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barelyMusician:

An Adaptive Music Engine For Interactive Systems

Alper Gungormusler
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Supervisors: Mads Haahr, Natasa Paterson-Paulberg

Aural feedback plays a crucial part in the field of interactive entertainment when
delivering the desired experience to the audience particularly in video games. It is,
however, not yet fully explored in the industry, specifically in terms of interactivity of
musical elements. Therefore, an adaptive music engine, barelyMusician, is proposed in
this dissertation in order to address this potential need. barelyMusician is a compre-
hensive music composition tool which is capable of real-time musical piece generation
and transformation in an interactive manner, providing a bridge between the low-level
properties of a musical sound and the high-level abstractions of a musical composi-
tion which are significant to the user. The engine features a fully-functional software
framework alongside a graphical user interface to enable an intuitive interaction for the

end-user.
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Chapter 1
Introduction

Aural feedback plays a crucial part in the field of interactive entertainment when deliv-
ering the desired experience to the audience particularly in video games. It is, however,
not yet fully explored in the industry, specifically in terms of interactivity of musical
elements. Therefore, an extensive approach for development of an adaptive music com-
position engine is proposed in this dissertation research project in order to address this

potential need.

The motivation behind the choice of this topic is presented in greater detail in Sec-
tion 1.1. An overview of the main objectives of the proposed approach is provided in

Section 1.2. The organization of the rest of this report is presented in Section 1.3.

1.1 Motivation

There has been a tremendous developmental curve with regards to the technological
aspects in the interactive entertainment field in the last two decades — specifically in
the video game industry. While the main focus was mostly towards the visual aspects
of the experience, with the maturation of graphics technologies in the field, developers
recently tend to focus more on the other areas—such as game Al—in order to take one
step further in the field.



That being said, one of the most important aspects which dramatically affects the
immersion—hence, the quality of the experience—in the field is the use of audio ele-
ments [1]. Until recently, the term interactive, was often discarded in such applications
for game audio, especially in terms of musical elements, even in high-budget main-
stream products [2]. The main reason why is arguably due to the misinterpretation
of the problem which led the industry to treat the musical pieces as film scores. Con-
sequently, even though many rich and sophisticated scores have been composed, they
still more or less lack the main feature required; interactivity. Having said that, unlike
movies, video games as interactive applications rarely follow a linear path, and more
importantly they offer a great range of repeatability which makes dynamism—hence,
adaptability—a must to have in terms of the audio content, as it is in other parts of
such applications. While a few examples could be found in the industry which try to
achieve such adaptability to a certain extent (see Section 2.2), the issue has not been

solved yet to an acceptable level particularly considering the practical aspects.

Fortunately, there is recently an increasing interest and demand in the field in order
to achieve adaptive and responsive aural feedback [3]. Nevertheless, while significant
progress has been made for interactive sound synthesis in academic research as well as
in practical applications in the industry [4, 5], achieving adaptive music compositions
in real-time still remains an unsolved problem. More specifically, existing technologies
in the field, labeled as dynamic, generally rely on the vertical approach [6] — layering
and branching the composition into segments. Thus, the resulting output can be varied
in an automated manner by certain event triggering approaches. The idea is, however,
still based on pre-recorded audio loops which do not allow sufficient dynamic adapt-
ability and flexibility after the offline creation process [7]. Moreover, such approaches
require considerable amount of resources and dependencies mainly due to the manual

authoring of the outcome.

As a matter of fact, there have been several attempts in the industry to take this
approach one step further by introducing certain generative algorithms in order to pro-
duce the musical elements procedurally. However, those remained as specific solutions
exclusive only for those specific projects. Having considered this, there is no generic

approach, i.e. all purpose solution with such capabilities in the field.



1.2 Objectives

To address the issues and the potential need stated in the previous section, this re-
search project proposes a practical approach for development of a middleware tool, an
adaptive music engine, which is capable of autonomously generating and manipulating
musical structures in real-time to be used by not only developers but also designers.
The proposed approach treats the problem in an interactive manner, providing a bridge
between the low-level properties of a musical sound and the high-level abstractions of
a musical composition which are meant to be significant to the end-user. Moreover, it
features a fully-functional software framework alongside a graphical user interface to

enable an intuitive interaction.

Even though the main target is chosen to be the video games industry, the approach
is also applicable to any other areas in the field of interactive digital entertainment if

desired.

1.3 Dissertation Roadmap

State-of-the-art in the field is presented in Chapter 2 introducing some essential back-
ground research and relevant work in academia as well as the industry in order to
develop an understanding and an analysis of the stated problem. It is followed by
the methodology of the proposed approach and the implementation phase in full de-
tail in Chapter 3 and 4 respectively. Two demonstrative applications are presented
and described in Chapter 5 as proof-of-concept experiments. Evaluation and further
discussion on the obtained outcome are made in Chapter 6 in order to quantify the
main contribution of the proposed work to the field of research. Finally, the report is
concluded by Chapter 7 alongside with a number of possible improvements to be made

in the future.



Chapter 2

State of the art

Prior to the explanation of the proposed approach, it is necessary to provide some
essential knowledge and terminology which are required to assess the musical back-
ground related to the field of research. Such information is presented in Section 2.1.
Furthermore, a number of relevant works selected from the previous research articles
and industrial applications are examined in Section 2.2 to obtain a better understand-
ing of the state-of-the-art in the field.

2.1 Background

The project is built on a multidisciplinary research field which involves theoretical
aspects of musical sound and composition combined with practical aspects of algorith-
mic techniques and technologies in the field of computer science. Therefore, both parts
should be examined delicately in order to achieve a sufficient level of understanding in

the topic.

2.1.1 Tonal Music Theory

Music as an art form has limitless possibilities of combination and permutation of
different soundscapes together to create a compositional piece. Considering the com-
mon music theory, however, creating musical compositions is a highly structured and

a rather rule-based process particularly when observing the Western music in the 18th



and 19th centuries, or even more recently in such genres as pop or jazz music [8].
Those type of compositions are generally defined as a a part of tonal music. That
being said, tonality in music could be described as a system of specifically arranged
musical patterns—sequence of melodies and chords—in a hierarchical way to attract

the listener’s perception with a stable and a somewhat pleasing manner [9].

While it overlooks the artistic means of creation, achieving tonality in a musi-
cal piece is arguably straightforward, if one could treat the musical properties in a
proper way. Thus, it is fairly possible to produce a musically recognizable sequence of
soundscapes just by following certain rules in the right order. It is expected that this
approach does not give the most fascinating and/or inspiring outcome for a composer,
nonetheless, the result will be an adequate musical piece that sounds good to a typical
Western listener [10].

As a structural approach, such properties could be made by certain algorithmic
techniques used in tonal Western music to automate the entire behaviour providing an

artificially intelligent system. More detail in this topic is presented in Section 2.1.3.

Five Components of Tonality

Proceeding further, Tymozcko [11] argues that there are five fundamental features for
a musical piece, regardless of its genre or time, which addresses tonality. These five

components could be briefly described as below.

Congunct melodic motion refers to the notes in the musical patterns to have vertically
short distances to their neighbours respectively. In other words, it is unlikely to
encounter rather big steps in terms of the pitch® of two consequent notes—such
as more than an octave—in a tonal musical piece. These melodic rules have their

origins in species counterpoint of Renaissance music.

Acoustic consonance is preferable to create the harmonic patterns in a tonal musical
piece. Consonant harmonies, by definition, sound more stable—hence, pleasant—

to the listener than dissonant harmonies.

!The term pitch is commonly used to refer the audio frequency of a certain note in musical notation.



Harmonic consistency should be established for stability. More specifically, harmonic
patterns in a tonal musical piece tend to be structurally similar regardless of

what type they are formed of.

Limited macroharmony refers to a tendency of relatively reducing the total collection
of musical notes in a certain time period—such as in a single section—in the
composition. In that sense, a typical tonal musical piece does generally not

contain more than eight notes? in a musical phrase.

Centricity is another important component in tonal music. It refers to a selection of a
certain musical note, named as tonic, for the piece to be centered around. Tonic
tends to be heard more frequently than the other notes in a tonal musical piece,
which could also be seen as home of the musical motion that the music is likely

to return and rest.

Musical Form

While tonality could be achieved by using above components at a micro level, the over-
all structure of the composition should also be considered in macro level in order to
provide an interesting and a meaningful outcome as a complete compositional piece.
Having considered this, a musical composition could be thought of an organization in
different levels, similar to a language form in linguistics. Sectional form is commonly
used in music theory to arrange and describe a music composition in that manner. In
sectional form, the musical piece is made of a sequence of sections, which are analogous
to paragraphs in linguistics. Sections are often notated by single letters such as A and
B to make them easy to read. Unlike paragraphs, sections might occur more than once
in a musical piece. In fact, it generally is a not only preferred but also essential way
to stress the message of the composition, i.e. the goal of the song. In popular music,
sections are traditionally referred under specific names (rather than single letters) such

as verse, chorus and bridge.

2The number eight does not appear of a coincidence, in fact that is the exact number of notes in
one octave in a diatonic scale such as major and harmonic minor scales which are arguably the most
common scale choices in tonal music.



Each section in a piece consists of a certain number of bars—also known as mea-
sures—to build up the song structure. Likewise, each bar is made of a certain number
of beats as punctual points, which are traditionally notated with time signatures on
the musical staff. For instance, the most common form, 4/4, claims that each bar in

the piece has four beats (numerator) which are all quarter notes (denominator).

To sum up, the stated features and components could be used together to produce
musically interesting compositional pieces either manually or an automated manner.
On the other hand, the question remains whether the outcome is aesthetically accept-

able or not as a final product.

