
 - 1 -

A Framework for Incremental Construction of Real

Global Smart Space Applications
1

René Meier*, Anthony Harrington, Kai Beckmann and Vinny Cahill

Distributed Systems Group

Department of Computer Science, Trinity College Dublin, Ireland

*Tel: +353 1 896 1261, Fax: +353 1 677 2204

Rene.Meier@cs.tcd.ie

Abstract - This article describes a standardised way to build context-aware global smart space

applications using information that is distributed across independent (legacy, sensor-enabled,

and embedded) systems by exploiting the overlapping spatial and temporal attributes of the

information maintained by these systems. The framework supports a spatial programming model

based on a topographical approach to modelling space that enables systems to independently

define and use potentially overlapping spatial context in a consistent manner and in contrast to

topological approaches, in which geographical relationships between objects are described

explicitly. This approach is supported by an extensible data model that implicitly captures the

relationships between information provided by separate underlying systems and facilitates the

incremental construction of global smart spaces since the underlying systems to be incorporated

are largely decoupled. The framework has been evaluated using a prototype that integrates

legacy systems and context-aware services for multi-modal urban journey planning and for

visualising traffic congestion.

Keywords: Global smart spaces, middleware, spatial programming, context-aware applications

1. Introduction

Global smart spaces extend the vision of pervasive computing, in which everyday objects

communicate and collaborate to provide information and services to users, to large geographical

areas [1]. They extend the notion of objects cooperating in a home or an office to the level of

towns, cities, and even countries by integrating a variety of sensor-based and other systems to

provide truly pervasive context-aware services. Such global smart environments will be

heterogeneous as they likely will comprise a multitude of sensors, networks, and ultimately

systems. They will provide access to information and services ranging from pervasive access to

personal and professional information, to city-wide information systems [2, 3], to context-aware

traveller assistance [4, 5], to optimised urban traffic control [6]. Users moving in such sensor-

augmented spaces may use handheld devices, such as mobile phones and Personal Digital

1
 © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of

Elsevier for your personal use but not for redistribution. The definitive version was published in Elsevier
Pervasive and Mobile Computing Journal, Vol 5, 2009, doi:10.1016/j.pmcj.2008.11.001.

 - 2 -

Assistants (PDAs), or integrated devices, such as (vehicular) on-board computers, to interact

with these spaces and to use the services that they provide. Embedded control systems may

likewise exploit these spaces to offer context-aware urban traffic control, such as public service

vehicle priority.

Global smart spaces are on the verge of becoming a reality in the transportation domain

where very many heterogeneous sensor-rich systems have already been deployed in towns and

cities and along national road networks. Such a global smart space might enable users to

access information ranging from places of interest, to prevailing road and weather conditions, to

expected journey times, to up-to-date public transport information. It might also enable suitably

privileged users to interact with the infrastructure, for example, to request a change to a traffic

light or to reserve a parking space.

The basis for the provision of context-aware services and information to users will be the

integration of the individual systems associated with global smart spaces into comprehensive

platforms. This article presents a framework designed to provide a standardised way to build

context-aware global smart space applications using information that is distributed across

independent systems and related services. The iTransIT framework supports a spatial

programming model based on a topographical location model that provides access to distributed

context information based on (overlapping) temporal and spatial aspects. This enables

applications to exploit and act upon information from a variety of deployed (and novel) systems

and services as well as to share information between them. The spatial programming model

hides the complexity and diversity of the underlying systems and their data sources and provides

applications with a common view on the available information and its context. For example, a

service might use the spatial programming model to retrieve public transport information, which

might be provided by some underlying system, and then access relevant weather information

provided by another system using the temporal and spatial context of this information.

The iTransIT framework for building context-aware global smart space applications has been

motivated by the needs of Dublin City and its multi-layered distributed architecture has been

designed to enable information integration and sharing across independent Intelligent

Transportation Systems (ITS) and pervasive context-aware user services. It enables incremental

integration of independent systems and services over time while minimising the impact of such

expansion as changes are local to the new system. This software architecture for global smart

spaces proposes an extensible layered data model to facilitate data exchange between systems

and services with diverse data sets, quality of service requirements, and functional

organizations. Data layers are defined within a common context model along the dimensions of

space and time and may be distributed across multiple systems. Individual systems maintain one

or more layers of the overall data model. This distribution of layers across a series of systems

effectively allows applications to access elements of a certain part of the model with a specific

quality of service. For example, a data layer might provide video streams from traffic cameras

while another layer might maintain city-wide parking information provided by a car parking

system. Applications may use the spatial programming model of the framework to access either

or both of these layers with the quality of service of the respective information. This scenario also

 - 3 -

illustrates that systems may be integrated gradually and with minimal impact on other systems.

Each of these layers might be integrated at a different time and the integration of one layer does

not affect the data captured in the other layer. An application using the spatial programming

model to access information from the video layer might eventually be updated to access the car

parking layer as well. The iTransIT framework has been developed in cooperation with the

Traffic Office of Dublin City Council (DCC) in the Republic of Ireland. Detailed framework

requirements were informed by a comprehensive audit of existing and planned future intelligent

transportation systems in the Dublin City area. Other approaches, such as federated databases

and data stream management systems [7], address a similar problem in terms of decentralised

information processing. However, they imply technological constraints targeted at the

requirements of enterprise computing systems rather than at embedded systems as proposed by

the iTransIT framework where the focus is on integration of legacy systems and implementations

are distributed across systems.

The proposed framework has been realised in the form of a proof-of-concept prototype of a

global smart space. The prototype models and captures a variety of real transportation

information derived from systems currently deployed in Dublin City and serves as a platform for

pervasive services using this transportation information. This framework implementation has

been evaluated by integrating independent systems and their information and by building

pervasive services for multi-modal urban journey planning and for visualising traffic congestion.

Such services can be considered canonical global smart spaces applications since they exploit

information generated by a variety of underlying heterogeneous systems in a context-aware

manner. The evaluation is based on transportation information relevant to and derived from a

real urban environment and demonstrates that our framework enables the integration of

individual systems associated with a global smart space into a comprehensive platform and that

it provides for context-aware services and ultimately user access to pervasive context

information. In general, it is expected that the increased availability of reusable information from

a variety of independent systems will enable higher-level policies to be translated more easily

into real world actions and will facilitate the emergence of novel transportation applications and

truly pervasive context-aware user services.

The remainder of this article is structured as follows: Section 2 surveys related work. Section

3 introduces the spatial programming model and section 4 describes the iTransIT framework for

building context-aware global smart space applications. Section 5 presents our evaluation of this

work based on a prototypical realisation of a global smart space. Finally, section 6 concludes this

article by summarising our work.

2. Related Work

There is significant ongoing work in the area of ITS architectures [8, 9]. The Keystone

Architecture Required for European Networks (KAREN) project is of particular interest to

European ITS developers while the National ITS Architecture is being promoted by the U.S.

 - 4 -

Department of Transportation. Both of these frameworks propose similar architectures promoting

a separation of the physical and functional views of a system and assume that individual

systems can be developed according to their respective standards for physical and functional

organization. These frameworks essentially promote a common, system-wide organization

based on standardised functions, such as the KAREN functions [10]. They are similar to the

iTransIT framework in that they enable integration of a collection of individual systems. However,

they are not concerned with building context-aware global smart space applications and hence,

they support neither information-specific (and system-specific) integration requirements nor a

means for applications to access context information provided by a wide variety of systems and

services. Moreover, the iTransIT framework explicitly promotes extensibility through gradual

integration of systems, where systems or parts of systems can be added one at a time, and

incremental construction of applications over time and can be considered lightweight compared

to KAREN and the National ITS Architecture.

Temporal, spatial and quality of service attributes represent types of meta-data that may be

integrated into a context model to provide more intelligent and focused use of data [11]. This

approach has been applied in the Nexus framework [12, 13] which provides a common context

model infused with spatial information to build world models that are distributed across spaces

possessing rich context data sources, known as Augmented Areas. The context model is

presented as a global object-based ontology for developing interoperable world models. This

interoperability is ensured through the use of a common but large data schema, the Standard

Class Schema, to define various world models. The authors have defined a simple spatial query

language that can be used to interact with objects representing an Augmented Area. An

interface known as an Augmented World model provides a federated global view on all

compliant local models. The focus of our framework has been to support a more constrained yet

expressive set of abstractions which are used to both facilitate data modelling and to provide the

basis for our spatial application programming interface. Using such a constrained set of

abstractions simplifies management and maintenance in light of continuously evolving global

smart spaces as novel systems are expected to use combinations of existing abstractions.

