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Real-Time Single Image Super-Resolution using

Dual Adversarial Learning

Supratik Banerjee, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Michael Manzke

In this dissertation, real-time single image super-resolution using adversarial learning
is investigated. With an extensive study of the literature, it is observed that not a
lot of work has been put to explore the potential of real-time super-resolution using
adversarial techniques. The primary objective of this research is to design a shallow
network architecture that balances a good trade-off between reconstruction quality and
inference time. To solve this objective, a network architecture is proposed using ad-
versarial learning. This work has a two-fold contribution. Firstly, a novel generator
architecture is proposed, which uses an iterative back-projection architecture, where
the novel part is the use of a sub-pixel convolutional neural network instead of the
standard deconvolution based network. Secondly, a novel dual adversarial network
is proposed, which uses the above-mentioned generator network and two discrimina-
tors. The first discriminator network uses an image-based pixel-wise loss. The second
discriminator uses a pixel-wise loss on its feature maps. The novel part about the
network is the use of a Relativistic GAN for both, instead of a Standard GAN. Over-
all the presented model demonstrates very promising results, but still suffers due to
lack of hyper-parameter tuning. The sour code of this dissertation is available online:
https://github.com/supratikbanerjee/SuperResolution
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Chapter 1

Introduction

1.1 Overview

The gaming industry today has a massive demand for physically accurate rendered

content. This can be observed by the race between Nvidia and AMD to push the

boundaries of real-time rendering with their upcoming line of GPUs [7]. With the

launch of the Nvidia RTX line of GPUs, they have taken the lead in the market by

enabling real-time ray-tracing [8]. This has lead to pushing the limits of computational

power for real-time rendering. Enabling ray-tracing significantly affects the rendering

capability of the GPU, leading to drops in frame rate. As a solution, Nvidia proposed

Deep Learning Super-Sampling (DLSS), which renders the frames at a lower resolution

and then upscales it using Deep Learning techniques. These Deep Learning models are

trained on Nvidia’s Saturn V super-computing cluster [9]. A significant component of

such a technique is called super-resolution. Since this technology offered by Nvidia is

proprietary, there isn’t much available information. Reaching out to the researchers

at Nvidia didn’t provide much information but helped in getting a direction to this

research with their insight.

Single image super-resolution (SISR) has piqued interest in the computer vision re-

search community, particularly since the pioneering work of Dong et al. (SRCNN 2014)

[10]. This work has been followed by numerous propositions of new architectures and

training strategies using Deep Convolution Neural Network approaches, demonstrating

promising results. Given the advances in such accuracy of single image super-resolution,
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it remains a challenge to deploy these models in real-world applications. This is mainly

due to the size of the models resulting from very deep networks constituting to high

parameter count, thus increasing computational cost [2]. A possible solution to this

problem would be continuing research towards designing lightweight deep networks.

This suggestion by Yang et al. [2] was in line with the insight gained from Nvidia

researchers, where they spoke about using a ”tiny mode” for image super-resolution in

DLSS.

In this research, the focus is around designing a lightweight network architecture

factoring minimal reduction in quality. With this in mind, several network architectures

have been analyzed to understand their fundamental principals of network design. In

this work, a novel super-resolution network architecture is proposed, which is designed

in two-fold. Firstly, the generator network is designed by comparing the deconvolution

layer, and the sub-pixel convolution layer. Following a theoretical analysis presented

by Shi et al. [11]. It is hypothesized that the sub-pixel convolutional layer with higher

parameters is superior to the deconvolution layer, as it performs at the same speed.

Thus sub-pixel convolutional networks have greater representation power. This hy-

pothesis is experimentally proven to conclude the appropriate design choice. Following

this, the generator network incorporates a novel back-projection [1] block basing on the

first hypothesis. Secondly, a novel adversarial training process is introduced. Along

with an image-based perceptual loss, a structural feature-based perceptual loss is also

used. The proposed adversarial learning uses a Relativistic average Discriminator [12]

to minimize the image-based and feature-based loss. The intuition behind using the

feature-based perceptual is to use better image structural representation, as feature

maps represent an image’s structural characteristics. This, coupled with a Relativistic

GAN [12] which uses a non-saturating loss, is easier to train.

The results of this research demonstrate superior image reconstruction in compari-

son with other super-resolution techniques with very few parameters in real-time. Addi-

tionally, by increasing the parameters of the network, the proposed generator achieved

state-of-art-results. Furthermore, the proposed adversarial learning method demon-

strates significant improvements in comparison with other adversarial techniques. The

results evaluated in this work are only on 2x upscale, since for gaming the required

quality of final image is desired to be really high. Thus any scaling factor above 2x

would not be appropriate.
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1.2 Motivation

The motivation for this research bases on the increasing popularity of using Deep Learn-

ing techniques for real-time rendering. In particular, with the emergence of DLSS,

which uses image super-resolution to advance real-time rendering in modern games.

This is coupled with the extensive literature available on single image super-resolution.

With a thorough literature review, it was observed that very few are targeted towards

achieving real-time performance. Some of the most inspiring work in literature that

led to the contributions in this research include the work by Haris et al. [1] on the

Back-projection networks. They propose allowing the model to learn the degrada-

tion process along with the upsampling. Li et al. [5] discuss a very crucial point

of making use of fewer parameters to avoid overfitting. Their work achieves this by

using a Back-projection block with an RNN like structure. Furthermore, Ledig et

al. [13] firstly proposed the use of a Generative Adversarial Network (GAN). Their

work demonstrated the limitations of PSNR and SSIM and proposed a solution by

using perceptually based loss. Based on the concept of Relativistic GAN proposed by

Jolicoeur-Martineau [12], Wang et al. [6] demonstrate the superiority of the idea over

Standard GANs [14] in image super-resolution.
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Chapter 2

Background and Related Work

2.1 Super-Resolution

Image super-resolution (SR) is a classical problem in computer vision [15]. It is the

process of recovering one or more high-resolution (HR) images, given one or more

low-resolution (LR) images [16]. It is defined as an inverse problem that combines de-

noising, de-blurring, and scaling-up tasks to obtain high-quality signals from degraded

ones [17]. Generally, the LR input ILR is modeled as the output of some degradation

process D:

ILR = D (IHR;ψ) , (2.1)

where IHR is the Ground Truth image and ψ is the parameter for the degradation

process. Usually, the degradation process D and parameter ψ is unknown and can be

affected by several factors (defocusing, compression artifacts, sensor noise, etc.). The

degradation mapping in most work is directly modeled as:

D (IHR;ψ) = (IHR) ↓s, {s} ⊂ ψ (2.2)

where ↓s is the downsampling operation with scaling factor s. Other works [18], also

model the degradation as a combination of multiple operations:

D (IHR;ψ) = (IHR ∗ κ) ↓s +nσ, {κ, s, σ} ⊂ ψ (2.3)
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where IHR ∗ κ represents the convolution between the blur kernel κ and the HR image

IHR, and nσ is some additive Gaussian noise with standard deviation σ. Comparing

the definition of degradation in 2.2, the definition of degradation in 2.3 is closer to

real-world use cases [18].

Figure 2.1: Super-Resolution as an ill-posed problem: Multiple solutions to HR image.

Solving (2.1) is an extremely ill-posed problem since there can be multiple HR

solutions corresponding to given LR image [Figure 2.1]. Given this ill-posed nature

of super-resolution, regularization is needed to constrain the solution. The primary

objective of SR is:

φ̂ = arg min
φ
L (ISR, IHR) + λτ(φ) (2.4)

where L (ISR, IHR) is the loss function τ(φ) is the regularization term (prior) and λ

is the trade-off parameter. Super-Resolution provides details finer than the sampling

grid by increasing the pixel count per unit area [17]. This involves recovering high-

resolution image ISR from LR input ILR by reversing the above degradation process,

such that, the recovered high-resolution image ISR is identical to the ground truth IHR.

Therefore the inverse process of degradation can be formulated as:

ISR = G (ILR;φ) , (2.5)

where G is the super-resolution function, and φ is the parameter for the process.
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Based on the input count of LR images, super-resolution can be classified into single

image super-resolution (SISR) and multi-image super-resolution (MISR). SISR is much

more popular in comparison with MIMR because of its high efficiency [2].

2.2 Deep Learning in Super-Resolution

Deep Learning (DL) is a sub-field of Artificial Neural Networks (ANNs) [19], which

learns a diverse representation of data, and its performance is dependant on the choice

of data representation [20]. In contrary to traditional task-specific learning algorithms,

which take advantage of feature engineering with expert knowledge, deep learning aims

to make learning algorithms less dependant on handcrafted features [20] and learn

hierarchies of abstract data representation [19].

In literature, several single image super-resolution models with Deep Learning have

been proposed [2]. Most of the work focuses on supervised super-resolution. In super-

vised SR, the models are trained with both the LR input and ground truth HR image.

The various models proposed vary a lot in their intuition and implementation. Even

then, its mostly combinations of various components, such as upsampling techniques,

network design choice, and learning strategies. This section focuses on analyzing the

fundamental modular components of various SISR models and summarizing their pros

and cons.

2.2.1 Types of Super-Resolution using Deep Networks

The ill-posed nature of image super-resolution gives rise to the key question, how to

perform upsampling? Although the architectures of different SR models vary a lot,

they can be divided into four types [1].

2.2.1.1 Pre-Upsampling

Learning the mapping from low-dimensional space to high-dimensional space is a dif-

ficult problem. An naive solution to this is to use a traditional upsampling algorithm

such as interpolation and obtain a higher resolution image, also referred to as middle

resolution (MR) [1]. This MR image can then be used to learn MR-to-HR mapping
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Figure 2.2: Pre-Upsampling. [1]

with Deep Neural networks. This was first introduced by Dong et al. in SRCNN [10].

The advantage of using pre-sampling is that the traditional algorithms handle the

difficult part of upsampling the image and DNNs only need to refine the information

in the MR image, which reduces the learning difficulty. Further, improved models

[21, 22, 23] exploited different posterior designs and learning strategies.

Even though predefined upsampling reduces the learning difficulty, it might produce

new noise or blurring from the MR image. Also, since most of the operations are

executed in a high-dimensional space, the cost of time and space is higher than other

methods.

