

Fault Management System using Semantic

Publish/Subscribe approach

by

Wei Tai, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in partial fulfillment

of requirements

for the Degree of

Master in Science in Computer Science

University of Dublin, Trinity College
September 2007

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Wei Tai

September 14, 2007

II

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Wei Tai

September 14, 2007

III

Acknowledgments

I would like to thank my dissertation supervisor, Dr. Declan O’Sullivan, for all his

invaluable help and guidance over the period in which this dissertation was researched

and written. I would like to thank Dr. John Keeney for his always willing to contribute

his time and precious suggestions. I would like to thank my family for their continued

support over the course of my school and college years. I would also like to thank my girl

friend Ying for all her support and patient throughout the year. Finally, I would also like

to thank my UbiCom classmates for help, support and for lightening the mood in serious

times.

WEI TAI

University of Dublin, Trinity College

September 2007

IV

Fault Management System using Semantic

Publish/Subscribe approach

Wei Tai

University of Dublin, Trinity College, 2007

Supervisor: Declan O’Sullivan

With the rapid development of network technology and the ever growing demand on

networks from both enterprise and network providers, current networks are increasing

dramatically both in terms of scalability and complexity. However, traditional network

management approaches (e.g. OSI approach) typically involve hierarchical

manager/agent topologies and rely upon significant human analysis and intervention,

both of which exhibit difficulties as scalability and complexity increases.

The drawbacks of traditional network management approaches limit their application

to large scale networks. Currently many research groups, projects and academic institutes

are applying themselves to develop new network management approaches which are high

in scalability, performance, and intelligence.

This paper researches an alternative way to perform fault management in large scale

networks using a semantic publish/subscribe system. A new distributed fault management

system architecture based on a semantic publish/subscribe paradigm has been proposed;

and, a new distributed event correlation scheme with guessing ability has also been

proposed.

The evaluation of this project shows that the performance of the proposed fault

management system increases dramatically with the increase of the number of fault

management servers. We conclude that the proposed distributed fault management system

holds promise in performing large scale network management. However, more research is

still needed to be done in order to achieve a system suitable for supporting autonomic

approaches, which are expected to be core to the next generation of management systems.

V

Contents

Acknowledgments ... IV

Abstract..V

List of Figures.. IX

List of Tables.. XI

Chapter 1 Introduction..1

Chapter 2 State of the Art ...5
2.1 Event Correlation Schemes...5
2.2 Network Management/Fault Management Architecture.........................10

Chapter 3 Project Background...13

3.1 Background scenario and scenario modeling ...13
3.2 Technology Background ...16

3.2.1 Ontology ..16
3.2.2 Publish/Subscribe system ..19
3.3.3 Simple Network Management Protocol...20
3.3.4 BGP/MPLS VPN ...22

Chapter 4 Distributed Fault Management System ...24

4.1 Physical Architecture ..24
4.1.1 Fault Management Servers ..25
4.1.2 Front End Servers ..26
4.1.3 KBN...27

4.2 Software Architecture ...27
4.2.1 Software Architecture of FMS...28

4.2.1.1 Event Normalizer ..28
4.2.1.2 Knowledge Base..30
4.2.1.3 Service Organizer..32
4.2.1.4 Event Correlator ..33
4.2.1.5 Trouble Shooter...34
4.2.1.6 Configuration Manager ...35

VI

4.2.1.7 Subscription Manager ...36
4.3 Distributed Correlation Scheme..38

4.3.1 Scheme background...38
4.3.2 Scheme Overview..39
4.3.3 Technology Background and Terminology Definition40
4.3.4 Correlation Task Analysis ..46
4.3.5 Correlation Schemes ..48

4.3.5.1 Direct Correlation Rule calculation50
4.3.5.2 Correlation Table Initialization ...51
4.3.5.3 Delay Correlation ..54
4.3.5.4 Correlation Result Merging...55
4.3.5.5 Event Guessing..59
4.3.5.6 Post-correlation processing ...60

4.3.6 Delay correlation mechanism and delay window analysis61
4.4 Correlation Expert Knowledge self-updating mechanism......................66

Chapter 5 Implementation ..68

5.1 Overview...68
5.2 Simulator Implementation ..69
5.3 Service Organizer Implementation ...71
5.4 Knowledge Base Implementation ...75
5.5 Event Normalizer Implementation..77
5.6 Implementation Issues ...79

Chapter 6 Evaluation...81

6.1 Performance Benchmark...81
6.1.1 Benchmark Criteria, Methodology and Results...............................82
6.1.2 Statistics Analysis ..84

6.2 Feature Comparison ..87
6.2.1 Architectural Comparison..87
6.2.2 Correlation Scheme Comparison...89

6.3 Evaluation Conclusion ..90

Chapter 7 Issues ...91

Chapter 8 Conclusion and Future work ..93
8.1 Achievements..93
8.2 Highlights..93
8.3 Future work...94

Bibliography ...错误！未定义书签。

Appendix A Design of Test Cases..102

VII

Appendix B Format of trap simulator configuration file.....................................103

VIII

List of Figures

Figure 1-1 Cooperation between components ...4

Figure 3-1 Scenario network..14

Figure 3-2 Events that can occur in the scenario network ...15

Figure 3-3 Example Event Correlation Graph ...16

Figure 3-4 An ontology example ...17

Figure 3-5 Example Publication for CBN ...20

Figure 4-1 Physical architecture ..25

Figure 4-2 FMS Architecture ...28

Figure 4-3 Design of Event Normalizer...30

Figure 4-4 Design of Knowledge Base ..31

Figure 4-5 Common Denominator design of Service Organizer32

Figure 4-6 Design of Event Correlator Service and its dependent components34

Figure 4-7 Subscription manager controls the correlation task37

Figure 4-8 Subscriptions of correlator A and correlator B...37

Figure 4-9 Overview of event correlation..40

Figure 4-10 Example Event Correlation Graph ...41

Figure 4-11 Correlation Rule Set representation of Figure 4-1043

Figure 4-12 DCR calculation using merging rule and substitution rule46

Figure 4-13 Correlation Task Analysis ..47

Figure 4-14 Three correlators example..49

Figure 4-15 Correlation Result Substitution algorithm ...57

Figure 4-16 Correlation Result merging process ...57

Figure 4-17 Event Arrival Patterns for event correlation...63

IX

Figure 4-18 FMN topology ..65

Figure 5-1 Implementation level architecture of this system.......................................69

Figure 5-2 Implementation level architecture of event simulator................................70

Figure 5-3 SNMP trap wrapped by KBN notification ...70

Figure 5-4 Implementation level architecture of event correlator72

Figure 5-5 Implementation Level architecture of Event Normalizer...........................79

Figure 6-1 Average Branch Selection Time incremental model85

Figure B-1 Synthetic SNMP trap ...103

X

List of Tables

Table 4-1 Initial Correlation Table for Thread-1..51

Table 4-2 Initial Correlation Table for Thread-2..54

Table 4-3 Initial Correlation Table for Thread-1 when C is received after correlation

window...55

Table 4-4 Correlation Table in Correlation Result of C ...56

Table 4-5 Correlation Table in Correlation Result of D...56

Table 4-6 Correlation Table for Thread-1 after Correlation Result Merging...............59

Table 4-7 Correlation Table for Thread-1 after Correlation Result Merging (Correlation

Result of C lost) ...59

Table 4-8 Guessing Correlation Result for event C ...60

Table 4-9 Correlation Table for Tread-1 after Event Guessing process.......................60

Table 6-1 Benchmark environment..82

Table 6-2 Test case execution result over 1 correlator ...84

Table 6-3 Test case execution result over multiple correlators84

Table 6-4 Performance Improvement ..86

Table A-1 Design of Test Cases ...102

XI

Chapter 1

Introduction

Today the rapid emergence of novel network technologies and network services

means that current networks get larger, more complex and more heterogeneous. Both

the type and number of network elements needed to construct a network is increasing

sharply. Not only traditional routers and switches but also dedicated network elements

such as storage nodes are being used. In addition, the type and number of services

provided by a network is also growing rapidly in order to satisfy different

requirements. Traditional Web Access is not the only service that is being provided by

provider network. The wide deployment of broadband access technology in the “last

mile” and optical switch technologies greatly promote the emergency of new services

such as Voice on IP (VoIP) and Virtual Private Networks (VPN).

In this context, the rapid development of the network both in complexity and

scalability puts more rigid requirements on its Network Management System (NMS).

In order to conduct management of the ever expanding network and maintain the

services running on it, the network management system should have the ability to

process thousands or even millions of network events per minute. Furthermore, it

should hold more intelligence and thus relieve network operators from the numerous

and heavy network management tasks. However, currently network management

approaches such as OSI proposed manager/agent based network management model

are mainly using centralized architectures. In centralized network management

systems, most intelligence, such as event correlation function and fault recovery

function resides in the centralized manager. This makes the centralized manager the

1

performance bottleneck of the whole system and limits both the throughput and event

processing speed of the whole management system. Thus the centralized manager is

no long suitable for the management of large scale network with large numbers of

network services running upon it.

As the critical part of a Network Management System, the fault management system

undertakes event correlation, and fault recovery operations. It is the major influence

that affects the architecture of a Network Management System, and thus it is a major

factor that affects the scalability and event processing speed of a network

management system. Therefore, in order to enable a Network Management System

more suitable for the management of current large scale networks, a more scalable

and high-performance Fault Management System is urgently required.

Publish/subscribe systems have the potential to address the scalability issues that

exists in traditional Fault Management Systems. By subscribing its interests to an

underlying publish/subscribe system, an upper layer application will receive only the

messages that satisfy its subscribed interests and gets rid of the disturbance of other

irrelevant messages. In addition, the publish/subscribe system is an “addressless”

transmission scheme, so no attention needs to be paid on the location of both

publisher and subscriber, which enables the roaming and distribution of publisher and

subscriber. All the aforementioned merits of publish/subscribe systems makes it a

splendid candidate technology to enlarge the scalability of a new Fault Management

System.

Thus, the research question posed for this dissertation was whether a semantic based

publish subscribe system could provide the basis for a more scalable Fault

Management System.

The Fault Management System proposed by this dissertation is novel in the

architecture it is using and in the fault algorithm that has been developed. It is

2

constructed by combining an existing semantic publish/subscribe system [34, 40], a

novel distributed correlation scheme developed in the project, and the standards based

Simple Network Management Protocol (SNMP)[35, 36] that is traditionally used for

the majority of network management.

SNMP is widely used by Network Management Systems to monitor state of network

and perform configurations on network elements. Most current network elements

provide support for SNMP. It keeps the network element states and configuration

information in Management Information Bases (MIBs), and performs operations on

information in MIBs through get/set protocol primitives. The SNMP conceals the

heterogeneity in both hardware and software existing in different network elements

and makes the network management transparent to the Network Management System.

Therefore, it was selected to perform the management information transmission in the

proposed fault management system.

The third part of the solution used in this dissertation is the novel and original event

correlation scheme that has been designed to perform distributed event correlation. It

distributes and coordinates the correlation task among multiple correlators that

operate in parallel and reside on several different servers. By using the distributed

correlation scheme, a correlation task will be split into several task snippets and have

them running on several correlator concurrently. This will greatly increase both the

correlation speed and throughput of a fault management system.

In the implementation, the Fault Management System is architecturally composed of

three main parts: distributed event correlators, a Knowledge Based Network (KBN)

and front end servers. The distributed event correlators on which the distributed

correlation scheme will run are mainly in charge of the root cause reasoning. The

KBN, as the underlying system, provides a semantic publish/subscribe service to

upper layer applications. The front end servers will work as interpreters which are

mainly in charge of the conversion between system specific messages such as SNMP

3

and KBN compatible notifications. Figure 1-1 illustrates the cooperation between the

three parts.

Correlators

Front end

KBN

System specific message

Interpreted Notification

Interpreted Notification
Fault Recovery Scheme

Fault Recovery Scheme

SNMP operations

Figure 1-1 Cooperation between components

The rest of the dissertation is organized as follows. The state of the art of Fault

Management Systems and Correlation Scheme will be illustrated in section 2. Section

3 includes some background information, describing the scenario that was studied to

help understand the type of complexity of networks that exist, and background on the

technologies used in the project. Section 4 describes the design of the proposed

system, including the design of the fault management system and detailing the novel

distributed correlation scheme that has been developed. Scenarios will also be used in

this section to illustrate the cooperation of different parts in the proposed fault

management system. The implementation is presented in section 5, followed by the

evaluation to the proposed fault management system in section 6 describing

performance measurements that have been undertaken and a feature comparison of

the approach with the state of the art approaches. Section 7 outlines some of the

remaining issues and section 8 presents overall conclusions and future work of this

research.

4

Chapter 2

State of the Art

2.1 Event Correlation Schemes

Event correlation is the most important component in a Fault Management System. It

condenses received events to a small set of more meaningful events. Furthermore, it

can also identify the root cause from a set of received symptom events. Current event

correlation schemes mainly can be categorized as: rule-based scheme, codebook

approach, finite state machine approach, dependency graph approach, and Artificial

Intelligence (AI) approaches.

• Rule-based scheme

Rule-based scheme is a traditional but practical event correlation scheme that uses a

set of rules to match the events when they arrive at a correlation engine. The

rule-based approach is a sophisticated technology but easy to understand. The rule has

strong semantics and can express both causal logic and temporal logic among

received events. However, it is low in scalability and sensitive to noise. In addition,

the correlation rule is difficult to construct because the expert knowledge needed to

create the correlation rules is extensive and hard to gather. Currently many

commercial fault management systems are constructed based on rule-based scheme or

rule-based expert systems, such as Event Correlation Service (ECS) in HP OpenView

[10, 11], SDH network management system [10, 12], Sinergia Expert System [10, 13]

and so on.

• Codebook approach

5

Codebook approach proposed by S. A. Yemini et al in [6] group all alarms caused by a

fault into a complete alarm set. Each fault then is assigned a unique “code” which is

represented through a binary vector. The events caused by a problem will then be

treated as a “code” that identifies the problem. The correlation process is then turned

into a “decode” process through determining which “code” has the minimum

hamming distance with the incoming event set. The use of Boolean operation on

symptom code makes the correlation process very fast. Besides, it uses minimum

hamming distance to perform event correlation, thus it is more robust in the face of

circumstances where events are lost or noise exists in incoming events. However, this

approach is low in flexibility and scalability. Once the symptom for a fault is changed,

all the codebook needs to be recompiled. Besides, the codebook approach can not

correlate temporal events.

C. C. Lo et al in [7] improved the traditional codebook approach by adding in Event

Causal Graph. The Event Casual Graph works as the knowledge base and from which

the code for each fault will be generated. This approach alleviated the drawback that

massive expert knowledge is needed to generate the code for a fault, and change the

maintenance of codebook into the maintenance of Event Casual Graph.

• Probabilistic Finite State Machine

The event correlation approach proposed by I. Rouvellou and G. W. Hart in [1]

models each fault using a Probabilistic Finite State Machine (PFSM). It has the ability

to handle noisy event sequences, and uses probabilistic theory to select the right

PFSM for the incoming fault sequence. The PFSM building process for each fault is a

self-learning process using probabilistic theory, and the association information of

fault to PFSM can be gathered from other systems or network experts input. This

algorithm does not assume any knowledge of network structure and can automatically

recognize the time pattern of alarms associate with a given fault.

• Network Element Dependency Graph

6

Several event correlation schemes are constructed based on Network Element

Dependency Graph [2, 3]. In these schemes, Network Element Dependency Graphs

are used to model the functional dependency among the network elements in the

object managed network.

Positive Information Algorithm proposed by A. T. Bouloutas, etc in [2] is an alarm

correlation algorithm using network dependency graph. They divided the object

network into undividable components (either hardware or software), and construct

dependency graph over the undividable components. Alarms issued by object network

will be explicitly associated with location information to indicate the component that

has fault or malfunction. Correlation will then be performed over the Network

Element Dependency Graph using the information associated with each received

alarm. Jaesung Choi, et al. in [3] proposed an alarm correlation algorithm that based

on Positive Information Algorithm (PIA) given by [2], and they expanded the PLA

algorithm with a new alarm candidate set selection algorithm using alarm casualty

graph based on OSI managed object.

This approach can easy locate the fault and then use network element dependency

graph to perform correlation. However, it needs the explicitly carry of location

information in error messages, which currently in use network management protocols

such as SNMP do not support for and thus limit the wide use of this approach.

• Deterministic Event Causal Graph/ Event Dependency Graph

Some Event Correlation approaches [4, 8] use Event Causal Graph to perform

correlation. These approaches use Event Causal Graph to model the causal

relationships among events, and then to correlate received events using the modeled

causal relationships.

M. Hasan in [4] associated a rank with each node in causal graph. When a set of

events is received, the correlation algorithm will try to deduct the causal relationship

7

using the event causal graph by iteratively select the node un-received node with all

its immediate successors already existing in the set into the event set. The candidate

selection process will stop when all the nodes satisfying the conditions been selected

into the event set. The algorithm will then select the candidates with the highest rank

as the root cause of the received events. This scheme is similar to codebook approach

but it has the ability to correlate temporal events.

B. Gruschke in [8] proposed an event correlation graph using event dependency graph.

Each node in the event dependency graph will be assigned to one of the only two

states: correct or faulty. The correlation scheme is divided into two steps. First, the

received symptom event will be mapped to the corresponding node in the event

dependency graph, and change the state of the node into “faulty”. Second, a search

algorithm will be started form the original received events and search for the node by

which all original received symptom event will depend on. The result of the search

algorithm will then be regarded as the output of event correlation. This approach is

easy to understand but it requires too much expert knowledge to create the event

dependency graph, and also there are circumstances that no common dependent

events exist for the incoming events. Besides, this approach provides no support for

the correlation of temporal events.