Gaia [14] is a canonical example of a middleware infrastructure to enable active or smart

spaces in ubiquitous computing habitats that emphasises the notion of space programmability.

Gaia extends the notion of traditional operating systems to ubiquitous computing environments

by providing components such as the Context File System and an event manager to track active

space state information. Gaia focuses on managing resources contained in physical spaces.

User data and applications are abstracted into a user virtual space and can be mapped

dynamically to the resources located in the current environment. Applications developed for a

Gaia active space use a comprehensive set of services at runtime. The iTransIT framework

adopts a different approach in that it uses a set of context abstractions exposed through the

spatial programming model to provide an interface to a global smart space populated by

heterogeneous systems. Aside from calls to the spatial application programming interface,

systems may operate independently of the iTransIT framework.

 - 5 -

Smart Messages [15] is a lightweight architecture similar to mobile agents that aims to make

Space a first-order programming construct and describes a space-aware programming model for

outdoor distributed embedded systems called Spatial Programming. In this model, content or

services provided by nodes are accessed using spatial references. These are defined as

{space:tag} pairs that are mapped to systems embedded in the physical space. These spatial

references are used by various applications to transparently access network resources in a

similar fashion to physical memory access using variable names in conventional systems. Our

approach to accessing information in a global smart space is more generic compared to this

{space:tag}-based naming scheme in that information can be located using multiple context

dimensions including space and time as well as any functional aspect of the information.

Information can be shared and integrated by exploiting combinations of these aspects and by

exploiting overlapping context.

Other related work includes systems that have focussed on addressing specific aspects of

building context-aware smart spaces in transportation environments rather than on providing a

common context-based integration platform as proposed by the iTransIT framework. TOPAZ [16]

is a service-oriented framework that promotes a business-level application model. TOPAZ

envisions a global marketplace of telematics services where Infrastructure providers and

application providers are independent business entities. TOPAZ provides an open platform and

a Web-service-based portal for managing applications, infrastructure and users. While the

platform provides a range of core services for service metering, service monitoring, service

diagnostics, and for displaying services, especially, through in-vehicle user interfaces [17], it

does not support an explicit common context model that enables the use of overlapping context

information across independent applications.

There is also a significant amount of ongoing research related to smart spaces in vehicles

and on roadsides. Much of this work is driven by safety applications, ranging from driver

assistance services to active accident avoidance applications [18]. Proposed approaches aim at

addressing security, privacy, reliability and user interface requirements as well as the

requirements of communication infrastructures. Such communication infrastructures enable

interactions within vehicles, between vehicles and between vehicles and the roadside in light of

technologies for sensor, real-time and wireless networks. We consider these approaches

orthogonal to our work in the sense that the iTransIT framework may integrate the resulting ITS

as legacy systems in a metropolitan-scale smart space.

3. The Spatial Application Programming Model

The spatial programming model provides a standardised way for global smart space

applications to access and use information and context that is distributed across independent

systems and related services. The spatial programming model provides common access to such

distributed information based on overlapping context thereby enabling applications to exploit and

 - 6 -

act upon information from a variety of systems and services as well as to share information

between them.

3.1 Abstracting Information and Context

The spatial programming model uses a small set of predefined types for composing

information and context, in which context is any information that can be used to characterise the

situation of an information element [19], to ensure interoperability between data sets captured

across distributed systems. These types are used to model data sets and their context according

to the different roles data sets can assume in a global smart space as spatial objects. Spatial

objects represent information as a series of parameters and context as attributes. Such types

are central to providing applications with a common view on the wide range of information and

the associated context that might be available in a global smart space. They hide the complexity

and diversity of the independent systems and data sources comprising global spaces and

represent the hooks for information integration through overlapping context such as space and

time.

Developing such types is non-trivial for any programming model for significant systems and is

especially complex for global smart spaces due to the scale and multitude of inter-relationships

that exist between sensors, systems, services, users, and their data sets. Lehman et al. [12]

suggest an exhaustive ontology for defining how context information can be shared between

applications in augmented areas. However, based on our experience with a real global smart

space in the transportation domain, we have found that a relatively small number of types

suffices to decompose a global smart space domain model. Using a small set of (coarse-grain)

types rather than attempting to model the entire world in detail simplifies management and

maintenance in light of continuously evolving spaces. Novel systems or services are expected to

be modelled using combinations of existing types whereas an exhaustive model might have to

be expanded to capture the specific characteristics of novel systems.

Spatial Object

Identification Object Location Object System Object Real World Object Data Object

Actuator Object Sensor Object

Figure 1: Information and context abstractions.

The types for modelling information and context as spatial objects currently supported by the

spatial programming model are summarized in Figure 1. They have been designed as a series of

abstract object types and as illustrated in section 3.3, the data sets in a system may be modelled

using a combination of several spatial object types. Spatial object types include three main types

 - 7 -

for modelling global information, which are real world, system and data object, as well as types

for modelling context.

The three information types model the different roles that objects can assume within the

spatial programming model. System objects represent general information describing software

components, including systems and services, while real world objects represent physical entities.

In a transportation smart space for example, system objects might capture operational status

from a car parking system or from a journey time estimation service whereas real world objects

might model roads and junctions. Sensor and actuator objects are specialisations of real world

objects and are used for modelling explicit infrastructural entities for example, detector loops and

variable message signs of a car parking system. Data objects model any static or dynamic

information from systems or services and might be used to model car parking opening times and

rates charged. Based on an audit of deployed (and planned) transportation systems and

services in the Dublin City area [20], we found that these categories of information types are

sufficient to cover possible data sets in such a global smart space. Novel information can be

integrated using spatial objects composing sets of parameters that model such data sets.

The main context type of the spatial programming model is the location object. Location

objects are based on a topographical location model [21] that uses geometry to model the space

occupied or covered by an infrastructural element, a system or a service. The spatial

programming model also supports temporal context. Temporal context is modelled implicitly, i.e.,

incorporated in other information types, rather than explicitly as a specific object. This enables

information objects to include date and time attributes for representing their temporal context

such as creation time and temporal validity. And finally, identification objects provide a type for

logical identity, for example, to identify the name of a system or a service.

3.2 Modelling Space

The spatial programming model supports a topographical approach to modelling space. The

relevant spatial context of sensors, systems, services and even users is modelled as a

geometric shape. Individual shapes are defined by a sequence of coordinates based on a

chosen, well-known coordinate system. These shapes explicitly represent spatial context derived

form the real world. They may reflect the physical appearances of spatial objects modelling

occupied space or may describe areas of interest that specify the regions covered by services.

For example, a city-wide car parking system might use the spatial model to define the physical

locations occupied by its car parks whereas a road weather service might use the spatial model

to outline the locations occupied by weather stations as well as the areas to which reports from

individual stations apply.

Using a topographical approach to modelling space enables systems, services, and

applications to independently define and use potentially overlapping spatial context in a

consistent manner. Unlike topological approaches [21], in which geographical relationships

between spatial objects are described explicitly, topographical models define relationships

between spatial objects implicitly and without explicit interactions between objects. The relations

 - 8 -

between spatial objects (and ultimately systems and users) are defined by the position of their

respective shape within the common coordinate system. This is particularly significant in global

smart spaces where multitudes of independent systems are distributed over large geographical

areas and direct communication across systems may be limited or expensive. Applications using

the spatial model can exploit these implicit relations to link diverse information together for a user

specific purpose. They may access spatially related information, for example, by means of

exploiting the distance between shapes or by exploiting containment and intersection relations.

This might, for example, enable a vehicle-based information system to retrieve the exact

locations of car parking facilities within a certain distance from its current location.