2.2.1.2 Post-Upsampling

Figure 2.3: Post-Upsampling. [1]

To resolve computational inefficiency and use the full potential of representational

learning for super-resolution, Dong et al. [24] and Shi et al. [25] proposed performing

most of the mappings in the low-dimensional space. This method replaces the pre-

defined upsampling operators at the beginning with end-to-end learnable upsampling

layers at the end of the model. Since the expensive feature extraction via nonlinear

convolutions occurs in the low-dimensional space and the resolution is increased at the
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end of the network, the cost of time and space is significantly reduced making training

and inference considerably faster.

These advances make this method one of the most mainstream technique in the

field of image super-resolution [13, 26, 27, 5, 4, 28, 29]. However, FSRCNN [24] and

ESPCN [25] fail to learn complicated mapping due to limit capacity of the network.

EDSR [30], belongs to this type, but it requires a high number of filters per layer.

These problems opportunities to propose shallower networks that can preserve the

high frequency details better [1].

2.2.1.3 Progressive Upsampling

Figure 2.4: Progressive Upsampling. [1]

Even though models using pos-upsampling method have signifacntly reduced the

large cost in terms of time and space, it still suffers from some shortcomings. In post-

upsampling, since the upsampling operation is performed at the end, it significantly

increases the learning difficulty for large scaling factors (e.g., 4, 8). At the same

time, each scaling factor requires a separate super-resolution model. To address these

drawbacks and support multi-scale SR a progressive upsampling SR method is proposed

by Lai et al. [31]. In this method, the model is constructed in blocks, where in each

block the HR image is progressively reconstructed to a higher scaling factor than the

previous layer. In [32], Lai et al. improved on their method by using deep and wider

recursive architecture. Progressive SR (ProSR) [33] proposed by Wang et al. also uses

this method and achieve relatively better results.

By subdividing a complex task into small simpler tasks, this method significantly

reduces the models learning difficulty. It not only obtains better performance with

large scaling factors, but also provides an elegant solution to multi-scale SR problem

without adding extensive cost in terms of time and space. Due to its multi-stage
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design, this method can further reduce learning difficulty and render better results by

incorporating learning strategies like curriculum learning [34].

2.2.1.4 Iterative Up and Down Sampling

Figure 2.5: Iterative Up and Down Sampling. [1]

To better capture the mutual relation between LR and HR image pairs an iterative

back-projection [15] is used. In this method, the reconstruction error is iteratively

computed and fused back to tune the HR image intensity. Previous work on back-

projection did not employ deep learning. Haris et al. introduced Deep Back-Projection

network (DBPN) [1] which makes use of densely connected [35] up-sampling and down-

sampling layers, refered to as up-projection and down-projection units alternatingly

and reconstructs the HR image by concatenating the HR feature maps from all up-

projection blocks. Likewise, Li et al. proposed Feedback Network [36] based super-

resolution (SRFBN) [5], which uses a simplified version of densely connected up-sample

and down-sample layers, which demonstrate similar performance to that of DBPN. The

design principal of back-projection is still very new in lights of deep learning, and needs

further exploration

2.2.2 Upsampling Methdods

Besides where to apply the upsampling operators in a model, it is also significantly

important, how to implement them. Recently it has become a trend [10, 21, 24, 25,

30, 13, 33, 4, 28, 1, 22, 23, 26, 5, 29, 31, 32, 6] to make use of neural networks to

learn upsampling process in an end-to-end fashion, despite having several traditional

upsampling algorithm [37, 38, 39, 40]. This section will explore some of the commonly

used deep-learning based upsampling methods.
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Deep Learning-based Upsampling

Interpolation based upsampling methods increase the image resolution only based on

the self-contained information. In the process, they might add noise or blur to the

super-resolved image. To overcome these limitations of interpolation-based methods

in the field of super-resolution and to learn the upsampling process in an end-to-end

fashion, the deconvolution layer [24] and sub-pixel layer [25] are introduced.

Deconvolution Layer:

The Transposed Convolution layer was proposed by Zeiler et al. [41]. It performs

an inverse transform of the normal convolution layer. For convolution, if the filter

is convolved with an image with stride s then the approximate output is 1/s times

the input size. In an inverse manner, if we swap the input and output, the output of

deconvolution will be s times the input. This way, it aids super-resolution by expanding

the image by setting the scaling factor equal to the stride of the deconvolution. Upon

expanding the image, it fills the missing information with zeros. This expanded zero-

filled image is then convolved with a k × k kernel. This way the input feature map is

upsampled by a factor of s [Figure 2.6]. Since the deconvolution layer can upscale an

Figure 2.6: Deconvolution Layer [2]

image in an end-to-end fashion, it is used as the upsampling layer in many SR models

[5, 26, 27, 42]. Despite its advantages, deconvolution can cause ”uneven overlapping”

on each axis [43] and hurt the SR results.
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Sub-Pixel Layer:

The sub-pixel layer introduced by Shi et al. [25]. It performs upsampling by generating

several channels by convolution and then reshaping them using its ”shuffle” operation.

In this layer, first, convolution is performed to generate s2 times channels as the output

size, where s is the scaling factor. Given the input size as h×w×c, the output size will

be h×w×s2c. Performing the shuffle operation produces an output of size sh×sw× c
[Figure 2.7].

Figure 2.7: Sub-Pixel Layer [2]

A sub-pixel layer is also an end-to-end learnable upsampling layer, which has made

this as well a good choice as an upsampling layer in several SR models [13, 44, 28, 4, 29].

These learning-based layers are currently the most popular choice for any network

architecture using the post-upsampling method. This is primarily due to the fact that

these layers avoid the use of a high-dimensional space for high-level feature extraction,

thus remaining relatively computationally inexpensive.

2.2.3 Network Design

In deep learning, the choice of network architecture plays a very crucial role. Various

network design strategies are combined with the four types of upsampling methods

discussed above to formulate the final network architecture. This section discusses the

granular principals of network design.
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2.2.3.1 Residual Learning

Residual learning is a very popular choice of learning strategy adopted by various

super-resolution models [45, 38, 46]. The primary objective to use this strategy is to

alleviate the problem of degradation [Figure 2.8], where with increase in depth of the

network, which is equivalent to adding more layers in a model, demonstrates higher

training errors [47].

Figure 2.8: Degradation: Deeper Network shows higher train error, thus test error. [3]

Let H (x) be an underlying mapping ”between LR and HR images” to be fit by

few stacked layers, with x representing the input to the first layer. If we assume that

these stacked layers can approximate the complicated mapping H (x), likewise we can

state that the stacked layers can approximate the residual function H (x)−x. Instead

of approximating H (x), these layers are made to explicitly approximate a residual

function F (x) := H (x) − x. Thus the function can be reformulated as F (x) + x

[Figure 2.9] to address the degradation problem.

Figure 2.9: Residual Learning Block [3]
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Furthermore, Residual Learning can be classified into two categories, namely Global

Residual Learning and Local Residual Learning.

Global Residual Learning:

Super-Resolution is a problem, where the input LR image is highly correlated with

the target high-resolution image as the low-resolution image comprises abundant low-

frequency information [4]. To avoid learning complications, the global residual learning

is employed where the network only learns the residual between two images to restore

the high-frequency information. It is adopted in several network architectures [21, 23,

4, 48].

Local Residual Learning:

As we construct deeper networks, we land in the problem of vanishing gradients [49]

increasing the difficulty to train, leading to degradation [50]. To address this issue, He

et al. [3] proposed the residual skip connection. Formally it can be expressed as:

Il = Hl (Il−1) + Il−1, (2.6)

In Local Residual Learning, there are multiple shortcut connections between layers

to alleviate the vanishing/exploding gradient problem. It is widely adopted by SR

models [4, 48, 51, 23].

2.2.3.2 Dense Connections

The DenseNet proposed by Huang et al. [35] has demonstrated very promising results

in various vision based tasks [52, 53, 54, 55, 56]. In a dense connection, every layer

uses the feature maps from all previous layers [Figure 2.10]. The `th layer receives

feature-maps of all preceding layers, x0, ...,x`−1 as inputs:

x` = H` ([x0, ...,x`−1]) , (2.7)

where [x0, ...,x`−1] represents concatenation of feature-maps from layers 0, ..., `− 1.

This structure not only helps to resolve the vanishing/exploding gradient prob-

lem but also significantly reduce parameters by using small growth rate [35]. Since
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Figure 2.10: Densely Connected Convolutional Network

DenseNet allows reuse of features by introducing direct connections from any layer to

all subsequent layers along with its other advantages, it has become widely popular in

several super-resolution models [44, 1, 51, 28, 6, 33, 26, 57].

2.2.3.3 Channel Attention

Attention in context to deep learning can be viewed as allocating higher computational

resources towards most informative components [58, 59]. Attention mechanisms have

demonstrated promising results in tasks of understanding in images [60, 61], image

captioning [62] etc. Hu et al. proposed [63] ”Squeeze-and-Excitation” block, where the

focus is on the interdependence of feature representations between different channels. It

demonstrates that the squeeze-and-excitation block significantly improves performance

in state-of-the-art CNNs at a minor additional computational cost.

Figure 2.11: Channel Attention [4]

In this block, channel-wise global spatial information is put into a channel descrip-
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tor, usually by using a global average pooling. This phase is squeezing, where an input

X = [x0, ...,xC ] with C feature maps of size H×W is shrunk through spatial dimension

H ×W to derive the channel-wise statistic z ∈ RC . The cth element of z is defined as:

zc = F (xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j), (2.8)

where F(.) denotes the global average pooling function and xc(i, j) denotes position

of the cth feature. Contribution from such descriptors expresses the whole image [63].

Further, the aggregated information in the squeeze operation is used to capture channel-

wise dependencies. For this purpose, a gating mechanism is introduced with sigmoid

activation.

s = σ (WUδ (WDz)) , (2.9)

where σ(.) denotes sigmoid and δ(.) denotes ReLU [64] activation. WD ∈ RC
r
×C and

WU ∈ RC×C
r are the weight set of the downsampling and upsampling convolutional

layers, which are part of the bottleneck layer, i.e for dimensionality-reduction layer,

followed by ReLU and a dimensionality-increasing layer with ratio r. s is the channel

statistic obtained, which is used to rescale the inputs X = [x0, ...,xC ]:

x̂c = sc.xc, (2.10)

where sc is the channel statistic scaling factor and xc is the cth channel feature map.