• Artificial Intelligence (AI) approaches

With the development of AI technology, it is also used in network management to

perform the management for large scale network with complex management

operations that can not be conducted by human-beings.

J. F. Huard in [47] proposed an approach that is based on XUNET and introduces the

probabilistic AI approaches such as belief network. They constructed a separated

belief network for each fault that could happened in the managed network such as link

down, no connection and so on for fault identification. Once the small belief networks

are done, they will be combined into a global belief network. They thought the issues

8

exist in this approach including the binding between physical network elements to the

belief network modeling, the further researching on the decision engine algorithm and

the refining and validating of underlying XUNET belief network.

D. W. Guerer, et al in [9] proposed a hybrid AI method that introduces AI

technologies such as Neural Network, Bayesian Network and Case Based Reasoning

into fault management. They divided the whole fault management flow into 7 steps:

(1) alarm collection; (2) maintaining customer satisfaction via intermediate action; (3)

alarm filtering and correlation; (4) fault diagnosis through analysis and testing; (5)

generating fault recovery plan, and carry it out; (6) afterward fault elimination test; (7)

record data and determine the effectiveness of current fault management function. For

step 3, 4 and 5, one or more AI technologies will be assigned to perform operations

contained in those steps. Through assigning probabilistic or symbolic AI technologies

separately to different steps in fault management, this approach has more flexibility

and capability in fault management than traditional deterministic approach.

Although holding promising, the current development of AI technology especially

probabilistic AI technology is still not sophisticated enough for commercial use and

more researches are needed to be put in.

• Hybrid approach

Some hybrid approaches have also been proposed to unify multiple approaches

together so that complimentary approaches can bring new benefits when combined.

M. Yu, etc. in [5] proposed a hybrid event correlation by combining rule-based

reasoning and the codebook approach. The Rule-based reasoning is used in low level

correlation and is usually used to correlate events that occur within a network device,

protocol and managed by an event management system or the events among different

protocol layer but that have simple relationships. The codebook approach, however, is

used for correlating events from different networks. It is usually used for high level

9

correlation. This approach adopts different correlation for different correlation level

and scales well. However, it is still possible that there is too much workload in a

single correlator.

2.2 Network Management/Fault Management Architecture

Currently it is rare to find single dedicated Fault Management Systems, but rather

fault management is usually implemented as a core component in a Network

Management System. Therefore, in this section, we will explore the state of the art of

the architecture of Network Management Systems.

• Centralized

Centralized Fault Management is currently the most sophisticated and popular

architecture for fault management. It has a single centralized server, and several

agents spread in the managed network. The centralized server, or manager, includes

most of the intelligence of the Fault Management System and thus is the most

important part of the whole system. The agents, however, will act on behalf of and

respond to the central manager to carry out the management operations. Because most

of the intelligence is kept in the central server, this architecture is easy to construct

and easy to manage. This architecture is suitable for the management of small scale

networks. However, when applying to large scale network, thousands or even millions

of events could arrive at the correlation every minute, which is highly possible to

flood the centralized server. Thus this architecture is not suitable for the management

of large scale network and the centralized server will become the performance

bottleneck of the whole system.

OSI management framework [14] is one of the most popular used and sophisticated

network management frameworks. It is standardized by the International Organization

for Standardization (ISO). It provides a framework using object-oriented technologies

10

for network management. The architecture it uses is centralized manager/agent

architecture. The main task of the manager includes issuing directives and receiving

notifications and the main task of agent include carrying out directives, sending

responses and emitting events or alarms. Currently many commercial network

management systems and research such as HP OpenView, and the project proposed in

[15] are constructed based on this framework. Being standardized a long time ago,

OSI management framework did not put too much concern on the scalability of the

managed network. Therefore, its centralized manager/agent architecture is not enough

for the management for large scale network with thousands or tens of thousands

network element.

• Hierarchical

Network Management Systems constructed based on hierarchical architecture have

several management servers performing management operation on given network

level, e.g. different protocol stack layer, or given different network domains. Higher

level servers will then perform management over the whole managed network. This is

a distributed architecture and can perform well for the management of large networks.

Telecommunication Management Network (TMN) [16, 17] is a framework that is

defined for telecommunication network management and inter-communication. This

framework is defined by ITU-T M.3000 series. It is constructed based on OSI

management network, however, it has extended the OSI manager/agent management

approach into hierarchical architecture. The building block that is defined in TMN,

called the Operations System (OS), could be the manager of one peer building block,

and it can also be the agent of another peer building block. This extension greatly

increases the scalability and flexibility of this management framework when

performing fault management and can be applied to the management of large scale

network.

• Hybrid

11

Some projects adopt the use of hybrid architecture. For example, the architecture used

in the Madeira project [18], which is used for the management of wireless mesh

network, combines peer-to-peer architecture with hierarchical architecture. In this

project the management intelligence is distributed among the whole managed network

into each network element. Peer network elements will be grouped into a cluster

within which the peer-to-peer approach will be used. A cluster header will be selected

from each cluster, which plays not only a peer role within the cluster, but also a head

peer that communication with higher layer clusters. Clusters will be organized into a

hierarchical architecture and there is a (or several) cluster in the highest management

level which will be in charge of the management of the whole network. This approach

can provide better scalability and robustness than using peer-to-peer structure or

hierarchical structure alone, and besides it can improve the performance management

operations such as fault correlation or fault recovery.

12

Chapter 3

Project Background

3.1 Background scenario and scenario modeling

In order to inform the research of the project a particular scenario was studied in order

to understand the characteristics of the kind of complex networks that need to be

managed. The scenario chosen was that of fault monitoring that would be needed for

Border Gateway Protocol Multi-protocol Label Switching Virtual Private Network

(BGP/MPLS VPN) [20, 43, 44, 45]. For verifying the feasibility of the designed

solution and in order to have a target future real-world test, a simplified real world

scenario (Figure 3-1) based on BGP/MPLS VPN was constructed.

13

Figure 3-1 Scenario network

As illustrated by Figure 3-1, this network has 5 routers in total. The PE1, R1 and PE2

lthough this is a very simple network architecture, but there are massive number of

are routers in provider backbone network and provide support for MPLS. The

Customer network is connected to the provider backbone network using router CE1

and CE2. On the service level, two Label Switching Paths (LSPs) are constructed with

LSP_1 as (PE1, R1, PE2) and LSP_2 as (PE2, R1, PE1). One VPN is set up to

connect two geographically separated customer network into one network. We assume

that this VPN is constructed using BGP/MPLS VPN and over LSP_1 and LSP_2.

A

diverse events that can be issued both the hardware and software level of this

architecture. Figure 3-2 partially lists the events that can occur in the scenario network.

These events, or notifications, will be illustrated using a format as

EventName_SenderName.

VRF

PE 1
R 1

VRF

PE 2

I1

I1

I2

I1 I2

I1

I2

I1

L1

L2 L3

L4

CE 1 CE 2

Customer Network
Customer Network

PE: Provider Edge
CE: Customer Edge
I: Interface
L: Link
VRF: Virtual Routing and Forwarding table

14

Figure 3-2 Events that can occur in the scenario network

Observable Alarms:
1a. linkDown_If_PE1_1
1b. linkDown_If_PE1_2
1c. linkDown_If_PE2_1
1d. linkDown_If_PE2_2
1e. linkDown_If_R1_1
1f. linkDown_If_R1_2
2a. mplsXCDown_PE1
2b. mplsXCDown_PE2
2c. mplsXCDown_R1
3a. mplsL3VpnVrfDown_If_PE1_1
3b. mplsL3VpnVrfDown_If_PE2_2
4a. mplsLdpSessionDown_R1
4b. mplsLdpSessionDown_PE1
4c. mplsLdpSessionDown_PE2
5a. mplsTunnelDown_PE1
5b. mplsTunnelDown_PE2
5c. mplsTunnelDown_R1
6. mplsBlackHoleDetected
7. Lsp_PE1_PE2_down
8. Lsp_PE2_PE1_down
9. VPN1_disconnection

Hardware Level:
1. If_PE1_1_down
2. If_PE1_2_down
3. If_R1_1_down
4. If_R1_2_down
5. If_PE2_1_down
6. If_PE2_2_down
7. Power_PE1_down
8. Power_PE2_down
9. Power_R1_down
10. Lk_CE1_PE1_disconnect
12. Lk_PE1_R1_disconnect
13. LK_R1_PE2_disconnect
14. Lk_PE2_CE2_disconnect

Software Level
1. Vrf_PE1_If1_misconf
2. Vrf_PE2_If2_misconf
3. Bgp_cmpnt_PE1_down
4. Bgp_cmpnt_PE2_down
5. Ldp_cmpnt_PE1_down
6. Ldp_cmpnt_R1_down
7. Ldp_cmpnt_PE2_down
8. Ilm_PE1_misconf
9. Ilm_R1_misconf
10. Ilm_PE2_misconf
11. Mpls_fwding_cmpnt_PE1_down
12. Mpls_fwding_cmpnt_R1_down
13. Mpls_fwding_cmpnt_PE2_down
14. Vpn_cmpnt_PE1_down
15. Vpn_cmpnt_PE2_down

ne fault occurring in the managed network will trigger multiple events. For example, O

link L2 down can cause the issue of event linkDown_If_PE1_2, linkDown_If_R1_1,

mplsXCDown_PE1, mplsXCDown_R1, mplsTunnelDown_PE1,

mplsTunnelDown_R1, VPN1_disconnection, LSP_PE1_PE2_down,

LSP_PE2_PE1_down, etc. These events are all caused by the failure on link L2 and

can be regarded as the symptom of link L2. In order to figure out this root cause from

a set of symptom events, the relationship between symptom and root causes should be

established to enable event correlation. In the proposed system, this relationship will

be modeled using the Event Correlation Graph, which is constructed using an

ontology and models all necessary fault information on the managed network into the

fault management system. The Event Correlation Graph will be kept in the knowledge

15

base of the proposed fault management system. Figure 3-3 gives an example Event

Correlation Graph which can figure out the root cause for the symptom event such as

VPN1_disconnection, LspBroken_PE1_PE2 etc. For the sake of simplicity, only some

of the events are used to construct the Event Correlation Graph in Figure 3-3. The

graph needed for real-world use will be much larger and more complex than the one

in Figure 3-3.

Figure 3-3 Example Event Correlation Graph

.2 Technology Background

ocabularies and their meanings, with explicit, expressive, and

3

3.2.1 Ontology

Ontologies are about v

well-defined semantics – possibly machine-interpretable [24]. According to the

16

definition given above, we can get that ontologies are a set of concepts as well as the

relationship between them. These are usually implemented through classes, relations,

properties attributes, and values, which are called resources. Figure 3-1 from [23]

shows an ontology example.

Figure 3-4 An ontology example

s illustrated by Figure 3-4, the ellipses represent objects, the arrows represent

n ontology model can be represented by various formats. Three formats are the most

A

relations and the squares represent literal values. Usually, resources in ontology are

represented by URIRef [25].

A

common used: graph representation, triple statement representation and XML

representation [27, 28]. Graph representation uses different shapes to represent

different concepts and uses arrows which represent relations link them up. Figure 3-4

is an ontology that represented using graph. Triple statement representation uses a

17

statement which consists of a subject, a predicate, and an object to represent

relationship between concepts. The statement representation is a verbal format of

graph representation, and reads more like human language. The XML representation

uses XML syntax for writing ontology. This representation is much more difficult for

human to understand, but varieties of XML parsers enable the machine processing of

ontology. Thus the mature standard and wide use makes XML an excellent media for

ontology.

Many languages are developed to model ontology. They distinguish to each other not

WL is used to construct the routing ontology for underlying transmission

only in vocabularies, but also in the semantics representation ability. Resource

Description Framework [23, 24, 26, 27, 28] is an simplest level ontology. It is

developed to describe resources, for example, images or audio files and so on. RDF is

weak at semantic representation for it only describe a concept and provide little

support for the inference relationships between concepts, thus RDF Schema [23, 24,

29] is developed to as an extension to RDF. RDFS is language layered on top of RDF.

It provides vocabularies such as rdfs:Class or rdfs:Property for defining concepts,

besides, class concepts can relate to each other using subclass/superclass relationship,

which enhanced the semantic representation ability of RDF. Web Ontology Language

[22, 24, 28] has more vocabularies to express concepts and relationships between

them than RDF and RDFS. OWL is constructed over RDFS, and some of vocabularies

used in OWL already exist in RDF or RDFS. Otherwise terms are introduced by OWL.

Vocabularies in OWL are further fined grained and are entitled with more semantics

than RDF and RDFS. For example, OWL provides terms to express transitive

relationship, inverse relationship, and symmetric relationship and so on, which all can

not be expressed in RDFS. Currently, OWL has three versions – OWL Lite, OWL DL

and OWL Full and OWL DL and OWL Full support for more terms than OWL Lite.

O

middleware because of the requirements from underlying middleware. Besides OWL

is also selected to construct the expert knowledge file for event correlation in the

18

evaluation implementation, which can also be done much easier through XML.

However, OWL is still selected to model the correlation expert knowledge in the view

of its reasoning ability could be used by expert knowledge base in the future work.

3.2.2 Publish/Subscribe system

] is an appealing message transmission

ubject-based publish/subscribe system is regarded as the earliest publish/subscribe

emantic publish/subscribe system is a recently proposed. It extends CBN by the

Publish/Subscribe System [31, 32, 33, 34

paradigm for it is both asynchrony and inherent loose coupling. A publish/subscribe

system is usually composed of three components: publishers, subscribers and

publish/subscribe middleware. Rather than sending messages explicitly to receivers

by their address, publisher simply pushes messages into underlying middleware

without the knowledge of subscribers’ address (publish). The middleware will then

classify messages into classes, and routing the classified messages to subscribers who

paid interests in. In order to receive messages, subscribers do not need to keep

senders’ (publishers’) addresses. It only needs to inform the underlying middleware

the message classes it interests in (subscribe).

S

system [32], which assigns predefined subjects to each message, and the underlying

middleware routes messages according to the subject it belongs to. Content Based

Network [31, 32, 33], however, assigns several tags to each event with each tag

describing the information from specific aspect, and the underlying then can route the

message according to the information carried in tags. Figure 3-5 is an example

publication for CBN. CBN put more flexibility in the message routing, and currently

many systems or technologies are developed or proposed after CBN, such as Elvin in

[33] and Siena in [31] and so on. One thing worth mentioning that the underlying

transmission middleware used in this project is an extension to Siena.

S

addition of ontology reasoning. Knowledge-Based Network (KBN) proposed in [34,

19

40] is a semantic publish/subscribe system that constructed based on CBN. It added

ontology reasoning ability into CBN through the addition of ontology reasoning

engine and thus events can be routed within KBN using “less specific”, “more

specific” and “ontology equal” ontological operations. With ontology reasoning, KBN

can be more flexible than CBN in event routing, and upper layer application can pay

less attention to the addressing issue and thus increases the scalability of upper layer

application.

Figure 3-5 Example Publication for CBN

Stock = NYSE
Price = 98.56
Volume > 1000

his project chooses KBN as its underlying message transmission system, which can

.3.3 Simple Network Management Protocol

ation layer protocol that is

NMP perform network management using manager/agent structure, which is also the

T

decouple elements in managed network from fault management servers in the

proposed fault management system, and thus increases the flexibility and scalability

of the proposed fault management system.

3

Simple Network Management Protocol [35, 36] is an applic

proposed by Internet Engineering Task Force (IETF), which is part of internet

protocol suite. It is widely used by Network Management Systems to perform

management on network elements. Currently three versions SNMP are in use, they are

SNMPv1, SNMPv2 and SNMPv3.

S

reason why OSI use the manager/agent structure. Manager will perform network

management through issuing request to agents and receiving response from them.

Agents are a small piece of software that resides on each manageable network

20

elements. It will receive requests from manager and then turn the received protocol

PDU into the real operations on the management information. The agent addresses the

heterogeneity among network elements, and makes the management transparent to

upper layer Network Management System.

SNMP consists of three parts: an application layer protocol, a management

he management information database schema in SNMP is termed the Structure of

anagement Information is stored as managed objects in the management

information database schema, and managed data objects. The application layer

protocol is mainly used by Network Management Systems to perform management

operations [39] on management information that kept in managed elements. Currently,

operation supported by SNMP includes Get Request, Set Request, Get Next Request,

Get Bulk Request, Response Request, SNMP Trap, and Inform Request. The former 4

requests are originated from manager; whilst the last three operations are originate

from agents. SNMP Trap (or Notification) is a mechanism that an agent proactively

sends management information to the manager. It is usually used by agent to inform

the occurrence of error or malfunction in managed network elements. The SNMP Trap

will be considered as the main carrier of fault that occurred in managed network in

this project.

T

Management Information (SMI) [37]. It is a subset of Abstract Syntax Notation One

which is a joint standard for describing data structure for encoding, representation,

transmission and decoding data. SMI provides a set of rules for describing the

structure of managed information independent to underlying network and machine

specific encoding. The SMI is mainly divided into three parts: Module definition,

Object definition and Notification definition. For more detailed description on SMI

please refer to [37].

