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Abstract

The advent of deep learning has resulted in extremely powerful classification models which
have led to significant progress in many domains of computer vision such as object recognition
and image classification. However, most existing classifiers assume the underlying training
dataset to be evenly distributed. In real-life datasets, it is often observed that some of the
classes have far less quantity of data samples than the others. An example of this could
be a dataset for animal detection collected from a wildlife sanctuary where very few animals
belonging to ‘endangered species’ class were present. Due to the underrepresentation of
the minority classes, the data samples belonging to them often pass as noise or outliers, or
are ignored, ultimately resulting in their misclassification. More often than not, the correct
detection of minority class instances is of the utmost importance. Therefore, we study the
detrimental effects of class imbalance on the classification performance of the Hybrid CNN-
SVM architecture, and aim to introduce measures to overcome this issue. We artificially
introduce class imbalance in two benchmark datasets, FMNIST and CIFAR-10, and observe
that the classification Accuracy and F1-Score both drop by an average of 7%, when compared
to the performance on the original dataset. To combat this problem, we use data augmentation
strategies to re-balance the datasets. We first explore the traditional data augmentation
practices of applying geometric and photo-metric transformations on the existing images of
minority classes, such as image rotation, scaling, zooming, blurring, whitening, shearing, etc.
Then, we propose the use of a modified architecture of Generative Adversarial Networks
(GAN), called Wasserstein GAN with Gradient Penalty (WGAN-GP) to generate new data
samples. Since their introduction in 2014, GANs have shown immense potential in mimicking
data distribution and generating realistic images using low amounts of training data. Training
the classifier on the datasets augmented using WGAN-GP, we observe an average increase
of 4% in the classification Accuracy and F1-Score for FMNIST dataset, and this is even
more for the more complex CIFAR-10 dataset, where a 6.2% improvement is achieved. This
is significantly better than the improvement achieved using the baseline method of dataset
augmentation using image transformations, and it has proven to be a more promising solution
for real-world datasets which are becoming increasingly complex and diverse.
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1 Introduction

1.1 Overview

In recent times, classification algorithms have significantly advanced with deep learning, and
have achieved near-perfect results in the fields of computer vision, natural language
processing, medical sciences, cyber security, etc. However, the performance of supervised
deep learning based classifiers is hugely dependent on not only the quantity but also the
quality of the data samples available to learn from.

While the data pre-processing steps for machine learning and classification algorithms mostly
take care of the sufficiency of the total amount of data available, noise in the dataset,
missing values and lack of standardization, one factor that is often overlooked is the skew in
data distribution, or class imbalance. This situation where some classes of the datasets have
significantly higher number of data instances than other classes handicaps the classification
algorithm’s ability to correctly classify a minority class data sample, since it becomes biased
towards the majority classes during the learning process.

Imbalance in real-world datasets is prevalent as the occurrence of exceptional events is rare,
for example, natural disasters such as Tsunami. With internet-of-things permeating our
everyday life through smart and connected objects (phones, electronic devices, etc.) and the
emergence of highly-connected smart cities, the sources of data collection have become
highly dispersed and heterogeneous in nature, giving rise to complex unevenness in data
sample distribution. For example, a weather forecasting application could be collecting data
from not only physical sensors but also incorporating sentiment analysis of social media
posts [1].Since such applications often operate in real-time, it is hard to determine if some of
the sensors would fail at a given time and hence introduce a skew in the expected data
distribution. Another example in this domain could be the advance prediction of traffic
congestion using a dataset containing images captured by traffic cameras in a city where
such situations are rare [2].Data loss and corruption due to human errors or technical
glitches can also contribute to this problem.

Learning from imbalanced data is an important problem for the research community as well
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as industrial practitioners [3].and has found many uses in information retrieval systems,
fraud detection, detection of oil spills in radar images, telecommunications, bioinformatics,
medical diagnosis, detection of rare particles in high-energy physics, etc. [4], [5], [6], [7], [8],
[9]. Therefore, in this research, we 1 have studied the effects of class imbalance on the
performance of a hybrid CNN (Convolutional Neural Network) and SVM (Support Vector
Machine) classifier on two multi-class datasets of varying complexity, FMNIST [10] and
CIFAR-10 [11] by artificially introducing imbalance in them. Further, data augmentation has
been explored as a measure to combat the detrimental effects of this imbalance. We first
experiment with creating new data samples for the minority classes by applying various
geometric and photo-metric transforms such as image rotation, flipping, zooming, blurring,
shearing, whitening, etc. Then, we introduce a variation of Generative Adversarial Networks
(GANs) [12] as an image-generation tool, to expand the data quantity of the imbalanced
classes.