2.1.2 Adaptiveness and Virtual Environments

Adaptive music in interactive systems can be briefly defined as the dynamic changes
in the background music that are triggered by the pre-specified events in the envi-
ronment. Adaptiveness, in broad sense, could be achieved by two main approaches.
The traditional approach which most applications currently use involves layering and
re-ordering pre-recorded musical pieces with respect to the relevant inputs and events
in the application. While each compositional piece itself remains intact, different com-
binations (both horizontally and vertically) between those pieces illustrate the effect of
adaptability to a certain extent. One major problem of this approach is repetition. In
other words, even though the musical pieces are perfectly arranged according to every
single event in the environment, the outcome will always be the same for the observer
when the same events are triggered. Thus, the scene will become conspicuous to the
observer after a certain time period. Moreover, it is fairly easy to exploit the approach
when no inputs are received and/or events are triggered. In that case, a certain mu-
sical piece will loop forever waiting for a change in the environment, which makes the
observers of the system become somewhat foreign to the environment resulting in a

subtle break in immersion.

The second approach involves a more sophisticated way of dealing with the prob-

lem by introducing the concept of generative music — also known as algorithmic music



in some contexts [12]. While this approach represents some similarities to the for-
mer, it provides a highly grained and a fully dynamic structure. Instead of composing
and recording the musical pieces (or snippets) beforehand, the whole music genera-
tion phase is done in an automated fashion (either offline or real-time). This can be
achieved via different methodologies such as rule-based, stochastic and artificial intel-
ligence techniques. While rule-based and artificial intelligence techniques (particularly
such involving machine learning) rely on existent theoretical and empirical knowledge
in music theory, e.g. scientific findings in previous works or well-known compositional
pieces in the field, stochastic techniques provide a more radical way of generating the
relevant features by taking advantage of randomness — more precisely pseudo-random

number generators.

Having said that, they more or less are all capable of creating a unique output in
a desired way to various degrees. As a matter of fact, it is not only feasible but also a
popular trend to combine those techniques in order to generate an even more sophis-
ticated outcome, since such techniques often are mutually independent. For instance,
it is fairly common to combine stochastic methods with other generative algorithms
to humanize the musical patterns. On the other hand, there is a major drawback in
this approach that, as a creative process and a subjective context, it is difficult and a
tedious work to keep the automated (generated) music pleasing and interesting, since
the process involves both the technical and the theoretical aspects of music. In light
of this, it still remains doubtful if it is even possible to achieve such convincing results
without the aid of human touch considering the artistic means of musical composition

as an art form.

2.1.3 A Brief History of Algorithmic Composition

Despite the controversial circumstances mentioned in the previous section, generative
music and algorithmic composition have always been a strong candidate as an alterna-
tive artistic approach for several centuries, for not only researchers but also composers

themselves — even before the arrival of personal computers [13].



One of the earliest examples which would be considered as algorithmic was proposed
by famous composer Johann Sebastian Bach by the Baroque period during the final
years of his life in his works Musical Offering and notably The Art of Fugue [14]. Bach
studied and documented a procedural way of producing fugal and canonic musical com-
position in the latter work introducing the concept of counterpoint. The counterpoint
is made of a leading melody, called the cantus firmus, which is followed by another
voice that is delayed by a certain time period which creates the canonic form. The
idea is to compose the generic fugue at the start and iterate the piece by using musical
transformation techniques such as transposition, inversion and augmentation on this

initial fugue to create variations afterwards to build the musical piece.

Another notable approach was proposed in the Classical period by Wolfgang Amadeus
Mozart, in his work Musikalisches Wiirfelspiel—also known as the dice music—in which
Mozart composed several musical phrases that would fit together when connected, and
used a six-sided dice to determine the ordering of those pieces to be played, i.e. using

different permutations of the phrases [15].

During the Romantic period, serialism was introduced as the main focus of the
algorithmic composition. The trend in music was shifted to chromaticism, in which
the composers made use of all the twelve notes in the equally-tampered scale rather
than limiting themselves to traditional diatonic scales as in earlier works. lannis Xe-
nakis played a crucial role in that era, particularly by his interest of building a bridge
between mathematics and music in his works. Furthermore, he introduced his music as
stochastic to describe his use of probabilistic methods on certain musical parameters

when composing the musical pieces.

Karlheinz Stockhausen took the approach one step further by applying serialism
not only to note pitches but also the musical rhythm, timbre and so on. In both works,
the music tends to be perceived as more atonal by the strong influence of chromaticism,

hence the serial composition approach [16].

Computers finally started to take part in algorithmic composition when Leonard

Isaacson and Lejaren Hiller introduced their brand new software ISAAC Suite in 1957.



It was officially the first program which algorithmically generates a musical piece [15].
Xenakis and another controversial composer John Cage also began to make use of the
aid of computer systems to assist their works. For instance, Xenakis developed a sys-
tem for creating integer-sequence generator—called sieves—in which the calculations
were mainly done by computers due to the complexity of the process, in order to de-
termine certain musical parameters such as pitch scales and time intervals in his later

compositions [17].

Recently, there are several techniques and technologies available to generate music
compositions algorihtmically. Markov models, generative grammars and genetic algo-
rithms are only a few of examples for such procedural approaches. There also exist a
number of software solutions, such as PureData [18] and SuperCollider [19], which ease
the way out of development by providing certain low-level architectures to be used in

the sound and music generation process.

2.2 Related Work

Adaptive music has been introduced in the field a long ago including some of the
successful examples in major video games such as Monkey Island 2: LeChuck’s Re-
venge by LucasArts [20]. However, it somewhat failed to evolve to a certain extent
due to—arguably—two major reasons [21]. Firstly, as mentioned in Chapter 1, there
was a low interest by both developers and consumers in the area of research until
recently, due to the great focus on the technology behind the visual aspects such as
graphics and physics systems. Secondly, despite their significant power, improvements
and enhancements done for the quality of digitized audio data in computers actually
resulted in a negative impact on the development, particularly when the industry has
shifted from basic MIDI representations to streamed—lossless—audio data. While the
quality of the output has dramatically increased, they made it somewhat infeasible to
modify and manipulate the huge amount of raw data in real time with existing compu-
tational technologies. Hence, it was not a desirable choice (nor a priority), in general,

to spend the limited resources to sophisticate audio elements in an application early on.

10



On the other hand, there has been notable research done in the recent past which is
worth mentioning [22]. These works can be coarsely divided into three groups according
to their area of focus, namely, offline music generation, real-time music generation and
affective (smooth) music transformation. Some of the relevant seminal works are briefly

reviewed in the following sections respectively.

2.2.1 Offline Music Generation

Even though offline music generation is out of our main focus, there are several remark-
able works done in the field, which could serve as a guidance to the current research

project.

WolframTones [23] is an excellent example, which not only contributed to the field in
terms of its powerful infrastructure, but also presents an oversight of what the practical
usage of such an application might evolve to. The application offers an online (web) in-
terface that is implemented in Mathematica, which lets you generate multi-instrument
musical pieces from scratch using MIDI notes. It mainly uses cellular automata for
the generation of the musical snippet. The application is arguably interactive, as it
lets you tweak certain parameters—such as tempo and style of the piece—before the
generation phase. The outcome is solely score based, thus, it does not take into ac-
count the performance aspects of the musical piece. In other words, the generated
score is played as it is during the playback. Likewise, the playback is done by generic
MIDI instruments without affecting the low level parameters of the generated sound.
Moreover, it features a limited flexibility of musical form, in which the compositions
are approximately 30 seconds long. Therefore, higher level abstractions of a full mu-
sical piece such as verse, chorus and bridge structures are somewhat absent in the
resulting composition. Nonetheless, WolframTones project can be fairly acclaimed as
a benchmark in the field, considering the fact that the application has now successfully
generated almost as much pieces as the entire iTunes database in less than a decade

according to the statistical logs gathered [24].

11



2.2.2 Real-Time Music Generation

There is a strong tendency of referencing the relationship between musical features
and perceived emotions of the listener in recent research studies for real-time genera-

tive music systems.

AMEE™ [7, 25] is a real-time music generation system which features an adap-
tive methodology in accordance with the desired emotional characteristics of a musical
piece. The system is able to expressively generate musical compositions in real-time
with respect to the selected properties—i.e. the perceived moods—in an interactive
manner. [t furthermore features an application programming interface written in Java
for external usage. The music generation algorithm takes into account both score
composition and performance. In fact, the authors try to establish an analogy to the
real-world scenarios while structuring the system. For instance, the implementation of
the framework includes actual performer structures to represent the artificial musicians
in the system. However, one major drawback of the approach is the lack of smooth
transitions between the different selections of musical pieces, which is said to be left
as future work. While the proposed version offers an interactive way to modify the
musical parameters in real-time, the change in the output only occurs after a time
period, more specifically after the currently generated musical block is complete dur-
ing the playback. Additionally, its quality of audio is currently limited to MIDI files,
which makes the system somewhat inadequate for the usage in practical applications.
Besides, even if the MIDI information is somehow converted to rich audio samples in
real-time, it lacks low-level soundscapes manipulation due to the absence of essential

information mentioned earlier in the chapter.

MUSIDO [26] is another example of automated music generation system which
is based on a musical database that is constructed by preceding well-known musi-
cal pieces such as sample composition excerpts from Western classical music. It uses
pre-determined source data to generate new composition in real-time using certain
combination approaches. It extracts score snippets from the database and tries to
process them in a meaningful way to produce new musical scores. The middleware im-

plementation uses J# and Java together to achieve greater portability as a framework.