Recently, Zhang et al. proposed RCAN [4] demonstrating the use of channel atten-

tion in super-resolution, which renders state-of-the-art results. As argued in [63] and

[4], there can be better aggregation technique, Dai et al. demonstrated a Second-order

Attention Network [29] using co-variance normalization and global co-variance pooling

instead of global average pooling.

2.2.4 Loss Functions

Loss functions play a critical role at training deep learning models, as they act as an

end state feedback to the network by providing a quantitative measure of the difference

between the current learning state from the required learning state by assessing against
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the target variables. In the same light, loss functions are used to measure the difference

between the super-resolved image and the ground truth image, guiding the model

optimization.

Pixel Loss:

Pixel-wise loss employs measuring the difference between the HR image and SR image

in a pixel by pixel order. At the pioneering stage of this research field with deep

learning [10, 21, 25, 24], using pixel-wise L2 loss (mean squared error) was a common

practice.

Lpixel−`2(ISR, IHR) =
1

H ×W × C

W∑
x

H∑
y

C∑
i

∥∥∥G (ILR;φ)x,y,i − Ix,y,iHR

∥∥∥2 , (2.11)

This resulted in typically overly smooth textures rendered poor perceptual quality

[65, 66]. Investigating the difference between mean squared error (MSE) and mean

absolute error (MAS) to optimize Neural Networks for Image Restoration, Zhao et al.

[67] demonstrated faster convergence and better results with mean absolute error. A

variant of L1 loss used in [31, 68] is the Charbonnier loss [69].

Lpixel−`1(ISR, IHR) =
1

H ×W × C

W∑
x

H∑
y

C∑
i

∥∥∥G (ILR;φ)x,y,i − Ix,y,iHR

∥∥∥ , (2.12)

Lpixel−char(ISR, IHR) =
1

H ×W × C

W∑
x

H∑
y

C∑
i

√∥∥∥G (ILR;φ)x,y,i − Ix,y,iHR

∥∥∥+ ε2,

(2.13)

where ε is a constant used for numerical stability.

The definition of PSNR is highly correlated with pixel-wise difference, hence min-

imizing pixel loss maximizes PSNR. Since pixel loss doesn’t take perceptual [66] or

texture [70] quality into account; thus, it lacks high-frequency details producing per-

ceptually unsatisfactory results.
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Content Loss:

Given the limitations seen with PSNR, optimization based on perceptual quality loss

have been investigated [66, 65]. The intuition behind the perceptual loss is to use a

pre-trained network to transfer the knowledge of semantic difference from the network

loss to the model. The content loss is defined as the euclidean distance between feature

representation of super-resolved image G (ILR;φ) and the ground truth IHR [13]:

L content (ISR, IHR; Ψ, `) =
1

W`H`C`

W∑
x

H∑
y

C∑
i

(
Ψ

(`)
x,y,i(G (ILR;φ))−Ψ

(`)
x,y,i(IHR)

)2
,

(2.14)

where Ψ is the pre-trained network and its feature map obtained at `th layer is defined

as Ψ(`). As opposed to the pixel loss, the content loss doesn’t force the super-resolved

image ISR to match exactly by pixels, but produce images perceptually similar to the

target IHR. This produces visually pleasing results [66, 13, 6, 71]. The most commonly

used such pre-trained network is the VGG net [72].

Adversarial Loss:

Recently GANs [14] have picked up good traction in various vision based tasks. GANs

employ a game theory based approach, where two components of the model, the gen-

erator and the discriminator compete against each other.The generator generates the

content, in the case super-resolved images and the discriminator which takes the gen-

erated output and the target images as input and discriminates whether a given input

is from the target distribution. As we can observe from the equation [14]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.15)

where G and D are the Generator and Discriminator networks. Here the objective of

the Generator network G(z) is to generate a tensor that has the shape of the target data

and follows its distribution. The function of discriminator network D(x) is to output

a scalar value between 0 and 1, which is the probability of whether a given input is

from the target dataset or not. Given this context, it can be observed that the training

process takes place in two steps. The first part keeps G constant and maximizes (2.16).

As we can see in [Figure 2.12] as limx→1 f(x) = 0 and limx→0 f(x) = −∞, likewise with
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D(x)→ 1 maximizes the first term of the equation.

Figure 2.12: log(x) plot

The second term of the equation is maximized as D(G(z)) → 0. This represents

that to maximize the discriminator, the discriminator would try to output 1 classifying

it as real, for data coming from the target dataset pdata(x) and output 0 classifying

it as fake, for the data coming from the generator G(z), which is the purpose of the

discriminator.

The objective second step of the training process involves minimizing 2.16. Since

this involves only tweaking the parameters of the Generator G, we can exclude the

first term of the equation Ex∼pdata(x)[logD(x)]. Minimizing the second term would

require D(G(z)) → 1 for log(1 − D(G(z))) as limx→0 f(x) = −∞. As D is supposed

to output 1 only when the input data is from the target distribution pdata(x), this

step forces G to adjust its parameters such that the output is as close as possible to

the target distribution. Playing this min-max game the resulting generator can ideally

produce outputs consistent with the distribution of the target data, which cannot be

distinguished by the discriminator, thus fooling it.

It is fairly straightforward to use adversarial learning in super-resolution:

min
φ

max
ψ

EIHR∼ptrain(IHR) [logD (IHR;ψ)] + EILR∼pG(ILR) [log (1−D (G (ILR;φ) ;ψ)] ,

(2.16)

where the generator G is the SR model.The objective of the discriminator D in this

context is to classify whether the input is generated or real. The first implementation
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of adversarial loss using cross entropy was introduced in SRGAN by Ledig et al. [13].

Lgan−G(G;D) = − logD(G (ILR;φ) ;ψ), (2.17)

where Lgan−G is the generator adversarial loss, which takes in the output of the Gener-

ator G (ILR;φ) ;ψ, where D(G (ILR;φ) ;ψ) is the probability that the generated image

is a natural image.

Lgan−D (G, IHR;D) = − logD (IHR;ψ)− log (1−D (G (ILR;φ) ;ψ)) , (2.18)

where Lgan−D is the discriminator adversarial loss, which takes inputs from the target

dataset IHR and G (ILR;φ) ;ψ to maximize (2.18). Enhancenet [70] also uses a similar

loss.

The use of least square error based adversarial loss by Wang et al. [33] and Yuan at

el. [73] demonstrated better stability in the training process and higher quality results

[74], defined as:

Lgan−G(G;D) = (D(G (ILR;φ) ;ψ))2 , (2.19)

Lgan−D (G, IHR;D) = (D (IHR;ψ))2 + ((1−D (G (ILR;φ) ;ψ)))2 , (2.20)

Furthermore, Bulat et al. [75] demonstrated the use of a hinge based adversarial loss

[76]:

Lgan−G(G;D) = −D(G (ILR;φ) ;ψ), (2.21)

Lgan−D (G, IHR;D) = min (0,D (IHR;ψ)− 1) + min (0, (−D (G (ILR;φ) ;ψ))− 1) ,

(2.22)

Work presented by Wang et al. [6] demonstrates the use of strongly argued concept of

Relativistic average Discriminator [12], defined as:

Lrgan−G(ISR, IHR) = −EIHR∼ptrain [log(D∇(IHR, ISR)]−EISR∼pSR [log(1−D∇(ISR, IHR)))],

(2.23)

Lrgan−D(ISR, IHR) = −EIHR∼ptrain [log(1−D∇(IHR, ISR)]−EISR∼pSR [log(D∇(ISR, IHR)))],

(2.24)

where ISR = G (ILR;φ) and D∇ is the Relativistic average Discriminator. The standard

discriminator in SRGAN [13] can be expressed as D(x) = σ(C(x)), where σ stands
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for sigmoid and C(x) denotes the non-transformed discriminator output [6]. Thus,

D∇(IHR, ISR) = σ(C(IHR − EISR
[C(ISR)], where EISR

[.] denotes the average for all

super-resolved images (fake data). With this argument [6] claims to benefit from the

gradients generated out of both the HR and SR image (real and fake data) in adversarial

training. With the underlying intuition being, that the real images IHR is relatively

more realistic than a fake image ISR [12].

In the work presented by Park et al. [77], argues that using a discriminator only

at the pixel level causes the generator to add high-frequency noise. As a solution,

an additional feature level discriminator is proposed to work on high-level features as

discussed in ”Content Loss” using pre-trained networks to extract better attributes of

the target HR dataset.

2.3 Datasets

Table 2.1: Datasets for Image Super-Resolution

Dataset Amount Pixels Format

BSDS300 [78] 300 154K JPG
BSDS500 [79] 500 154K JPG

Set5 [37] 5 113K PNG
Set14 [80] 14 230K PNG

DIV2K [81] 1000 2.7M PNG
Urban100 [82] 100 774K PNG
Manga109 [83] 109 966K PNG

In the field of super-resolution, the data required for training is available in abun-

dance, since it is very easy to procure images with variation compared to other fields of

research. The available datasets vary a lot in terms of the number of images, quality,

resolution variance. Some datasets are available in LR-HR pairs, for the others, it’s

usually a Bicubic Downsaple that is used to obtain the LR images. Even though this

method of degradation is biased and might not reflect real-world scenarios, most of the

work in literature use it. Though it is often coupled with analysis of other degradation
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methods. It has been demonstrated [10, 25], that the training dataset has a significant

impact on the final results, and in most cases, a bigger dataset facilitates better results.

These state-of-the-art models discussed above are trained on various datasets and

sometimes in a combination of various datasets [Table 2.1]. It lists some of the

databases used in the super-resolution research describing number of images, the image

format and an approximate number of pixels per image.