The spatial programming model supports the model for defining geometric shapes defined by

the OpenGIS standard [22]. Spatial objects can be represented by geometry types ranging from

a point, to a line, to a polygon, to combinations of polygons. Points might be used to define the

location of a specific traffic signal or an individual user. Individual polygons might represent the

spatial context of a car park or an area of interest whereas a series of (overlapping) polygons

might be used to compose a spatial model of a transportation network comprising roads, lanes,

and intersections.

As mentioned above, these geometric shapes are specified using a common coordinate

system. The selection of such a system depends on the domain of the global smart space for

which the spatial programming model is being realised. Coordinates derived from third party

location sensors, such as Global Positioning System (GPS) receivers, are mapped onto the

chosen reference system if they are based on another system. For example, GPS coordinates

may need be converted into a regional reference system chosen for a specific space. The Irish

national grid reference system, a system of geographic grid references commonly used in

Ireland, has been chosen as the coordinate system in our prototype.

3.3 Modelling Data

The spatial programming model defines a set of types for modelling the different roles spatial

objects (and the context information they represent) can assume within a global smart space.

Systems and services model their data using these types and a particular system may use and

combine several types to accurately capture the roles of individual data sets. The example

shown in Figure 2, illustrates how a road weather system might use a system object to model

general system data and a set of sensor objects to model individual weather stations. Each

weather station comprises a location and an identification object and includes a data object that

captures the actual measurements reflecting the current weather data.

 - 9 -

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1
DataObject

(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

11

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

11

RoadWeatherSystem

1..n

1

1..n

1

Figure 2: Modelling a road weather system.

Spatial objects must specialise at least one of our types for modelling information and

context. However, depending on their role, they may derive from several types. Table 1

summarises how these types can be combined outlining the semantics for composing

information and context into spatial objects. As outlined in the real world object row, Table 1

shows that a real world object must comprise a location and an identification object and that it

may include a set of data objects and a set of other real world objects. The compulsory

containment of a location object is a reflection of the fact that real world objects are expected to

model the physical space they occupy. In contrast, system and data objects may or may not

comprise a location object and such a location object is probably modelling the space to which a

system’s or data object’s information applies. Note that sensor and actuator objects are

specialisations of real world objects that share the same composition semantics.

System
Object

Real World
(Sensor,
Actuator)

Object

Data
Object

Location
Object

Identification
Object

System Object 0..n 0..n 0..n 0..1 0..1

Real World (Sensor,
Actuator) Object

0 0..n 0..n 1 1

Data Object 0 0 0..n 0..1 0..1

Table 1: The semantics for composing information and context types.

3.4 Modelling Temporal Context

In addition to supporting spatial context, the spatial programming model also supports

context along the dimension of time. The temporal relations between spatial objects are defined

by a set of attributes. This set of attributes has been derived from our study of the transportation

 - 10 -

infrastructure in Dublin City [20] and are summarised in Table 2. The data object type includes

these attributes and spatial objects model their temporal context by deriving from this type.

Applications may exploit temporal relations between spatial objects in the same way as they

exploit spatial relations to link diverse information together for a user-specific purpose. They may

access temporally related information, for example, by means of correlating modification time.

Significantly, applications may exploit context along a combination of the spatial and temporal

dimension. This might enable a road-user information system to use the location and time of an

accident to retrieve the prevailing weather conditions at the accident site and subsequently to

advice drivers of dangerous road conditions.

Attribute Name Description

CreationDate Time of data object creation

LastModificationDate Time the data object was last updated

RetrievalLatency Expected latency for retrieving the captured data

ExpectedLifetime Expected duration to the next data object update

ConfidenceLevel Level of confidence in the accuracy of the captured data

Table 2: Temporal context attributes of data object types.

3.5 Using the Spatial Model

Systems use spatial objects to model their contextual information and implement the spatial

application programming interface to provide pervasive access to these objects. Each system

models the subset of the spatial objects that is relevant to its respective purpose and context-

aware applications exploit the spatial application programming interface to integrate and share

information in a common way regardless of the specifics of the system implementing a particular

part of the spatial model.

As shown below, the operations of the spatial application programming interface provide a

means for applications to manage, locate and access spatial objects. A set of operations is

available for locating spatial objects using geometric queries or queries based on parameters of

objects. Geometric queries are based on a geometry class that defines OpenGIS shapes

including points and polygons. Parameter-based queries use the container class outlined below

to describe the parameter and attribute values of spatial objects. The parameter class includes

native data values and may include the relevant temporal attributes of data objects. This class

can be used in connections with queries but may also be used to access the typed parameter

and attribute values of spatial objects. The spatial application programming interface enables

applications to locate spatial objects using a variety of queries ranging from selection based on a

parameter value, to selection based on temporal context, to selection based on spatial context,

to combinations of these. For example, a weather station may be selected using the value of a

measurement, the temporal occurrence of a measurement or the location of the station. Such

queries may identify zero, one or more objects. For example, selecting the bus stops of a certain

 - 11 -

bus route in a particular area might identify multiple suitable stops. Spatial objects are uniquely

identified within a given system by a type and identifier pair. These pairs are typically the result

of some selection operation and may be used to either retrieve or update the parameters of

spatial objects. An application might use bus stop and identifier pairs to retrieve the addresses

and timetables of previously located stops.

interface S_API {

 void insert(String elementType, OrderedParameterValues parValues);

 void remove(String elementType, int id);

 int[] select(String elementType, Geometry loc);

 int[] select(String elementType, String parName,

 Parameter parValue);

 int[] select(String elementType, Geometry loc, String parName,

 Parameter parValue);

 int[] select(String elementType);

 ElementTypeAndId[] select(Geometry loc);

 Geometry select(String elementType, int id);

 void update(String elementType, int id, String parName[],

 Parameter parValues[]);

 Parameter[] retrieve(String elementType, int id,

 String parName[]);

}

class Parameter{

 Calendar creationDate;

 Calendar modificationDate;

 Long retrievalLatency;

 Long expectedLifetime;

 Double confidenceLevel;

 String parameterValue;

 Integer getIntegerParameterValue();

 Double getDoubleParameterValue();

 String getStringParameterValue();

 Calendar getDateParameterValue();

…

}

Significantly, the spatial programming model enables a federation of independent systems to

model their respective information and context locally as spatial objects. Each of these systems

implements the spatial application programming interface to provide access to its respective set

of spatial objects. This enables applications to use, share, locate and correlate these distributed

objects using a common set of context operations irrespective of the complexities of the systems

accommodating the objects and without the need for an overall close integration of the systems.

This mapping of the spatial model and its programming interface onto individual systems

therefore provides for truly pervasive context-aware applications and services in global and

heterogeneous environments.

 - 12 -

4. The iTransIT Framework

The iTransIT framework implicitly captures the relationships between information provided by

separate underlying systems. As illustrated in Figure 3, the iTransIT architecture structures

legacy systems, iTransIT systems, and context-aware end-user applications into three tiers.

These tiers define the relationships between systems and applications and provide an extensible

approach for integrating systems and their context information as individual components can be

added to a specific tier without direct consequences to the components in the remaining tiers.

The relationships between systems and applications can be characterized according to the

interaction paradigms that describe the possible information flows between legacy and iTransIT

systems.

4.1 Architecture Tiers

The legacy tier provides for the integration of legacy systems and describes existing as well

as future transportation systems that have not been developed to conform to the iTransIT

system architecture and layered data model. Such legacy systems often feature a form of

persistent data storage and might include systems for traffic and motorway management that

have commonly been deployed in many urban environments.

The purpose of the iTransIT tier is to integrate transportation systems that model spatial

objects and implement the spatial application programming interface. This tier therefore

comprises a federation of transportation systems that implement the spatial data model. The

data model is distributed across these iTransIT systems, with each system implementing the

subset of the overall model that is relevant to its operation. iTransIT systems maintain their

individual information, which is often gathered by sensors or provided to actuators, by populating

the relevant part of the spatial data model. However, some of the information maintained in an

iTransIT system specific part of the data model may actually be provided by underlying legacy

systems. Most significantly, traffic information captured in this tier is maintained with its temporal

and spatial context; persistently stored data is geo-coded typically by systems exploiting a

database with spatial extensions.