12



Similar to AMEE™, it manipulates the scores using MIDI representations. However,
the main focus of the project is to be able to represent and extract the valid (critically
acclaimed) musical pieces properly from its database, rather than focusing on the mu-

sic generation phase.

MAgentA [27] treats the problem with an artificial intelligence approach, relying on
an agent-like architecture for the whole music generation process. The music generator
agent attempts to sense the current emotional state of the environment in real-time,
and acts in accordance to its reasoning module. The music generation is done using
multiple algorithmic composition methodologies with respect to the current state of
the system. The prototype is said to work as a complimentary module of a virtual
environment application called FantasyA. Unfortunately, there is no further/recent in-

formation available about the project to be discussed more.

The game Spore™ (by Mazis) is an interesting example, in which most of the audio
content is generated in real-time using mainly two dimensional cellular automata [28].
The concept is inspired from the unique yet sophisticatedly interesting patterns which
could be found in J. H. Conway’s Game of Life experiments [29]. While significant
amount of the musical parameters are pre-defined, hence static, in their procedural mu-
sic generation system, the resulting compositions could arguably stated as much more
compelling than the other works reviewed in this section. The main reason is because
of their choice to use real audio samples in order to offer a compatible audio output
that a typical video game player in the industry is used to. On the other hand, the
system is specifically designed for this particular game only. Therefore, generalization
of the architecture does not seem to be possible for later applications. As a mater of
fact, the system has officially never been used since then — apart from the sequels of

the game.

2.2.3 Affective Music Transformation

To take the level of interactivity one step further, musical parameters could be ex-

amined and treated in a specific way to transform the musical pieces dramatically

13



in real-time. That being said, in contrast to the previous examples, Livingstone et
al. [30, 31] and Friberg et al. [32] rather focus on the affective transformation of music
in real-time in order to manage smooth transitions between the different pieces in an
effective way. They successfully transform the musical piece in real-time affectively by
using certain mapping methodologies between the perceived moods and musical pa-
rameters. Particularly, the former applies a rule-based fitting algorithm to the existent
piece in order to fiz the musical properties (mainly the pitches of notes, hence the
harmony), to a desired pre-determined format. The format is determined according to
the values of two high-level parameters, namely valence and arousal to be adjusted by
the user. In return, they both rely on either pre-existing audio tracks or pre-generated
musical patterns to produce the output. Thus, they lack the ability to provide unique

music generation in real-time.

Eladhari et al. [33] proposes a similar approach using Microsoft’s DirectSound to
achieve higher quality audio for the playback. The project in fact offers a limited music
generation process in which the system selects a certain variation of musical patterns
on the fly to adapt the current mood of the environment. However, it does not pro-
vide a generative approach to produce new patterns either offline or online. Having
considered this, the idea is more or less similar to the traditional layering approach for

adaptive music, except the final output is produced in real-time.

The most recent work could be found in the area of research is AUD.js by Adam
et al. [34]. The project is developed in Javascript and focuses on smooth adaptation
of the musical pieces in real-time. Based on Livingstone’s approach, the system fea-
tures two high-level parameters, namely energy and stress, to be defined by the user
and is capable of making use of those values immediately in the generation process.
It features a small-scale library of musical patterns to be selected on the fly. After
the pattern selection, the output is generated by relatively primitive audio synthesis
methods such as creating sine waveforms with the specified pitch and volume. Hence,
it somewhat fails to produce sufficiently complex soundscapes as an output. Moreover,
as in the previous examples, the system is not capable of generating the composition

in real-time, which restricts its potential for wider usage.

14



In conclusion, the recent works tend to have a trade-off between the music genera-
tion and affective transformation capabilities. Moreover, the final output is often not
as compelling as the other examples using the traditional approaches in the industry.
In fact, they rarely focus on providing more sophisticated methodologies in terms of
audio production, or even to support multiple instruments in their systems. In fairness,
as academic works, those issues are usually claimed as a future work to be augmented
later on. Nonetheless, there exist no example in the field that seems to proceed further

in terms of such limitations.
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Chapter 3
Design

A hybrid approach was proposed for the design of this research project which combines
real-time music generation and affective music transformation capabilities into a single
yet powerful framework in order to take the state-of-the-art in the field one step further.
The proposed approach, the engine, focuses on the practical aspects of the composition
and transformation techniques and technologies. Hence, the design goal was to manage
a generic way to develop a comprehensive framework in that sense, which abstracts the
low level musical properties and structures from the user in order to enable an intu-
itive solution for the dynamic usage of generative music in external systems without
the need of any advanced knowledge in the theory of musical sound. In addition, the
system was designed to provide an interactive way to modify the high-level properties
of the music composition process in run time simply by triggering the corresponding
functions respectively through an application programming interface and/or a graphi-

cal user interface.

The main architecture and the system workflow are presented in Section 3.1. Mu-
sic generation process of the engine is described in Section 3.2. It is followed by an
overview of the transformation methodology for the generated musical pieces in Section
3.3. The actual audio output generation phase is presented in Section 3.4 to provide a
better understanding of the underlying architecture of the engine. Finally, this chapter
is concluded by Section 3.5, provided the limitations and the restrictions to be consid-

ered for the implementation.
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3.1 Main Architecture

Musician Casessd SequUencer

MesoGenerator l
MicroGenerator —QJA=Isi=1gl=1lx ModeGenerator
|
Class Role: [l Main(Root> [l Sequence Generation [l Production | Transformation

Figure 3.1: Main architecture dependencies diagram.

The main architecture of the system is vaguely based on Hoeberechts et al.’s pipeline
architecture for real-time music production [35]. The components of the architecture
is designed in a way somewhat analogous to a typical real-life musical performance
in order to divide the workload in a meaningful manner with respect to not only the
end-user but also the development phase itself. As seen in Figure 3.1, Musician is the
main component of the architecture which is responsible for the management and the
communication between the other components in the engine. Sequencer serves as the
main clock of the engine, i.e. it sends relevant signals to Musician whenever an audio

event occurs.

Audio events are designed hierarchically in terms of common musical form as de-

scribed in Section 2.1.1. That being said, Sequencer follows a quantized approach in
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which it keeps track of highly grained audio pulses' to occur in audio sampling rate.
Counting the pulses by a phasor [36], it sequence the beats, bars and sections respec-

tively. More detail about this process is given in the implementation stage in Chapter 4.

In each audio event, Musician passes that information to the Ensemble component
—i.e. to the orchestra. Ensemble generates the song structure using its generators
with respect to the current state of the sequencer. After the macro-level generation, it
passes the relevant information to all its Performers for them to generate the actual
sequences of musical notes, such as melodic patterns and chords. Each performer pro-
duces the next sequence for the relevant bar using their generators respectively to be
played by Instruments. However, they initially use abstract structures of notes—only
meta information—rather than producing the concrete notes, so that, the notes could
be modified accordingly when necessary in order to achieve such adaptability before

they get played.

That is where Conductor component comes into place. Conductor takes the gen-
erated note sequence in each beat and transforms the notes according to the musical
parameters adjusted by the user interactively. After the transformation, the meta in-
formation gets converted to actual notes and are written into the musical score by the
performer. Finally, each instrument plays all the notes in its performer’s score, i.e.

generates the final output which is audible to the user.

3.2 Hierarchical Music Composition

Generators in the engine jointly compose the musical pieces in three levels of abstrac-
tion, as seen in Figure 3.2. Firstly, MacroGenerator generates the musical form in
macro level, i.e. it creates the main song structure which is made of a sequence of
sections. Whenever the sequencer arrives in a new section, MesoGenerator gener-
ates the harmonic progression, i.e. a sequence of bars for that section. Unlike in the
pipeline architecture, those two levels are managed solely by the ensemble, hence, the

generations are unified for all the performers. Thus, every performer in the ensemble

L An audio pulse refers to the lowest level of quantization for sequencing the elements in the audio
thread. It could be seen as the smallest significant interval for an audio element to be placed.
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obeys the same song structure when composing their individual scores. That being
said, when a new bar arrives, each MicroGenerator of each performer generates a meta
note sequence for that bar. The meta information of a note consists of relative pitch

index, relative offset (from the beginning of the bar), duration and volume of that note.

Musical
form

MacroGenerator
ABAB

Harmonic
Progression

MesoGenerator
I IVWY T

Mo te
sequence

MicroGenerator
O R A

Scale

ModeGenerator
024579 11

Figure 3.2: Generators structural diagram (example iterations are given on the right).

ModeGenerator generates the musical scale for the current state of the engine to be
used when filling the musical score by the actual notes. The scale could be thought as
the pitch quantization of the notes to be played. It is an array of ordered indices that
represents the distance from the key note of the piece. In that sense, relative pitch

index in a meta note refers to the note in that specific index in the array of scale.

For the generation phase in all levels, there are number of approaches and al-
gorithms [37] which could be used in the field such as stochastic systems, machine
learning, cellular automata and state-based architectures — as discussed in Section 2.1.
The idea, is that this particular architecture lets the user decide what to use to accom-
plish the desired task. Therefore, all the generators are designed as abstracted base
structures to be derived from whichever the necessity is. This approach also promotes
flexibility and encourages the user to combine different techniques together, or use

them interchangeably in the system even in run time.
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3.3 Rule-based Note Transformation
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Figure 3.3: Note transformation diagram.

In terms of adaptability, the Conductor component is used in order to achieve af-
fective smooth transformations when required. The interactivity between the user and
the interface are done by Musician using two high-level parameters, namely energy
and stress?, which are meant to state the current mood of the system. The user is able
to modify those parameters anytime to change the mood of the musical piece accord-
ingly. The parameters are directly mapped to selected musical properties which are
managed in conductor, as seen in Figure 3.3. So that, change of values in the high-level
parameters by the user interaction results in an immediate response in low-level musi-
cal parameters in the engine. This mechanism is achieved by using those parameters
effectively during the note transformation phase. Since the transformation process is
done in each sequenced beat, the outcome is capable of reacting even to a minor change

immediately in an adaptive manner.