2.4 Evaluation

Having achieved the super-resolved image, it is critical to validate the results. This

validation analysis can be done in one of two approaches. It can either be objectively

or subjectively analyzed. Even though a subjective analysis would be ideal since in

most scenarios, it’s the human perceptual detail that would be required of the solution,

it is very difficult and time-consuming to achieve such analysis. This is the primary

reason for the extensive use of objective analysis as we need some form of comparison

[84]. However, the evaluation of these two analyses usually isn’t consistent with each

other, as there have been differences measured in the evaluation results of objective

and subjective studies [13, 85]. This section will further discuss some of the commonly

used evaluation metrics, including both the above-mentioned analysis.

2.4.1 Peak signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is defined as the maximum possible power of a

signal vs. the power of the noise that affects the representation.

PSNR = 10 · log10

(
MAX2

I

MSE

)
, (2.25)

where MAX2
I is the maximum possible power of a signal and MSE defines the noise of

a signal. It is a quantitative way of measuring image reconstruction quality of a lossy

transformation (Compression) on a scale of 0 to 100 dB, with higher values representing

smaller Euclidean distance between two images. Likewise, in image super-resolution,

PSNR is used to identify the reconstruction quality of the generated image. In the case

of images, the maximum possible power of the signal is defined as MAXI = L = 255,
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which is in general used for 8-bit images. Given a fixed L, PSNR is only dependant on

pixel-wise MSE defined as:

MSE =
1

N

N∑
i

(I iSR − I iHR)2, (2.26)

Due to the focus on the difference between corresponding pixels and not the overall

perceptual quality, PSNR is a poor representation of human visual perception [13, 70].

Despite being aware of such a scenario, PSNR is still widely used as an evaluation

criterion for comparing state-of-the-art super-resolution models.

2.4.2 Structural Similarity

“The main function of the human eyes is to extract structural information from the

viewing field, and the human visual system is highly adapted for this purpose.” [86].

Given this philosophy, the structural similarity index [85] was proposed to measure the

structural similarity between images. It is another type of quantitative analysis based

on three relatively independent comparisons; luminance, contrast, and structure. For

any given image I with N pixels, the luminance component Cl(IHR, ISR) is defined as:

Cl(IHR, ISR) =
2µIHR

µISR
+ C1

µ2
IHR

+ µ2
ISR

+ C1

, (2.27)

where C1 = (k1L)2 is a constant for avoiding instability, k1 << 1 is a small constant

and L is the maximum possible pixel value. µI is the mean of image intensity defined

as:

µI =
1

N

N∑
i

Ii (2.28)

Similarly the contrast component Cc(IHR, ISR) is defined as:

Cc(IHR, ISR) =
2σIHR

σISR
+ C2

σ2
IHR

+ σ2
ISR

+ C2

, (2.29)

where C2 = (k2L)2 is a constant for avoiding instability, k2 << 1 is a small constant

and L is the maximum possible pixel value. σI is the standard deviation of image
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intensity defined as:

σI =

√√√√( 1

N − 1

N∑
i

(Ii − µI)2
)
, (2.30)

The last component of comparison, the structure comparison function Cs(IHR, ISR) is

defined as:

Cc(IHR, ISR) =
σIHRISR

+ C3

σIHR
σISR

+ C3

, (2.31)

where generally C3 = C2/2 and σIHRISR
is the co-variance between IHR and ISR is

defined as:

σIHRISR
=

1

N − 1

N∑
i

(
I iHR − µIHR

) (
I iSR)− µISR

)
, (2.32)

Finally, the SSIM is given by:

SSIM(IHR, ISR) = [Cl(IHR, ISR)]α [Cc(IHR, ISR)]β [Cs(IHR, ISR)]γ , (2.33)

where α, β and γ are control parameters, which are generally set to 1. This brings

SSIM to a specific form of:

SSIM(IHR, ISR) =
(2µIHR

µISR
+ C1) (σIHRISR

+ C2)(
µ2
IHR

+ µ2
ISR

+ C1

) (
σ2
IHR

+ σ2
ISR

+ C2

) . (2.34)

As stated earlier, SSIM evaluates the reconstruction quality from the perspective of

the Human Visual System, it is a better fit for a perceptual loss [87, 88] and is used

by most of the SR models. However, it can still be argued on how good a measure it

is agains human perceptual system based on the work presented by Ledig et al. [13].

Furthermore, [89] demonstrates similarity between PSNR and SSIM by showing how

SSIM is just less sensitive to additive Gaussian noise and PSNR can be approximated

given SSIM.

2.4.3 Mean Opinion Score

As discussed above, the quantitative approach towards image quality assessment has

some limitations in comparison with the image’s true perceptual quality. For this

reason, a lot of work has demonstrated the use of human evaluation [90, 13, 31].Even
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though a qualitative approach has its limitations in execution, ideally, it is probably

the best option as of now to identify true perceptual quality. When performing an

opinion score, the human raters are usually asked to rate an image with a score range

of 1(poor) to 5(excellent) [13]. With the user inputs, MOS is calculated as the mean

over the user ratings. MOS has it’s own sets of limitations, as it involves a lot of

different human perspectives, which can be biased and reviews might vary among

different users. But statistically given a large sample size should theoretically solve

this issue. In literature, some SR models have demonstrated to perform poorly on the

objective-based evaluations like PSNR and SSIM, but have faired highly with subjective

evaluation like MOS. With this, it is safe to assume that MOS testing is the best option

for measuring perceptual quality [13, 70, 90, 31].
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Chapter 3

Network Architecture

3.1 Overview

The overall aim of this research is to investigate a suitable network architecture, that

can perform single image super-resolution at real-time interactive rates. This would

require, for any given image, upscaling it by the desired scale factor ideally under 41.66

ms to achieve 24 fps, 33.33 ms to achieve 30 fps and 16.66 ms for 60 fps. Keeping these

constrains in mind this work analyses all the network architectures discussed in related

work. This is coupled with extensive experiments on most of them to find the best

network components that maximize contribution to better image reconstruction with

minimum computational cost. Along with that, this work analyses some design choices

and techniques very closely which best fit to solve the research problem.

3.2 Experimental Design

As discussed in the literature review, with advances in this field of research, the recon-

structed images are incrementally getting better, but at the cost of very deep network,

which might be impractical in terms of real time execution even with our modern

GPUs. Thus, in order to design a good architecture to reconstruct visually pleasing

images in real-time, it was import to focus on smaller networks [10, 24, 25]. Even

though SRCNN [10] is a very fast solution today due to the advances in hardware,

it wasn’t the same earlier, which gave rise to the scope for real-time super-resolution
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networks like FSRCNN [24] and ESPCN [25]. The network architecture proposed in

this work follows similar design choice of being minimal in nature to perform in real-

time at the same time adopting newer design principals. In order to design the final

network architecture several experiments were conducted to deduce some of the best

design principals.

3.2.1 Baseline Benchmark

The first implementation of Deep Learning based super-resolution architecture SRCNN

[10] is used as the baseline for benchmarking. SRCNN compares and demonstrates

how sparse-coding-based super-resolution models [37, 91], can be seen as convolutional

neural networks. It is accordingly designed to be a simple three layered design. The

first layer is called “Patch extraction and representation”, the second layer is “Non-

linear mapping” and the last layer is “Reconstruction” layer.

The network architecture proposed outperformed the state-of-the-art traditional

methods [10, 2]. SRCNN is a fairly simple formulation of a deep neural network archi-

tecture using the pre-upsampling method, discussed in (Background). It demonstrates

the ability of convolutional neural networks to have representational learning in an

end-end fashion. Analyzing the network structure along with the rest of the literature

highlights some important questions:

• Is it possible for the network to directly learn low-resolution to high-resolution

mapping?

• Does the network learn better representation with increase in depth and width?

• Does the use of Generative Adversarial Network help with synthesizing high-

frequency information?

• How can the change in loss function affect perceptual quality?

These questions have been extensively covered in literature and further experiments

demonstrate the properties of each of the networks answering these questions, thus

enabling to deduce and formulate a more efficient network architecture suitable for the

research question.
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3.2.2 Efficient Upsampling

To address the first question, Dong et al. [24] proposed the use of Deconvolutional

Network [41] and Shi et al. [25] introduced the use of Pixel Shuffle network to up-

scale the image at the final step of the super-resolution process. As Shi et al. [11]

further elaborates on the comparison on Deconvolutional Network vs Sub-Pixel Con-

volutional Networks, stating that the Sub-Pixel network is the same as the deconvolu-

tional network in terms of speed, but has larger number of parameters, giving it greater

representational power.

To conclude the arguments presented in [11], several experiments have been con-

ducted on the above mentioned baseline network. Firstly, we train the baseline SR-

CNN on 48× 48 random crop of DIV2K [81] with validation on Set5 [37] and time to

super-resolve a single 1920× 1080 image by 2× scaling factor to achieve 4K image for

comparison. With the same configuration of SRCNN, unlike the one in [25] for con-

sistency, a Sub-Pixel convolutional network is added at the end as presented in [25].

This is followed by replacing the Sub-Pixel network with a deconvolutional network

[41] with the optimum parameters as observed in DBPN [1]. With this set, the PSNR,

SSIM and time per frame in seconds is recorded to evaluate the claims made in [11].

As it can be seen from [Table 3.1]:

Network PSNR SSIM Param Time

SRCNN 35.2727 0.9422 20, 099 0.002s
SRCNN˙Dconv 34.8920 0.9378 28, 607 0.002s

SRCNN˙PixShufle 35.1169 0.9478 46, 796 0.002s

Table 3.1: Comparison

It can be said that the claims made in [11] by Shi et al. stands valid, as it argued

that despite having higher parameters the network complexity remains the same. Even

though the term “same speed” wasn’t clearly defined, with this experiment we can

confirm the speed is certainly the same but with higher parameters thus giving it better

“representation power”. We can conclude that the use of Pixel-Shuffle network is a

good design choice over the deconvolutional network. Note, Both the pixel-shuffle based

and deconvolution based network perform poorly in comparison with their originals
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propositions FSRCNN [24] and ESPCN [25], as the network architecture preceding

the final upscale layers is exactly the same as SRCNN [10], unlike in their original

implementations.

Argument 1 Use of Sub-Pixel Convolution is better than Deconvolutional Network

for Image Super-Resolution.