The systems that may exist in the iTransIT tier can be classified according to the paradigms

they exploit when interacting with other legacy or iTransIT systems. Such iTransIT systems may

be purpose built and therefore optimized to accommodate application or user-specific

requirements or may be general purpose. As shown in Figure 3, the framework may incorporate

a general-purpose iTransIT Management system. The iTransIT Management system is the

canonical application of this domain and is expected to implement a major part of the spatial

data model. It typically serves as a main repository for geo-coded data generated and used by

connected legacy and iTransIT systems.

 - 13 -

Data Flow

Application
Tier

(User

Services)

iTransIT
Tier

(iTransIT

Systems)

Legacy
Tier

(Legacy

Systems)

Geo-Data

Traffic Data

Mgmt.

System

Type 1

Type 4

Type 2

Type 3

Type 5

Figure 3: iTransIT framework overview.

The application tier includes value added (pervasive) services that provide context-aware

user access to and interaction with traffic information. These services use the distributed data

model and the associated context to access information potentially provided by multiple systems

and might include a wide range of interactive (Internet-based) and embedded control services

ranging from monitoring of live and historical traffic information to the display of road network

maps.

4.2 Common Spatial Data Model

The spatial data model, common to all iTransIT systems, is comprised of a set of potentially

distributed layers and represents the central component of these systems. As shown in Figure 4,

individual iTransIT systems implement one or more of these layers (or parts of layers) and

maintain the static, dynamic, live, or historical traffic data available in a particular layer. For

example, a system might implement a data layer describing the current weather conditions while

another layer capturing intersection-based traffic volumes might be maintained by a different

system.

The spatial application programming interface exposes this layered data model to other

iTransIT systems or indeed user services. Remote access to this interface may be enabled

through widely used communication technologies and query languages based on CORBA and

Web Services.

Some of the information captured in data model layers may be generated or used by legacy

systems. Such information is mapped to a legacy system through data flows. These flows can be

 - 14 -

described using a set of flow classes, including event, stream, request/response, configuration

and alarm flows, based on the characteristics and requirements of communication links provided

by the KAREN framework architecture [23]. Using these descriptions, individual iTransIT

systems implement interfaces that map specific legacy data to their data layers. This approach

enables the use of communication technologies that can address the requirements of particular

systems and their respective data flows. The objective of an iTransIT system might be to handle

a certain data subset efficiently and to provide specific guarantees for the delivery of the data.

For example, an iTransIT system may employ real-time communication technology to connect to

a legacy system that is capable of supporting strong delivery guarantees.

iTransIT System

Legacy System Legacy System

User Service

Mapping

User Service

Spatial-API

Common Data Model

Data Model Part

iTransIT System

Legacy System

Mapping

Data Model Part

Data Flow

Figure 4: iTransIT system architecture and common data model.

4.3 Data Model Layers

The spatial data model is a multi-layered object data model that has been designed to be

extensible and inherently distributed across a range of diverse ITS. Data layers differ in the type

of information captured in terms of level of detail and similarity. The data model is built using our

abstractions for modelling spatial objects that have been developed to represent key aspects

common to all ITS data sets. Principal among these is the spatial aspect of ITS data that is

captured by geo-coding all system data.

Extensibility. The data model is required to be extensible to incorporate the data sets of

existing, as well as those of future and as yet unknown systems. Our approach to modelling ITS

data differentiates between data that is of global or general interest and data with a system or

application-specific focus. Global data layers act as the foundation of the data model and contain

data relating to the physical and political geography of a region as well as the transport network

associated with that region. Global data can be extended by adding sub-layers for example,

when including a new type of traffic detector. However, global data layers are expected to be

less frequently expanded compared to system data layers. System data layers contain

 - 15 -

information associated with individual ITS. A layer typically represents the set of information

generated or used by a specific system. New ITS are integrated through the composition of a

new system data layer representing the data of that new ITS. For example, a system data layer

might be added to integrate the data from a road weather system.

Interoperability. Spatial object types are used throughout the data model in order to ensure

interoperability between data layers. When a new system data layer is composed, data elements

are built using spatial objects that classify data elements according to their location,

identification, and role within the data model. Using this model-wide classification, data from

diverse systems can be combined to provide new applications and user services.

Distribution. The data model may be distributed across multiple ITS with individual systems

maintaining one or more layers of the overall data model. This potential distribution of layers

across a series of systems effectively allows users to access elements of a certain part of the

model with a specific quality of service. Hence, this provides a means to share data while

accommodating application specific quality of service requirements. For example, a Journey

Time Estimation service that uses CCTV sensors for license plate recognition can obtain the

plate identification data from an iTransIT Management system whereas a real-time incident

detection system using CCTV sensors might require a streamed input data flow.

Physical equipment layer

Transport Network Layer

Geographic Data Layer

Global View
Layers

Traffic Count System

Journey Times System

Car Parking System

Road Weather System

System View Layers

Figure 5: Data model layers.

Extensibility. To ensure extensibility in the spatial data model, a multi-layered approach to

modelling has been adopted. The data model is composed of global and system layers

representing regional and infrastructural data and individual ITS data sets respectively. A cross-

section of the model layers is illustrated in Figure 5. The following three layers describe the

global view of the data model.

 Geographic Data Layer. This layer contains information relevant to the geographical region

in which ITS are deployed. This layer contains topological data and political geographic

data, such as district names and boundaries.

 Transport Network Layer. This layer contains information relevant to a region’s transport

network and includes information on road junctions, road links, and rail links, as well as

tunnel and bridge placements. A significant part of the transport network layer captures

junction and inter-connecting link elements. These elements typically capture information

 - 16 -

related to road lanes and the set of legal turning manoeuvres, as well as profiles of the links

connecting junctions.

 Physical Equipment Layer. This layer contains information relevant to ITS equipment and

installations and includes data on signal controllers, detector loops, traffic bollards, parking

meters, and variable message sign installations. Such physical equipment is

characteristically modelled using types describing sensor and actuator elements.

These global context layers typically contain static information or information that has a long

lifetime. However, they may also accommodate dynamic or rapidly changing information.

Examples of static information might include district and road network descriptions whereas

dynamic information often includes data that is relevant to the operational status of ITS

equipment, such as traffic volumes and congestion levels. Based on our experience with ITS in

the Dublin City area, we have found that systems such as a Sydney Coordinated Adaptive

Traffic System (SCATS) [24, 25] and a Congestion Level application [26] may supply information

for global context layers.

System view layers in contrast characteristically capture information of a specific ITS that

often consist of mainly dynamic data. Examples of such system view layers, again taken from

the Dublin City region, are shown in Figure 5. Of these, an Urban Journey Time Estimation

system [27], might be modelled using a system layer that contains journey time values along

with their respective time of day and traffic volumes. Such information may then be cross-

referenced to the relevant sections of the road-network using their spatial context.

4.4 Interaction Paradigms

The iTransIT framework overview shown in Figure 3 also identifies five different roles for

iTransIT systems described by the communication paradigms used to interact with other

iTransIT systems, legacy systems, or user services. These paradigms essentially characterize

possible flows of information and systems exploiting them are termed accordingly. Identifying

suitable roles using interaction paradigms represents an initial step towards integrating a system

or service into an iTransIT architecture. An implementation of the iTransIT architecture may

consist of one or more of each of these system types and specific systems may integrate one or

more interaction paradigms.

System Type 1 - Dedicated User Service. These systems interface to one or more specific

legacy systems and make data available to user services. Such systems can be used to provide

context data to or capture context data from legacy systems. Data may simply be passed on or

may be processed by an integrated transport management application. An example of a

dedicated user service might include a remote configuration platform.

System Type 2 - Legacy System Mediator. These systems enable direct interaction between

two or more legacy systems, for example, when exchanging information that exhibits bandwidth

requirements that cannot be supported by an iTransIT Management system.

System Type 3 - Universal Processor. These systems implement mechanisms that use data

generated by and intended for another iTransIT system or iTransIT Management system. Such

 - 17 -

systems often calculate historical information using sensor information maintained in a remote

data layer. For example, they may capture hourly traffic volumes in order to generate daily and

monthly congestion level reports.

System Type 4 - Universal User Service. These systems may use information generated by a

variety of iTransIT systems and combine them to provide “value added information” to users. For

example, they may use individual journey time information in combination with weather data and

road-work schedules to provide context-aware journey time estimations.