The musical properties stated above have been chosen with respect to Livingstone

et al.’s extensive research and analysis on emotion mapping [30]. While the selected

2The terminology was adopted from the AUD.js [34] project.
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parameters strictly follows their results, not all the findings have been used in this
project in order to keep the design feasible enough for the implementation. Below are

brief descriptions of the selected parameters.

Tempo multiplier basically determines how fast the song will be played — in terms of
beats per minute (BPM). It is directly proportional to the energy of the song,

i.e. the tempo tends to be faster when the energy is higher.

Musical mode, or musical scale, determines the quantization of pitches of the notes in
the piece. Different selections dramatically affects the listener in different ways.
Generally, the scale is related to the stress of the song. For instance harmonic

minor scale tends to be preferred more when the stress value is high.

Articulation in music theory is defined by the length of the note that gets played.
This multiplier is inversely proportional to the energy, as the average length of a
note tends to be shorter when the energy of the song is higher. As an example,

staccato notes are commonly used to compose rather joyful musical pieces.

Articulation variation refers to the alteration of length of the notes in a certain pat-
tern. Scientifically speaking, it could be seen as the deviation of articulation
values over time. This property is directly proportional to the energy of the

song.

Loudness multiplier determines how loud a note in the song will be played. The term
could interchangeably used by the volume of that particular note. It has a direct
relation to the energy of the song. For example, piano notes are often used to in

music compositions to express a tender feel.

Loudness variation similarly refers to the alteration of the loudness of notes over
time. It is directly proportional to both energy and stress levels of the song.
For instance, when a musical piece expresses the emotion of panic or anger, the

volume of the voices in the piece tends to fluctuate more often.

Pitch height refers to the overall pitch interval of the notes in the piece. It is used

specifically for octave shifts to be applied to the notes. The parameter gets af-
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fected by both energy and stress of the song. For instance, low pitched notes tend

to be more suitable to achieve a moody—depressive—feel on the composition.

Harmonic curve could be defined as the direction of a melody in the composition over
time. More specifically, it determines the pitches of consequent notes and the
relation to each other. Likewise, it is proportional to both energy and stress of
the song. When the curve is inversed, the mood of the song tends to feel more

down and upset.

Timbre properties of the instruments plays a crucial role, yet they mostly are more or
less overlooked in such systems. Timbre could be defined as the characteristic or
the tone of the voice that an instrument produces. In this particular approach,
the brightness and the tension of the timbre are taken in consideration which are
both directly related to energy and stress levels of the song. For example, the

timbre of an instrument tends to be hoarser in a sad song.

Note onset, also known as attack in sound synthesis community, is additionally
used to enhance the effect on the timbre. It refers to the time interval between the
start point of the playing note and the point when the note reaches its maximum
volume. It is inversely proportional to the energy of the song. For instance, the
value of note onset tends to reach near zero to give rather exciting expressions in

a musical piece.

3.4 Audio Output (Generation

Emn——

|

! }
e

Figure 3.4: Instrument dependencies diagram.
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Real-time sound synthesis and sampling techniques are chosen to be used to gen-
erate the audible output—rather than relying on more primitive technologies such as
MIDI (as discussed in Section 2.2)—in order to achieve a sufficiently acceptable quality
of sound as would be seen in other practical applications in the industry. More specif-
ically, the desired audio data is generated procedurally from scratch or loaded from a
pre-existing sound bank—sample by sample—by the instruments in the composition

phase.

As seen in Figure 3.4, each instrument has certain number of voices that generate
the actual output. Voice components are capable of creating the sound by their unit
generators either using sound synthesis techniques or using pre-existing sound samples
as their audio data. The sound is shaped by the Envelope component when it gets
played by the instrument. Moreover, after the creation process, the output can further
be manipulated using AudioEffect components. Added audio effects, such as filtering
and reverberation, are applied to each voice in the instrument to produce the final out-
put values. Technical details of these structures are presented in the implementation

phase in Chapter 4.

3.5 Limitations

Certain simplifications had be undertaken due to the limitations (time and resource)
and the broadness of the topic, in order to maintain the research project feasible as a

practical approach.

Firstly, sections that are obtained during the macro level generation process is
restricted to certain enumeration types. The motivation behind this choice was to sim-
plify and generalize the production for both developers and the end-users. More specif-
ically, common song structure terminology is used for labeling the sections, namely
intro, verse, pre-chorus, chorus, bridge and outro sections, which are then converted
into single letters by their first letters accordingly. Still, the architecture is left open
to such customization as adding more section types or bypassing the idea altogether if

desired.
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Even though it is presented as a feature, preserving the generator and instrument
structures abstract is a way to reduce the work load in the implementation phase by
providing only a proof-of-concept examples to be extended in the future. Nevertheless,
this design choice enables not only an extensible but also a modular way to develop a

customized, hence more diverse, applications by prospective users.

Another major simplification that was made as a design choice is to restrict the
music transformation process to micro level — for notes only. In other words, musical
form is built regardless of the musical properties selected by the user during run time to
prevent the potential issues that might occur by such complexity. On the other hand,
it could be possible to further manipulate the musical piece in a more sophisticated
way by introducing macro level musical parameters such as the progression of sections

and harmonies according to the selected mood.

Moreover, it is decided to keep the key note of the composition intact throughout
the piece without any key modulations. The main reason why is the difficulty of pre-
serving the consonance of a particular pattern, especially when the transformations
take place. In fact, even when the scale remains the same, unintended dissonance is
likely to occur in the piece when the key note changes. Thus, the harmonic progres-
sions are limited to change only the musical mode of the piece without changing the
key note of the scale. That being said, the key note still could be changed manually
anytime during play if intended by the user.

Allin all, the final design of the engine is capable of offering rather a generic solution

for various needs and is effortlessly integrable to any external interactive systems and

applications.
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Chapter 4
Implementation

The engine has been implemented in C# making use of full capabilities of the lan-
guage in order to provide a sufficient functionality in terms of the needs of the po-
tential end-user. An application programming interface (API) has been developed,
namely BarelyAPI, that enables a flexible use of the presented features to be inte-
grated in any third party system easily. Moreover, a graphical user interface was
included as a part of the framework, so that, it allows an intuitive interaction for var-
ious users with different technical backgrounds. Having said that, the system could
be used not only by developers but also audio designers or even music composers
themselves. The entire code of the project is open-source and publicly available on

http://github.com/anokta/barelyMusician.

To get started, a brief overview on the available technologies that were suitable for
implementing such a system is presented in Section 4.1 in order to reason the motiva-
tion behind the selection of the programming language and the environment used for
the implementation of the engine. It is followed by the specific details of each com-
ponent in the framework one by one—beyond the observation done in Chapter 3—in
Section 4.2 to cover the technical means and challenges encountered in the implemen-
tation stage. Lastly, general properties and features of the API are examined in detail
in Section 4.3 including an additional review of the graphical user interface and some

supplementary features that broadens the purpose of the approach practically.
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4.1 Technology Overview

Various software frameworks and libraries have been observed for the implementation
phase from high level sophisticated programming environments such as PureData and
SuperCollider to low level plain audio libraries such as OpenAL [38] and PortAudio [39)].
As a matter of fact, they have been studied extensively by developing sample applica-
tions featuring basic functionality such as audio processing and sequencing to analyze
and compare the capabilities of the environments. Having considered the flexibility,
integrability and portability, C++ was initially chosen as the programming language
for the implementation, based on PortAudio library for the communication via the
audio driver, combined with Maximilian [40] audio synthesis library to wrap up the
primitive functionality which is required for sampling and sequencing. Additionally,

openFrameworks [41] toolkit was considered to be used for the demonstration purposes.

On the other hand, the main purpose for this research project is to provide a low-
level dependency-free library to be used somewhat as a plugin structure in third party
applications. After the research study and the design phase, due to the scope and com-
plexity of this particular approach, Unity3D [42] game engine instead has been chosen
as a starting point to prototype the framework. While, Unity3D does not offer any
specific audio features with respect to the focus of the project, it makes a perfect envi-
ronment to quickly prototype the desired features and test the expected behaviour of
the system before going further in the process. As a matter of fact, after the prototyp-
ing stage, the final decision has been made to shift the development of the framework
as a whole in Unity3D, as it was powerful enough to illustrate all the capabilities of

the architecture in an efficient way.

One major advantage of using Unity3D is its powerful community and wide range
of developers and users. Thus, it was much easier to spot and suspect potential flaws
in the design as well as the implementation, so that, the final product could serve in
more practical aspects in a user-friendly manner. Moreover, it is frankly beneficial to

see the prospective interest in the framework beforehand.
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One other motivation behind this choice is the multi-platform support. More specif-
ically, Unity3D enables the final product to be run in different platforms such as Win-
dows, Mac & Linux without any major effort in the implementation in terms of com-
patibility. In fact, the framework could even be used as it is in mobile systems such as
in Android, iOS & Windows Phone platforms. Particularly, it enhances the potential
practical use by delivering the approach to a huge community who had not experienced

such capabilities before.

All the same, the final product is aimed to be as independent as possible from
any other third party libraries to be able to provide a somewhat robust and flexible
interface. That being said, the proposed design and implementation of the approach

could easily be established in another environment and /or ported if desired respectively.

