 5 1 

Norm_3_7 3 7 2 

Norm_4_5 4 5 1 

Norm_4_13 4 13 1 

EMC_2_1 2 1 1 

EMC_2_2 2 2 2 

Note: Norm stands for Normal Correlation. EMC stands for Element Missing 

Correlation 

Table A-1 Design of Test Cases 
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Appendix B   
 

Format of trap simulator configuration file 

nfiguration file het  

ill constru SNMP traps using s thetic SNMP traps this configuration 

iguration file can hold more than one SNMP traps. Figure B-1 gives the 

SNMP tra

 
Figure B-1 Synthetic SNMP trap 

n the a sy etic SNMP trap is renthesized by a p of curly bracket. 

 is left f  the arrangement of the sending pattern, e.g. one SNMP trap 

second an o on. Currently, the nding pattern has no een implemented 

ill be left hich means t  trap will be only se d 

e)tag_name=value. The current KBN implementation only provides 

support for types such as s  and bag. Terms from the 

third to the last are arranged according to e sequence of fields of SNMP. Currently, 

ese terms are arranged according to the sequence of fields in SNMPv2c. 

 

 

The co  for trap simulator is used to hold synt ic SNMP traps, and

simulator w ct yn in 

file. A conf

format of a p. 

 

 

Each term i nth  pa air 

The first term or

for every 1 d s se t b

yet, and it w  blank, w his nt once. The secon

{{}{(String)sender=taiw;}{tcp:127.0.0.1:1234;}{v2c}{public}{}{0}{0}{SNMP
ime=123456789}{SNMPv2-MIB:snmpTrapOID=NET-SNMP-

-MIB: SnmpExampleHea atNotification}{NE MP-EXA
:netSn ExampleHeartbeatRate=1000}} 

v2-MIB:sysUpT
EXAMPLES net rtbe T-SN
MPLES-MIB mp

term ({(String)sender=taiw}) is the term for configuring the KBN header. Its format 

follows (typ

tring, byte array, long, Boolean

th

th
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