System Type 5 - Dedicated Processor. These systems implement mechanisms that reuse

data from other iTransIT systems, process this information and forward the results to specific

legacy systems. For example, when providing feedback on traffic volume from a novel iTransIT

compatible car parking system to a legacy congestion level system.

Dedicated user service, legacy system mediator, and dedicated processor systems will

require mappings to specific legacy systems while universal processor and universal user

service systems will have been designed to use the spatial programming model interface to

facilitate data exchange. This will facilitate the more rapid integration of these latter system

types.

Table 3 summarizes the iTransIT systems roles as well as the data flows associated with

each particular interaction paradigm and system type.

System Type Flow Source Flow Sink

Dedicated User Service
Legacy System User Service

User Service Legacy System

Legacy System Mediator Legacy System Legacy System

Universal Processor Mgmt. System Mgmt. System

Universal User Service
Mgmt. System User Service

User Service Mgmt. System

Dedicated Processor
Mgmt. System Legacy System

Legacy System Mgmt. System

Table 3: Data flow sources and sinks for each of the system types.

4.5 Data Flow Model

The data flow model of the iTransIT framework supports a set of generic flow classes that are

used to identify and describe key information flows between framework components. These

classes are used to characterize the data flows that are responsible for populating the specific

elements of individual data model layers. Flow classes consist of a set of common attributes that

describe their key properties. This data flow model is considered orthogonal to the iTransIT

interaction paradigms since these define the interaction approach between legacy systems and

ITS systems rather than a means to map information flows to specific data model elements.

 - 18 -

Once a new data layer has been composed, for example, to facilitate the integration of an

additional system into the iTransIT framework, the information flows between system

components are analyzed using these data flow classes and their attributes. Establishing the

characteristics of such data flows is of central importance in the selection and design of

appropriate communication technologies for mapping data model elements onto underlying ITS

systems and consequently have a direct impact on the quality of data access including retrieval

latency and expected lifetime.

The following flow classes have been chosen to represent all data flows in the iTransIT

framework.

Event Flow. This class represents data flows that are characteristically driven by an initiating

component or source system that determines initiation time and frequency of specific information

transfers, provides the information, and designates the intended system component or sink for

which the information is destined. Event flows are logically asynchronous and often implemented

by an asynchronous messaging protocol.

Request/Response Flow. This class represents data flows that are characteristically driven

by a requesting component, i.e., by the component at which the actual information flow is

terminated. This component determines initiation time and frequency of specific information

transfers, implicitly designates the component for which the information is intended, and explicitly

determines the information providing component. Request/response flows are typically

synchronous and implemented by a synchronous protocol.

Alarm Flow. This class represents data flows that are essentially specializations of event data

flows but differ in the nature of the information flow (from the user’s perspective) that they

represent. Event flows illustrate information that typically describes normal system operation

whereas alarm flows often indicate information that describes some fault or exception condition.

Configuration Flow. This class represents data flows that are characteristically generated by

a source component that that may be required in order to configure another component. Such

flows although asynchronous by nature, may be implemented by a synchronous means. The

concept of a session is often utilised for this purpose allowing one component to establish a

configuration session with another component. Such sessions may comprise several data

exchanges between the parts involved.

Stream Flow. This class represents data flows that consist of sequences of related

messages. Such streams may be requested by a terminating component or may be commenced

by an initiating component. Since stream flows represent sequences of messages they typically

depict information flows with a higher volume of data compared to the previously introduced data

flow classes. Audio and video data are canonical examples of stream flows. However, streams

may also represent sequences of ASCII data.

Table 4 summarizes the attributes that describe data flow classes. These attributes have

been inspired by those used to describe communication link requirements in the KAREN

framework architecture [23] but have been tailored to specifically characterize information flows

between iTransIT framework components. The attributes are grouped into four items describing

 - 19 -

different flow aspects as well as ranges of valid attribute values. However, details of these value

ranges have been omitted due to space limitations.

Item Attribute List

Flow
Class, Description, Source Name, Number of Sources, Sink Name, Number
of Sinks, Type

Connection Type, Medium, Range

Quantification Frequency Type, Frequency Duration, Volume

Data Description, Format

Table 4: Attributes of data flow classes.

5. Evaluation

This section evaluates the framework for building global smart space applications proposed

in this article. The framework has been evaluated using a prototypical implementation of an

iTransIT Management system for a real urban environment. The iTransIT Management system

integrates real transportation information from independent legacy systems and serves as a

platform for pervasive services using this information.

The main objective of the experiments has been to assess the feasibility of our framework. A

quantitative evaluation of the interactions between the iTransIT Management system and the

legacy systems as well as between the iTransIT Management system and pervasive services

shows that real information provided by separate underlying legacy systems can be used and

reused by context-aware services in a global smart space. The integration and use of real data

derived from transportation systems deployed in Dublin City demonstrates that realistic data

volumes can be handled and correlated, and illustrates the impact of temporal context on data

volumes. An evaluation of the programming efforts required for the integration of legacy systems

demonstrates that even though legacy systems are heterogeneous and are likely to require

support for system-specific communication technologies integration effort can be limited by the

provision of generic, reusable components. Such integration components can be used and

reused by legacy systems thereby enabling efficient incremental integration of independent

heterogeneous systems and their data. And finally, the feasibility of the programming model of

our framework providing access to information generated by a variety of heterogeneous legacy

systems in a context-aware manner has been evaluated. The assessed transportation service

scenario demonstrates that our framework enables application and eventually user access to

pervasive context information derived from a real urban environment through correlation of

overlapping spatial context. This evaluation therefore demonstrates that using our framework

enables the incremental integration of individual systems associated with a global smart space

into a comprehensive platform for the provision of context-aware services and information to

users.

 - 20 -

5.1 The iTransIT Prototype

This evaluation is based on a prototypical implementation of an iTransIT Management

system that integrates various static and dynamic legacy data from a range of independent

systems into a platform for pervasive services. Figure 6 illustrates the prototype and the systems

and services that compose this proof-of-concept global smart space.

The core of the prototype is the iTransIT Management system that implements the spatial

application programming interface and uses spatial objects to model information concerning a

range of transportation systems currently deployed in Dublin City. The system includes global

context layers modelling the road network comprising intersections, roads, lanes, traffic counts,

traffic volumes, and congestion levels as well as the public transport network consisting of bus

and tram routes, stops, timetables, bus and tram locations, and bus lanes. It also includes

system context layers modelling parking information and road weather data. These layers

integrate static and dynamic data provided by a range of real legacy systems including the main

traffic management system, a public transport information service, a congestion level application,

a road weather service and a car parking information system. Figure 7 shows a small set of the

spatial objects modelling these layers that have been implemented as relational tables in a

MySQL database with spatial extension. The information from these spatial objects has been

provided by the traffic management system, the public transport information service and by a

journey time monitoring system.

The two legacy systems shown in Figure 6 are of particular interest for this evaluation. Both

of them emulate the real interface of existing transportation systems and use real data from

these systems to populate the data model with static and dynamic information on public

transport, including routes, timetables and vehicle locations, and on road network traffic

congestion. These two legacy systems connect to the Management system using different

communication technologies. Information received by the Management system is initially

converted into an XML-based format before being translated into SQL statements for populating

the data model. In addition to ensuring realistic information exchange, this approach of using real

legacy interfaces and real data is expected to enable a transparent switch over from our

prototypical legacy system simulators to the real systems without changes to either the

Management system or the pervasive services.

The prototype includes two context-aware services for providing pervasive information to

users through mobile devices, a service for multi-modal urban journey planning and a service for

visualising traffic congestion in the road network. Both services use the spatial application

programming interface to access the data model and ultimately, to transparently correlate and

use the information provided by the underlying independent legacy systems. The Smart Traveller

Information Service enables travellers to plan journeys involving multiple forms of transportation

including walking, public transport, cycling, and private vehicles thereby bridging the coordination

gap between these modes of transportation by suggesting journey routes according to traveller

preference and availability of transportation means. The Congestion Service overlays

intersection-specific congestion information over a road network map displaying up-to-date

 - 21 -

congestion levels. Such information enables travellers to adjust their journey routes and to avoid

high-congestion areas depending on context such as the time of day or prevailing weather

conditions. Such services can be considered canonical global smart spaces applications since

they exploit context information generated by a variety of independent systems.