4.2 Main Components

The implementation of the components in the engine strictly follow the design of the
main architecture as discussed in the previous chapter. All the components in the
framework have been implemented from scratch including the algorithms required for
the generation phase. The choice was made to manage such flexibility of manipulation
of each part in the system sufficiently in every little detail. Having said, it was a chal-
lenging yet beneficial experience to work on such an inclusive system with more than

fifty classes with thousands of lines of code.

Main components are described in detail below one by one in a bottom-up fashion.
Technical details are as well presented in order to provide a deep understanding of the

specifications and the infrastructure of the engine.

4.2.1 Sequencer

Sequencer component has been implemented in a way to serve as the main clock of

the engine to sequence the musical pieces in order. During run time, it updates and
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stores the current state of the system. In order to manage this functionality, an event-
triggering system has been developed with a callback mechanism. More specifically,
Sequencer class has a counter, namely its phasor, which gets incremented in the audio

thread once per each sample.

How does the audio thread work?

At that stage, it is worth to examine how the audio thread works in greater detail.
Basically, in order to produce the audio output digitally, a system must implement a
callback mechanism that communicates with the audio driver and fills the audio data
buffer sample by sample [43]. Similar to a graphics unit, the audio output is produced
by an array of floating point values—that are normalized to [-1, 1] interval-—which are
referred as audio samples, analogous to filling the color values per each pixel on the
screen. Those values represent the physical position offset of the speaker cone resulting
in a continuous vibration of the cone that generates the output of audio signals (waves)

which are audible in the real world.

In this particular approach, as a digital setup, the array (audio buffer) expectedly
has finite number of values (samples). The number of samples that are used to generate
the output per second is usually notated as the sample rate or sampling rate of that
audio system [44]. The sample rate is often measured in Hertz (Hz) as in the frequency
of sound, such as the typical 44100Hz sample rate. Even though the approach seems
to be trivial enough, the idea is not feasible to be used in real-time systems. In other
words, as the sampling rate suggests, the audio driver must be fed by exact number of
samples in each second. For instance, in order to sustain the audio output in 44100Hz
rate, the values must be processed and passed into the driver 44100 times in a second,
for every single second. It means that the computation must be done precisely in less
than a milisecond in each time. As one can expect, that is not a practical solution even
for the state-of-the-art computers in the industry when processing gets even slightly
complicated. Beside that, there is an unacceptable communication overhead between

the system and the driver.
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To resolve this issue, raw audio data is passed to the audio driver as buffers, i.e.
certain number of samples are processed and bundled together before sending them
to the driver. As a result, the overhead is minimized and the whole process becomes
feasible while it does not affect the outcome, since the rate is still beyond recognizable
to perception of the human ear. The choice of buffer size may vary according to the
application, it is a trade-off between the latency (performance) and the quality of the
output. The typical length for an audio buffer is between 512 and 2048. For instance,
for the buffer size 1024 with the same sampling rate, the callback interval would be ap-
proximately 50 miliseconds which frankly allows complex calculations and operations

practical such as filtering and so on.

All in all, by using such a counter as mentioned in the beginning, it is possible to
measure the elapsed time period precisely which is crucial for the audio output gener-
ation. That being said, Sequencer manages this information in a hierarchical way to
create the pulses, beats, bars and sections respectively. Relevant calculations are done
with respect to the selected tempo and time signature. For example, if the tempo is
120 beats per minute (BPM) and the time signature is 4/4, then the sequencer sends
beat signals in each 60/120/(4/4)=0.5 seconds and bar signals in each 0.5*4=2 seconds.

4.2.2 Instrument

Similar to Sequencer component, instruments also make use of the low-level audio
thread in order to generate the final audible output. The component has been im-
plemented as an abstract class with generic functionality that a typical real-world
instrument would have. Every instrument has a certain number of voices and a mas-
ter gain parameter to adjust the volume of the output. The instrument is played by

triggering note on and note off methods respectively.

As mentioned in the previous chapter, the audio buffer is filled by the voices of
the instrument. The generation of that data is done by summing up the outputs of
the unit generator process of each voice. Having said that, there are mainly two types

of unit generators, oscillator and sampler. Oscillator synthesizes the sound by us-
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ing mathematical representations of typical audio signals such as in the form of sine,
cosine, saw, square, triangle and white noise waves. For instance, in the most basic
case, the desired audio data is generated by simply computing the trigonometric sine
function with respect to the current state (time interval of the audio thread). The
result is then written to the audio buffer which indeed gives the sine wave sound in
an audible form. Sampler, on the other hand, loads the desired pre-recorded array of
samples—traditionally known as an audio sample—and write that data directly to the

audio buffer in a similar fashion.

In order to support polyphony, i.e. to manage multiple voices simultaneously, a
channel based registration model has been implemented [45]. When a new note is
queued to be played in the instrument, it looks up the list of free voices and registers
that note by allocating the first available voice for play. If none of the voices are free,
the new note steals the voice channel with the oldest registered note. Linked list data

structure is used in the process for efficiency.

attack decay release

sustain

Mote on Mote off

Figure 4.1: Sound envelope example (horizontal axis: time, vertical axis: amplitude).

Envelope of the instrument is used to give a specific shape to the resulting audio
wave and could be used to smoothen the signal in real-time. The structure of the enve-
lope has been implemented with respect to the traditional sound envelope architecture

of a typical digital synthesizer [46], providing attack, decay, sustain and release values.
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The sound envelope basically offers an amplitude interpolation for the generated sound.

The idea is illustrated by an example in Figure 4.1.

Optionally, audio effects are applied to the generated audio samples. AudioEffect
component has been implemented as well as an abstract class to offer full flexibility in
terms of the manipulation of soundscapes. That being said, all the parameters men-
tioned above are modifiable in real-time in order to support the means of adaptability

even in low-level, literally sample by sample.

4.2.3 Generators

There are four types of music generators that have been implemented in the engine
to manage the composition process in a hierarchical way, namely MacroGenerator,
MesoGenerator, MicroGenerator and ModeGenerator. Each component has been im-
plemented as an abstract class with certain generation functions to be overwritten in

any way the end-user intends to.

At top level, MacroGenerator is responsible for generating the musical form, i.e.
the sequence of sections of the composition. generateSequence function is used to gen-
erate the sequence which is then stored as a string of characters - that represent the
sections in order. As mentioned above, it is possible to override this function either
by a manual sequence of choice or in a procedural way using certain generation algo-
rithms. GetSection function is available for fetching—and generating if not available
beforehand—the label of a certain section during run time. The song duration—the
number of sections to be generated for the sequence—could be determined in real-time,
so that, the user might specifically select how long the song should be. Moreover, the
generated sequence is loopable if desired, hence, it enables the user to generate a cer-

tain musical piece and use it repeatedly in the application straightforwardly.
MesoGenerator creates the harmonic progression for the given section. generatePro-

gression function is used to generate a desired number of integers which represent the

harmonic pattern in order. Likewise, GetHarmonic function is available to get the
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value of specific index (bar) of a specific section in run time. All the generated pro-

gressions are stored in the component for potential later use.

At the bottom, MicroGenerator is used to generate a unique note sequence for the
given bar. generateLine function takes the section label and the harmonic information
of that bar and creates the notes accordingly. The generated sequence might con-
sist of melodic patterns and/or chords. Notes are stored as meta information — using
NoteMeta class, so that they could be transformed easily in the process when needed
by the conductor. Generated lines as well are stored in a list, thus, it is even possible
to use previous iterations to generate the next pieces. As a result, it allows a cohesive

functionality for the creation of rather sophisticated music compositions.

ModeGenerator plays a slightly different role than the others. This type is respon-
sible for providing the musical scale to be used in the composition. More precisely, the
scale is determined by the current mood of the system using GenerateScale function.
The implementation includes some of the most popular scales and modes such as major,
natural minor, harmonic minor scales and ionian, dorian, phrygian, lydian, mixolydian,
aeloian, locrian modes. For instance, the major scale could be easily mapped to a happy
mood by overriding that function accordingly. That being said, it is still possible to
implement more experimental mapping methods even using different type of scales such
as the pentatonic scale. When the scale is generated, it is stored as an array of note
indices of one octave (array length might differ according to the scale choice). They
are then used as offsets from the key note to produce the final notes. It is worth men-
tioning that, the indices might be made of floating points to produce unique pitches
beyond the traditional equally-tampered scale of twelve notes. Having said that, unlike
simpler musical score generation approaches such as in MIDI case, the generation pro-

cess of the proposed engine offers great means of experimentation if desired by the user.

4.2.4 Ensemble

Ensemble component jointly serves as the musical orchestra that generates and per-

forms the generated pieces in real-time. The actual performance is made possible by
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the performers in the ensemble using their instruments respectively. Ensemble has been
implemented as the management class of all the performers to be used. It is possible
to add, remove and edit performers in run time when needed. The functionality also
includes muting (bypassing) specific performers in real-time to add more flexibility to
the user. In each relevant audio event that is passed by the main class, it iterates
through all the performers and updates their states accordingly. MacroGenerator and
MesoGenerator components are stored in the ensemble and managed through each new

section respectively.

When the next bar signal is received, each performer is responsible to fill the bar
in its score using its MicroGenerator. While those generated lines are stored inside the
generator with respect to the section and harmonic information, the performer stores
the whole musical score — from beginning to end, so that, it is possible for the user
to jump to a specific part of the piece in real-time by changing the current state of
the sequencer if needed. The musical score is stored as actual Note structures which
are produced after the transformation of meta notes by the conductor in each beat.
Therefore, the approach allows the user to manipulate the piece in a highly-grained

fashion to achieve smooth transformations anytime during the playback.