M

information database which is termed as Management Information Bases (MIBs). It

defines the managed objects that describe the behaviour and configuration

21

information of a given entity such as a SNMP protocol entity [41], a TCP entity [42],

or an IP entity and so on. IETF gives some standard MIBs definitions in Request for

Comments (RFC) documents. Besides, companies will also provide their own MIBs

for the management of their products.

Besides SNMP, other management standards such as Distributed Management Task

.3.4 BGP/MPLS VPN

43, 45] is a packet switching technology. In MPLS

nlike conventional IP forwarding, where the assignment of FEC is by performing

Force (DMTF) Common Information Model (CIM) are developed for network

management. However, the simplicity has won SNMP a wide support from Network

Elements such as Routers, Switches and so on, and thus a great number of network

management systems perform network management using SNMP. For its simplicity

and wide support, SNMP instead of other management approach such as CIM is

selected to carry the management information and perform management operations.

3

Multiprotocol Label Switching [

forwarding paradigm, every packet will be forwarded in the MPLS network using the

“Forwarding Equivalence Classes” assigned to it.

U

the “longest matching” for the destination address of each arrived packet separately at

each IP router, each packet will only be analyzed once at the ingress router of the

MPLS network, and then be assigned a header with a label which represents the FEC.

Packages will then be forwarded in the MPLS network by switching old label with

new label without further analysis. At the egress router MPLS header will be removed

form the package and the original package will be then forwarded to outside network,

e.g. customer network. Because all forwarding in MPLS network is driven by label,

this makes the forward speed much faster than traditional conventional network layer

forwarding [43].

22

BGP/MPLS VPN [20, 44] is a technology that service provider uses MPLS based IP

his project is constructed aiming at perform fault management over MPLS VPN and

backbone to provide Virtual Private Networks (VPNs) services to customers. The

VPN routes will only be kept in a data structure termed as Virtual Routing and

Forwarding (VRF) in the router that reside at the edge of MPLS, and VPN routes will

be propagated in the MPLS using Boarder Gateway Protocol (BGP) [46]. By doing

this, the VPN routes knowledge will be transparent to the inner MPLS router. After

VPN constructed, customer networks located at different geographical location will

then be regarded in a single private network and access to each other.

T

the real-world scenario is given in section 3.1.

23

Chapter 4

Distributed Fault Management System

4.1 Physical Architecture
Physically, the whole system (Figure 4-1) is designed to be composed of three main

types of components: fault management servers, Knowledge Based Network (KBN),

and front end servers. They will work together to provide the fault management

services for the managed network.

24

FMN

FE1

FE2 FE3

Provider Backbone Network

CN

KBN

OSS
Messages

SNMP Traps
Directives

FMN: Fault Management Network
CN: Customer Network
FE: Frond End

CN CN CN

Figure 4-1 Physical architecture

4.1.1 Fault Management Servers

Fault Management Server (FMS) is the dedicated server that works as a service

container. Services such as event correlation service, fault recovery service, logging

service will run on it. A FMS can have multiple roles for example correlator, fault

recovery policy holder, etc. The role for a FMS is determined by the context: when we

talk about fault correlation, a correlator means a FMS, and so it is the same with other

roles.

The managed network will be modeled from different aspects for different services in

FMS. For example, all its events will be modeled as Event Correlation Graph for

25

event correlation use; in addition, all the directives that are supported by its elements

will be modeled as fault recovery policy base for fault recovery use, and so on. All

this expert knowledge will be kept into knowledge base that provides all required

expert knowledge for services running on an FMS.

Multiple FMSs can form a Fault Management Network (FMN). The FMN is

organized using hierarchical structure and each FMS within the FMN will assume the

responsibility of providing the fault management at a given level and providing

“processed” fault information, e.g. correlation result, for a higher level FMS. High

level FMS will collect the “processed” fault information from low level FMSs and

perform a correlation at a broader view. When distributing the fault management task

within FMN, instead of being kept in every single FMS, the knowledge base will also

be spread over the whole FMN with each FMS keeping the part it requires.

4.1.2 Front End Servers

Because messages from outside network can not be directed forwarded in KBN, there

should be a dedicate server to translate messages from outside to KBN notification, in

order to enable the forwarding of these messages. The Front End (FE) takes this

responsibility that provides the mapping service between messages from outside

systems, e.g. managed network, Operation Support Systems (OSSs), etc, and KBN

compatible notifications. It works as a translator between outsider and the proposed

fault management system. Instead of understanding the incoming messages, the FE

only needs to perform the mapping between headers of incoming message and KBN

notification tags. The mapping relationships are encoded using a policy approach so

that they are replaceable and are easy to deploy.

Tags in KBN header varies with the type of messages. However, some common tags

will exist in all KBN notifications. For example, in the current design

“Message_Type”, “Sender_Id” and “Payload” are three common tags.

26

The mapping process is a process of wrapping incoming messages by KBN headers.

The mapping will not affect the content carried in original message, and the original

message itself will also be carried in KBN notification as the value of a common tag

“payload”. Tags in KBN header are only used for forwarding use in KBN. Once the

KBN notification has been forwarded to the destination FMS, the KBN header will

then be striped in Event Normalizer which we will mention to in section 4.2.1.1 and

the original message will be delivered to upper layer services in FMS.

4.1.3 KBN

The KBN works as the underlying system and provides a semantic publish/subscribe

message transmission mechanism for the inter-connection of FMSs and FEs. Every

functional node running on it, e.g. FMS and FE, will work as a publisher or a

subscriber or both a publisher and a subscriber.

An ontology that is constructed based on Event Correlation Graph will be used as the

routing ontology for KBN. It will reside on every KBN node, and ontology

comparison will be performed between the element in the routing ontology and the

incoming message.

FMSs connect to each other using KBN and thus form a FMN. In order to get only

their interested fault messages and “processed” fault information, the FMS will put a

corresponding subscription to KBN so that these messages can be propagated to them,

so it is the same with FE. We will give a detailed introduction to this later on in the

next section.

4.2 Software Architecture
This section will give a full description on the software level architecture of the

27

proposed fault management system. Most software design of the proposed fault

management system resides in the FMS and FE. Currently, only the design of FMS

has been accomplished, so in this section, only the architecture of FMS will be given.

4.2.1 Software Architecture of FMS

As shown in Figure 4-2, an FMS is composed of 4 main components: Service

Organizer, Configuration Manager, Knowledge Base and Event Normalizer. The

Event Normalizer will decode the incoming messages and dispatch the incoming

message to the right model; The Knowledge base stores all the expert knowledge on

the managed network and fault management; The Service Organizer provides a

running environment for fault management services; The Configuration Manager will

be in charge of configuration operations. In the following text, we will give a detailed

description of these 4 components.

Event Normalizer

Event
Correlator

Trouble
Shooter

Service Organizer

Topology
update
Module

Configuration Manager

Knowledge Base

… Subscriptio
n Manager

…

Figure 4-2 FMS Architecture

4.2.1.1 Event Normalizer

The Event Normalizer is the lowest components in the FMS architecture. It lies just

above KBN and works as the adapter that between upper layer services and KBN. Its

main task is to convert the KBN notification into upper layer services understandable

message objects or operations and vice versa.

28

As illustrated by Figure 4-3, the Event Normalizer mainly contains 5 parts; they are

Message Processing Model (MPM), Event Dispatcher, Incoming Message Queue,

Outgoing Message Queue, and Message Repository. Every incoming message will be

buffered in the Incoming Message Queue. The Event Dispatcher will then fetch the

message from Incoming Message Queue and dispatch it to corresponding Message

Processing Model according to the KBN tags carried by the message. The Message

Processing Model is in charge of the encoding of message objects or service

operations into network stream and the decoding of stream formatted messages into

message objects or service operations. Every Message type that supported by this

FMS should have a Message Processing Model (MPM) registered in the Event

Normalizer. After being processed by Message Processing Model the outgoing

message will then be buffered in the Outgoing Message Queue waiting for being

pushed into KBN.

One thing worth mentioning is that some messages, such as SNMP trap message, can

not be simply discarded after being processed by the Message Processing Model, for

some information in the message could be used by other components such as trouble

shooter in the future,. Therefore, these messages should be kept in the Message

Repository, and for each message that is kept in the Message Repository, a number

will be assigned to uniquely identify this message within the whole FMN. In order to

avoid the infinite increasing on the size of this repository, a message collector will be

running every given time period to collect the message that have not been use more

than a given time. Instead of discarding the collected message, they will be kept in a

message database for other use.

29

Incoming Message Queue Outgoing Message Queue

KBN

Event Dispatcher

SNMP MPM CMON MPM Other MPM

Message Objects/ Service Operations

Event Normalizer

Encoded Messages/ Notifications

Message
Repository

Figure 4-3 Design of Event Normalizer

4.2.1.2 Knowledge Base

The Knowledge Base stores all the expert knowledge such as correlation rules, events,

fault recovery policies, etc, in it, and provide access interface for upper layer services.

It works like the “hard drive” of a computer and provides information for “processor”

(upper layer services).

As illustrated by Figure 4-4 the Knowledge Base mainly consists of two parts: the

knowledge files and the access interface. Knowledge files are the files that carry the

expert knowledge, such as correlation rules, event information, and fault recovery

policies and so on. Different type of expert knowledge will be stored using different

formats in different knowledge files or event database. The proposed fault

management system does not define the storage format for each type of expert

30

knowledge and it can be defined by the implementation. For example, in the

evaluation implementation of the proposed fault management system, the correlation

rules and event information are encoded using OWL and are kept in an ontology file.

Correlation Rules
and Events

TSECG Driver

Fault Recovery
Policies

FR Driver Other Driver

Other Knowledge
File

Knowledge Base

Figure 4-4 Design of Knowledge Base

Instead of defining the format of expert knowledge, a set of interfaces are defined for

the access of expert knowledge. For each expert knowledge file that will be directly

used by upper layer services, a driver class which implements the corresponding

interface must be provided in order to enable the access to the expert knowledge

stored in specific format. In the evaluation implementation of the proposed fault

management system, a knowledge base access interface named as

TopologySpecificEventCorrelationGraph is defined for the access to correlation rules

and the information of events issued by the managed network, which is encoded using

OWL in ontology file. By defining the access interface the implementation detail of

31

expert knowledge will become transparent to the upper layer service, thus making the

update of knowledge base more flexible.

4.2.1.3 Service Organizer

The Service Organizer provides the execution environment, such as message queue

and inter-service communication variables and so on, for fault management services.

Furthermore, it will also chain the services it holds into a service chain to perform

fault management. From the implementation point of view, the service organizer

could be implemented as a process and the services could be implemented as the

threads that spawned from the service organizer process.

Different services may require a different environment. Therefore, as an environment

provider, the design of service organizer varies with the type of services it holds.

However as an environment provider for fault management service, there is a

common denominator for all the different designs. It has to provide the environment

for at least two core services: Fault Correlator and Trouble Shooter. Figure 4-5

illustrates the common denominator design for the Service Organizer.

Correlation Message Queue

Event
Correlator

Trouble
Shooter

Message
Collector

Garbage Messages

Correlatable Events or Correlation Result

Service Organizer

Other
Services

Figure 4-5 Common Denominator design of Service Organizer

32

As illustrated by Figure 4-5, the common denominator design of Service Organizer

provides the running environment for two core services. The environment includes a

Correlation Message Queue, where both the received correlatable events and

correlation results will be kept. The Event Correlator will select the correlation

candidates, e.g. correlation result and correlatable events from the correlation message

queue, besides the Trouble Shooter will also select the correlation result that should be

addressed from the correlation message queue to perform fault recovery operation. To

avoid the infinite expansion of the correlation message queue, the Message Collector

is provided by Service Organizer to maintain the Correlation message queue by

removing the messages that are regarded as garbage messages. The criteria that

whether messages in the correlation message queue can be regarded as garbage

message are defined by policies. A very important criterion for the garbage message

for example would be whether the occurrence time of this message has exceeded a

given time period.

4.2.1.4 Event Correlator

Event Correlator is one of the core services that will on the service organizer. It will

provide the event correlation service for the fault management, which is the

prerequisite service for trouble shooting.

The proposed fault management system does not provide a unified interface for the

creation of services. Therefore, in order to add a new service, for example, fault

logger, into the service organizer given by Figure 4-5, the whole service organizer has

to be updated from code level to hold the new service and to provide the running

environment for it. Figure 4-6 shows the design of event correlator and its dependent

components.

33

Figure 4-6 Design of Event Correlator Service and its dependent components

s illustrated by Figure 4-6 Event Correlator service contains two main parts: Event

fter the Correlation Thread finishes its correlation task, the correlation result will be

.2.1.5 Trouble Shooter

or, Trouble Shooter is one of the core services in the

A

Correlator and Correlation Thread. The main tasks of Event Correlator are to analysis

the messages in the Correlation Message Queue, get the correlation tasks and then

assign the tasks to the Correlation Thread. The Correlation Threads, which are the

threads spawned from Event Correlator and implement a distributed correlation

scheme, will accept the task assigned by Event Correlator and then perform

correlation on it.

A

either echoed into Correlation Message Queue if it could be used by the other

correlation in this FMS, or be exported into KBN if it could be used by correlation in

other FMS. We will come to the distributed correlation scheme later on in section 4.3.

4

As with the Event Correlat

proposed fault management system. It will generate the fault recovery operations

according to the fault recovery policies stored in the knowledge base using the

Event Correlator

Correlation Message Queue

CT CT CT

SNMP Message
Processing
Model

…

Event Correlator

CT

Correlation Result

CT: Correlation Thread

Echo Export

Correlation Message/
Correlation Result

Knowledge Base

34

correlation results.

A correlation result can either be used by correlator to perform further correlation or

s mentioned before, the fault recovery policies are stored in Knowledge Base using

 should be noted that trouble shooter of the proposed fault management system has

.2.1.6 Configuration Manager

figuration manager is a unified name for all the

be used by trouble shooter to perform trouble shooting, thus a method should be used

to address this conflict. In this current design, a timer will be used to address this

problem. For the further correlation has higher priority than trouble shooting (If a

correlation result could be used for other correlation, that means an even bigger

problem needs to be correlated using this correlation result, which obviously has

higher priority than just solve this minor problem.), the trouble shooter can not use a

correlation result to perform trouble shooting process until the timer for this

correlation result expired. Once a correlation result is selected to perform trouble

shooting process, the trouble shooter will inform the sender of this correlation result

that this correlation result can be addressed (The correlation result only carries the

information for correlation, which is not enough for trouble shooting. Thus the fault

recovery operation should be generated and performed in the FMS that originally

receive the events, e.g. SNMP trap, from managed network). Because the correlation

result is generated hierarchically from a low level event correlator to a high level

event correlator, this process will be performed reverse to the correlation process from

high level trouble shooter to low level trouble shooter.

A

dedicated files. Therefore, the fault recovery operation should access the Knowledge

Base via its access driver. As they are kept in a file, the policies can easily be updated

or replaced, which increases the flexibility of the proposed fault management system.

It

not been well defined yet, and further definition should be considered future work.

4

Unlike the service organizer, the con

35

configuration management modules such as Knowledge base update module,

subscription manager and so on. There is not a concrete module or subsystem named

as configuration manager.

A FMS can have multiple Configuration Managers to perform different configurations

.2.1.7 Subscription Manager

ory Configuration Manager for the proposed fault

of the FMS. However, the Subscription Manager is a compulsory Configuration

Manager, and it has to be implemented by all implementation of the proposed fault

management system.

4

Subscription Manager is a compuls

management system. It controls all the messages including correlation events,

inter-FMS communication messages and so on that can be received by the FMS. The

subscription manager performs its task by undertaking subscribe/unsubscribe

operations of its interests upon the KBN. Figure 4-7 is an example of how

subscription manager controls the correlation task of a correlator.

Z

A B

E F

K G L H I J

Correlator B

D

A B

Correlation Result of A

Correlator A

Correlation Result of B

C

36

Figure 4-7 Subscription manager controls the correlation task

As illustrated in Figure 4-7, Correlator A will perform correlation over event A and

correlation result (A, B), which is provided correlator B; The correlator B will

perform correlation over event set (A, B, C, D, E, F, G, H, I, J, K, L), and then provide

the correlation result of event A and B to correlator A. In order to have correlator A

and correlator B perform the above mentioned correlation task, the subscription

manager of correlator A and B will put subscriptions like those in Figure 4-8 to KBN

node.

 or read from a configuration file. All the subscriptions for different messages,

.g. correlation message, fault recovery message, and so on, will be kept in a vector. A

set of operations such as subscribe, unsubscribe and modify subscription and so on

will be provided by the subscription manager to the on-the-fly subscription

management.

A more automatic subscription manager which provides the support to Plug and Play

(PnP) FMS could be designed by adding in a new configuration manager that can

listen both for the addition and removal of a FMS through a heartbeat beacon, and

{(event @= Z), (message_type=correlatable_event)}
{(event@=A), (message_type=correlation_result)}
{(event@=B), (message_type=correlation_result)}

(a) Subscriptions put by correlator A

{(event@>A), (message_type=correlatable_event)}
{(event@>B), (message_type=correlatable_event)}

(b) Subscriptions put by correlator B

Figure 4-8 Subscriptions of correlator A and correlator B

The subscription can be either input to the KBN by a system operator from the user

interface

e

37

then automatically adjusts its subscription according to the subscription of the newly

added or removed FMS.

The design of subscription manager has not been fully finished as yet, and in the

current evaluation implementation the subscription manager can only control its

interests by reading subscriptions from a configuration file.