Congestion

Service

iTransIT Management System

Spatial - API

XML to DM

CORBA to XML

XML to DM

SCATS to XML

Public Transport

Simulator

CORBA IDL

Traffic Congestion

Simulator

SCATS Interface

Data Model

Traveller Information

Service

Figure 6: Systems and services integrated by the iTransIT prototype.

This proof-of-concept prototype has been realised in a distributed fashion using two

machines. The iTransIT Management system, including its spatial programming interface and

data model, is hosted on a machine equipped with an 800MHz Pentium III processor and 250MB

RAM while legacy systems and pervasive services are hosted on a 3GHz Pentium 4 machine

with 1GB RAM. The machines run a Debian and Ubuntu Linux distribution respectively. Services

and legacy systems interact with the iTransIT Management system through a 100Mbps local

area network connection.

 - 22 -

Figure 7: Spatial objects modelling public transport information.

5.2 Integrating Independent Systems and Services

This experiment evaluates the interactions between the independent legacy systems and the

context-aware pervasive services integrated into a global smart space. Specifically, the latencies

for exchanging dynamic information between the iTransIT Management system and the legacy

systems populating the data model as well as between the iTransIT Management system and

the services using the spatial programming model to access information from the data model are

assessed. Interactions are based on transportation information exchanges during a weekday,

from 5:45 am (when tram services start) to mid afternoon, thereby covering morning and lunch-

time rush hours.

Traffic Congestion Legacy System. These measurements assess the interactions between

the Traffic Congestion legacy system and the iTransIT Management system. They capture the

latencies incurred by the Management system when processing and integrating congestion level

updates from the Traffic Congestion system. The Management system uses the interface of the

SCATS Traffic Congestion system to periodically request congestion updates. Updates are

requested every minute for all 1304 intersections currently covered by our road network model

and the presented results are averaged over 5 minute periods.

Figure 8: Latency breakdown for updating the congestion levels in the data model.

 - 23 -

Figure 8 shows a breakdown of the update latency indicating the latencies for requesting

updates from the remote legacy system, for converting updates to XML and for converting the

XML updates to SQL statements. The latter also includes execution of the SQL statements in

order to refresh the data model (database). Figure 9 illustrates the total update latency indicating

that processing a single request for updates on all congestion levels in the data model averages

at 1358ms and that this duration is steady, which is to be expected considering that the number

of congestion levels to be updated (also shown in Figure 9) remains constant.

Figure 9: Overall congestion level update latency.

Figure 10 and Figure 11 show latency measurements for scenarios similar to Figure 8 and

Figure 9 respectively. However, the strategy for updating the data model is now based on

caching congestion updates received from the legacy system, where congestion levels are only

processed if they differ from previous levels. As outlined in Figure 11, this approach significantly

reduces the number of processed congestion levels and consequently the number of levels to be

updated in the data model. Overall latency is initially high as all levels need be updated and is

significantly reduced afterwards, with minor peaks during morning rush hour and at lunch time

when levels are expected to change more frequently.

Figure 10: Latency breakdown for updating the congestion levels in the data model using a

caching strategy.

 - 24 -

Figure 11: Overall congestion level update latency using a caching strategy.

Public Transport Legacy System. These measurements assess the interactions between the

Public Transport legacy system and the iTransIT Management system. They capture the

latencies incurred by the Management system when processing updates on the locations of the

trams of the two lines currently operating in Dublin’s inner city. These location updates are

asynchronously disseminated using the CORBA notification service. A notification, which is also

called event, is generated for every location update and the presented latencies are averaged

over 15 minute periods.

Figure 12 shows a breakdown of the latency for refreshing tram locations in the data model.

The latency for event dissemination averages at 77ms with 200ms peaks shown during rush and

lunch hours. The latency for event queuing shows similar peaks and has been found to be most

significant while, in comparison, the latency for event conversion to XML is negligible.

Figure 12: Latency breakdown for updating the tram locations in the data model.

Figure 13 illustrates the overall tram location update latency indicating that processing a

single event averages at approximately 0.4 seconds early in the morning when 10 trams are

operating and peaks at approximately 1.4 second during rush hour and during lunch time when

28 trams are in operation and hence, when the largest number of location update events is being

disseminated and processed.

 - 25 -

Figure 13: Overall tram location update latency.

Congestion Service. These measurements assess the interactions between the user service

for visualising traffic congestion in the road network and the iTransIT Management system. They

capture the latencies incurred by the Congestion Service when using JAVA remote method

invocation and the spatial programming interface to request congestion levels from the data

model. Congestion levels for all 1304 intersections are polled every minute and the latencies are

averaged over 5 minute periods. Figure 14 depicts the latencies for requesting a list of all

intersection prior to each polling of the congestion levels for all intersections and for polling of the

congestion levels while requesting the intersection list only once at initialisation time. The ability

to dynamically request newly available congestion levels (and to dynamically ignore discarded

congestion levels) increases the average polling latency from 1254ms to 1326ms.

Figure 14: Overall congestion level request latency.

5.3 Incremental Construction of Global Smart Spaces

This experiment evaluates the integration of independent legacy systems and their data into

our prototype and ultimately, the incremental construction of a global smart space. The duration

of the individual programming activities towards integrating the Traffic Congestion legacy system

and the Public Transport legacy system have been measured with a special focus on identifying

activities that might involve programming reusable components. Activities that offer potential for

such reuse have been assessed further and the programming effort for reusing specific

components has been measured. Initially, the Traffic Congestion system was integrated. The

translator component for converting XML-based legacy data into SQL statements for populating

the data model has been realised in a generic fashion so that it can be easily configured to

 - 26 -

convert XML-based legacy data from other legacy systems. The feasibility and usefulness of

such a component has been assessed by subsequently integrating the Public Transport system

and reusing this translator.

Table 5 summarises the programming effort required for the individual integration activities of

the two legacy systems. Note that these results reflect effort for prototypical programming

activities by an experienced researcher only, i.e., they exclude other software engineering

activities such as requirements analysis and documentation. The efforts of the realisation

activities for the Public Transport system are generally higher than those for the Traffic

Congestion system with the exception of the XML to SQL conversion activity. This activity

illustrates the high initial effort for realising the generic translator component when integrating the

Congestion system and the significantly lower effort for subsequent reuse when integrating the

Transport system.

Realisation Activity
Traffic Congestion Legacy

System Effort [h]
Public Transport Legacy

System Effort [h]

Legacy System Communication 3.2 7.5

Legacy Data Queue n/a 6.0

Legacy Data to XML Translator 10.8 13.0

XML to SQL/DM Translator 20.9 2.5

Total 34.9 29.0

Table 5: Programming effort for integrating independent legacy systems.

Table 6 outlines the specific programming effort for the XML to SQL conversion realisation

activity. The number of Lines of Code (LoC) used for realising this component for integrating the

Traffic Congestion legacy system and for integrating the Public Transport legacy system are

shown. Of the eleven Java classes realising this component for the Traffic Congestion legacy

system integration, eight classes can be reused without change for the Public Transport legacy

system integration while three classes require minor extensions (as opposed to modifications).

These extensions are straightforward descriptions of the SQL statements updating the database

with the new legacy system data. This enables easy reuse of this component as most classes

can be reused directly and changes are contained to minor extensions to a small number of

classes.

In summary, this evaluation experiment demonstrates that heterogeneous legacy systems

based on different communication technologies can be efficiently integrated into a global smart

space, and that subsequent system integration can be optimised.

 - 27 -

XML to SQL/DM Translator Java
Classes

Traffic Congestion
Legacy System

Effort [LoC]

Public Transport
Legacy System

Effort [LoC]

Effort Increase
[Additional LoC]

1: DataObject 199 199 0

2: IdentificationObject 99 99 0

3: LocationObject 58 58 0

4: PayloadData 121 121 0

5: DM_GenericObject 159 159 0

6: XML2DM 431 431 0

7: DM_Translator 57 57 0

8: ITransIT_table_const 39 39 0

9: DM2JDBC 154 159 5 (3.2%)

10: SQL_StatementGenerator 563 714 151 (26.8%)

11: DM2SQLstring 128 161 33 (25.8%)

Total 2008 2197 189 (9.4%)

Table 6: Lines of Code for the “XML to SQL/DM Translator” legacy system integration activity.