4.2.5 Conductor

As described in the previous sections, Conductor is responsible for the transformation
of the generated notes in real-time. It additionally stores the key note—the fundamen-
tal note index—of the musical piece that is used to achieve such functionality in terms

of centricity principle (see Section 2.1.1).

The transformation process is done with the aid of certain musical parameters
which are stored inside the class. Different mapping strategies have been applied to
achieve an adaptive feel in terms of affectiveness of the output, as seen in Table 4.1.
The mapping is done in two steps; first the normalized value of the relevant musi-
cal property is computed using the energy and stress values, then the value is scaled

according to the specified interval of that property. For instance, to get the final
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tempo value for the playback, the tempo multiplier is calculated using the energy
value. Let’s say if the energy value is 1.0, then the tempo multiplier will be computed
by 0.85+(1.0*%1.0)*0.3=1.15. Then, the outcome is multiplied by the initial tempo, say
120 BPM, resulting in 1.15%120=138.

’ Musical property \ Interval \ AEnergy \ AStress ‘
Tempo multiplier [0.85, 1.15] 1.0 -
Musical mode (0.0, 1.0] - 1.0
Articulation multiplier | [0.25, 2.0] -1.0 -
Articulation variation | [0.0, 0.15] 1.0 -
Loudness multiplier (0.4, 1.0] 1.0 -
Loudness variation 0.0, 0.25] 0.5 0.5
Pitch height -2, 1] 0.25 -0.75
Harmonic curve -1, 1] -0.75 -0.25
Timbre brightness (0.0, 1.0] 0.6 -0.4
Timbre tension (0.0, 1.0] 0.8 0.2
Note onset [0.25, 4.0] 0.5 0.5

Table 4.1: Mapping between the musical properties and the mood.

For the note transformation; pitch index, relative offset, duration and loudness of
the note are computed separately using the meta information of that note and the
outcome is returned to the owner (performer) of the note to be added to the score and
then played by its instrument. ModeGenerator component in the conductor is actively
used in this process in order to determine the final pitch index of the note properly.
More specifically, the initial pitch index is first converted with respect to the current
scale, and it is added to the key note index to produce the final pitch index of the
note. That being said, the conversion between the pitch indices and actual pitches
(frequencies) are calculated by the mathematical formula with respect to the theory
of musical sound [47], in which the neutral pitch index—zero—is the middle A note

(A4), that corresponds to 440Hz in frequency in common musical knowledge.
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4.2.6 Musician

Musician component serves as the main class of the engine, enabling the communica-
tion between the other components and the management of the system in general as
described in Section 3.1. That being said, the implementation of the class is the only
one inheriting from Unity3D’s MonoBehaviour base class in order to be able to add
an instance of that object as a component to the game object hierarchy in the game

engine to enable direct interaction for the user.

Musician class stores all the necessary information for setting the preferences of
the music composition system in real-time. @nitialTempo parameter is used to deter-
mine the tempo of the musical piece to be generated. Song duration could be set
in a similar fashion by using songDuration parameter using floating point values in
minutes. Number of bars per sections and beats per bars could be adjusted using the
class variables. This adjustment is used by the engine in order to determine the time
signature of the composition. Having said that, benefiting from the flexible sequencing
architecture, irregular time signatures are furthermore supported. In other words, it
is possible to obtain less common rhythmic structures, such as 5/4 and 7/8, to achieve
more interesting—and sounding arguably non-traditional—results. The key note of the
song is determined by rootNote parameter using Notelnder enumerator. Additionally,
the master volume of the output could be set anytime using masterVolume parameter

in the class.

’ Mood \ Energy \ Stress ‘
Exciting 1.0 0.0
Happy 0.5 0.0
Tender 0.0 0.0
Neutral 0.5 0.5
Depressed 0.0 1.0
Sad 0.25 0.75
Angry 1.0 1.0

Table 4.2: High-level abstractions and the corresponding mood values.

Energy and stress parameters are also stored in the component. Whenever a change
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occurs in those values, relevant music parameters (see Table 4.1) are updated accord-
ingly. The implementation provides SetMood function to adjust these values smoothly
by providing a smoothness parameter. More specifically, if smoothness is greater than
zero, the adjustment will occur using exponential interpolation between the initial and
target values resulting in a pleasant transition. Moreover, high-level abstractions are
introduced in that manner by overloading the function, providing certain emotions
such as happy and sad which are meant to be significant to the end-user, to achieve a
more intuitive way of user interaction. While limited study has been done using several
resources in the area [48], selections of those emotions are rather empirical, hence, for
ease of use only. The corresponding energy and stress values for the selected emotions
can be seen in Table 4.2. Nonetheless, the user can modify and/or extend the func-
tionality easily by introducing new emotions to the system. As mentioned, SetMood
function alongside allows smooth transitions by passing one of those emotions as a

parameter.

4.3 API Properties

The implementation of the project has been done in a generic way by avoiding any
platform-specific structures in order to keep the core functionally portable across dif-
ferent platforms and environments. The main goal of the framework is to provide a
modular and an extensible approach which enables a powerful yet customizable en-
gine for any type of users to be used as a personal tool in their projects. To enhance
the level of interactivity, a custom editor is included to the engine in addition to the
programming interface. Moreover, additional features such as keyboard controller and
real-time audio recorder are provided inside the framework, which are briefly reviewed

below.

4.3.1 User Interface

A custom editor has been implemented for the engine to enhance the user interaction

using Unity3D editor extension tools [49] as can be seen in Figure 4.2. It was somewhat
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E

Sequencer

Figure 4.2: Sample screenshot of the custom editor for the main component.

a challenging attempt considering how the game engine works in terms of graphical user
interface (GUI) content. Unity3D serializes and deserializes everything GUI related in
use whenever the scene is played, stopped, saved or loaded. In other words, all the
information that is visible to the user must be serializable for them to work properly
in the scene. To achieve that, all the classes which store crucial parameters—including
Musician and Instrument components—had to be modified accordingly in order to

implement serializable behaviour accordingly.
In light of the foregoing, factory method pattern was put in to the system, namely

with GeneratorFactry and InstrumentFactory, so that selected presets in the editor

could be instantiated in a generic way. Type names of those presets are saved as re-
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sources in the engine to make them directly accessible to the user whenever a new
preset is added. The names then are used in the mentioned factory classes to instan-

tiate an instance of the selected presets respectively.

Figure 4.3: Sample screenshot of the custom editor for performer creation.

To manage the parameters in a more user-friendly manner, sliders and popup selec-
tions were introduced in the editor that restrict the user from choosing invalid values
for such parameters. Overall, all the necessary settings which are crucial for music gen-
eration process are visible and modifiable by the user either in editor mode or during

run time, for an easy and efficient use without having to be caught up in the code.

In the meantime, an additional editor—in the form of a popup window—has been
implemented to provide a more detailed interface for performer creation (see Figure
4.3). A performer could be added straightforwardly using this editor even in real-time.

The editor displays all the necessary information such as the name, the generator and
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the instrument type (including its properties) of the performer, in an editable fashion.
That being said, the user can edit or delete previously created performers by using the

same window.

4.3.2 Supplementary Features

Apart from the features described in this section, certain supplementary functionality

has been implemented for the programming interface to extend its capabilities further.

Keyboard Controller

A simple keyboard controller has been implemented that functions similarly to the ones
that are used in digital audio workstations. More precisely, certain keyboard keys were
mapped to resemble the piano keyset of an octave, providing an additional key pair for
changing the octave when needed. Any instrument can be chosen to be played by the
keyboard controller in real-time. The main motivation behind the implementation of
this feature was to playtest the instruments beforehand to see if they sound as intended
for use in the ensemble. Nevertheless, it is fairly possible to use the controller in the
same key of the music composition and actually play along with the performance of
the engine during the playback. In fact, in that manner, this feature might enable new

ways of interaction for the user inside such an interactive system.

Recorder

Recording the output of the engine is offered anytime, real-time, which as well could
be used to pre-compose pieces with desired moods, to be applied as background music

beyond interactive systems such as film scores for movies!.

!An example music composition that was recorded in real-time using the engine (without any
further processing) is presented available online on http://soundcloud.com/anokta/barelyhappy.
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Audio Event Listeners

Last but not least, the audio events, which are reviewed in Section 3.1 and Section
4.2.1 respectively, are not only used internally but also could be accessed externally by
using the programming interface. That being said, custom event listener functions can
be easily registered to the sequencer to get relevant signals on each pulse, beat, bar

and section respectively.

A congruency between visual and audio elements in a virtual environment is very
important for perception and emotional involvement. Having considered this, even
though the functionality is provided as an extra feature, its capabilities are powerful
enough for the engine to be used as the main motivation. The reason why is that most
of the recent interactive applications seem to suffer synchronization issues when they
were to try to combine musical elements and visual elements together. The difficulty
is caused by the intolerance in latency for audio elements, thus, the synchronization
method has to be perfectly accurate in order to achieve a compelling—or even an
acceptable—outcome. Fortunately, with the low-level approach of the engine, it is
feasible to implement such features by using precisely synced callback functions. To
elaborate the idea further by means of game development, the engine could be used

for not only game music but also developing music games themselves.
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Chapter 5
Demonstration

Two demonstrative applications have been developed in order to experiment and eval-
uate the potential practical capabilities of the implemented engine!'. As a proof-of-
concept, the former features a typical demo scene with a graphical user interface, and
the latter features a simple game prototype using the engine solely for the audio content.
In addition, a number of presets with diverse methodologies have been implemented
and in fact have been used in mentioned applications in order to illustrate the modu-

larity and the extensibility of the engine.