4.3 Dist

4.3.1 Scheme background

hical location. By doing so, each Network Element in the managed

etwork needs to be explicitly configured so that all its fault events can be routed to

ation result for high level

orrelation, and the whole correlation task for the managed network will then be

erformed hierarchically. There is neither tight couple between managed network and

 storm. All fault events will

hen be routed in the FMN

ributed Correlation Scheme

The correlation scheme proposed in the project is a pure distributed scheme. Current

distributed correlation schemes, such as the one used in Madeira project [18, 19],

perform distributed correlation by applying current centralized correlation scheme at

different level of the managed network or different network domain resided at

different geograp

n

the right FMS; or, all the fault events are forwarded to the FMS using broadcast in the

network. There are explicitly drawbacks in those two aforementioned forwarding

schemes: either there is a tight coupling between the managed network and specific

FMS (explicitly configuration) or there is high possibility to cause event storms

(broadcasting).

The proposed distributed correlation scheme distributes a single correlation task

among the whole FMN, and each FMS within the FMN will take part of the

correlation. The low level correlator will provide the correl

c

p

specific FMS nor the high possibility of causing an event

be pushed into the FMN which is based on KBN, and t

38

according to the subscription of specific FMSs. By adding the PnP feature into FMS,

ll be used to evaluate the candidate correlation results.

the failure in one specific FMS can not disable the whole fault management system.

Another FMS will assume the correlation task of the failed FMS by adjusting its

subscription and have all the events that are originally forwarded to the failed FMS

re-route to this FMS. By doing so, rather than disable the whole fault management

system, the failure of a FMS will only degrade slightly the performance of the

proposed fault management system.

Besides this pure distributed feature, the proposed correlation scheme can also

perform the correlation under the circumstance where some correlation symptoms are

lost. When performing the correlation under this circumstance, several factors with

given weight wi

4.3.2 Scheme Overview

The whole running process of the event correlator will be divided into time scales.

Each time scale is called a correlation window. The length of a correlation window is

adjustable. Usually a high level correlator will have a longer correlation window than

a low level correlator. Event correlation will be started immediately after a correlation

window ends. Figure 4-9 gives an overview to the event correlation process.

39

Figure 4-9 Overview of event correlation

4.3.3 Technolog efinition

s a new correlation scheme, some new terminologies are defined in order to fully

Once the correlation has started, the event correlator will first select correlation tasks

from the correlation message queue using Correlation Task Analysis which will be

introduced in the next section. The selected correlation tasks will then be assigned to

the correlation threads. Correlation Thread will then perform event correlation using

the proposed event correlation scheme. After correlation, the correlation result will be

either exported to a higher level correlator or echoed back into the correlation

message queue. In the next section, a detailed description will be given to this

correlation scheme.

y Background and Terminology D

A

and clearly describe this correlation schemes. Besides some new calculation rules are

defined to support the proposed correlation scheme. In this section, these definition

and calculation rules will be introduced.

• Event, Observable Event and Non-Observable Event

An event represents the occurrence of something in the managed network. An event

… CW n CW n+1 …

EC … EC n

Correlation Result (export/echo)

EC n+1

CMQ … CMQ n CMQ

CMQ snapshot

EC: Event Correlation
CW: Correlation Window
CMQ: Correlation Message Queue

40

could indicate the occurrence of a severe fault or simply a change of configuration in

the managed network. Some events have a dedicated message sent out when they

ccurred; these events are called Observable Event. Some events have no dedicated

 Events.

nly be deduced from the occurrence of

spBroken_PE1_PE2.

Figure 4-10 Example Event Correlation Graph

As illustrated by Figure 4-10, the Event Correlation Graph is a Direct Acyclic Graph

o

message to indicate their occurrence; these events are called Non-Observable

The occurrence of non-observable events can only be deduced from the occurrence of

other events that are caused by the non-observable events. For example, in the

real-world scenario modeled in Figure 3-3, event XCRuined_PE1 is a non-observable

event, and its occurrence state can o

L

• Event Correlation Graph

The Event Correlation Graph models the managed network from the events and their

relationships point of view. It represents symptom/cause relationships between events

that issue from the managed network. These expert knowledge will be used in the

event routing in KBN and subscription management in FMS. Figure 4-10 is an event

correlation graph with 13 events.

A B

C D E F

K G L H I

Z

J

41

(DAG). Every Node represents an event and the arrow between two nodes represents

the correlation relationship, for example, C can correlation to K, C can correlation G,

and so on.

Event Correlation Graph constructed in this project is similar in shape and semantics

with those used in [4, 8]. However, instead of being used directly for event correlation

Event Correlation Graph in this project is used for event routing in KBN and

subscription management in FMS. As mentioned in section 3.2.1, the Event

Correlation Graph in the implemented fault management system will be modeled

using OWL.

 Symptom and Cause

ymptom of a third event(s).

e only refer to the phrases Global Root Cause and Local Root Cause when

rrelation Rule and calculating Correlation Table, which we

ent Correlation Graph that FMS holds; if an

vent is a Global Root Cause, then this event is the root cause of the whole Event

•

If the occurrence of event A causes the occurrence of event B, we will say “event B is

the symptom of event A”, or “event A is the cause of event B”. The symptom/cause

relationship is not absolute. An event(s) can be the cause of another event(s), while it

can be the s

• Root Cause, Global Root Cause and Local Root Cause

Root Causes are causes that have no further causes. That is to say, a root cause can not

be the symptom of another event. They are usually the where the fault is and what we

need as the output of the correlation. For example, events K, G, L H, I and J are the

root causes of the Event Correlation Graph given by Figure 4-10

W

calculating the Direct Co

will refer to in the following text. When an Event Correlation Graph is spread over

several FMSs, each FMS will hold part of the Event Correlation Graph (this will be

done through subscription manager). If an event is a Local Root Cause of an FMS,

then the event is root cause within the Ev

e

42

Correlation Graph.

• Correlation Rule Set

Correlation Rule is the text representation of Event Correlation Graph. It has more

semantics than the Event Correlation Graph. The Event Correlation Graph can not

present the “and” relationship, namely, there is no way to distinguish “A can

either conjunction “∧” or disjunction “∨”.

ew rules can be generated by calculating old rules. There are some calculation rules

(these “rules” are not correlation rules; they are the “rules” in mathematics) for the

correlation rules, which we will refer to later on in the following section.

re

correlate to C and D” and “A can correlate to C or D” in the Event Correlation Graph.

However, this can be easily represented using correlation rule “A->C∧D”. Therefore,

the event correlator in the proposed fault management system uses Correlation Rule

Set instead of Event Correlation to perform event correlation, and Event Correlation

Graph will be used only for Correlation Task Analysis, Subscription Management and

Event Routing. Figure 4-11 is the Correlation Rule Set that generated from Event

Correlation Graph given by Figure 4-10.

Z -> A∧B
A -> C∧D, A -> E
B -> E, B -> F

C -> K, C -> G

E -> H
F -> I∧J

D -> L, D -> G

Figure 4-11 Correlation Rule Set representation of Figure 4-10

“A -> C∧D” is a correlation rule, which means “A can correlate to C and D”. The

arrow “->” is the correlation operation which means “can correlate to”. Terms on

the left of the arrow are the symptom of this correlation rule, and terms on the right of

the arrow are the cause of this correlation rule. The symptom and cause are composed

of events that relate to each other using

N

43

• Correlation Event Level

Correlation Event Level is the level that this event locates in the Event Correlation

Graph, the calculation of Correlation Event Level is given below:

ccording to this correlation event level calculation equation, we can get that in

⎩
⎨
⎧

∈+
∈

=
)(,1))(max(

0
)(

Acausebotherwiseblvl
CauseGlobalRootAif

Alvl

A

Figure 4-10 lvl(A)=2, lvl(C)=1 and lvl(K)=0.

• Correlation Depth

The correlation depth of a correlation rule is the level that this correlation rule covers.

We assume that R represents a correlation rule; sympt(R) represents the symptom of

correlation rule R; cause(R) represents the cause of this correlation rule. The

calculation of Correlation Depth is given below:

)))((min()))((max()(RcauselvlRsymptlvlRdpth −=

According to this correlation depth calculation equation, dpth(A->C∧D)=1 and

The correlation rule set directly generated from Event Correlation Graph are called

base correlation rule set. All rules in the base rule set should be atomic, namely, they

ule set. The Basic Correlation Rule Set

ill be stored in knowledge base and be accessed using the access interface provided

root causes). It is named as direct

dpth(A->(C∧D)∨H)=2.

• Basic Correlation Rule Set

are not generated by the calculation of other rules, and besides their correlation depth

must be 1. Figure 4-11 is a base correlation r

w

by knowledge base.

• Direct Correlation Rule

A Direct Correlation Rule (DCR) is the correlation rule whose cause is composed of

root causes (either local root causes or global

44

correlation rule because it can be directly used for correlation. The Direct Correlation

 DCR for event A is A->(K∧L)∨G∨H, and the DCR for

vent B is B->(I∧J)∨H.

 Event Branch Radius

dicates the time period from the time when the root event

 than the later one.

culation rules

∧>−∧
=
otherwiseRcauseRcauseRsymptRsympt

RsymptRmpt
)2()1()2()1(

)2()1(

Rule can be gained by calculating the rules in the base correlation rule set. For

example in Figure 4-11, the

e

• Correlation Branch

The correlation branch of an event is a set of events that contains all the events that

can cause this event, including both root causes and intermediate events. For example,

in Figure 4-10, the Correlation Branch for event A is {A, C, D, K, L, G, E, H}, and the

Correlation Branch for event B is {B, F, I, J, E, H}.

•

The Event Branch Radius in

occurs to the time when the last event in the branch set is received. This value relate

to the size of branch set and the underlying network delay. For example, in Figure

4-10, under the normal condition the Branch Radius of branch set {K, C} is the time

that K occurs to the last event (maybe K, maybe C) is received by a Correlator. The

branch set {K, C} should have a lower radius than the branch set {K, C, A} for the

size of former one is small

• Correlation Rule cal

Two calculation rules are defined for the calculation of Correlation Rules. The whole

correlation schemes are constructed based on these two rules.

Merging Rule: Given correlation rule R1 and R2, let R3=merge(R1,R2), then:

⎨
⎧ ∨>−

=
syifRcauseRcauseRsympt

R
)2()1()1(

3
⎩

Substitution Rule: Given correlation rule R1 and R2, R1 can be substituted by R2, iff

eRsymptRcausee =∈∃)2(),1(. If R1 can be substituted by R2, let

45

R1=sympt(R1)->(sympt(R2)∧term1∧…)∨(term2∧term3∧…)∨(…).

Then after substitution

R1=sympt(R1)-> (cause(R2)∧term1∧…)∨(term2∧term3∧…)∨(…).

After the substitution, the cause(R1) needs to be normalized to the “and or” format.

Figure 4-12 gives an example of how the merging rule and substitution rule will be

e DCR of event A in Figure 4-11.

 calculation using merging rule and substitution rule

4.3.4 Correlation Task Analysis

nt correlator

mediately after the correlation window ends.

The correlation message queue can still be modified by other components such as

Message Processing Model and so on. Therefore, in order to keep the consistency of

the event set of Correlation Task Analysis. A snapshot of the correlation message

queue will be taken immediately after the correlation window ends and the

Correlation Task Analysis will be performed on the “snapshot” of the correlation

message queue.

used in rule calculation. It calculates th

1. Merge A -> C∧D and A -> E:
A -> (C∧D)∨E = A -> (C∨E)∧(D∨E)
2. Merge C -> K and C -> G:
C -> K∨G
3. Merge D -> L and D -> G:
D -> L∨G
4. Substitute A -> (C∨E)∧(D∨E) by C -> K∨G and D -> L∨G

5. Substitute A -> (C∨E)∧(D∨E) by E -> H
A -> (K∨G∨H)∧(L∨
6. Normalize, applying distribution rules to causes, we can get:

A -> (K∨G∨E)∧(L∨G∨E)

G∨H)

A -> G∨H∨(K∧L)

Figure 4-12 DCR

Correlation Task Analysis is the operation that selects correlation task from

correlation message queue. It is the first operation performed by eve

im

46

Task Analysis

elation task. In this step, only correlatable event will be considered.

he symptom selection process will use the Event Correlation Graph and only the

symptom that can not be covered by other correlatable events in this snapshot will be

selected as the symptom. In Figure 4-13 (a), two symptoms will be selected: event A

and event B. Then for each selected symptom, an empty task will be created (Figure

4-13 (b)). Second, the empty correlation task will be populated by the correlatable

events or correlations results in the snapshot. This step will be performed by

comparing the correlation branch of the selected symptoms with elements in the

A I J F B C->K D L

(a) Snapshot of correlation message queue

A

B

Empty Task:

Empty Task:

(b) Symptom selection

A D L C->K

B F I J

Populated Task:

Populated Task:

(c) Populated correlation tasks

Figure 4-13 Correlation

We assume that a snapshot of the correlation message queue is given by Figure 4-13

(a) and the correlatable events and correlation results in this snapshot are based on

Event Correlation Graph given by Figure 4-10.

When the event correlator starts the Correlation Task Analysis, it will first select the

symptoms for corr

T

47

snapshot, and then populating the empty task with the correlatable event/ correlation

result that both in the correlation branch and the snapshot. For example, the

correlation branch for symptom A is {A, C, D, E, K, G, L, H}. After comparing the

received elements in the snapshot with the correlation branch of A, the empty

correlation task of A will be populated with event/correlation result (C->K, D, L), and

so it is the same with the correlation task of B. The outcome correlation tasks of the

Correlation Task Analysis are given by Figure 4-13 (c).

After Correlation Task Analysis, each generated correlation tasks on which the

correlation will be carried out will then be assigned to a correlation thread.

4.3.5 Correlation Schemes

This correlation scheme uses the calculation of correlation table to perform

correlation. Three weig re the belief degree of

 correlation result. Because of the introduction of correlation table and weighted

hted belief factors will be used to measu

a

belief factor, this correlation scheme will treat the element missing correlation and

normal correlation the same way.

48

Figure 4-14 Three correlators example

The whole correlation calculation scheme can mainly be divided into the following 5

steps: DCR calculation, correlation table initialization, delay correlation, event

guessing, and post-correlation processing. In the remainder of this section, a detailed

description will be given for each of these steps, using the example provided in Figure

4-14 to aid the description.

As illustrated in Figure 4-14, there are three FMS running in the FMN. There is a

correlator running on each FMS and each correlator takes the responsibility for the

correlation of part of the whole Event Correlator Graph, which is illustrated in Figure

4-14 by boxes of different colors. The circles are the events that this correlator

interests and the dash circles are the correlation results that this correlator interests.

The circles that are marked in grey represent that these events are received, and

A B

E F

K G L

H I J

Correlator 2

A B

Z

Correlation Result of A

Correlator 1

Correlation Result of B

D C

D C

Correlation Result of C
f B

Correlator 3

Correlation Result o

49

circles that are marked in white represent that these events have not been received yet

or they are non-observable events.

We will mainly concentrate on the correlation process of correlator 2 hereafter, and

the following assumptions will be made for correlator 2:

• The export event set is {A, B}, which means the correlation result of symptom A

and B will be exported into KBN to higher level correlator.

• The local root cause set is {C, D, H, I, J}.

• The correlation result of event C, and D has already been received before

correlation window of correlator 2 ends.

• Two correlation threads, say Thread-1 and Thread-2, are running on correlator 2,

and Thread-1 is responsible for the correlation task {A, C->K, D->L}, and

Thread-2 is responsible for the correlation task {B, F, I, J}.

• All events except G are observable events.

• The base correlation rule set is given in Figure 4-11.

These assumptions are not fixed, and they may be changed during the following

description, but I will in changed.

y merging and substituting rules in the base correlation

le set with each other. The DCR calculation process will stop when all the events in

form explicitly if assumptions has been

4.3.5.1 Direct Correlation Rule calculation

Direct Correlation Rule calculation is the first step after the correlation thread started.

It calculates the DCR for the symptom of the correlation task (In Thread-1 the

symptom of its correlation task is event A, and in Thread-2 the symptom of its

correlation task is event B) b

ru

its cause are in local root cause set, and then take the calculation output as the DCR

of an event. An example calculation process has already been given in Figure 4-12

and here we will not give this process again. The DCR for event A and B are:

 A -> H∨(C∧D)

 B -> H∨(I∧J)

50

4.3.5.2 Correlation Table Initialization

As mentioned before, the whole correlation process is performed by calculating the

orrelation table. This step will initialize the correlation table used in the future

Res lements Elements

c

calculations.

Potential

ult

Lost

Number

Guessed

Number

Mis-match

Number

Lost

Elements

Guessed

E

Used

A->H 1 1 2 H H A

A->C∧D 0 0 0 None None A, C, D

Table 4-1 Initial Correlation Table for Thread-1

As

Pot mber, Used Elements,

sult column contains the

 correlation result. The value

nsidered as

otential results. For example, in Thread-1, there are totally two potential results:

rom the DCR of Thread-1: A ->

the lost

 lost number should be 1. For potential result A->C∧D, the

 {A, C, D}, so there is no lost element and then the lost number

illustrated in Table 4-1, each correlation table contains 7 columns, and they are:

ential Result, Lost Number, Guess Number, Mis-match Nu

Guessed Elements and Lost Elements. The Potential Re

correlation equations that have the potential of being the

of this column is gained from the DCR generated in the last step. All terms that are in

the cause of the DCR and connected using “or” operator will be co

p

A->H and A->C∧D, which are generated f

H∨(C∧D).