5.4 Programming Global Smart Space Applications

This experiment evaluates the feasibility of the programming model of our framework

providing access to information captured by our data model in a context-aware manner. The

evaluation scenario includes a tourist using the context-aware Traveller Information service to

locate public transport stations within walking distance of her current location. The tourist has

just visited The Book of Kells museum at Trinity College Dublin and is about to leave campus

through the Nassau Street gate. She remembers that she used the number 15 bus to travel from

her hotel to the city centre and would therefore like to locate nearby bus stops of this route.

She uses a handheld device with wireless service access to enter her query into the Traveller

Information service, providing bus route number 15 and 5 minutes walking distance from her

current location as parameters. The service uses coordinates derived from its GPS receiver

(converted into Irish national grid coordinates) and an average pedestrian pace of 1.36m/s [28]

to define the geometric shape of the search area. The service then uses the spatial application

programming interface as outlined below to access the relevant context information.

 - 28 -

1 int[] busStopId = sapi.select("BusStop", searchArea);

 for (int i = 0; i < busStopId.length; i++) {

2 Parameter busStopName = sapi.retrieve("BusStop",

 busStopId[i],"Name");

3 Geometry busStopLocation = sapi.select(“BusStop”, busStopId[i]);

4 Parameter linkToRoute = sapi.retrieve("BusStop", busStopId[i],

 "route_autoId");

 int routeId = linkToRoute.getIntegerValue();

5 Parameter routeName = sapi.retrieve("Route", routeId, "Name");

6 if ((routeName.getStringValue().equals(“15-outbound”)) ||

 (routeName.getStringValue().equals(“15-inbound”))) {

7 //use results

 }

 }

The service might use a geometric query to locate all spatial objects representing bus stops

in the given search area (1) and retrieve the parameters and attributes of these objects that

describe the names and locations of specific bus stops (2, 3). The service then proceeds to

identify the spatial objects that describe the routes associated with these bus stops. These

“links” to route objects are modelled as parameters that can be retrieved from bus stop objects

(4). They are subsequently used to retrieve the names of the bus stop routes (5) and information

related to the previously indicated bus route (6) can then be used to advise the user (7). The

results of such a scenario for locating bus stops within walking distance can be found in Table 7.

Bus stops for both city centre-bound and suburb-bound stops have been retrieved since the user

did not specify her preferences. Naturally, a Traveller Information service would display this

information as an overlay to a map of Dublin City rather than in table form. Such an overlay

might include the bus stop names and the headings of buses. This might further assist the user

in locating and eventually walking to a convenient bus stop.

Bus Stop Name Route Name
Bus Stop Location

(Irish national grid coordinates)

Kildare Street 15-outbound (316230.8575, 233593.6385)

Dawson Street Upper 15-inbound (316063.4310, 233792.1260)

Dawson Street Lower 15-inbound (316036.3947, 233612.0083)

Suffolk Street 15-inbound (315924.9190, 233981.6965)

Nassau Street 15-outbound (316202.2930, 233883.7390)

College Green 15-outbound (316038.3422, 234186.3123)

Table 7: Locating public transport stations within walking distance.

This application scenario demonstrates how a context-aware user service might use the

spatial programming model of our framework to locate real-world entities in a given area of

interest and how it might exploit explicit associations between spatial objects. Similar queries

can be used by a range of related scenarios. For example, after selecting a bus stop, the user

might wish to see the relevant timetable for the next hour or might wish to use the address of her

 - 29 -

hotel to locate a convenient stop near her destination and to display the route the bus will take.

Other related scenarios might include using the Congestion service to retrieve the congestion

levels along the route in order to get an indication of whether the bus is likely to be on time. Such

a scenario might also be of interest to someone travelling by car to the airport or to work. These

related scenarios have been implemented but due to space limitations are not described in

further detail.

This application scenario furthermore illustrates how a Java-based realisation of a service

can access information from the data model using element type and location context. Using a

geographical scope further limits the number of retrieved spatial objects to a subset of the typed

objects captured in the data model. Larger search areas are more likely to yield spatial objects

that are relevant to the service user and possibly identify alternative objects of interest. The

results of queries using smaller-sized search areas can be retrieved and processed more

efficiently reducing computational load and can increase clarity from a user’s perspective. For

example, using a larger search area might provide a traveller with alternative bus stops but will

impose increased computational load on the handheld device for displaying these additional

stops. It will also require the traveller to manually eliminate a larger number of unsuitable stops.

This evaluation is based on scenarios that access information integrated in the framework

through a single spatial application programming interface. However, a context-aware user

service may concurrently use multiple spatial application programming interfaces to access

spatial objects in a similar way. The overlapping context of such distributed spatial objects may

be used similarly to correlate objects. For example, the location of a bus stop available from one

spatial application programming interface might be used to locate nearby train stations through

another interface. Also, the framework does not impose a specific programming language for

realising spatial application programming interfaces. A programming language other than Java

may be chosen based on system and service requirements, for example, to provide a more

performance efficient runtime.

6. Summary and Conclusions

This article presented a framework designed to provide a standardised way to build context-

aware global smart space applications using information that is distributed across independent

systems and related services. The iTransIT framework supports a spatial programming model

that uses a small set of predefined types to model distributed context information as spatial

objects. This provides a common view on such information and enables applications to exploit,

act upon and share information based on overlapping temporal and spatial aspects. The spatial

programming model supports a topographical location model in which spatial context derived

form the real world is explicitly represented by shapes that reflect occupied space or describe

areas of interest. This enables systems distributed over large geographical areas to

independently define and use spatial context in a consistent manner. This approach is supported

by an extensible layered data model that implicitly captures the relationships between

 - 30 -

information provided by separate underlying systems and facilitates the incremental construction

of global smart spaces over time while minimising the impact of such expansion as changes are

largely local to the new system or service. The data model is distributed allowing individual

systems to maintain one or more layers of the overall data model and facilitating data exchange

between systems and services with diverse contextual data sets and functional organizations.

This framework has been evaluated by building a proof-of-concept prototype of a global

smart space. The prototype integrates real transportation information derived from independent

systems currently deployed in Dublin City and realises context-aware services based on this

information. The evaluated scenarios demonstrated that our framework enables the integration

of individual systems associated with a global smart space into a comprehensive platform for the

provision of truly pervasive context-aware services and information to users.

Acknowledgements. The work described in this article was partly supported by the Dublin

City Council in the Republic of Ireland. The authors would also like to thank the Traffic Office of

the Dublin City Council for providing the transportation data that made the evaluation of this work

possible.

References

[1] A. Dearle, G. Kirby, R. Morrison, A. McCarthy, K. Mullen, Y. Yang, R. Connor, P. Welen,
and A. Wilson, "Architectural Support for Global Smart Spaces," in Proceedings of the 4th
International Conference on Mobile Data Management (MDM 2003), LNCS 2574.
Melbourne, Australia: Springer-Verlag, 2003, pp. 153-164.

[2] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou, "Experiences of
Developing and Deploying a Context-aware Tourist Guide: The GUIDE Project," in
Proceedings of the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom 2000). Boston, Massachusetts, USA: ACM Press, 2000, pp. 20-31.

[3] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton, "Cyberguide:
A Mobile Context-Aware Tour Guide," ACM Wireless Networks, vol. 3, pp. 421-433, 1997.

[4] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P. Okanda, and C.-F. Sørensen,
"Cooperating Sentient Vehicles for Next Generation Automobiles," presented at The First
ACM International Workshop on Applications of Mobile Embedded Systems (WAMES'04),
Boston, Massachusetts, USA, 2004.

[5] J. Kjeldskov, S. Howard, J. Murphy, J. Carroll, F. Vetere, and C. Graham, "Designing
TramMateña Context-Aware Mobile System Supporting Use of Public Transportation," in
Proceedings of the 2003 Conference on Designing for User Experiences. San Francisco,
California, USA: ACM Press, 2003, pp. 1-4.