3.2.3 Deeper and Wider Networks

“A feedforward neural network is a composition of layers of computational units

which defines a function” F : Rc → Rd [92]. This is a theoritical work shwocasing

that the solution space of a Deep Neural Network can be expanded by increasing its

width or depth [2]. Ever since SRCNN demonstrated its potential, many Deep learning

based applications have been demonstrated to use deeper networks to further increase

representation power. VDSR [21] is to the best of knowledge the first very deep super-

resolution architecture. It introduced the use of a 20 layer VGG network [72] along

with Global Residual Learning. It also uses the pre-upsample method like SRCNN,

thus making it computationally slightly inefficient.

Subsequently Lee et al. proposed EDSR [30], which makes use of the Local Residual

Learning, where the batch Normalization layer is removed. It is argued that Batch

Normalization is not suitable for super-resolution as it removes the range exibility of

the features. Along with increasing the depth of the residual network [3], EDSR also

widens the network by using higher filters. To accommodate for issues regarding wide

ResNet, residual scaling technique is used from [93].

Along with ResNet, DenseNet [35] is also a very effective choice of skip connection

based network. As described in [94], “ ResNet enables feature re-usage while DenseNet

enables new features exploration which are both important for learning good representa-

tions”. Based on which, SRDenseNet [26], was proposed, demonstrating effectiveness

in performance using the post-upsample method. Based on the same concept, Haris

et al. proposed the Deep Back-Projection Network [1]. The primary motivation be-

hind this work is, that a feedback mechanism can significantly boost the performance of

mapping from low-resolution to high-resolution in comparison to a feed-forward model.

To demonstrate this, the network architecture consists of a series of up an down sample

layers which are densely connected. The main buildfing block of the DBPN network is
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the projection unit, which is trained to map the low-resolution image to high-resolution

using the up-projection and the other way using the down-projection block.

The up-projection block is defined as: [1]

Ht
0 = (Lt−1 ∗ dt0) ↑s, (3.1)

Lt
0 = (Ht

0 ∗ dt1) ↓s, (3.2)

elt = Lt
0 − Lt−1, (3.3)

Ht
1 = (elt ∗ dt2) ↑s, (3.4)

Ht = (Ht
0 + Ht

1). (3.5)

where ∗ is the convolution operator, ↑s is the up-sampling operator and ↓s is the

down-sampling operator. dti is the deconvolutional layer at stage t with scaling factor

s.The projection unit takes the low-resolution feature map Lt−1 and projects it to

the first high-resolution map Ht
0, which is the scale up phase. Subsequently it back

projects this intermediate high-resolution feature map to a low resolution feature map

Lt
0, which is the scale down phase. Following this, it takes a residual between low-

resolution feature map Lt−1 and the back projected low-resolution feature map Lt
0.

This is followed by another up-scale step, which upscales the residual feature map

elt, forming the second high-resolution feature map Ht
1. Finally the high-resolution

feature map from the up-projection block Ht is obtained by summing the first and

second intermediate high-resolution feature maps Ht
0 and Ht

1.

The down-projection block is defined similarly, which is doing the inverse of the

up-projection block. It maps the high-resolution feature map input Ht to the low-

resolution feature map Lt using cti convolutions instead of deconvolutions. It forms the

input to the up-projection block in the subsequent stage t+ 1.

The down-projection block is defined as: [1]

Lt
0 = (Ht ∗ ct0) ↓s, (3.6)

Ht
0 = (Lt

0 ∗ ct1) ↑s, (3.7)
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eht = Ht
0 −Ht, (3.8)

Lt
1 = (eht ∗ ct2) ↓s, (3.9)

Lt = (Lt
0 + Lt

1). (3.10)

Both up and down projection units are illustrated in [Figure 3.1]

Figure 3.1: up and down projection unit in DBPN [1]

DBPN, further demonstrates the use of dense connection as an improvement, propos-

ing the Dense-DBPN (D-DBPN) As shown in [30] and discussed above, batch normal-

ization isn’t beneficial to super-resolution, DBPN, makes use of 1×1 convolution layers

as feature pooling before using the back-projection unit instead. An illustration of the

dense up and down projection unit can be seen in [Figure 3.2]

Figure 3.2: Dense up and down projection unit in DBPN [1]
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The network architecture for D-DBPN is divided into three parts: “Initial feature

extraction”, “Back-projection stages” and “reconstruction”. On comparing this with

the basline model, it can be observed that DBPn also follows a similar architectural

pattern. It uses the Back-projection block as the “Non-linear mapping” [10]. Further-

more, Haris et al. [1] states that, to their best knowledge a feedback network has never

been implemented for super-resolution till 2018. DBPN demonstrates really strong and

promising results in comparison with other state-of-the-art.

With this said, the gap was filled in this domain by Li et al. [5] introducing super-

resolution feedback network (SRFBN) for image super-resolution. Li et al. [5] argues

that with the increase in depth of a network the parameters increase and such large

capacity networks can suffer from the overfitting problem. The recurrent structure

is often used to reduce the number of parameters in a network. SRFBN introduces

the use of a feedback network [36], “in order to rene low-level information using high-

level one through feedback connections”. The feedback mechanism proposed helps the

network to generate better images by correcting the generated images in previous

states. Even though DBPN [1] and DSRC [27] proposed feedback mechanisms, these

steps were still carried out in a feed-forward fashion, unlike in SRFBN. The network

architecture in SRFBN can also be shown to be similar to our baseline, as it uses a “LR

feature extraction block” (LRFB) similar to the first layer of our baseline. It has some

difference in the way this layer is constructed. Instead of using a single convolutional

layer, it uses two layers a feature extraction layer Conv(3× 3) and a feature reduction

layer Conv(1 × 1). The “Feedback block” is used as the “Non-linear mapping” from

our baseline following it with a post-upsampling method by using a reconstruction

block which is a deconvolutional network. It also employs the use of Global Residual

Learning as discussed in literature review, as the network learns the residual between

the bicubic upsample and the target image.

The Feedback network is constructed out of an iterative up and down-sampling

blocks which are densely connected. As it can be seen in [Figure 3.3], the Feedback

block takes at time step t input F t−1
out , which is the output of the feedback block from

previous time step to correct the low-level representation F t
out subsequently passing

higher-level representation F t
out to the next iteration t+1 and finally to the reconstruc-

tion block. The Feedback block can be defined as [5]:
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Figure 3.3: Feedback Block in SRFBN [5]

Lt0 = Cin
([
F t−1
out , F

t
in

])
(3.11)

H t
g = C↑g

([
Lt0, L

t
1, . . . , L

t
g−1
])

(3.12)

Ltg = C↓g
([
H t

1, H
t
2, . . . , H

t
g

])
(3.13)

F t
out = Cout

([
Lt1, L

t
2, . . . , L

t
G

])
(3.14)

where, Cin and cout are compression layers defined as Conv(1 × 1), used for di-

mensional reduction and [.] is referred to concatenation. C↑g and C↓g are up-sampling

and down-sampling group, where the network consists of G projection groups sequen-

tially with dense skip connections. In the first step, the network takes in F t
in and

F t−1
out and uses the initial compression unit to refine input features, resulting refined

feature Lt0 Subsequently by concatenating all previously generated low-resolution fea-

ture maps (Lt0, . . . , L
t
g−1) in the Feedback block are taken as the input by the gth up-

sampling group C↑g producing high-resolution feature map H t
g. Likewise all generated

high-resolution feature maps (H t
0, . . . , H

t
g) are back-projected using the down-sampling

group C↓g to form the next low-resolution feature map Ltg. Finally all low-resolution

feature maps generated in the Feedback block are concatenated and passed to Cout com-

pression unit to produce a refined low-resolution feature map as the Feedback blocks

output. The argument made in this work, that the use of a recurrent neural network to

improve reconstruction quality by reducing network parameter is demonstrated very

well. However, the use of a recurrent structure hinders the inference performance

significantly.
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3.2.4 Proposed Baseline Network

The work presented in state-of-the-art discussed above demonstrates better perfor-

mance with increase in network width and depth. The comparison of the discussed

networks will be later discussed in the [ Results Section ]. Based on observations

made in these deep networks, some experiments were performed to conclude an effi-

cient shallow baseline. The purpose of concluding a shallow baseline, is to demonstrate

its potential for real-time performance and to subsequently build on top of the same

design principal to go deeper. The proposed baseline also adopts a three stage architec-

ture, with a Feature Extraction layer, Non-Linear mapping and final Reconstruction

layer. Based on observation from the state-of-the-art, and [Argument 1] the use of

post-upsample method was the most appropriate design choice. Subsequently Global

Residual Learning is employed.

Figure 3.4: Proposed Baseline Architecture

The Global Residual Learning used in the network which bypasses the sub-network

by forwarding an upsampled image at the end which is added to the output of Re-

construction layer. The proposed network architecture is defined as following, where a

convolutional layer is denoted as Conv(k, n) and Deconvolutional layer asDeconv(k, n),
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where k is the filter size and nis the number of filters.

Feature Extraction

The Feature Extraction block is defined as:

F0
in = CFE0 (ILR), (3.15)

F1
in = CFE1 (F0

in), (3.16)

where CFE0 = Conv(3, 4f) and CFE0 = Conv(1, f), where f is the base number of filters.

The low-level representation F 0
in is obtained from the low-resolution image ILR and the

refined feature F 1
in is obtained by F 0

in.

Non-Linear Mapping

The Non-Linear Mapping layer is a Back-projection block, similar to that in SRFBN [5]

which is a simplified version of DBPN [1]. Instead of using a Deconvolution layer, based

on [Argument 1], a Sub-Pixel Convolution based up-projection layer is implemented.

The Non-Linear Mapping layer is defined as:

H0 = PS(CBP0 (F1
in) ↑s, (3.17)

L0 = CBP1 (H0) ↓s, (3.18)

where H0 is the high-resolution feature map and L0 is the low-resolution feature map.

↑s, ↓s represent upsample and downsample operation respectively with scale factors.

CBP0 represents Conv(3, fs2), f is the number of filter, s is the scale factor and PS is

the Pixel-Shuffle Layer. The back-projection block takes F1
in as input and produces

a high-resolution feature map Ho, which is back projected to a low-resolution feature

map Lo‘. This low-resolution feature map is the passed to the Reconstruction layer.