5.1 Sample Presets

As discussed in the implementation stage in Chapter 4, generators, instruments and
audio effects are implemented as abstract classes to provide flexibility for the engine.
The idea resulted in the notion of presets, which could be implemented in a straight-
forward way by deriving from those classes. In order to illustrate the idea, example
preset implementations have been done for different needs in the environment. More-
over, to proceed the approach further, certain generation algorithms were studied and
implemented as a part of the core structure of the engine not only for demonstration

but also for potential later use.

LA sample footage of the demo scene could be accessed through http://youtu.be/Qs3yDVtqt9s.
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As an initial step, the implementations were done for the simplest cases such as
by providing static pre-defined generations to serve as the default behaviour. In other
words, concrete classes for the most basic scenarios have been implemented for the
end-user to try out the engine without worrying about extending the system in more
complex scenes. It was also an important step to test and debug the implementation

beforehand for the demonstration stage.

For the generation of musical form, generative grammar techniques has been chosen
to be examined. More specifically, L-systems and context-free grammars were studied
in order to model a procedural algorithm that could be used for the generation of sec-
tion sequences [50]. As a result, a generic rule-based implementation has been done,
namely ContextFreeGrammar, which is capable of generation of a string of sections
with any size. It provides a list of rules—the ruleset—that can be specified in real-time
and a starting point to iterate the sequence to a desired length of non terminating

symbols, as illustrated in Table 5.1.

Ruleset

Start — Intro Body Outro

Intro - A| AB

Body — BB C | B C | Body D Body
Outro — C E | E | Intro E

Sample iteration

Start

Intro Body Outro

A Body D Body Intro E
ABBCDBCABE

Terminal symbols
ABCDE

Table 5.1: Sample ruleset and an arbitrary iteration of the generative grammar algo-
rithm.

For the harmonic progression generation, Markov chain model has mainly be cho-
sen. Likewise, a generic n-th order Markov chain algorithm, namely MarkovChain,
was implemented in order to illustrate the behaviour. In order to provide somewhat
compelling results in terms of the chord progression schemes, further study has been

done to obtain relevant statistical data from several sources [51].

For generating the musical patterns, several methods have been studied to illustrate
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diverse possibilities the engine could offer. Firstly, due to its popularity in the field of
algorithmic composition, cellular automata algorithms have been analyzed. An exam-
ple program was implemented modeling a 2D cellular automaton to resemble Conway’s
Game of Life. While the cell rows in the automaton were used to determine the timing
of the notes to occur and get played, the cell columns were used to determine the
relative pitch index of that particular note. An arbitrary iteration of that process is
illustrated in Figure 5.1. For instance, at the beginning of that bar, say if the key note
is C and the scale is major, C E G notes will be played simultaneously, resulting in the
C major chord for that beat.

pitch {(note inde=x

time (beats)

Figure 5.1: Sample iteration and note mapping of a 2D cellular automaton.

While two dimensional automata were able to produce interesting progressions to
a certain extent, the outcome in general was felt too random, which arguably failed
to achieve promising results in terms of generation of convincing musical patterns. To
overcome this issue, a simplified version with a single dimensional automaton has been
implemented. In this case, the cells are only used to determine the placement of the
notes rhythmically, i.e. they are used in terms of timing of the notes. In fact, an exper-
imental generator has been implemented with a hybrid approach, combining cellular

automata algorithm and Markov chain algorithm together to achieve more compelling
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results. While the cells of the automaton are used for timing as described, the selection
of note pitches are determined by the Markov process. The resulting implementation
not only gave a more compelling outcome but also illustrates the flexibility of the usage

of the stated architecture.

Apart from those, around ten more generators have been implemented with various
functionality and algorithm choices. One interesting generator among those was the
one which is used for percussion patterns generation. The approach of this particular
generator slightly differs from the rest, as it does not take into account of musical notes,
rather focusing on the rhythmic patterns. Stochastic binary subdivision algorithm was
used to achieve that capability, using certain probabilistic methods to determine where
to place the percussive elements [50]. While the generator is intended to be used by
percussion instruments, it is worth noting that the process frankly produces interesting

outcome alongside for melodic instruments.

Three types of instrument presets have been implemented to be used in the demon-
stration. SynthInstrument and SamplerInstrument were implemented in a similar man-
ner, using MelodicInstrument base class. They offer a typical digital instrument func-
tionality, providing an envelope and polyphonic voice capabilities. While SynthiInstru-
ment makes use of sound synthesis implementations ( Oscillator), SamplerInstrument
uses samples (Sampler) to produce its output. In addition to those, Percussivelnstru-
ment has been implemented to be able to play percussion patterns such as the drums
as mentioned above. It takes certain number of samples to be used, such as the kick
drum, the snare drum and the hi-hat cymbal samples, and maps them to specific notes
to be played without any pitch modulation. The approach is more or less similar to

the way it is used in any typical digital audio workstation.

Lastly, two basic types of audio effects have been implemented to illustrate the
practical use. Distortion is a simple distortion audio effect which amplifies and clamps
the incoming audio signals to produce the distorted feel of the outcome. The initial
level of distortion is provided as a parameter, hence, can be modified by the user in
real-time. Similarly, LFO audio effect uses an oscillator to modulate the amplitude

of the incoming audio signal in the specified frequency. It could be used to create a
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dynamic output which would commonly be found on modular synthesizers.

5.2 Proof-of-concept Applications

Demonstrative applications were developed not only to illustrate the proposed ap-
proach onstage but also to introduce the concept to the community beforehand. They
furthermore served as a basis to validate the practical means of potential use during
the evaluation stage. Having said, the purpose of the applications are only to show

proof-of-concept examples to be extended further in a later stage.

5.2.1 Demo Scene

Figure 5.2: Sample screenshot of the demo scene.
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The demo scene, namely barelyDemo?, serves as the main demonstrative applica-
tion that displays the general functionality of the engine. A simple graphical user
interface is provided for the user interaction. Certain settings are pre-specified in the
application such as the number of sections, bars and the performers in the ensemble
(see Table 5.2) which were to demonstrate a typical music composition that could be
found in traditional Western music . The musical piece gets generated by the genera-
tive grammar approach in macro level and the Markov chain approach in meso level.
There are seven performers with different roles to present a rather rich output in terms
of quality of music. Performers include some essential roles as the lead melody, the

bass, the chords, the drums and the backing strings.

’ Parameter \ Value
Volume 0 db
Initial tempo 140
Song duration 2 min.

Bars per section | 8
Beats per bar 4 (4/4)
Key note Middle A (A4)

Table 5.2: Demo scene settings.

The user can play, pause or stop the song anytime as he pleases by clicking the
corresponding buttons (see Figure 5.2). In each play, the engine generates a new piece
to be played and looped continuously. The user can interact with the generated music
during play by either clicking the high-level mood abstractions or adjusting the energy
and stress values manually using the sliders. Changes between the mood abstractions

are done by interpolation between the values to further smoothen the outcome.

During the playback, a minimalistic animation in the background is played in sync
with the beats of the song, in order to briefly show the audio event listening feature. It
is also possible to play along with the song by using the mapped keyboard keys to play

a sample synthesizer instrument adjusted in the same key note of the musical piece.

2barelyDemo is publicly available online on https://dl.dropboxusercontent.com/u/19989225/
IET/barelyMusician/barelyDemo/barelyDemo.html.
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Lastly, record button could be used anytime to record and save a certain part of the

song in real-time.

5.2.2 Game Prototype

SC¥RE: 3f0

Figure 5.3: Sample screenshot of the game prototype.

The game prototype, namely barelyBunnysome?, has been developed upon a fairly
simple idea to illustrate how the engine would work in an external application. This
attempt was an important step to evaluate the power of the programming interface

and editing tools alongside the efficiency and the quality of the final product.

Game mechanics were kept as simple as possible, so that, the results could be de-

duced clearly without any distractions. That being said, it is a classic endless high-score

3barelyBunnysome is publicly available online on https://dl.dropboxusercontent.com/u/
19989225/IET/barelyMusician/barelyBunnysome/barelyBunnysome.html.
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game where the goal is to survive as long as possible without touching the hazardous
red zones on the screen (see Figure 5.3). The red zones move in various patterns that

are precisely synced with the beats of the song.

’ Parameter \ Value
Volume -6 db
Initial tempo 152
Song duration 1 min.

Bars per section | 2
Beats per bar 8 (8/4)
Key note Middle C (C4)

Table 5.3: Game prototype settings.

Game audio is generated solely by the engine on the fly. The background music
implements similar parameter settings to the demo scene (see Table 5.3). The appli-
cation begins with tender mood displaying the main menu. When the game starts the
mood shifts to happy, which rises the energy level. After that, in each new section, the
energy gets higher by a certain amount until it reaches exciting mood. Initial tempo
starts to get increased after that point to further enhance the pace of the game. Both
the protagonist (bunny) and the hazardous zones (killzone) move perfectly in sync with
the tempo of the song. Thus, the more exciting the music gets, the harder the game
becomes. When the protagonist dies, the music dramatically shifts to angry mood to
emphasize that the game is over. After restarting the game, the piece shifts back to

happy mood smoothly.

Additionally, there are couple of performers in the ensemble that serve as somewhat
sound effects, triggered by the user input in their generation process. More precisely,
the movement of the bunny and the killzones are supported by additional instruments
that fade in whenever they move, which are coherent to the rest of the musical piece.
As a result, the final outcome is in fact produced jointly by the game mechanics and
the user interaction, which arguably offers a unique experience to the player even in

this simplest case.
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Chapter 6
Evaluation

An informal survey has been prepared based on the demonstrative applications in or-
der to experiment and gather some feedback from a few dozen of people with varied
musical backgrounds. The survey was planned to address two main focuses, which are
presented below combined with some personal thoughts. Further discussion is done in
Section 6.3, particularly in terms of potential practical usage of the system, to conclude
the chapter. The survey questions are provided in the appendices for more information

(see Appendix A).