[6] J. Dowling, R. Cunningham, A. Harrington, E. Curran, and V. Cahill, "Emergent Consensus
in Decentralised Systems using Collaborative Reinforcement Learning," in Post-
Proceedings of SELF-STAR: International Workshop on Self-* Properties in Complex
Information Systems, LNCS 3460: Springer-Verlag, 2005, pp. 63-80.

 - 31 -

[7] M. Garofalakis, J. Gehrkle, and R. Rastogi, "Data Stream Management: Processing High-
speed Data Streams," Springer-Verlag Berlin and Heidelberg GmbH & Co., 2007.

[8] European Commission, "The KAREN European ITS Framework Architecture,"
http://www.frame-online.net, URL accessed in 2008.

[9] U.S. Department of Transportation, "The National ITS Architecture Version 5.0,"
http://itsarch.iteris.com/itsarch, URL accessed in 2007.

[10] R. A. P. Bossom, O. LeGuellec, A. Nigro, and P. Jesty, "European ITS Framework
Architecture - Functional Architecture (D3.1)," European Communities, 2002.

[11] N. Hönle, U.-P. Käppeler, D. Nicklas, T. Schwarz, and M. Grossmann, "Benefits of
Integrating Meta Data into a Context Model," in Proceedings of the 2nd IEEE PerCom
Workshop on Context Modeling and Reasoning (CoMoRea 2005). Kauai Island, Hawaii,
USA: IEEE Computer Society, 2005, pp. 25-29.

[12] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, "From Home to World - Supporting
Context-aware Applications through World Models," in Proceedings of Second IEEE
International Conference on Pervasive Computing and Communications (Percom'04).
Orlando, Florida: IEEE Computer Society, 2004, pp. 297-308.

[13] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, and T. Schwarz,
"Efficiently Managing Context Information for Large-scale Scenarios," in Proceedings of the
Third IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005). Kauai Island, Hawaii, USA: IEEE Computer Society, 2005, pp. 331-340.

[14] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and K. Nahrstedt, "Gaia:
A Middleware Infrastructure to Enable Active Spaces," IEEE Pervasive Computing, vol. 1,

pp. 74-83, 2002.

[15] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kramer, and L. Iftode, "Spatial Programming
using Smart Messages: Design and Implementation," in Proceedings of the Twenty-Fourth
IEEE International Conference on Distributed Computing Systems (ICDCS'04). Tokyo,
Japan: IEEE CS Press, 2004, pp. 690-699.

[16] J. H. Kim, W. I. Lee, J. Munson, and Y. J. Tak, "Services-Oriented Computing in a
Ubiquitous Computing Platform," in Proceedings of the Fourth International Conference on
Service Oriented Computing (ICSOC 2006), LNCS 4294. Chicago, USA: Springer Verlag,
2006, pp. 601-612.

[17] J. Munson and Y. J. Tak, "The XVC Framework for In-Vehicle User Interfaces," in
Proceedings of the First IEEE International Workshop on Pervasive Transportation
Systems (IEEE PerTrans 2007). White Plains, New York, USA: IEEE Computer Society,
2007, pp. 435-442.

[18] K. I. Farkas, J. Heidemann, and L. Iftode, "Guest Editors' Introduction: Intelligent
Transportation and Pervasive Computing," IEEE Pervasive Computing Special Issue on
Intelligent Transportation Systems, vol. 5, pp. 18-19, 2006.

http://www.frame-online.net/
http://itsarch.iteris.com/itsarch

 - 32 -

[19] A. Dey and G. Abowd, "Towards a Better Understanding of Context and Context-
Awareness," in the Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of the 2000 Conference on Human Factors in Computing Systems
(CHI 2000). The Hague, The Netherlands, 2000, pp. 1 - 12.

[20] R. Meier, A. Harrington, and V. Cahill, "Audit of ITS Applications and Services in Dublin
City," Trinity College, Dublin, Ireland, Dublin City Council iTransIT Deliverable, August
2004.

[21] M. Bauer, C. Becker, and K. Rothermel, "Location Models from the Perspective of Context-
Aware Applications and Mobile Ad Hoc Networks," Personal and Ubiquitous Computing,
vol. 6, pp. 322-328, 2002.

[22] Open GIS Consortium Inc, "OpenGIS Simple Features Specification for SQL, Revision
1.1," OpenGIS Project Document 99-049, 1999.

[23] R. A. P. Bossom, European ITS Framework Architecture - Communication Architecture
(D3.3), Annex 1: Supporting Information for Communications Analysis: European

Communities, 2000.

[24] Roads and Traffic Authority of Australia, SCATS 6.3 Operating Instructions. Eveleigh NSW,
Australia: Roads and Traffic Authority of NSW Australia, 2003.

[25] B. Conolly, G. Davis, G. Francis, and K. McCallum, SCATS 6 ITS Interface: Messaging
Protocol 1, version 1.3. Eveleigh NSW, Australia: Roads and Traffic Authority of NSW
Australia, 2003.

[26] M. Dineen, "Real-Time Display of Dublin Traffic Information on the Web," Department of
Computer Science, University of Dublin, Trinity College, Ireland, M.Sc. Thesis September
2000.

[27] A. Harrington and V. Cahill, "Route Profiling - Putting Context To Work," in Proceedings of
the 19th ACM Symposium on Applied Computing (SAC 2004). Nicosia, Cyprus, 2004, pp.
1567-1573.

[28] T. F. Fugger, B. C. Randles, A. C. Stein, W. C. Whiting, and B. Gallagher, "Analysis of
Pedestrian Gait and Perception–Reaction at Signal-Controlled Crosswalk Intersections,"
National Research Council, Washington, D.C, USA, Transportation Research Record 1705
TRB 00-1439, 2000.

René Meier is a Lecturer in Computer Science at the University of Dublin, Trinity College. His

interests as a researcher in distributed systems cover a variety of overlapping areas related to
very large-scale, context-aware mobile and pervasive computing systems as well as to self-
organising systems. These include mobile and message-oriented middleware, context- and
location-aware services, self-organizing peer-to-peer systems, and the application of middleware
architectures to global smart spaces, especially, in the transportation domain. He received his
B.Sc. degree in Computer Science from the University of Applied Sciences, FH Aargau, in
Switzerland and this M.Sc. and Ph.D. degrees in Computer Science from the University of
Dublin, Trinity College. He is an editorial board member for the Mobile and Pervasive computing
community of the IEEE Computer Society’s first on-line magazine, IEEE Distributed Systems
Online and an Associate Editor for the IGI International Journal of Ambient Computing and
Intelligence. Contact him at Rene.Meier@cs.tcd.ie or www.cs.tcd.ie/Rene.Meier.

 - 33 -

Anthony Harrington is a Ph.D. student in the School of Computer Science and Statistics at the
University of Dublin, Trinity College. He received his B.A. degree from University College Dublin
and his M.Sc. degree in Networks and Distributed Systems from the University of Dublin, Trinity
College. Currently for his doctoral degree his research efforts are on programming models for
pervasive computing with a special focus on applying planning and optimisation algorithms to
applications executing in partially observable and dynamic environments. Contact him at
Anthony.Harrington@cs.tcd.ie.

Kai Beckmann is a research assistant and a Masters student at the Fachhochschule
Wiesbaden, University of Applied Sciences in Germany. His research covers distributed systems
and embedded real-time systems with a special focus on industrial and home automation. He
received his Bachelor degree in Computer Science from the Fachhochschule Wiesbaden in
2007. Contact him at beckmann@informatik.fh-wiesbaden.de.

Vinny Cahill holds a Personal Chair in Computer Science at Trinity College Dublin where he
also serves as Head of the Department of Computer Science and Director of Research for
Computer Science and Statistics. His research addresses many aspects of distributed systems,
in particular, middleware and programming models for ubiquitous and mobile computing with
application to intelligent transportation systems, global business systems and personal
healthcare/independent living. He has published over 100 peer-reviewed publications in
international conferences and journals. Contact him at vinny.cahill@cs.tcd.ie or
www.dsg.cs.tcd.ie/~vjcahill.