The Lost Number column indicates the number of lost events/correlation results

(notice: only observable events are considered) for this potential result, and these lost

elements will be kept in the column Lost Elements. These two columns will be filled

in through comparing the required elements for this potential result with the elements

in the assigned task. For example, in Thread-1, the correlation task is {A, C->K,

D->L}, and the required elements for potential result A->H is {A, H}, so

element is H, and the

required elements are

51

should be 0.

Similar to Lost Elements and Lost Number, the Guessed Elements and Guessed

Number indicate the elements (notice: both observable and non-observable events will

ll be considered) that need to be guessed for this potential result and its number. This

or y co e m r this esult with the

ion ta e ts requ is es

eived in the corr tion task l be regard . For example,

, r potential result A->H, the guessed elements should be H and the

guessed number sh ere is no guessed

lement and therefore the guessed number is 0. It seems that the Lost Elements and

ts for potential result A->H is A, and the used elements for potential

sult A->C∧D are {A, C, D}.

the Lost Elements, Guessed Elements and Used Elements are only the identity

a

is also perf

correlat

med b

sk assign

mparing th

d. Elemen

 required ele

 that are

ents fo

ired by th

potential r

potential r ult but did

not rec ela wil as Guessed Elements

in Thread-1 fo

ould be 1, and for potential result A->C∧D, th

e

Lost Number will always hold the same value with the Guessed Elements and

Guessed Number. The main difference between the Lost Elements/ Lost Number and

the Guessed Elements/ Guess Number is that Lost Elements/ Lost Number do not

consider the Non-observable Event but the Guessed Elements/ Guessed Number do.

The Used Elements column indicates the elements that have been used for the

potential result. The elements in the Used Elements are the elements that exist both in

the required elements for the potential result and in the correlation task. For example,

the used elemen

re

The Mis-match Number is the number that the required elements fail to match the

correlation task. For example, the mis-match number for potential result A->H is 2,

and the mis-match elements are C and D; the mis-match number potential result

A->C∧D is 0 because all required elements of A->C∧D match the correlation task.

Notice should be paid that, in practice, the event itself will not be kept in the Lost

Elements list, Guessed Elements list or Used Elements list. The elements that kept in

52

numbers that globally uniquely identify these elements.

weight(Mis-matching Number)=3;

 factors mainly determine the belief degree

om event matching degree point of view, they can represent the belief degree of this

otential Lost Guessed Mis-match Lost Guessed Used

The Lost Number, Guessed Number, and Mis-match number are the three selected

weighted belief factors for a potential correlation result. They are selected as the

belief factors for the reason that they represents the event matching degree of the

correlation task to the potential correlation result from different aspects separately.

Lost Number represents the how many observable events are missing is this potential

correlation result is selected as the correlation result, the Guessed Number

supplements the Lost Number with non-observable result, and the Mis-matching

Number represents how many event in correlation task will not be used if this

potential correlation result is selected as the final correlation result. Different weights

will be assigned to these belief factors:

weight(Lost Number)=2;

weight(Guessed Number)=1;

Currently there are no well-defined criteria for determining the belief factors and

setting the weight for them, and thus currently selected belief factors can not fully

represent the belief degree of the correlation task to a potential correlation result.

However, for the currently selected belief

fr

potential result to some extent. The identification of criteria for determining the belief

factor and their weight setting has been left for future work. Table 4-2 gives the initial

correlation table for Thread-2.

P

Result Number Number Number Elements Elements Elements

B->H 1 1 3 H H B

53

B->I∧J 0 0 0 None None B, I, J, F

Table 4-2 Initial Correlation Table for Thread-2

ts or correlation results listed in the listening

st. The waiting time period is called a delay window. The length of the delay window

is configurable. Third, after the delay window expired, the correlation thread will then

detect the Correlation Message Queue whether there are events/correlation results that

liste ere are, the correlation thread will go fetching

ese events/correlation results, and add these newly received events/correlation

relation task of Thread-1 is {A, D->L} and the initial

orrelation table will become the one given by Table 4-3.

l

umber

umber

h

umber ments ments ments

4.3.5.3 Delay Correlation

Delay Correlation will be performed when there is no Correlation Table Entry in the

initial correlation table. It will delay the whole correlation process by a given time

period, waiting for the guessed element.

The Delay Correlation will be performed in three steps. First, a listening list will be

calculated by aggregating all the guessed elements in all the correlation table entry of

initial correlation table. Second, the correlation thread will wait for a given time

period waiting for the receiving of even

li

d in the listening list received. If th

th

results into the its correlation task and then re-initialize the correlation table.

An example will be used to explain these three steps. In order to explain this better,

we will slightly change the assumption made for correlator 2. Instead of being

received before the correlation window ends, we assume that only the correlation

result of D has been received before the correlation window ends and the correlation

result of C is received soon after the correlation window of correlation 2 ends (within

the delay window). Then the cor

c

Potentia

Result

Lost

N

Guessed

N

Mis-matc

N

Lost

Ele

Guessed

Ele

Used

Ele

54

A->H 1 1 2 H H A

A->C∧D 1 A, D 1 0 C C

Table 4-3 Initial Correlation Table for Thread-1 when C is received after correlation

window

 has its Guessed Number as 0. Therefore the

elay correlation for Thread-1 (Table 4-3) will be performed. The listening list is for

titution of two correlation

quation, but also the merging of other columns of two correlation table.

r to c l ti erg s,

According to what mentioned earlier in this section, the delay correlation will be

performed when no correlation table entry

d

this delay is {H, C}, and we assume that the delay window is 1000ms. After delay

window ends, Thread-1 will detect that the correlation result of C has already been

received in the correlation message queue. It will then add the correlation result of C

into the correlation task, and the correlation task for Thread-1 will become {A, C->K,

D->L}. After these, the correlation table will be re-initialized using the new

correlation task, and the correlation table will become the one given in Table 4-1.

The delay correlation will only be performed once during the whole correlation

process for a correlation task. A more detailed description on the necessity of delay

correlation and the setting of delay window will be given in section 4.3.6.

4.3.5.4 Correlation Result Merging

After the first three steps, an initial correlation table has already been generated.

However, the causes of the potential correlation results in the initial correlation table

are all local root causes, so they can not be used as the final correlation result. In order

to gain the final correlation result, we have to substitute the local root causes in the

potential correlation results with the correlation results received from low level

correlator. This merging process includes not only the subs

e

In orde learly exp ain correla on result m ing proces we will first enrich the

55

example we using. A w assum on is made here:

 t on its w to corre or 3, so the relation result of C is sing

Table 4-5.

are ne pti

• Event K los ay lat cor a gues

correlation result. The correlation result of event C and D is given in Table 4-4 and

Potential

Result

Lost

Number

Guessed

Number

Mis-match

Number

Lost

Elements

Guessed

Elements

Used

Elements

C->K 1 1 0 K K C

C->G 0 1 0 None G C

Table 4-4 Correlation Table in Correlation Result of C

Potential

Result

Lost

Number

Guessed

Number

Mis-match

Number

Lost

Elements

Guessed

Elements

Used

Elements

D->L 0 0 0 None None D, L

Table 4-5 Correlation Table in Correlation Result of D

y one. The

bstitution algorithm is given by pseudo-code in Figure 4-15, and in Figure 4-16 an

 if(canBeSubstituteBy(tmp_entry, correlation_result)){

The merging process will be performed by merging the initial correlation table by

entries from the correlation tables of the received correlation results one b

su

example is given illustrates this process:

output_correlation_table = new correlation_table();

for(dst_entry in init_correlation_table){

 tmp_table = new correlation_table();

 tmp_table.add(dst_entry);

 for(tmp_entry in tmp_table){

 for(correlation_result in correlation_task){

 received_correlation_table = getCorrelationTable(correlation_result);

56

// merge the entry in initial correlation table with received

 // replace the entry with the newly merged table

tmp_table.replace(tmp_entry, merged_table);

ese y, th t of tm ain

e ();

// reset correlation_result

correlation_result. et();

}

}

put_ n_ Al le);

 Result merging process

n Figure 4-15, this process will not stop until there

tion table can be substituted.

//correlation table

merged_table = merge(tmp_entry, received_correlation_table);

 // r

tmp_

t tmp_entr

ntry.reset

 iterate from

e star p_table ag

res

}

out correlatio table.add l(tmp_tab

}

Figure 4-15 Correlation Result Substitution algorithm

A->H

A->C∧D

C->G

C->K

A->H

A->G∧L

Figure 4-16 Correlation

According to the algorithm given i

is no more correlation table entry in the initial correla

The merge() function in Figure 4-16 is the core function of the merging process. It

=

CR of C Initial Correlation Table Outcome Correlation Table

A->K∧L
CR of D

D->L

CR: Correlation Result

57

merges the correl

with the correlat eived correlation results, for example, src_table.

Each entry in the . The

utc me f t is m le.

A description to t the remaining text of

is ection.

The merge of pot mple substitution processing. The potential

result of dst_entry will be substituted by the potential result of each entry in src_table.

For example, A->C∧D will be substitute by two potential result C->G and C->K,

thus generate two new entry with A->G∧D and A->K∧D as their potential result

resp ly.

e merge of guessed element, used element, and lost elements are simply merging

these three elem Lost Number

ill gained by simply getting the size of the respective newly merged element set. The

number should be bles for Thread-1

nd because there is no received correlation result for Thread-2, therefore correlation

otential Lost Guessed Mis-match Lost Guessed Used

ation table entry in original correlation table, for example, dst_entry,

ion table in the rec

 src_table will be merged with the dst_entry column by column

o o o h erging is a new correlation table with the same size with src_tab

he merging of different column will be given in

th s

ential result column is a si

ective

Th

ent sets respectively. The new Guessed Number and

w

new Mis-matching Number equals the difference between the size of merged

correlation task set and the size of merged used elements. If this different is negative,

then the Mis-matching will be set to 0. For example, for the merging of A->C∧D

with C->K, the merged Guessed Elements is {K}; the merged Lost Elements is {K};

the merged Used Elements is {A, C, D}; the new Guessed Number is 1; the new Lost

Number is 1; as to the new mis-matching number, the merged correlation task is {A,

C, D}, and the merged Used Elements is {A, C, D}, so the merged mis-matching

0. Table 4-6 lists the new merged correlation ta

a

table for Thread-2 is the same with Table 4-2.

P

Result Number Number Number Elements Elements Elements

58

A->H 1 1 3 H H A

A->G∧L 1 1 0 G C A,C,D,L

A->K∧L 1 1 0 K K A,C,D,L

Table 4-6 Correlation Table for Thread-1 after Correlation Result Merging

4.3.5.5 Event Guessing

fter Correlation Result Merging if there is still potential result whose causes are not

le of Correlation Result Merging.

A

the global root cause, the event guessing process will then start. The main idea of

Event Guessing process is to generate a guessing correlation result for each

non-global root cause in the potential result under the assumption that no event has

been received, and then merge each guessing correlation result with the outcome

correlation tab

In order to explain this clearer, assumption will be made that the correlation result for

C lost during its way to Correlator 2. Therefore, after Correlation Result Merging the

Correlation Table should be as Table 4-7.

Potential

Result

Lost

Number

Guessed

Number

Mis-match

Number

Lost

Elements

Guessed

Elements

Used

Elements

A->H 1 1 2 H H A

A->C∧L 1 1 0 C C A, D, L

Table 4-7 Correlation Table for Thread-1 after Correlation Result Merging (Correlation

Result of C lost)

In the correlation table shown in Table 4-7, there is one event, e.g. C, in potential

result A->C∧L does not belong to global root cause, and then the event guess process

ill start. First, the guessing correlation result for event C will be generated under the

n t even r le

w

assumptio

hat no t has been eceived (Tab 4-8).

59

Potential

mber mber

atch

mber

t

ments

essed

ments

d

Result

Lost

Nu

Guessed

Nu

Mis-m

Nu

Los

Ele

Gu

Ele

Use

Elements

C->K 2 2 0 C, K C, K None

C->G 1 2 0 C C, G None

Table 4-8 Guessing Correlation Result for event C

esult Number Number Number

Lost

Elements

Guessed

Elements

Used

Elements

After generating the guessing correlation result, all guessing correlation results (Table

4-8) will then be merged with the outcome correlation table generated from

Correlation Result Merging (Table 4-7) using the same method introduced in section

4.3.5.4. The result correlation table is given in Table 4-9.

Potential Lost Guessed Mis-match

R

A->H 1 1 2 H H A

A->G∧L 1 2 0 C C, G A, D, L

A->K∧L 2 2 0 C, K C, K A, D, L

Table 4-9 Correlation Table for Tread-1 after Event Guessing process

 Pos ti ss

st-co ation pr ssing ma y includes the following operations: removing

d rrelation esult, gen ating correlation result and echoing/exporting

fter the correlation table is generated from the event guessing process, all entries

 only A-> K∧L, A->G, and

->H are supported correlation result.

4.3.5.6 t-correla on proce ing

The Po rrel oce inl

unsupporte co r er

correlation result.

A

that are unsupported for this correlation will be removed. For example, in Table 4-9

the entry A->G∧L is unsupported for this correlation and will be removed from the

correlation table in the Post-correlation processing process. For the all-in-one

correlation rule for A is A->(K∧L)∨G∨H, and thus

A

60

In the corre l g

tion ult message. In this step only the entry with its Guessed Nu as 0

 encl to co lation res . If the Guessed Numbe entrie t 0,

then the whole co esult message.

Po elatio o process for t d correlation

s, an e ad term

el correlation mechanism and delay w ana

ir mstance at the ar l of necessary correlation elements are sparse,

which c ocation

f Event Guessing Process, which both increases the workload of the correlator (event

rk than normal correlation) and decreases the

he circumstance of sparse arrival of correlation elements can be caused by two main

.

lation resu t generatin process, the correlation table will be enclosed into

correla res mber

will be osed in rre ult r of all s are no

rrelation table will be enclosed into the correlation r

The generated correlation result message can be either echoed back into correlation

message queue, or exported to higher level correlator, which depends on whether the

symptom event of the correlation result/correlation table is in the export event set of

this correlator.

After the

task end

st-corr

d the corr

n, the wh

lation thre

le correlation

 will then

he assigne

inate.

4.3.6 D ay indow lysis

There are c cu s th riva

ould cross two correlation windows. This could cause the frequent inv

o

missing correlation does much more wo

accuracy of correlation result. Therefore, some efforts should be made to reduce the

frequent invocation of event guessing process.

T

reasons: network congestion and the difference of correlation windows among

different correlators. The first reason is unpredictable and difficult to cater for, as it is

caused by underlying network and is out of the control of the proposed fault system.

However, the second reason is predictable and most sparse arrivals are caused by it.

Therefore, a way should be found to reduce the frequency of invocation of Event

Guessing process caused by this reason

61

Delay Correlation is introduced to address this issue. Its main idea is to delay its

correlation for a time period waiting for the un-received correlation elements. An

example will be given here to explain the arrival pattern of correlation results.

In most cases, as illustrated in Figure 4-17 (a), if an error occurred in managed

network and was received during the correlation window m, and correlation window

m will ends within the time scale of correlation window n, then both the symptom

62

63

Figure 4-17 Event Arrival Patterns for event correlation

events triggered by the error and the correlation result calculated by Correlator C can

be received within correlation window n. Correlator A can then calculate the root

Correlator A

Correlator C CW m CW m+1 …

Error

Events

CW n CW n+1 CW n+2 …

Normal Correlation

Events Correlation Results

(a) Normal Case

Correlator A

Correlator C CW m CW m+1 …

Error

Events

CW n CW n+1 CW n+2 …

Events Correlation Results

Event Missing

Correlation

(b) Event Missing Correlation

CW m-1

Correlator A

Correlator C CW m CW m+1 …

Error

Events

CW n CW n+1 CW n+2 …

Events
Guessed Correlation

Results

(c) Worst Case

CW m-1

Event Missing

Correlation

Delay Correlation

Delay Correlation

cause of the received events without the invocation of event guessing process soon

after correlation window n terminates.

However, there are circumstances that a low level correlation window crosses two

adjacent high level correlation windows. As illustrated in Figure 4-17 (b), the

correlation window m in correlator C cross both the correlation window n and

correlation window n+1 in correlator A. Thus the symptom events caused by a

network error can be received within correlation window n in correlator A. however,

the correlation result that are necessary for the correlation n will not be available until

correlation window n+1. Under this circumstance, unnecessary element guessing

process will be called because of the delay arrival of low level correlation result.

This circumstance can be partially avoided by adopting delay correlation. If the delay

correlation mechanism is adopted, when the normal correlation can not be performed,

the correlation thread will first delay the correlation for a configurable time period

waiting for the un-received correlation elements (both low level correlation results

and delayed correlation events). If enough un-received correlation elements are

received during the delay period, event guessing could be avoided.

There are currently no well-defined criteria for setting the length of a correlation

window. However, the max-bound for the length of correlation window will be

analyzed here in the remaining text. Figure 4-17 (c) gives the worst case under which

the longest time should be delayed. In Figure 4-17 (c), the events for correlator A is

received during the correlation window n-1, but the event for correlator C is received

during the correlation window m-1. For the start times of correlation window m-1 is

slightly later than the end time of correlation window n-1, according to the delay

correlation me rmed. If very

nfortunately, the elements received by correlator c in correlation window m-1 are not

chanism given before, delay correlation will be perfo

u

enough for normal correlation, so the correlator c will also perform delay correlation.