This non-linear mapping is called the Sub-Pixel Back-Projection Block.

Reconstruction

As discussed above, the Reconstruction layer is a Sub-pixel convolutional layer [Argu-

ment 1] which upscales the low-resolution feature map to the desired scaling factor.
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The Reconstruction layer is defined as:

IRes0 = PS(CR0 (L0) ↑s, (3.19)

IRes1 = CR1 (IRes0 ), (3.20)

ISR = IRes1 + fUP (ILR), (3.21)

where IRes0 is the residual upscale using Sub-Pixel convolution PS(CR0 (L0)) with input

L0 from the Non-Linear Mapping layer. IRes1 is the refined residual high-resolution

feature map derived from CR1 (), which is a Conv(3, fout) where, fout = 3 is the output

feature map ”RGB”. Finally the super-resolved image is constructed by adding the

high-resolution refined feature map with fUP (.), which is linear upsample of the low-

resolution image. Since the low-resolution image contains abundant low-frequency

information [4], this allows the network to bypass the low-resolution information and

focus only on the residual component from the high-resolution image. Experimental

results to conclude this design choice based on the same evaluation parameters used

for [Argument 1] are shown in [Table 3.2]

Network PSNR SSIM Param Time

SRCNN 35.2727 0.9422 20, 099 0.002s
Baseline˙Dconv 36.4480 0.9522 17, 733 0.002s

Baseline˙SP 36.5662 0.9528 24, 421 0.002s

Table 3.2: New Baseline Comparison

where Baseline-Dconv is the above discussed baseline with a deconvolutional upsam-

pling and Baseline-SP is the baseline with sub-pixel convolutional upsameple. Given

these results, we can conclude that the proposed baseline is superior to SRCNN [10],

and two modified version of SRCNN to establish [Argument 1], discussed in [3.2.2 “Ef-

ficient Upsampling”]. Further experiments will be based on the newly defined Baseline.

Argument 2 Use of Sub-Pixel Convolution is better than Deconvolutional Network

for shallow Back-projection unit.
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Figure 3.5: Sub-Pixel Back-Projection Block

Sub-Pixel Back-Projection Block

The design of Sub-Pixel Back-Projection (SPBP) is shown in [Figure 3.5]. It takes

the input Fin which is denoted as L0 in the illustration. The construct of the Back-

Projection unit is very similar to that of SRFBN [5]. It does not use the initial com-

pression convolution and the Deconvolution in SRFBN. The Sub-Pixel Back-Projection

block can thus be formulated as:

L0 = Fin (3.22)

Hg = PS(CBPg ([L0, L1, . . . , Lg−1])) ↑s, (3.23)

Lg = CBPg
([
H t

1, H
t
2, . . . , H

t
g

])
↓s, (3.24)

Fout = Cout ([L1, L2, . . . , LG]) (3.25)

3.2.5 Adversarial Training

In this section the use of Generative Adversarial Networks [14] in super-resolution is

extensively discussed. The purpose of using GANs was to achieve visually pleasing

results and not minimizing the pixel distance to achieve higher PSNR values. For

this purpose Ledig et al. proposed SRGAN [13] which uses an adversarial objective
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function that encourages the super-resolved image to be similar to that of the target

images. The primary contribution made by SRGAN is the use of a perceptual loss,

which makes use of a content loss and an adversarial loss (3.26).

ISR = lSRX︸︷︷︸
content loss

+ 10−3lSRGen︸ ︷︷ ︸
adversarial loss

(3.26)

where lSRX is the content loss which uses a MSE loss to find distance pixel-wise ISRMSE

(3.27) and distance metric for perceptually similarity over high-level feature maps

drawn from a pretrained VGG19 network .

ISRMSE =
1

HW

W∑
x

H∑
y

(
G
(
ILR;φ

)
x,y
− IHRx,y

)2
, (3.27)

ISRV GG/` =
1

W`H`

W∑
x

H∑
y

(
Ψ(`)
x,y(G

(
ILR;φ

)
)−Ψ(`)

x,y(I
HR)

)2
, (3.28)

where G
(
ILR;φ

)
x,y

is the generated image, IHRx,y is the target image and Ψ
(`)
x,y is the out-

put from tehe pretrained network at layer `. Thus lSRX = ISRMSE + ISRV GG/`. Subsequently

the adversarial loss lSRGen is defined as:

ISRGen = − logD
(
G
(
ILR;φ

)
;ψ
)
, (3.29)

where D
(
G
(
ILR;φ

)
;ψ
)

is the probability of the reconstructed image being a natural

target image.

Bulding up the work of Ledig et al. [13], Wang et al. proposed Enhanced - SRGAN

(ESRGAN) [6]. It has its primary contribution in two fold in the modification of

the SRGAN generator network, by firstly removing the batch normalization layer and

replacing the original basic block with a Residual-in-Residual Dense Block (RRDB)

[Figure 3.6] [Figure 3.7] .

Along with employing a novel RRDB block in the generator, ESRGAN also intro-

duces the concept of a Relativistic average Discriminator [12]. As discussed in related

work (Adversarial Loss), the discriminator D in ESRGAN is different in comparison

to the standard GAN used in SRGAN. The discriminator in SRGAN estimates the
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Figure 3.6: Batch Normalization removed in SRGAN [6]

Figure 3.7: RRDB block used in ESRGAN [6]

probability of an input image being real, where as the relativistic discriminator esti-

mates the probability that a real image is relatively more realistic than a fake image [6].

This can be seen in [Figure 3.8] : Similar to the relativistic discriminator’s intuition,

Figure 3.8: SGAN vs RGAN [6]

ESRGAN specifically incorporates the Relativistic average Discriminator (RaD) [12].

from [Figure 3.8] we can describe a Standard GAN as D(x) = σ(C(x), where σ is the

sigmoid activation and C(x) is the non-transformed discriminator output [12]. Thus

RaD is formulated as DRa(xr, xf ) = σ(C(xr)−Exr [C(xf )]), where Exf [.] is an average

operation for all fake data. The use of RaGAN has demonstrated to learn sharper

edges and detailed textures [6].

To further improve perceptual quality Park et al. [77] proposed super-resolution

using Feature Discriminator (SRFeat). In this work, it is argued that the GAN-based

networks used to synthesize high-frequency textures tent to add less meaningful high-

frequency noise to the generated image, which is irrelevant to the input image. It
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employs a Standard GAN [14] to train the generator network the loss function mini-

mized is:

Lg = Lp + λ(Lia + Lfa) (3.30)

where Lp is a perceptual similarity loss which directs the super-resolved images to look

similar to the ground truth target images, similar to ISRV GG/` Eq. (3.28) in SRGAN.

SRFeat uses this perceptual similarity loss measuring difference in the feature domain

instead of measuring it pixel-wise. Lia is the adversarial image/generator loss similar

to ISRGen Eq. (3.29). The additional component in comparison with SRGAN is the use

of Lfa which is the feature adversarial loss. The feature adversarial loss is defined as:

Lfa = − logDf
(
Ψ(`)(G

(
ILR;φ

)
);ψ
)
, (3.31)

where, Ψ(`) is a feature extraction at layer ` and Df is the feature discriminator, which

gives the probability of feature map being from the distribution of the target high-

resolution feature maps. “As features correspond to abstracted image structures, we

can encourage the generator to produce realistic structural high-frequency rather than

noisy artifacts” [77]. Further the discriminator adversarial loss Lfd is defined as:

Lfd = − log(Df
(
Ψ(`)(IHR)

)
;ψ)− log(1−Df

(
Ψ(`)(G

(
ILR;φ

)
);ψ
)
), (3.32)

This work successfully demonstrates the use of two discriminator networks for working

with the feature domain and image domain which leads to better perceptual quality.

3.2.6 Proposed Adversarial Learning

The demonstrations made in the works discussed above highlight the importance of

adversarial training in image super-resolution. Since we are trying to predict missing

information, learning the probability distribution of the training set seems to be an

ideal solution coupled with a perceptually based loss. Based on the observations made

in literature and above discussed training methods, several experiments were conducted

to derive the most suitable design for adversarial learning. The proposed adversarial

network architecture uses a Relativistic average Discriminator [12] which is used in

the image domain and feature domain to produce better structural high-frequency
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information [77].

To train the generator network, the loss function LSRgen is minimized:

LSRgen = LSRc + λLSRa (3.33)

LSRc = (αLSRi
c + γLSRf`

c ) (3.34)

LSRa = LSRi
ga + LSRf`

ga (3.35)

where, LSRc is the content loss and LSRa is the generator adversarial loss with weight

λ. LSRi
c is the generator content loss in the image domain, LSRf`

c is the generator

content loss in the feature domain with α and γ as contribution weights for respective

domain losses. LSRi
ga is the generator adversarial loss in the image domain, LSRf`

ga is the

generator adversarial loss in the feature domain.

Content Loss

The content wise loss is comprised of two components, the first being the pixel-wise

loss in the image domain LSRi
c , which is a L1 loss defined as:

LSRi
c =

1

HWC

W∑
x

H∑
y

C∑
i

∥∥∥G (ILR;φ)x,y,i − Ix,y,iHR

∥∥∥ , (3.36)

where H, W and C denote the dimensions of the target Ix,y,iHR and generated image

G (ILR;φ). Similarly the second part of the content loss, which is in the feature domain

LSRf`
c also uses a L1 loss, defined as:

LSRf`
c =

1

HWC

W∑
x

H∑
y

C∑
i

∥∥∥Ψ
(`)
x,y,i(G

(
ILR;φ

)
)−Ψ

(`)
x,y,i(I

HR)
∥∥∥ , (3.37)

where H, W and C denote the dimensions of the `th feature map Ψ(`). Similar to

commonly used VGG network, the network used in this experiment is a VGG-19 [72].
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Adversarial Loss

The adversarial loss can be classified in two segments. The first being the genera-

tor adversarial loss and second, discriminator adversarial loss. The loss functions in

Standard GAN [14] with respect to image super-resolution can be expressed as:

LD = EIHR∼P [log (D (IHR))] + EILR∼Q [log (1−D (G (ILR)))] (3.38)

LG = EIHR∼P [log (1−D (IHR))] + EILR∼Q [log (D (G (ILR)))] (3.39)

where LD and LG are the discriminator and generator loss functions respectively, P
is the distribution of target images IHR, Q is the distribution of input images ILR,

D(.) and G(.) are discriminator and generator evaluated at IHR and ILR respectively.