“Just amazing! Can’t stop plauving
with the parameters..”™

“I wouldn’'t like 1o listen such a
piece in a movie, as I don't like
MIDYI sound. ™

“after tweaking the parameters, it
would be just fine to put in a

David Lunch movie. ™
“Sounds like old-game music. ™

“Can't tell the difference between happu
and e=citing. Maybe just bad-naming?®"
“"Depressing is too depressing. . ™

Figure 6.1: Some interesting comments from the participants.
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6.1 Level of Interactivity

First focus of the evaluation step was to determine how the user interaction affects the
participants. The main goal was to measure the level of interactivity and affective-
ness that the user experiences. In light of the foregoing, almost all the participants
responded with positive feedback on the change of the characteristics of the songs with
regards to the modifications they made during the playback. Over 95% of the partici-
pants stated that the changes were clearly recognizable. The comments were concrete
enough to validate that they were immediately able to perceive the difference between
different settings of mood selections during play. Particularly, they reacted positively

to the smoothness of transition between particular values even when adjusted manually.

On the other hand, some participants were not able to differentiate certain mood
settings from each other, especially such in the case between tender, happy and exciting.
Few responded that they were too similar to each other. Moreover, while such moods as
depressive were spotted easily by the participants, some commented on such as angry
as feeling rather upset. In that case, it is worth to study further on the abstractions of
moods, particularly renaming and readjusting values might be an appropriate attempt
to resolve such issues. Having considered that, certain emotions are known to be more
difficult to perceive by the listener[30], hence, further experimentation with different
scenarios—e.g. with visuals and a narrative support—might be beneficial in the future
to obtain more precise results. Nonetheless, the main focus of the stated approach
does not take into account of those abstractions specifically, hence, in terms of the
energy and stress levels, it can be said that the resulting work is able to accomplish

the purpose sufficiently.

6.2 Quality of Generated Audio

Participants were asked to evaluate the generated musical pieces in comparison to tra-
ditional music compositions which could be found on other interactive entertainment
systems, including film scores and game audio. There were mixed reactions in this

topic, presenting both positive and negative feedback. In order to obtain a more clear

50



evaluation, the question was prepared to address the quality of the audio elements and

the quality of the composition individually.

In terms of quality of the audio elements, i.e. the instruments, arguably due to
the motivation of subject of the approach, there was a high tendency towards typical
game music elements to resemble the sound of the instruments in the piece. This could
be counted as an achievement, since it completely coincides the main purpose of the
project. However, it also means that, in this current stage, the outcome somewhat
fails to offer such sophisticated audio elements which would be found in the main-
stream music industry and/or high-budget entertainment systems. In fact, that fallacy
gained strength when one of the participants commented on the produced sound stat-
ing he would not be pleased to hear such a song as a film score due to his disinterest in
MIDI music (see Figure 6.1). This particular feedback was intriguing enough for the
need of precisely recovering the output at a later stage, since none of the MIDI virtual
instruments—or even the structure itself—do take part in the output generation pro-

cess at all.

For quality of music, the gathered feedback was more likely to be positive and en-
couraging to proceed further. Some participants were, in fact, surprised to hear that
the musical pieces they listened to were generated autonomously in real-time. This
particular type of response was a clear accomplishment for the engine, considering the
fact that every single thing related to the audio content is generated from scratch in
low-level on the fly. Therefore, when combined with other comments from the partici-
pants, it can be said that the resulting musical composition is no worse than an average
song that would be composed by a typical Western composer. It further validates that

the outcome is sufficiently acceptable in that manner for a typical Western listener.

While it is acceptable, some participants (with broader musical backgrounds) com-
mented on the song as being monotonous over time. This issue was arguably caused by
overfitting certain musical parameters for the generation phase in the demonstrative
application. The choice was made to be able to show a traditional piece that was as
normal as possible for a typical listener. Therefore, a slightly modified version of the

demonstrative application—with irregular time signatures and patterns—was alongside
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presented to those participants to further evaluate the discussion. As a result, they
mostly reacted positively to the new version, while some stating that they were quite

fascinated about the dramatic change, hence the diversity, the engine is capable to offer.

6.3 General Discussion

First of all, the development stage of demonstrative applications was a crucial step in
the project, as the whole process made it possible to spot the flaws and missing parts
of the system clearly in terms of practical aspects before the evaluation phase. As a
matter of fact, particularly during the development of the game prototype, numerous
features were added to the programming interface such as user input driven generators
to provide a broader interaction and flexibility to the prospective end-user. That being
said, the current state of the engine is arguably fully-functional and ready-to-use in

any third party interactive system easily.

While the demonstrations were made as a proof-of-concept showcase, they enabled
to gather considerable amount of constructive feedback which were obtained in the
evaluation phase to be consulted in future work. Especially, in terms of quality of
sound of the outcome is considered to be improved in a later stage to provide more
compelling results. Having said that, the negative arguments that were implicated dur-
ing the questionnaire were mostly encountered by the features which were not related
to the core functionality of the system. Thus, those specific points could be easily
improved in the future to resolve the stated issues. In fact, that is the main idea of
having an extensible and a modular architecture for the proposed approach in the first

place.

All in all, the evaluation phase in general shows that the engine—both conceptually
and practically—achieves a promising potential to be used in external applications in
a desired manner. It is an encouraging result and an important step in the academia

as well as for the interactive entertainment industry to proceed the idea further.
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Chapter 7
Conclusion

An adaptive music engine, barelyMusician, has been proposed in this research paper to
the field of computer science and music technology. The proposed engine was imple-
mented providing full capabilities of the approach and demonstrated accordingly for
the evaluation and justification of the research done. In brief, the resulting work shows
promising potential as a comprehensive solution to the stated problem with regards to

both theoretical and practical means.

7.1 Contributions

Main contributions to the field include a novel approach for combining real-time music
generation and transformation methodologies together into a single bundle that offers
a practically justifiable architecture to be used in any type of interactive entertain-
ment systems in academia as well as in the industry. Moreover, the proposed music
transformation method is somewhat unique in the field by allowing soundwaves level

manipulation such as timbre modulation during the process on the fly.

The project as a whole furthermore introduces an important step for practical use
of such methodologies. More precisely, the previous research done in the field was more
or less limited in terms of the concrete works provided, resulting a gap in the field for

the actual usage of the stated techniques and technologies in later applications. That
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being said, this research project offers a powerful framework with a broad range of
features which would lead the way of substantial applications to be developed in the

area of research in the future.

7.2 Future Work

While the core engine is functionally complete, the resulting work should be considered
only as the initial step. Having said, further development is crucial to elaborate and

extend the research done in the future.

One major future work planned to be done is adding more presets—generators, in-
struments and audio effects—to the engine. Particularly, more sophisticated generators
with various capabilities would dramatically enhance the ease of use, so that, the users
would not necessarily have to rely on their own musical backgrounds and programming
skills while using the engine. Additionally, further abstractions are planned to be in-
cluded, such as ensemble presets, in order to introduce greater diversity. For instance,
instead of managing the generators and instruments individually, the user will be able
to select a pre-loaded ensemble, say a Rock ensemble or a Jazz ensemble, in that case

to fulfill their needs accordingly.

7.2.1 Community Support

Having considered the capabilities mentioned above, there is an enchanting way to
speed up this process by creating a community of users and developers of the engine.
In other words, it is planned to announce a new community for the engine in which
the users can upload and share their own presets, so that other users can reach even
more materials to work with. The idea also opens a brand new viewpoint for further

improvements for the engine in a later stage.
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7.2.2 Licensing & Release

Finally, as expected, barelyMusician is scheduled to be released officially in the near
future. Before the release, several optimizations and relevant documentation should
be established for the engine. Additionally, while the intention is to keep the project
and all the relevant materials open-source and free to use, due to the potential licens-
ing issues caused by the pipeline architecture (see Section 3.1), certain considerations
might be undertaken accordingly. Overall, it surely is an overwhelming yet fascinating

opportunity to reach out a wider community of users with this approach.
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Appendix A

Survey Questions

This informal survey was prepared to deliver an insight of what barelyMusician is ca-
pable of, offering features and expressions as a full experience in terms of practical
means. Participants are expected to answer the questions provided below personally
with respect to their honest impressions about the outcome they are exposed to. Re-
sulting findings may only be used as anonymous feedback for the project in order to

evaluate and enhance the functionality of the practical aspects of the stated approach.

The questions below are open to the participant in a way that it is possible to in-

terpret them any way s/he desires.

1. How affective was the interaction with regards to your experience? Did you ex-
perience an immediate change in the mood of the playing song when you interact
with it accordingly? If so, were those changes accurate in terms of the selection

of that particular mood?

2. How did you find the songs you have listened to? Were the choice of instruments
appropriate to you as the listener? Did you notice any particular piece felt

unnatural during the playback?

3. What would be your reaction if you were to hear such compositions as the back-
ground music in a movie or a game? Would that please or annoy you? What

level of distraction would it lead to in terms of the immersion?
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4. How was the overall experience? Please feel free to include any additional

thoughts or comments you would like to add below.
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Appendix B

Disk Information

The attached disk contains the full source code of the project implementation including

all the assets and binary files.

In addition, the demonstrative applications are provided as executables (in .eze format

for Windows) along with an illustrative video footage per each.

Lastly, digital copies of the abstract, the poster, the final presentation and the re-

port itself are attached in case of need.
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