Therefore, under the worst case, if the correlator is going to keep the invocation of

64

Event Guessing Process at the lowest level, the delay time for correlation A should be

calculated like this:

delay(correlator A) = cw(correlator C) + delay(correlator C)

If we apply this to a more general circumstance, the longest delay time for correlator c

(at the lowest possibility of invocation of Event Guessing Process) at correlator level i

should be set to:

 delayi(c)=max(cwi-1(e)+delayi-1(e)))(csubBranche∈

C1

C2 C3

C4 C5 C6

Figure 4-18 FMN topology

For example, in the FMN given in Figure 4-18 the max delay for C1 at level 2 should

be:

delay2(C1)=max((cw1(C2)+delay1(C2)), (cw1(C3)+delay1(C3)))

Substituting delayi-1(e) by max(cwi-2(f) + delayi-2(f)) f∈subBranch(e) iteratively, we

can calculate the delay for correlator c at level i should be:

∑
−

=
∈

+=
1

0
0)(

))((max)()(
i

k esubBranchpki pdelayecwcdelay e is the correlator that holds the max

delay at level k.

65

There is no low level correlator below level 1 correlator, so delay0(p) should be set to

e f correlator p at level

ay of a correlator to the max delay, the correlation precision will

 delay maybe mu e

onsumed by event guessing. Therefore, a tradeoff should be made between the

fault management system pro he newly modified network

omponents, all related expert knowledge files, e.g. Correlation Rule, Routing

pdated manually and re-compiled. Although the modification of components in

the updating would

e a heavy and error-prone task.

anism is proposed. The

self-updating mechanism will be performed y

connectivity monitor, service monitor and hardware monitor and so on as outside OSS

th event branch radius of branch of events in export event set o

0.

If we set the del

increase however the time consumed by ch longer than the tim

c

correlation precision and correlation latency, and to select a property value for the

correlator.

4.4 Correlation Expert Knowledge self-updating mechanism
Correlation Rules, Information on Correlation Event and Routing Ontology for KBN

are three main expert knowledge types for event correlation. However the expert

knowledge are network components (hardware, software and services) related.

Therefore, the modification in any components will cause these expert knowledge

types to go out of date, and thus will cause the newly modified component not to be

managed by the proposed fault management system. In order to enable the proposed

vide fault management for t

c

Ontology, Correlation Event Information, and Fault Recovery Policies would need to

be u

managed network may not be very frequent, the knowledge base

b

In order to address this issue, a self-updating mech

 b adding network monitors such as

66

to the fault management system, and have them monitor different layers (hardware,

responding network monitor will notice it, and then send a modification message

he proposed fault management system.

nomy. Besides, an application module that holds the self-updating

lgorithm will be designed and developed. This module will work as a configuration

anager in the proposed fault management system.

software and service) of the managed network. Once there is a modification in the

managed network, either caused by error or network operators’ configuration,

cor

to t

In the proposed fault management system, several knowledge files as well as their

access drivers that assist the updating of the aforementioned knowledge will be added,

such as conceptual event correlation graph, components dependency graph, managed

object taxo

a

m

Currently this self-updating mechanism has not been well defined. Therefore, instead

of a detailed design only high level verbal descriptions are available here. Thus the

self-updating feature is listed as future work.

67

Chapter 5

Implementation

of the SNMP simulator, the

plementation of event correlator and the implementation of knowledge base will be

5.1 Overview
The implementation of the proposed fault management system followed the following

steps: implementation of the simulator, design of the format of expert knowledge file

and implementation of knowledge base, and finally, implementation of the event

correlator. An implementation level architecture of this system is given in Figure 5-1.

This chapter describes a partial implementation to the system described in chapter 4.

The primary purpose of the implementation was to evaluate the distributed event

correlation scheme that was designed. In the following subsections, the software and

development environment, the implementation

im

introduced.

Fault Management System

ie.tcd.cs.kbnms.correlator

ie.tcd.cs.kbnms.knowledgebase

ie.tcd.cs.kbnms.normalizer

KBN

68

Figure 5-1 Implementation level architecture of this system

architecture in Figure 5-1 is slightly different from the

u 4-2. The package ie.tcd.cs.kbnms.correlator is the

izer and Event Correlator service running on it;

gebase is the implementation of the Knowledge

ase; the package ie.tcd.cs.kbnms.normalizer is the implementation of the Event

ormalizer. As this implementation is an evaluation version of the distributed

ion implementation was Java based using: JDK version 1.5 build 11; the

ersion of KBN used to support the running of the system is 3.0; and the IDE used for

ftware development was Eclipse 3.2. All code, configuration files, and ontology

ccompanying CD.

traps) sent from the managed network. This simulator has been used in the evaluation

to send synthetic SNMP traps wrapped by KBN notification. This simulator was

developed based on SNMP4J 1.8.2 which is a java version SNMP implementation and

extSiena which is the implementation of underlying KBN 3.0. Figure 5-2 illustrates

the workflow of the event simulator (represented by ie.tcd.cs.taiw.extsnmp4j).

The implementation level

esign given in Fig re d

implementation of the Service Organ

the package ie.tcd.cs.kbnms.knowled

B

N

correlator scheme, the Trouble Shooter has not been implemented, and for the sake of

simplicity the Subscription Manager has been implemented by the class

SubscriptionManager.class and has been put into the package

ie.tcd.cs.kbnms.normalizer.

This evaluat

v

so

files can be found in the a

5.2 Simulator Implementation
An event sender has been implemented to simulate the error messages (using SNMP

69

Figure 5-2 Implementation level architecture of event simulator

As illustrated in Figure 5-2, the whole work flow includes three steps:

. Figure 5-3 gives a sample SNMP trap

rapped by a KBN notification.

) Constructing SNMP package and encoding the package into Basic Encoding Rule

(BER) [21] stream. This step will be done by calling Pdu.encodeBER() in package

org.snmp4j. The code snippet listing below illustrates the how a PDU is created.

(1) Reading synthetic SNMP field value from configuration file named traps.conf. Its

format is given in Appendix B. Each SNMP field in traps.conf will be read according

to its intrinsic data type, for example, the “community” field will be read as a string,

the “error index” field will be read as Integer

w

Figure 5-3 SNMP trap wrapped by KBN notification

(2

KBN
notifications

ie.tcd.cs.taiw.extsnmp4j

traps.conf
SNMP4J KBN

string trap string trap BER stream BER stream KBN
notifications

Event=https://www.cs.tcd.ie/~taiw/ontology/200
MessageType=1

7/8/22/RoutingOnt.owl#C

Sender="192.168.0.2"
SeqNo=1197308787787505792
Payload="\2474\002\004b\030\350'\002\001\000\002\001\0000&0\r\006\b+\006\
001\002\001\001\003\000C\00170\025\006\n+\006\001\006\003\001\001\004\00
1\000\006\a+\006\001\002\201\024\001\000\000\000\000\000\000\000\000\000\0
00"

70

/* Creating PDU */

PDU pdu = new PDU();

pdu.setType(pduType);

pdu.setRequestID(new Integer32(reqID));

pdu.setErrorStatus(errStatus);

pdu.setErrorIndex(errIdx);

pdu.addAll(vbs);

(3) Constructing a KBN notification and publishing it into the KBN. This step is done

by constructing a ThinClient that connects to the KBN server, and then uses the

publish() method to publish a notification. The code listing below gives an illustration

as to how notifications are published.

/* creating

hinClient Client = null;

Client.publish(n);

5.3 Service Organizer Implementation
The package ie.tcd.cs.kbnms.correlator is the implementation of Service Organizer.

For the sake of simplicity, the evaluation implementation incorporates both the Even

Correlator servi 5-4 gives the

plementation level architecture of Service Organizer.

ThinClient and publish notification */

T

try{

 Client = new ThinClient("tcp:127.0.0.1:1234");

}catch(InvalidSenderException e){

 System.err.println("FrontendSimulator Error: can not create KBN \ Client.");

 return;

}

t

ce and Service Organizer into this package. Figure

im

71

ie.tcd.kbnms.correlator

Correlation Result

CorrelationThread.class

Figure 5-4 Implementation level architecture of event correlator

Queue is the implementation of Correlation Message Queue.

e evaluation implementation, it uses a java ArrayList to store all correlation

ll correlation elements (including

n result) inherit from one same interface

tion

lation result, such as getEvent() and getOccurrenceTime() and so on.

 addition, inheriting from one same interface enables correlation events and

an be kept in a single Correlation Message Queue.

he class EventCorrelator and class CorrelationThread implements the Event

multi-threaded event

tCorrelator will select

thin. The code listing below

lustrates the correlation task analysis process and the assignment of correlation tasks

Class CorrelationMessage

In th

elements it receives from lower layer components. A

correlation event and correlatio

Correlatable.class. This interface contains some common operation for correla

event and corre

In

correlation results c

T

Correlator service. They work together and implement a

correlation service. As mentioned in section 4.3.4, the Even

correlation tasks from CorrelationMessageQueue after a correlation window ends and

then assign the selected correlation tasks to idle CorrelationThreads. All correlation

elements that are selected into correlation tasks will be removed from correlation

message queue to keep the CorrelationMessageQueue

il

EventCorrelator.class

CorrelationMessageQueue.class

Snapshot of CorrelationMessageQueue

orrelation Task C Correlation Result

Correlatable Event/Correlation Result

72

to CorrelationThreads.

while(true){

 /* waiting for correlation window elapse */

 correlationWindowElapse();

 /* reset terminated correlation thread */

 resumeTerminatedThreads();

 if(CMQRef.isEmpty()){

 System.out.println("INFO (EventCorrelator): No correlatable message in \

Correlation Message Queue, enter another correlation round.\n");

 continue;

 }

/* if t f current

correlation thread */

}

he correlation message queue is not none, gain a snapshot o

 CMQCopy = CMQRef.copy();

 /* perform correlation task analysis */

 getAllCorrelationBranches();

if(TaskList.isEmpty()){

 /* no correlation tasks is gained */

 System.out.println("INFO (EventCorrelator): TaskList is null, enter another \

correlation round.");

 continue;

 /* assign correlation task to correlation thread */

 generateCorrelationThread();

}

The Correlation for each correlation task will be performed in each CorrelationThread

following the following 6 steps: (1) generating direct correlation rule; (2) initializing

correlation table; (3) checking whether a delay correlation is needed; (4) merging

correlation result into correlation table; (5) checking whether an event guessing

73

process is needed; (6) post-correlation process. The code listing below illustrates how

are organized from a high point of view. For more detail on each step,

pl lator.CorrelationThread.

/

CR

ull;

 needed, perform delay correlation */

orrelation(ct);

 relation table given new elements are fetched */

/* m into correlation table */

Vec r<

ocess is needed, perform event guessing process */

Correlation(newCT)){

T = performElementMissingCorrelation(newCT);

ng removing illegal potential correlation result,

rink correlation table, generating correlation result and exporting correlation result

r echoing it back into correlation message queue */

these 6 steps

ease refer to code in class ie.tcd.cs.kbnms.corre

/* generating direct correlation rule *

D = getDirectCorrelationRule();

Vector<CorrelationTableEntry> ct = n

while(Delayed == false){

 /* initialize correlation table */

 ct = initCorrelationTable();

 /* if delay correlation is

 delayC

if(HasNewElement == true){

 /* re-initialize cor

 ct = initCorrelationTable();

 }

}

erging correlation result

to CorrelationTableEntry> newCT =

populateCorrelationTableWithCorrelationResults(ct);

/* if event guessing pr

if(needElementMissing

 newC

}

/* post-correlation processing, includi

sh

o

removeUnsupportCorrelationTerm(newCT);

newCT = shrinkCorrelationTable(newCT);

CorrelationResult finalCR = genCorrelationResult(newCT);

procCorrelationResult(finalCR);

74

This package contains most of the intelligence of the proposed fault management

system, and its development and debugging took the longest time in the whole

Base Implementation
s t rsion focused on the distributed correlation

 the Knowledge Base mainly concentrates on the

ge such as event

 and Event Correlation Graph and their access driver.

 Rules were encoded into the ontology named as

 named as

 can be found in the accompanying CD.

e event information of an event mainly includes some relevant topology specific

UUID, its OID and so on. The

ow the event information for the event A in

68.0.11</sender>

geFaultDelay>

 <isAbsoluteRootCause

e</isObservable>

">A</displayString>

development phase.

5.4 Knowledge
A his implementation is an evaluation ve

scheme, the implementation of

design and implementation of the format of expert knowled

information, correlation rules

Event information and Correlation

tsecg.owl, and the Event Correlation Graph was encoded into the ontology

RoutingOnt.owl. All these ontology files

Th

information of an event, for example, its sender, its

ontology snippet listing below illustrates h

Figure 4-10 is organized.

<Event rdf:ID="A">

 <sender rdf:datatype="&xsd;string">192.1

 <averageFaultDelay rdf:datatype="&xsd;int">30</avera

rdf:datatype="&xsd;boolean">false</isAbsoluteRootCause>

 <multiSymptom rdf:datatype="&xsd;boolean">false</multiSymptom>

 <isObservable rdf:datatype="&xsd;boolean">tru

 <displayString rdf:datatype="&xsd;string

 <mapTo rdf:datatype="&xsd;string"

75

>https://www.cs.tcd.ie/~taiw/ontology/2007/8/22/RoutingOnt.owl#A</mapTo>

e="&xsd;string"

 >0b34e3e8-aaaf-4f63-b1c9-fd9247a8a31f</uuid>

/Event>

/CorrelationRule>

icEventCorrelationGraph which works as the common

Topology Specific Event Correlation Graph. This driver is

ding semantic web

d by a class called

resented

epresent the

n relationship

or correlation rules are represented by two

merge() and substituteBy()) in class CorrelationEquation. Besides, the

absorbtion rule and duplication rule from propositional logic are also introduced into

 <oid rdf:datatype="&xsd;string"

 >1.3.6.1.2.148.11</oid>

 <uuid rdf:datatyp

<

The correlation rule is represented using two slots – cause and symptom – of an

ontology class CorrelationRule. The ontology snippet listing below shows the

ontology encoding of correlation rule A->C∧D.

<CorrelationRule rdf:ID="CorrelationRule_40">

 <cause rdf:resource="#C"/>

 <cause rdf:resource="#D"/>

 <symptom rdf:resource="#A"/>

<

The access driver for tsecg.owl is implemented by class

TopologySpecificEventCorrelationGraphImpl.class. This class implements the

interface TopologySpecif

access interface for

implemented using Jena, which is a java framework for buil

application.

In this implementation, Correlation Rule is represente

CorrelationEquation.class. The “and or” format of cause and symptom are rep

the combination of two supportive classes that are designed to r

disjunction relationship (Disjunction.class) and conjunctio

(Conjunction.class). The calculation rules f

methods (

76

this implementation to support correlation rule calculation.

The routing ontology (in RoutingOnt.owl) is constructed using OWL

 implementation it is mainly used by KBN

Subscription Manager to

bscription management. It is constructed after the example given in Figure

-10. The ontology snippet from routing ontology listing bellow gives an example

C"/>

f rdf:resource="#D"/>

/owl:Class>

t Normalizer Implementation
he normalizer implementation includes the implementation of Outgoing Message

subclass/superclass relationship. In this

nodes to route trap messages in KBN and it is also used by

perform su

4

how events are organized in this ontology. It lists all events that as the “subclass” of

event C.

<owl:Class rdf:ID="C">

 <rdfs:subClassOf rdf:resource="#A"/>

</owl:Class>

<owl:Class rdf:ID="G">

 <rdfs:subClassOf rdf:resource="#

 <rdfs:subClassO

<

<owl:Class rdf:ID="K">

 <rdfs:subClassOf rdf:resource="#C"/>

</owl:Class>

5.5 Even
T

Queue, Event Dispatcher and Message Processing Model. For the sake of simplicity,

the evaluation implementation did not implement the Incoming Message Queue, and

besides, the implementation of subscription manager (SubscriptionManager.class) has

also been incorporated into the event normalizer.

The Outgoing Message Queue and Event Dispatcher are implemented by class file

77

OutgoingMessageQueue.class and MessageProcessor.class separately. The design

vel Message Processing Model is implemented by two interfaces and one abstract

areOutgoingMessage() is in charge of compiling KBN notifications from

ssIncomingMessage(), however, will do more than just turn

 ability to understand the content of the

ge and then perform corresponding operations according to the content

e code snippet list bellow illustrates how the incoming

by processIncomingMessage() in

fication and construct message object */

 = (CorrelatableMessage)MP.parse(n);

ull){

return;

geProcessingModel simply put the

ceived SNMPTrapMessage into correlation message queue.

In this evaluation implementation only two Message Processing Models are

le

class; they are MessageProcessingModel, MessageParser and Message (abstract class).

The abstract class Message represents the message object. All message types that need

to be supported by the proposed fault management system should inherit from this

class. The interface MessageParser is mainly in charge of encoding/decoding

messages between network stream and message object. The MessageProcessingModel

contains two methods: prepareOutgoingMessage() and processIncomingMessage().

The prep

message object. The proce

a notification into message object. It has the

received messa

of received message. Th

SNMPTrapMessage is processed

SNMPTrapMessageProcessingModel.