Having trained the discriminator D(.) to its optimal point, the loss function is an

approximation of the Jensen-Shannon divergence (JSD) for Standard GAN [14]. Thus

an interpretation of minimizing the generator loss G(.) can be roughly interpreted as

minimizing the approximated divergence.

When Standard GAN is optimized, it is equivalent to the Jensen-Shannon diver-

gence (JSD) [14]. JSD is minimized ( JSD(P|Q) = 0 ), when D(IHR) = D(ISR) =
1
2
∀ IHR ∈ P, ISR ∈ Q and maximized ( JSD(P|Q) = log(2) ), when D(IHR) =

1,D(ISR) = 0 ∀ IHR ∈ P, ISR ∈ Q. Hence, directly minimizing divergence should

result in smooth decrease from 1 to 1
2

in D(IHR) and smooth increase from 0 to 1
2

in

D(ISR). However, in Standard GAN, minimizing the loss only increases D(ISR) closer

to 1 instead of 1
2

and does not decrease D(IHR). This demonstrates the working of

standard GAN is not the same as minimizing JSD. The loss functions of Relativistic

average Discriminator (RaD) can be formulated as:

LRaG = EIHR∼P [log (1−DRa (IHR))] + EILR∼Q [log (DRa (G (ILR)))] , (3.40)

LRaD = EIHR∼P [log (DRa (IHR))] + EILR∼Q [log (1−DRa (G (ILR)))] , (3.41)

where LRaD and LRaG are discriminator and generator loss respectively,

DRa(I) =

{
σ (C(I)− EISR∼Q [C (ISR))], if I = IHR

σ (C(I)− EIHR∼P [C (IHR))], if I = ISR
(3.42)

41



where, σ is the sigmoid function, C(.) is the non-transformed discriminator output

as discussed above. In Standard GAN, the discriminator can be defined as D(I) =

σ(C(I)). A discriminator can be defined as relative by enforcing it to be depen-

dant on both real and generated image pairs Ĩ = (IHR, ISR). The discriminator can

thus be defined as D(Ĩ) = σ(C(IHR) − C(ISR)). This modification of discrimina-

tor can be interpreted as: for the given generated image, the discriminator estimates

the probability that the given real image is more realistic. Likewise, we can define

D(Ĩ) = σ(C(ISR) − C(IHR)) as the probability of the generated image being more

realistic than given real image. The discriminator D is not required to be explicitly

used in the loss function as log(1−D)(Ĩ), due to the property:

1−D(Ĩ) = 1− σ(C(ISR)− C(IHR))

= σ(C(IHR)− C(ISR)) = D(Ĩ)

∴ log(D(Ĩ)) = log(1−D(Ĩ)).

(3.43)

The generator adversarial loss LSRa Eq. (3.35) comprises of LSRi
ga which is the

generator adversarial loss in the image domain, defined as:

LSRi
ga = −EIHR∼P

[
log(1−DiRa (IHR))

]
− EILR∼Q

[(
log(DiRa (G(ILR)))

)]
, (3.44)

and LSRf`
ga which is the generator adversarial loss in the feature domain, defined as:

LSRf`
ga = −EIHR∼P

[
log(1−DfRa

(
Ψ(`) (IHR)

)
)
]
−EILR∼Q

[(
log(DfRa

(
Ψ(`) (G(ILR))

)
)
)]
,

(3.45)

where DiRa and DfRa are the Relativistic average Discriminators in image and feature

domain respectively. The generator adversarial loss benefits by using both the high-

resolution IHR and super-resolved ISR images, while SRGAN [13] and SRFeat [77] only

use the the super-resolved image ISR.

Likewise the discriminator networks LSRi
da and LSRf`

da are the image and feature

domain discriminators respectively, defined as:

LSRi
da = −EIHR∼P

[
log(DiRa (IHR))

]
− EILR∼Q

[(
log(1−DiRa (G(ILR)))

)]
, (3.46)
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LSRf`
da = −EIHR∼P

[
log(DfRa

(
Ψ(`) (IHR)

)
)
]
−EILR∼Q

[(
log(1−DfRa

(
Ψ(`) (G(ILR))

)
)
)]
,

(3.47)

Relativistic average Discriminator has a more similar interpretation to that in Standard

GAN. Both the discriminators estimate the probability of the given real data being

more realistic than the fake data on average.

As the Standard GAN has been discussed in the Background of this work, the

important part to note is, with respect to Relativistic Discriminator, the Standard

GAN ignores the first term of the equation Eq (3.47) while training the generator, as

the gradient is zero as the generator does not influence it.

EIHR∼P [log (1−D (IHR))] (3.48)

On the contrary in Relativistic GAN the first term is influenced by the super-resolved

image, since the DRa(.) function makes use of both, the real and generated image.

EIHR∼P [log (1−DRa (IHR))] (3.49)

DRa(IHR) = σ (C(IHR)− EISR∼Q [C (G (ILR)))] (3.50)

In the proposed training method a pixel-wise loss and a VGG [72] based loss is used

in the image domain. Correspondingly an image domain based feature domain based

adversarial losses are also proposed using Relatives tic Discriminator. The advantage of

using the feature domain, is the representation of abstract image structures as features

which encourage the generator to produce more realistic structural high-frequency in-

formation instead of adding noise artifacts. To further prove the effectiveness of the

proposed adversarial learning the following experiments were conducted.

The above proposed generator network baseline was used to demonstrate the ex-

perimental results. In particular four experiments were conducted to demonstrate the

superiority of the proposed method. First the generator baseline was trained using a

Standard GAN (SRGAN) [13] , second, a Relativistic GAN as seen in ESRGAN [6]

was used, followed by a feature domain discriminator was used as seen in SRFeat [77]

and finally the proposed Relativistic Discriminator in image and Feature domain. The

experiments were run on 64 × 64 random crop of DIV2K [81] with validation on Set5

[37].
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Network PSNR SSIM

SRGAN + baseline 33.5009 0.9236
ESRGAN + baseline 33.9271 0.9280
SRFeat + baseline 33.9662 0.9285

proposed learning + baseline 34.4696 0.9301

Table 3.3: Adversarial Learning Baseline Comparison

As it can be seen from [Table 3.3], the PSNR and SSIM values of the proposed

baseline along with the proposed adversarial learning renders the best results. Further

a qualitative comparison is shown in [Figure 3.9] on images from BSD100. Even with

the qualitative comparison, it can be observed that the proposed network architecture

performs the best.
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Figure 3.9: Qualitative comparison of proposed adversarial learning on 2x upscale
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Chapter 4

Experimental Results

4.1 Overview

In the previous chapter the proposed network Architecture has been defined. This

chapter would discuss the implementation details, training details, choice of dataset.

Finally the results obtained by the proposed network are compared against some of

the state-of-the-art networks and a detailed analysis is provided for the same.

4.2 Training Environment

The environment setup for all the conducted experiments are laid down in this section.

All systems experimented on are based on Windows 10 operating system. In total

five systems were used in parallel to run experiments with various state-of-the-art

architectures. Furthermore, the requirement of multiple systems was critical due to

the nature of this research, where each machine ran a variant of the same network

architecture to find out the optimal components that contribute the most towards

the best results. Each system was equipped with a GTX 1080 GPU with 8GB video

memory, an i7 7700K @ 4.20GHZ with 16 GB memory.
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4.3 Training Details

In the proposed network, there are two network settings that are suggested. The first

setting is suggested to run the baseline as described in the previous chapter, which

demonstrates real-time performance for upscaling 1280× 720 images by 2× to achieve

a 2K image (2560 × 1440) with 16 feature maps. The second setting demonstrated

makes use of 10 Sub-Pixel Back-projection groups with 64 feature maps.

As discussed in the introduction, all experiments were performed with a 2× scal-

ing factor between low-resolution and high-resolution. The low-resolution images are

obtained by downsampling high-resolution images using scipy library in Python us-

ing bicubic linear interpolation. The training mini-batch size is set to 16 with low-

resolution image crop of size 48×48 for the deep version of the network and mini-batch

size of 32 with the same low-resolution image crop for the smaller network. An obser-

vation made in this process was, training the network with larger crop patch showed

better results. To keep the comparisons with other networks fair, this crop size was se-

lected. The training was done in two phases; first, the proposed generator network was

trained to analyze its potential. Followed by training the network using the proposed

feature and image-based Relativistic average Discriminator.

The proposed network was also trained using adversarial learning with low-resolution

image crop of 64 × 64 with a mini-batch size of 8. A VGG-19 network was used for

the discriminator network. The Generator network was trained using the L1 loss to

maximize the PSNR. The model is trained using the ADAM optimizer for 1000 epochs,

with β1 = 0.9, β2 = 0.999 and mini-batch repeating twice. The learning rate is initial-

ized as 10−4 and decayed by a factor of 2 in every 200 epochs. No image augmentation

has been used for training. When using adversarial learning, we set α = 10−2, which

is the L1 pixel-wise image loss weight, γ = 1, which is the L1 pixel-wise feature loss

weight. The adversarial weight λ is set to 10−3.

4.4 Rendered Dataset

As discussed in the background section, there are few standard datasets used for train-

ing and validation in the research field of image super-resolution. Following the same

for the convenience of comparison, all models have been trained using the DIV2K [81]
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dataset, which comprises of 800 training images. For validation Set5 [37], Set14 [80],

BSD100 [78] and DIV2K [81] have been used. Since the focus of the research aims

to demonstrate the applicability of real-time single image super-resolution in modern

games, it can be argued that models trained and validated on natural images might

not perform the same way on rendered or synthesized images. To observer how models

perform on synthesized image vs. natural images, a new dataset has been introduced.

This proposed dataset comprises of 800 2K images which contain rendered content

from various games. The validation data set comprises of 200 2K images of game ren-

dered content. This dataset was created by scraping the web for high-resolution game

rendered content. Initially, a total of 2000+ images were downloaded. All content from

the scraped images were carefully manually analyzed and selected to avoid duplicates,

filtering for copyright watermarks and images with heads up displays (HUD), which

do not reflect the actual content that would need to be super-resolved in a real-world

scenario of super-resolving a game in real-time.

4.5 Evaluation

To validate the potential of the proposed network, several experiments and analysis

have been performed. The proposed generator network is compared against seven state-

of-the-art models: EDSR [30], VDSR [21], RCAN [4], DBPN [1], [10], FSRCNN [24]

and ESPCN [25]. An extensive experiment has been conducted using 3 datasets for the

generator network. All three datasets are of natural images. The evaluation parameters

involves PSNR, SSIM and inference time in seconds. Higher PSNR and SSIM values

indicate better quality. As a standard practice by all networks in comparison, all

measurements use only the luminance channel (Y).

The proposed16 is the lightweight version of the generator network with 16 feature-

maps with 1 group in Sub-Pixel Back-projection, likewise proposed64 uses 64 feature-

maps with 10 groups in Sub-Pixel Back-project. This can be seen in [Table 4.1] for

a numerical representation, and a qualitative comparison in [Figure 4.3] Furthermore,

a Bubble chart [Figure 4.1] illustrates the inference time (in seconds) vs. SSIM vs.

parameter count for these networks. The bubble chart evaluation is done on based on

the BSDS100 dataset only.

The proposed adversarial network proposed in this research has been evaluated us-
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ing the Set5 dataset. Due to lack of time and computational resources, the comparison

was possible only against SRGAN [13] [Figure 4.2]. Further detailed comparison can

be found in the supplementary material.

As discussed above, some experiments have also been performed on the new ren-

dered image content dataset. The proposed lightweight network was trained using

both natural and rendered images. An observation made was that, there was hardly

any difference seen in the super-resolved image when trained with the rendered image

or natural image. However, another interesting observation made was, even though

the proposed adversarial network outperforms the state-of-the-art networks, training a

generator with very few parameters isn’t very helpful, since it adds more artifacts to the

image rather than enhancing them. In [Figure 4.4], the images labeled as ”Render” are

generated using the lightweight network with 16 feature maps using the rendered im-

age dataset. The images labeled as ”Natural” are generated using the same lightweight

network using DIV2K dataset. Images labeled as ”GAN” are images trained on ren-

dered dataset using the lightweight generator and the proposed adversarial network.

Figure 4.1: Bubble Graph comparing Quality VS. Inference Time vs. Parameter on 2x
super-resolution
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Figure 4.2: Qualitative comparison of proposed adversarial training vs. SRGAN on 2x
super-resolution
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Figure 4.3: Qualitative comparison of proposed generator vs. SOTA on 2x super-
resolution
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Network Dataset PSNR SSIM

DBPN Set5 37.5171 0.9573
DBPN Set14 31.8955 0.9018
DBPN BSDS100 26.9452 0.8022
RCAN Set5 37.5335 0.9564
RCAN Set14 31.703 0.9027
RCAN BSDS100 26.897 0.8008
EDSR Set5 37.6979 0.9581
EDSR Set14 31.92 0.9021
EDSR BSDS100 26.9010 0.8016
VDSR Set5 36.9455 0.9550
VDSR Set14 31.5199 0.896
VDSR BSDS100 26.8497 0.7976

SRCNN Set5 35.2727 0.9422
SRCNN Set14 30.8975 0.8882
SRCNN BSDS100 27.0871 0.7973

FSRCNN Set5 35.2744 0.9417
FSRCNN Set14 30.7377 0.8858
FSRCNN BSDS100 27.0923 0.7952
ESPCN Set5 35.7220 0.9452
ESPCN Set14 30.9505 0.8899
ESPCN BSDS100 27.0318 0.7959

Proposed16 Set5 36.5512 0.9528
Proposed16 Set14 31.3425 0.8943
Proposed16 BSDS100 27.0567 0.8010
Proposed64 Set5 37.7546 0.9528
Proposed64 Set14 32.0108 0.903
Proposed64 BSDS100 27.2792 0.8113

Table 4.1: Comparison of proposed generator vs. SOTA on 2x super-resolution
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Figure 4.4: Qualitative comparison of Render vs Natural trained network on 2x super-
resolution
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This research demonstrates results on par with state-of-the-art. The primary research

question, to find a suitable network architecture that is very shallow but doesn’t sac-

rifice on performance has been presented in this work. The hypothesis formed at the

beginning of this thesis has been proved with several experiments. Based on these

experiments, few arguments have been formed, which have been validated by the final

performance of the network. Despite proposing a novel adversarial network, it is worth

to be noted that training a GAN is extremely difficult. Thus, even though the results

are promising, it requires further work to find optimum values for the parameters in

the loss function to train the adversarial network even better.

Since the proposed generator network has been demonstrated in two variants. The

baseline being a very shallow network is suitable for applications like real-time render-

ing, where it can be used in modern game engines by integrating into the render pipeline

directly. Since Microsoft has recently released DirectML, which allows integrating deep

learning network directly into the DirectX 12 rendering pipeline, an implementation of

this network into a rendering engine will be a promising start.
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5.2 Future Work

Even though single image super-resolution is a research area that has been extensively

explored for decades, there are still a lot of possibilities that can be explored to advance

the field of real-time image super-resolution. Some of the possible future scope are listed

below.

To improve real-time performance, shallow networks are a good solution. Another

possible solution would be to train a full-sized network to achieve maximum quality

possible. Once this network is trained, the weights can be pruned to improve the

inference time.

Another interesting avenue where deep learning-based super-resolution has recently

been introduced is Omnidirectional Images [95]. Since virtual reality is a popular area

of research, real-time performance in virtual reality is something that still needs to be

explored.

The experiments conducted with the adversarial network are still limited in nature.

To be absolute about the networks perfomance intensive testing would be needed. In

particular, testing with higher upscale factors would be a good point to start as only

2x results are tested.
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Combining local and global optic flow methods,” International Journal of

Computer Vision, vol. 61, no. 3, pp. 211–231, Feb 2005. [Online]. Available:

https://doi.org/10.1023/B:VISI.0000045324.43199.43

[69] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Two deterministic

half-quadratic regularization algorithms for computed imaging,” in Proceedings of

1st International Conference on Image Processing, vol. 2, Nov 1994, pp. 168–172

vol.2.

[70] M. S. M. Sajjadi, B. Schlkopf, and M. Hirsch, “Enhancenet: Single image super-

resolution through automated texture synthesis,” in 2017 IEEE International

Conference on Computer Vision (ICCV), Oct 2017, pp. 4501–4510.

[71] X. Wang, K. Yu, C. Dong, and C. Change Loy, “Recovering realistic texture in im-

age super-resolution by deep spatial feature transform,” in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2018.

[72] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” in International Conference on Learning Representa-

tions, 2015.

[73] Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin, “Unsupervised im-

age super-resolution using cycle-in-cycle generative adversarial networks,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), June 2018, pp. 814–81 409.

[74] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least squares

generative adversarial networks,” in 2017 IEEE International Conference on Com-

puter Vision (ICCV), Oct 2017, pp. 2813–2821.

[75] A. Bulat, J. Yang, and G. Tzimiropoulos, “To learn image super-resolution, use

a gan to learn how to do image degradation first,” in Computer Vision – ECCV

64

https://doi.org/10.1023/B:VISI.0000045324.43199.43


2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer

International Publishing, 2018, pp. 187–202.

[76] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization

for generative adversarial networks,” in International Conference on Learning

Representations, 2018. [Online]. Available: https://openreview.net/forum?id=

B1QRgziT-

[77] S.-J. Park, H. Son, S. Cho, K.-S. Hong, and S. Lee, “Srfeat: Single image super-

resolution with feature discrimination,” in The European Conference on Computer

Vision (ECCV), September 2018.

[78] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented

natural images and its application to evaluating segmentation algorithms and mea-

suring ecological statistics,” in Proceedings Eighth IEEE International Conference

on Computer Vision. ICCV 2001, vol. 2, July 2001, pp. 416–423 vol.2.

[79] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierar-

chical image segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 5, pp. 898–916, May 2011.

[80] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-

representations,” in Curves and Surfaces, J.-D. Boissonnat, P. Chenin, A. Cohen,

C. Gout, T. Lyche, M.-L. Mazure, and L. Schumaker, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 711–730.

[81] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-

resolution: Dataset and study,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), July 2017, pp. 1122–1131.

[82] J. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2015, pp. 5197–5206.

[83] A. Fujimoto, T. Ogawa, K. Yamamoto, Y. Matsui, T. Yamasaki, and K. Aizawa,

“Manga109 dataset and creation of metadata,” in Proceedings of the 1st

International Workshop on coMics ANalysis, Processing and Understanding, ser.

65

https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-


MANPU ’16. New York, NY, USA: ACM, 2016, pp. 2:1–2:5. [Online]. Available:

http://doi.acm.org/10.1145/3011549.3011551

[84] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable

effectiveness of deep features as a perceptual metric,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018.

[85] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE Transactions on

Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[86] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so diffi-

cult?” in 2002 IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. 4, May 2002, pp. IV–3313–IV–3316.

[87] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of recent

full reference image quality assessment algorithms,” IEEE Transactions on Image

Processing, vol. 15, no. 11, pp. 3440–3451, Nov 2006.

[88] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look

at signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp.

98–117, Jan 2009.

[89] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th Inter-

national Conference on Pattern Recognition, Aug 2010, pp. 2366–2369.

[90] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks

for image super-resolution with sparse prior,” in Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), ser. ICCV ’15.

Washington, DC, USA: IEEE Computer Society, 2015, pp. 370–378. [Online].

Available: http://dx.doi.org/10.1109/ICCV.2015.50

[91] Jianchao Yang, J. Wright, T. Huang, and Yi Ma, “Image super-resolution as sparse

representation of raw image patches,” in 2008 IEEE Conference on Computer

Vision and Pattern Recognition, June 2008, pp. 1–8.

66

http://doi.acm.org/10.1145/3011549.3011551
http://dx.doi.org/10.1109/ICCV.2015.50
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