/* parsing noti

CorrelatableMessage msg

Correlatable crrMsg = msg.asCorrelatable();

if(crrMsg == n

}

/* perform corresponding operation to the message */

CorrelationMessageQueue.getInstance().add(crrMsg);

In the evaluation implementation, the SNMP trap message will only be used for

correlation, so currently instead of performing content analysis the

processIncomingMessage() of SNMPTrapMessa

re

78

implemented to support the normal running of distributed event correlation scheme;

they are SNMP Message Processing Model and Correlation Result Message

Processing Mode. Figure 5-5 introduces the architecture of event normalizer at

implementation level.

Normalizer

lementation Issues
is implementation version is mainly developed for the evaluation of the proposed

ing the implementation mainly

d correlation scheme.

) There were always concurrent access exceptions thrown when debugging the

 and reimplemented to

ecrease the granularity of object lock.

Figure 5-5 Implementation Level architecture of Event

5.6 Imp
Th

correlation scheme. Therefore, issues encountered dur

reside in the developing and debugging of the distribute

(1

multi-threaded event correlation scheme. For simplicity to address this, I simply set

all methods in correlation message queue and its queue entry using synchronized

keyword. Although easy this method however degrades the performance of the code.

In the future this critical section will be carefully analyzed

d

(2) The circumstance that two correlation tasks could the same correlation event was

SNMPMessageParser.class

SNMPMessageProcessingModel.class

KBN

MessageProcessor.class

CorrelationResultMessageParser.class

CorrelationResultMessageProcessingModel.class

Enco

SN

ded SNMP Message

MPTrapMessage

Encoded SNMP Message

ie.tcd.cs.kbnms.normalizer

CorrelationResultMessage

OutgoingMessageQueue.class

79

not noticed at the beginning of the development, which assumes only one correlation

task has the “shared” event. I address this problem by using a counter to indicate how

many tasks will use this event, and then divide the correlation task analysis into two

steps: scan step and event fetching step. The counter will be added by twice in the

an step if two tasks will use this event, and in the event fetching the event will be

duplicated to every correlation task before it being removed.

(3) Besides the above mentioned two issues during the implementation period, the

usage of new tools such as Jena and snmp4j required significant effort, especially as

these were new to me.

sc

80

Chapter 6

Evaluation

onducted in two parts: performance benchmark and feature

omparison. In the performance benchmark part, test cases were set up and carried out

under different architectures and configurations in order to gather the performance

statistics of the proposed correlation scheme. Analysis was then undertaken on these

performance statistics in order to get its performance feature. The feature comparison

part was conducted from two perspectives: the architecture and the correlation scheme.

The architecture comparison compares the functional features between systems with

different architecture, e.g. centralized architecture and peer-to-peer architecture; the

correlation scheme comparison compare the proposed correlation scheme with current

existing several correlation algorithms such as rule-based scheme, codebook scheme

and Artificial Intelligence based scheme from the functional point of view.

6.1 Performance Benchmark
A Performance Benchmark was designed to test the timing performance of the

proposed event correlation scheme. A correlation graph with 13 events and a

maximum correlation depth of 4 was constructed. Test cases were constructed in

accordance with this correlation graph. A test case set included 13 test cases which

tested the performance of either normal correlation or event missing correlation at

different correlation depth was constructed. The correlation scheme was written in

Java and was compiled by jdk1.5.0_11. The benchmark environment is listed in table

6-1, and all test cases is listed in appendix A.

The Evaluation was c

c

81

CPU: Intel Celeronm 1.7GHz

Memory: 768MByte

Operating System: Microsoft Windows XP SP2

Java Environment: JDK1.5.0 build 11

KBN Version: 3.0

Table 6-1 Benchmark environment.

ing illegal

orrelation table entry, shrinking correlation table and pushing correlation result into

BN. The Average Correlation Time is the total time that a correlation thread takes to

 Direct Correlation Rule Calculation

Time, Correlation Table Calculation Time and Post-correlation Processing Time.

These evaluation criteria are selected mainly for the reason that they can represent the

correlation speed of the proposed correlation scheme. Furthermore, each the selected

evaluation criterion represent a critical step in the whole correlation phase. Thus by

correlation, we can have a clear picture of which step needs further improvement in

order to improve the performance of the whole correlation.

6.1.1 Benchmark Criteria, Methodology and Results

Benchmark metrics for the proposed correlation scheme include Average Correlation

Time, Average Branch Selection Time, Direct Correlation Rule Calculation Time,

Correlation Table Calculation Time, and Post-correlation Processing Time. The

Average Branch Selection Time is the time that the correlator selects correlation tasks

from correlation message queue, and assigns them to correlation threads. The Direct

Correlation Rule Calculation Time is the time that a correlation thread spends on

calculate direct correlation rule, the correlation table calculation time is the time that a

correlation thread spends on calculating correlation table and the Post-correlation

Processing Time is the time that the correlation thread spends on remov

c

K

perform the correlation for a task. It is the sum of

observing the percentage of a specific correlation step occupies in the whole

82

The performance test was conducted under two architectures – single centralized

and multip d correlators – in order to gain the performance

po applied to different architecture.

e than 20 times. For each time, all the

 bench metrics were measured. After the 20 rounds execution for

one test case, an arithmet etric was calculated. All

test cases in the test case set were carried out in the performance test on single server,

 cases from the

test case set are selected to conduct performance test over multiple correlator. Table

6-2 lists the result of performance test on single correlator and Table 6-3 lists the

result of performance test over multiple correlators. All metrics in Table 6-2 and Table

6-3 are represented using millisecond and because both KBN node and correlators are

running on the same machine and sharing a single CPU time in this simulation, the

statistics gained from this performance benchmark will be slightly larger than those

from real-world use.

Test Case

Name

Time Time

ime

correlator le distribute

statistics of the pro sed correlation scheme when

All test cases wer carried out more

aforementioned mark

ic mean value for each benchmark m

and because of the feature of distributed correlation, only several test

Number of

Thread

Average Branch

Selection Time

Average

Correlation

DCR

Calculation

Correlation Table

Calculation Time

Post-correlation

Processing T

Norm_2_2 1 10.5 23 18.74 1.03 4.64

Norm_2_3 1 11.0 26.05 19.95 1.85 5.42

Thread-1 64.55 40.05 1.32 23.52 Norm_2_4 25

 Thread-2 32.55 18.55 1.07 13.04

Norm_3_3_a 1 25.05 120.14 94.64 1.85 25.49

Norm_3_3_b 1 27.1 79.15 54 1.42 23.41

Norm_3_4_a 1 25.5 65.04 44.09 1.23 24.46

Thread-1 217.69 179.23 3.82 48.25 Norm_3_4_b

1.53 44.31 Thread-2

46.67

123.85 76.92

83

Norm_3_5 1 30.53 127 100 1.46 30.42

Thread-1 210.59 177.06 5.32 40.33 Norm_3_7

Thread-2

48.24

114.71 71.76 1.94 43.68

Norm_4_5 1 48.39 322.21 278.65 1.76 43.24

Norm_4_13 1 50.42 325.33 283.25 2.13 40

EMC_2_2 1 10.2 1031.59 19.41 1.25 11.03

EMC_2_3 1 13.53 1025.76 18.75 2.11 9.41

Table 6-2 Test case execution result over 1 correlator

umber of

orrelator/Thread

Average

Branch

Selection Time

Average

Correlation

Time

DCR

Calculation

Time

Correlation

Table

Calculation Time

Post-correlation

Processing

Ti

Test Case

Name

N

C

me

Norm_3_5 2/2 33.00 113.00 86.00 3.2 22.00

Norm_3_5 2/3 28.75 31.00 73.19 48.81 1.88

Norm_4_13 3/4 51.75 51.67 59.33 51.75 1.67

Table 6-3 Test case execution result over multiple correlators

6.1.2 tatistics

• Average Branch Selection Tim

The major factors that affect the A erage Branch Selection T are the number of

correlation branches that exist in co tion me

in each selected correlation branch, as well as the depth of the selected correlation

branch. By examining Table 6-2 we can know that the unit Average Branch Selection

Time is approximate 11ms/branch for a correlation depth of 2, 25ms/branch for a

correlation depth of 3 and 48ms/branch for a correlation depth of 4. In addition, the

test cases with two correlation branches have their Average Branch Selection Time

e erage Branch Selection Time of the same

m_2_4 has its Average Branch Selection Time as 25m

which is o times as the unit A ch tion Ti 1ms), and it is

S Analysis

e

v ime

rrela ssage queue, and the number of event

value two tim s the value of unit Av

correlation depth, e.g. Nor s,

 tw verage Bran Selec me (1 the

84

sa with Nor _b and No _7. The nt Missi rrelation put

af Av Branch Se Time heref e EMC_2_2

EMC_2_3 hold the same Average Branch n Tim th Norm_2_2

N _2_3.

By comparing the corresponding test case in T 2 and 6-3, we can k

that when applied to multiple corr e A Branch ction Time cha

little, so the di verage Branch

election Time.

b from the ly ajor cause that affects

the Average Branc he of correlation and the b a

relation round. applied gle correlator, the in verage

ction T ith depth fo nentia mental m power 2,

on Time

incremental m

2*),1(),(
dpthunitABSTbrchdpthABST

brchdpthABSTbrchdpthABST
+−

me m_3_4 rm_3 Eve ng Co little

fects on erage lection , and t ore th and

Selectio e wi and

orm

able 6- Table now

elators, th verage Sele nges

stribution of correlation puts little affects on the A

S

A conclusion can e made

h Selection is t

previous ana

 depth

sis that the m

ranch number in

cor When on a sin crease of A

Branch Sele ime w llows expo l incre odel of

and the increase of Average Branch Selecti with branch number follows linear

odel (Figure 6-1).

−
),(brchdpthABST =)()1,(
=

ch Selection Time incremental model Figure 6-1 Average Bran

• Average Correlation Time, DCR Calculation Time, Correlation Table Calculation

Time and Post-correlation processing time

The Average Correlation Time is the sum of DCR Calculation Time, Correlation Table

Calculation Time and Post-correlation processing time. As indicated by Table 6-2,

when applied to a single correlator, the Correlation Table Calculation Times for all

test cases vary little with the correlation branch; the length of Post-correlation

Processing Time relate mainly to the length of correlation result, and it also varies

little with the correlation depth. The DCR calculation time, however, occupies most of

the Average Correlation Time, and it varies significantly with the number of event

85

existing in the correlation branch and correlation depth. Therefore the DCR

calculation time is the major cause that affects the length of the Average Correlation

Time when the proposed correlation scheme is applied on single correlator.

However, when applied on multiple correlators, there is a significantly performance

T st Case Name Number of DCR Calculation Average Correlation

improvement in the proposed correlation scheme. By comparing the corresponding

executing result in Table 6-2 and Table 6-3, we can know that all the test case result

improves significantly. The performance improvements are listed in Table 6-4.

e

Correlator/Thread Time Decrease (%) Time Decrease (%)

Norm_3_5 2/2 14.00% 11.02%

Norm_3_5 2/3 51.19% 42.37%

Norm_4_13 3/4 81.73% 81.76%

Table 6-4 Performance Improvement

All test cases have significant performance improvement when carried out over

multiple correlators. The more correlators and threads this correlation is distributed,

the higher performance it will improve. According to the proposed correlation scheme,

multiple se arallel the

orrelation by having low level correlation finished within the correlation window of

leve or high level correlation. Therefore the

rvers can distributed the DCR calculation process and p

c

high level correlation, and then both simplify the DCR calculation process for high

l correlation and save the correlation time f

overall time for normal correlation can be greatly improved and the delay put by

underlying infrastructure will then become the major cause that affect the correlation

time and correlation accuracy.

One thing worth mentioning is that the Average Correlation Time of Element Missing

Correlation takes more than 1000 milliseconds and much larger than that of normal

86

correlation. This is because the lost event triggered the delay correlation, and the

delay time is set to 1000 milliseconds for all test cases. After removing the delay time

from the Average Correlation Time for Element Missing Correlation, the statistics for

lement Missing Correlation are nearly the same as normal correlation for the

ximum

vents number that this proposed correlation scheme can afford at a given correlation

ac

eatur omparison
d faul ent system i istributed fault ent system.

When speaking about th eans that not only

e architecture of the organizational structure is distributed, but also the correlation

OSI network management model and Madeira project – are selected to conduct the

parison. OSI network management model use the manager/agent architecture with

most management intelligence residing in manager. This architecture can reduce the

applied to small scale network, the centralized architecture may have better

E

proposed correlation scheme processing the normal correlation and element missing

correlation using the same approach.

Pressure and accuracy testing will be conducted in the future to test the ma

e

speed and accur y.

6.2 F e C
The propose t managem s a pure d managem

e pure distributed fault management, it m

th

scheme is distributed and thus has the ability to distribute a single correlation task

over multiple event correlators. In the following text, comparisons between the

proposed fault management scheme and other existing fault management schemes

from both the architecture point of view and correlation scheme point of view will be

given.

6.2.1 Architectural Comparison

In the architecture comparison section, two projects with two typical architectures –

com

complexity and difficulty for the deployment of network management system. When

87

performance than distributed architecture, because the distributed architecture will put

a lot delay on the transmission of management information between management

servers. However, because of the centralized architecture, the manager has to process

all the management messages from its agents. Therefore the centralized manager puts

a performance bottleneck in the whole system and makes the whole system less robust

facing the event storm. The proposed fault management system uses a pure distributed

rchitecture, thus it has better event correlation abilities and higher event receive

he Madeira project, however, adopts the hybrid peer-to-peer architecture, that is to

ure with peer-to-peer architecture. This can

ment server from been attacked by malicious codes or hackers, which can not

e provided by traditional network. Thus the proposed fault management system can

a

abilities. These make the proposed fault management much faster than centralized

network management model in root cause reasoning and more robust in dealing with

the event storm.

T

say, it combines the hierarchical architect

provide better performance in event correlation and can provide a high throughput for

the network event. The Madeira project was directly constructed on traditional

network transport protocol and the current development of publish/subscribe system

could put a negative affect on the throughput of the proposed fault management

system. Therefore, the throughput of the proposed fault management system could be

less than this project. However, the intrinsic feature of publish/subscribe system –

only the subscribe notification can be forwarded to the subscriber – can protected the

manage

b

provide a higher security level than Madeira project.

It is clear that the centralized management model is more suitable for the management

of small scale network, but it is difficult to deal with the management of large scale

network because of its centralized architecture and low throughput. The proposed

fault management system could be lower in event throughput than distributed network

management system constructed directly on traditional network, but it is higher in

security, and with the development of publish/subscribe technology and hardware the

88

throughput could be promoted to an acceptable level.

6.2.2 Correlation Scheme Comparison

In this section, a comparison between the proposed event correlation scheme with

currently existing event correlation schemes is provided. Traditional rule based

correlation, code book based correlation and artificial intelligence based correlation

will be selected to perform the comparison.

Traditional rule based correlation scheme will match the incoming event with rules

until the matching reaches a static state. Therefore, a large amount of expert

nowledge is required to construct the knowledge base and correlation rule. Besides,

lity in expanding its correlation

bility. The proposed correlation approach has more flexibility in performance

k

the incoming event should be accurate. Any lost or delay in the event will cause the

failure of correlation. The proposed correlation scheme, however, provide a scheme to

automatically populate the knowledge base and correlation rules, and its Delay

Correlation approach and Element Missing Correlation approach make the correlation

available even under the circumstance that events are delayed or even lost.

Codebook approach is similar to traditional rule based approach, but it is much higher

in correlation speed and is more robust in facing with the delay and lost of events,

because of it uses minimum hamming distance to determine the correlation result. The

correlation speed of codebook approach may have faster correlation speed than the

proposed correlation approach when applied to one correlator. However, the codebook

approach can not be distributed and has less flexibi

a

expansion. It can have its correlation speed and event throughput increased by simply

plugging in new correlator and sharing the correlation task. Besides, another

drawback existing in Codebook approach is that it can not handling temporal event.

The proposed correlation scheme handle temporal event by adding in a temporal event

monitor. Once the incoming event satisfies the given temporal policies, a temporal

89

event will be issued.

The Artificial Intelligence correlation scheme is a correlation scheme that radically

 large scale network. However, the AI

pproach is a promising approach applied to network management. Its self-learning

backs and

erits. It expresses an exponential increase of the Average Branch Selection Time

different from rule based approach and codebook approach. It mainly uses the

Bayesian Network and causal graph to perform the correlation, and it is currently still

under research. Most AI correlation scheme is still centralized approach, so they still

low in event throughput when applied to

a

ability can greatly reduce the time of Delay Correlation and increase the accuracy of

Element Missing Correlation. Therefore, it is the future work of this project to add in

AI technologies to perform correlation.

6.3 Evaluation Conclusion
From both the performance benchmark point of view and the feature comparison

point of view, the proposed fault management approach has both draw

m

with the correlation depth increases. This is obviously not scalable and will affect the

max correlation depth in a single FMS. Besides, for the proposed correlation scheme

perform correlation by iteratively calculating correlation table, its correlation speed

could be lower than codebook approach (using Boolean operator compare only once)

in single correlator. However this correlation scheme uses adjustable weighted belief

factor to determine the correlation result, which has more flexibility and accuracy in

determine the correlation result than just using hamming distance. Furthermore, when

distributed among multiple FMS, there will be a dramatic performance promotion in

the correlation speed. Its distributed architecture, high correlation speed on multiple

correlators, high security level, high throughput, supporting for Element Missing

Correlation, automatically knowledge base modification ability, and the capability to

allow easy plug in of correlators makes it a promising approach.

90

Chapter 7

Issues and future work of the proposed fault management system mainly reside in the

distributed correlation scheme. For example, currently there are no well defined

criteria for the setting of the length of c

Issues

orrelation window for a given correlator. The

ngth of correlation window for a correlator will greatly affect both the speed and

recision of a correlation. A too big correlation window could increase the correlation

 for an error, and a too small correlation

r an error but will decrease correlation

est time to regard a

le

p

precision but will increase the response time

window will improve the response time fo

precision. The criteria for finding a tradeoff between the response time and correlation

precision have not been set up yet, and for current implementation, the setting of

correlation window is manually undertaken by the system administrator. A

self-learning process could be added into the proposed system to find the best length

for correlation window for correlator.

The second issue is the setting of the length that a correlation event/ correlation result

can stay in correlation message queue. The adoption of a correlation window will

mean some “too late” received correlation event/ correlation result will be dead (will

not be used by other correlation) in the correlation message queue, which means they

will not be used by other correlation anymore. Furthermore, the echoed correlation

result may not be used by other correlations. According to the current design, the

message collector will run periodically to recycle those dead correlation events; and

the trouble shooter will also run periodically to pick the out-of-date correlation results

to perform fault recovery process. However, how long is the b

91

correlation event/ correlation result as dead is an issue that exists in the current

roposed system. If the length for this is too long, the correlation message queue will

affect the performance of event correlator; on the other

t/ correlation event may be recycled or used by trouble

they could be used by other correlation. Criteria for setting the “dead

 be set up to find a best trade off between the length of correlation

essage queue and the hit rate.

rease the delay put by KBN. Currently there is

ot a good solution to address this issue.

p

become too long and thus

and, the correlation resulh

shooter before

length” should

m

There is no well-defined criteria for selecting the belief factors for correlation result

and their weight, and therefore the currently used belief factors (Guessed Number,

Lost Number, Mis-matching) and weight can not perfectly represent the belief degree

of a correlation result. Thus the identification of criteria for selecting the belief factors

and their weight is required urgently.

The current correlator controls the part of the Event Correlation Graph on which its

correlation is going to perform by putting subscriptions to the underlying KBN node.

Therefore, if the Event Correlation Graph that the correlator is going to perform

correlation on is too fragile, a great number of subscriptions will be put to KBN in

order to precisely describe its interests, which will greatly increase the comparison

time performed by KBN and thus inc

n

92

Chapter 8

Conclusion and Future work

tion to the proposed fault management system

as been finished, and a simulator has also been implemented.

lem by both the managed network and fault

anagement system. Furthermore, the event filtering mechanism of KBN can

increase the robustness of the fault management system to a certain extent when in the

face of event storms.

The distributed correlation scheme is another highlight of this research. This

correlation scheme is a pure distributed correlation scheme which distributes a single

correlation task over a whole correlator network. This can have one correlation

running parallel on several correlators and increase the correlation performance.

8.1 Achievements
This research partially achieves its original goal. A new architecture of a fault

management system that runs on a semantic publish/subscribe system is proposed. In

addition, a pure distributed correlation scheme with high fault tolerant capability has

been proposed. A partial implementa

h

8.2 Highlights
There are two highlight in this research. First, this research incorporates the semantic

publish/subscribe mechanism into a fault management system, which shifts the

addressing mechanism of events to the underlying infrastructure. Thus no attention is

needed to be paid to the addressing prob

m

93

Besides, the correlation behaviour is controlled by subscription and thus the

orrelation behaviour of a correlator can be simply changed by changing the

rt of event correlation graph. This increases the flexibility

e he enhancement of performance of this fault management

8.3 Future work
and implementation of the

orithm as well as its

lated expert knowledge bases should be developed. In addition, support from other

SS systems, such as service monitor, connection monitor or hardware monitor and

ed.

 departed correlator will be soon taken by other correlators. The

nP feature can decrease the dependency of the whole fault management system to

c

subscription to a different pa

f the system and enabl s to

system through adding in new correlators.

Further work could be done to finish the design

self-updating mechanism proposed in section 4.4. This enables the proposed fault

management system to have the ability to be informed when changes have been made

in the management network and then perform changes to the corresponding expert

knowledge in the knowledge base. In order to enable the self-updating mechanism of

the proposed fault management system, a new self-updating alg

re

O

so on should also be provid

The PnP feature proposed in section 4.2 will also be another candidate for future work

of the proposed fault management system. By the addition of a PnP feature, the

correlator can be added into a correlator network without too much explicit

configuration; and in addition, other correlators can be made aware of the leaving of a

correlator, either because of fatal failure or being removed by system administrator,

and thus the job of the

P

specific correlators, and thus makes the system more autonomous in handing the fatal

fault that may arise in the fault management system.

The addition of AI technologies such as belief network into the correlation algorithm

94

is also a meaningful future work to this project. The probabilistic theory can be used

to calculate the belief degree while performing event guessing process; this can

greatly improve the hit-rate of guessing correlation. The self-learning mechanism can

also be used in this system to partially address the timing issue introduced in chapter 7.

For example, the length of correlation window, delay window can then be set

ynamically through the self-learning ability.

uture work, unfinished aspects of the design should be

d

Besides the aforementioned f

completed, for example, the architecture design of Front End; the design and

implementation of the Trouble Shooter, the fault recovery policies file, and the fault

recovery access driver.

95

[1] Rouvellou, I.; Hart, G.W., "Automatic alarm correlation for fault identification,"

INFOCOM '95. Fourteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Bringing Information to People. Proceedings. IEEE , vol.,

no., pp.553-561 vol.2, 2-6 Apr 1995

[2] Bouloutas, A.T.; Calo, S.; Finkel, A., "Alarm correlation and fault identification in

ommunication networks," Communications, IEEE Transactions on , vol.42, no.234,

sed on OSI managed object classes," Communications, 1999.

ICC '99. 1999 IEEE International Conference on , vol.3, no., pp.1547-1551 vol.3,

1999

[4] Hasan, M.; Sugla, B.; Viswanathan, R., "A conceptual framework for network

management event correlation and filtering systems," Integrated Network

Management, 1999. Distributed Management for the Networked Millennium.

Proceedings of the Sixth IFIP/IEEE International Symposium on , vol., no.,

pp.233-246, 1999

[5] Yu, M., Li, W., and Chung, L. W. 2006. “A practical scheme for MPLS fault

monitoring and alarm correlation in backbone networks”. Comput. Networks 50, 16

(Nov. 2006), 3024-3042. DOI= http://dx.doi.org/10.1016/j.comnet.2005.11.006

[6] Yemini, S.A.; Kliger, S.; Mozes, E.; Yemini, Y.; Ohsie, D., "High speed and robust

event correlation," Communications Magazine, IEEE , vol.34, no.5, pp.82-90, May

1996

[7] Chi-Chun Lo; Shing-Hong Chen; Bon-Yeh Lin, "Coding-based schemes for fault

identification in communication networks," Military Communications Conference

c

pp.523-533, Feb/Mar/Apr 1994

[3] Jaesung Choi; Myungwhan Choi; Sang-Hyuk Lee, "An alarm correlation and fault

identification scheme ba

96

Proceedings, 1999. MILCOM 1999. IEEE , vol.2, no., pp.915-919 vol.2, 1999

[8] B. Gruschke. “Integrated event management: Event correlation using dependency

graphs”. In Proc. IFIP/IEEE Workshop on Distributed Systems: Operations and

anagement, Oct. 1998.

 International, 1996.

ewlett Packard, HP OpenView event correlation for the telecommunications

nvironment: Technology brief, Sep. 1995.

3] Simona Brugnoni, Guido Bruno, Roberto Manione, Enrico Montariolo, Elio

5] Katchabaw, M. J., Lutfiyya, H. L., Marshall, A. D., and Bauer, M. A. 1996.

M

[9] D.W. Guerer, I. Khan, R. Ogler, R. Keffer, An Artificial Intelligence Approach to

Network Fault Management, SRI

[10] Dilmar Malheiros Meira, A Model For Alarm Correlation in Telecommunications

Networks, Federal University of Minas Gerais, PhD Thesis, Nov. 1997.

[11] H

e

[12] M. Moller, S. Tretter, and B. Fink. Intelligence filtering in network management

system. In IFIP/IEEE International Symposium on Integrated Network Management,

IV (ISINM’95) [1995], page 304-315.

[1

Paschetta, and Luisella Sisto. An expert system for real time fault diagnosis of the

Italian telecommunications network. In IFIP International Symposium on Integrated

Network Management, III (ISINM’93) [1993], pages 617-628.

[14] Yemini, Y., "The OSI network management model," Communications Magazine,

IEEE , vol.31, no.5, pp.20-29, May 1993

[1

Policy-driven fault management in distributed systems. In Proceedings of the the

Seventh international Symposium on Software Reliability Engineering (ISSRE '96)

97

(October 30 - November 02, 1996). ISSRE. IEEE Computer Society, Washington, DC,

36.

, Feb. 2000.

 management,

ireless World Research Forum, Sep. 2006

; Lehtihet, E.; Georgalas,

.; Marin, R.; Serrat, J., "Towards a framework for network management applications

 X.690 Information

chnology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),

ul. 2002.

2

[16] ITU-T, M.3000 Overview of TMN Recommendations, International

Telecommunication Union

[17] ITU-T, M.3010 Principles for a telecommunications management network,

International Telecommunication Union, Feb. 2000.

[18] Pablo Arozarena, Martijn Frints, Sandra Collins, Liam Fallon, Martin Zach, Joan

Serrat, and Johan Nielsen. Madeira: A peer-to-peer approach to network

W

[19] Zach, M.; Parker, D.; Nielsen, J.; Fahy, C.; Carroll, R.

N

based on peer-to-peer paradigms The CELTIC project Madeira," Network Operations

and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP , vol., no., pp. 1-4,

2006

[20] E. Rosen, Y. Rekhter, RFC 4364 BGP/MPLS IP Virtual Private Networks (VPNs),

IETF RFC, Feb. 2006.

[21] Telecommunication Standardization Sector of ITU,

te

Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),

International Telecommunication Union, J

[22] Michael K. Smith, Chris Welty, Deborah L. McGuinness. OWL Web Ontology

Language Guide, In W3C Recommendation,

http://www.w3.org/TR/2004/REC-owl-guide-20040210/, Feb. 2004.

98

[23] Brian McBride, RDF Primer, In W3C Recommendation,

ttp://www.w3.org/TR/2004/REC-rdf-primer-20040210/h . Feb 2004.

 K. (2003). The Semantic Web. Indianapolis:

iley Publishing.

396 Uniform Resource Identifier

RI): Generic Syntax, IETF RFC, Aug. 1998.

ct Syntax, In W3C Recommendation,

ttp://www.w3.org/TR/rdf-concepts/

[24] Daconta, M., Obrst, L., & Smith,

W

[25] T. Berners-Lee, R. Fielding, L. Masinter. RFC 2

(U

[26] Graham Klyne, Jeremy J. Carroll, Brian McBride. Resource Description

Framework (RDF): Concepts and Abstra

h , Feb. 2004.

[27] Dave Beckett, Brian McBride, RDF/XML Syntax Specification, In W3C

Recommendation, http://www.w3.org/TR/rdf-syntax-grammar/, Feb. 2004.

[28] Masahiro Hori, Jerome Euzenat, Peter F. Patel-Schneider, OWL Web Ontology

anguage XML Presentation Syntax, In W3C Recommendation, L

http://www.w3.org/TR/owl-xmlsyntax/, Jun. 2003.

[29] Dan Brickley, R.V. Guha, Brian McBride, RDF Vocabulary Description

ndler, Ian Horrocks, Deborah L.

cGuinness, Perter F. Patel-Schneider, Lynn Andrea Stein, OWL Web Ontology

Language 1.0: RDF Schema, In W3C Recommendation,

http://www.w3.org/TR/rdf-schema/#ch_summary, Feb. 2004.

[30] Sean Bechhofer, Frank van Harmelen, Jim He

M

Language Reference, In W3C Recommendation,

http://www.w3.org/TR/2004/REC-owl-ref-20040210/, Feb. 2004.

99

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[31] A. Carzaniga, D. S. Rosenblum, and A. L.Wolf. Design and evaluation of a

nt multicast protocol for content-based publish-subscribe systems.

 Proceedings of ICDCS, Jun. 1999.

rson, M., Phelps, T., Content-Based

outing with Elvin4, In Proceedings AUUG2K, Canberra 2000.

ility for Gathering Ontology-based

etwork Context; Network Operations and Management Symposium, 2006. 10th

5] J. Case, M. Fedor, M. Schoffstall, J. Davin, RFC 1157 A Simple Network

usser, RFC 1901 Introduction to

ommunity-based SNMPv2, IETF RFC, Jan. 1996.

 1999.

ons for the Simple

etwork Management Protocol (SNMP), IETF RFC, Dec. 2002.

wide-area event notification service. ACM Transactions on Computer Systems, 19(3),

Aug. 2001.

[32] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.

Sturman. An efficie

In

[33] Segall, B., Arnold, D., Boot, J., Hende

R

[34] Keeney, J.; Lewis, D.; O'Sullivan, D.; Roelens, A.; Wade, V.; Boran, A.;

Richardson, R.; Runtime Semantic Interoperab

N

IEEE/IFIP 2006 Page(s):56 – 65

[3

Management Protocol (SNMP), IETF RFC, May 1990.

[36] J. Case, K. McCloghrie, M. Rose, S. Waldb

C

[37] K. McCloghrie, D. Perkins, J. Schoenwaelder, RCF 2578 Structure of

Management Information Version 2 (SMIv2), IETF RFC, Apr.

[38] D. Levi, P. Meyer, B. Stewart, RFC 3413 Simple Network Management Protocol

(SNMP) Applications, IETF RFC, Dec. 2002.

[39] R. Presuhn, RFC 3416 Version 2 of the Protocol Operati

N

100

[40] Keeney, J., Lewis, D., O'Sullivan, D., "Ontological Semantics for Distributing

Contextual Knowledge in Highly Distributed Autonomic Systems", Journal of

etwork and System Management, Special Issue on Autonomic Pervasive and

1] R. Presuhn, RFC 3418 Management Information Base (MIB) for the Simple

2] R. Raghunarayan, RFC 4022 Management Information Base for the

1.

3/01. Jan. 2003.

M), IETF RFC, Feb. 2006.

rch, Columbia University, New York,

Y, 1994

N

Context-aware Systems, Volume 15, Number 1 / March, 2007.

doi:10.1007/s10922-006-9054-5

[4

Network Management Protocol (SNMP), IETF RFC, Dec. 2002.

[4

Transmission Control Protocol (TCP), IETF RFC, Mar. 2005.

[43] E. Rosen, A. Viswanathan, R. Callon, RFC 3031 Multiprotocol Label Switching

Architecture, IETF RFC, Jan. 200

[44] Chuck Semeria, RFC 2547bis: BGP/MPLS VPN Fundamentals, Juniper

Networks, Inc. White Paper, Part Number: 200012-001 0

[45] D. Allan, T. Nadeau, RFC 4378 A Framework for Multi-Protocol Label

Switching (MPLS) Operations and Management (OA

[46] Y. Rekhter, T. Li, S. Hares, RFC 4271 A Boarder Gateway Protocol 4 (BGP-4),

IETF RFC, Jan. 2006.

[47] J. F. Huard. Probabilistic reasoning for fault management on XUNET. Technical

Report, Center for Telecommunications Resea

N

101

Appendix A

Design of Test Cases

Number of Branch

Name Correlation Depth Number of Event

Norm_2_2 2 2 1

Norm_2_3 2 3 1

Norm_2_4 2 4 2

Norm_3_3_a 3 3 1

Norm_3_3_b 3 3 1

Norm_3_4_a 3 4 1

Norm_3_4_b 3 4 2

Norm_3_5 3 5 1

Norm_3_7 3 7 2

Norm_4_5 4 5 1

Norm_4_13 4 13 1

EMC_2_1 2 1 1

EMC_2_2 2 2 2

Note: Norm stands for Normal Correlation. EMC stands for Element Missing

Correlation

Table A-1 Design of Test Cases

102

Appendix B

Format of trap simulator configuration file

nfiguration file het

ill constru SNMP traps using s thetic SNMP traps this configuration

iguration file can hold more than one SNMP traps. Figure B-1 gives the

SNMP tra

Figure B-1 Synthetic SNMP trap

n the a sy etic SNMP trap is renthesized by a p of curly bracket.

 is left f the arrangement of the sending pattern, e.g. one SNMP trap

second an o on. Currently, the nding pattern has no een implemented

ill be left hich means t trap will be only se d

e)tag_name=value. The current KBN implementation only provides

support for types such as s and bag. Terms from the

third to the last are arranged according to e sequence of fields of SNMP. Currently,

ese terms are arranged according to the sequence of fields in SNMPv2c.

The co for trap simulator is used to hold synt ic SNMP traps, and

simulator w ct yn in

file. A conf

format of a p.

Each term i nth pa air

The first term or

for every 1 d s se t b

yet, and it w blank, w his nt once. The secon

{{}{(String)sender=taiw;}{tcp:127.0.0.1:1234;}{v2c}{public}{}{0}{0}{SNMP
ime=123456789}{SNMPv2-MIB:snmpTrapOID=NET-SNMP-

-MIB: SnmpExampleHea atNotification}{NE MP-EXA
:netSn ExampleHeartbeatRate=1000}}

v2-MIB:sysUpT
EXAMPLES net rtbe T-SN
MPLES-MIB mp

term ({(String)sender=taiw}) is the term for configuring the KBN header. Its format

follows (typ

tring, byte array, long, Boolean

th

th

103