GANs have recently achieved remarkable success in many areas of computer vision, and are
essentially composed of two competing neural networks, called the generator and the
discriminator. The generator learns the feature space of a dataset and uses it to generate
new images which are similar to the real ones in the existing data. The discriminator, on the
other hand, acts as a classifier which can distinguish a real image from an artificially
generated image. When operating in tandem, these help augment the dataset with new,
realistic-looking images. Since the original GAN architecture (also called “Vanilla GAN”) has
certain drawbacks in terms of training efficiency and convergence, we have explored a
developed version called Wasserstein GAN with Gradient Penalty (WGAN-GP) to achieve
better results.

The aim of this research is to establish that an imbalanced multi-class dataset deteriorates
the performance of supervised classification, and that it can be overcome by using data
augmentation methods. Further, we aim to compare the efficiency of the benchmark image
data augmentation strategy of geometric and photo-metric transformations with our method
of using WGAN-GP. The implementation has been done using Python 3 language [13] and
Keras library [14].

1.2 Motivation

The detrimental effect of imbalanced classes in datasets on the performance of a classifier
can often go unnoticed, leading to not only misclassifications, but in some cases also to a
false sense of success. One such example could be a dataset containing information

1Since this research has been carried out in collaboration with my supervisor, Professor Rozenn Dahyot,
the pronoun “we” has been used wherever applicable.
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regarding 100 patients of a hospital, out of which 99 are healthy and only one has cancer. A
classifier trained on this dataset may label the patient suffering from cancer as healthy, and
still achieve an accuracy of 99 %. If we extrapolate this scenario to a dataset containing a
total of 1 million samples, it may possibly lead to 10,000 cancer-affected patients being
labelled as cancer-free, which highlights the gravity of the situation. Such classifiers are
useless to us, as the minority cases are often the most important to identify. Even though
the accuracy illusion mentioned above can be corrected using other metrics to evaluate
classifier performance, the fact is that minority class instances still remain likely to be
wrongly classified.

I first noticed this problem of skewed data distributions in open-source datasets made
available by the governmental departments of developing smart cities, while working with
the Noise Pollution Dataset gathered and monitored by Dublin City Council. This prompted
me to delve deeper into this area of research, and I noticed the significance of image
classification in smart city applications such as road sign detection for self-driving cars, face
detection of wanted criminals using city cameras, etc. Therefore, I have directed my
research towards the study of effects of class imbalance on image datasets. The recent
success of Generative Adversarial Networks in various domains such as improving image
resolution, face synthesis, etc. motivated me to leverage their superior image generation
capabilities from limited available training data to create new data samples for classes which
are in minority in a dataset, to achieve a balanced distribution and ultimately improve the
performance of image classifiers.

1.3 Dissertation Structure

This dissertation is organized into six chapters, starting with the Introduction as Chapter 1,
which introduces the research question, the significance of the problem addressed and the
motivations for exploring this area of research. It is followed by the Background Research in
Chapter 2 which explores the underlying concepts used throughout this study, as well as a
comprehensive literature review of the state of the art. The document then progresses into
the Design approach adopted for the study in Chapter 3, outlining the various trade-offs and
factors considered while making the design decisions. These concepts from the design are
then actualized in Chapter 4 which provides specific Implementation details, as well as the
Experiments that have been conducted in order to validate our hypotheses. The results
obtained are then analysed and discussed in Chapter 5, and the insights obtained are then
interpreted into an answer for the research question posed. The final chapter concludes all
our findings and highlights some of the limitations of the research, with suggestions for
improvement and future work to extend this study.
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2 Background Research

This chapter details the underlying concepts and techniques used in this study. It also
presents a thorough review of the state of the art, based on which further research has been
done. The first section talks about image classification and the various architectures
employed for it, followed by a section on the study of dataset imbalance and methods to
overcome its effects. Lastly, we describe the structure of GANs and their evolution into
WGAN-GP, which is used as a data augmentation tool.

2.1 Image Classification

Image classification is a complex task, which consists of a pipeline of sub-tasks such as
image pre-processing, object detection and segmentation, feature extraction and assigning
labels to objects, i.e., their classification. Classification tasks can be either ‘Supervised’ or
‘Unsupervised’ in nature. In the former methodology, the possible set of classes is known
prior to the training process and labelled training data is used, whereas in the latter, the
classes are not known in advance.

In general, the usual method of classifying objects can be observed in Figure 2.1. The first
module is a feature extractor which transforms the input raw images into feature vectors.
These feature vectors and class categories extracted from a dataset are fed into a classifier
to train it for predicting the class labels or scores of any input image.

Figure 2.1: General Image Classification Workflow [15]
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In this section, we shall discuss some popular classification architectures, which we will use
in our research.

2.1.1 Support Vector Machine

Support vector machines (SVMs) are supervised learning models which construct a set of
hyperplanes or decision boundaries in an N-dimensional space (N being the number of
features), with the objective of converting a non-linear separable problem into a linear
separable problem by finding the hyperplane that distinctly classifies the data points. Such a
hyperplane has the maximum distance between data points of both classes. The data points
closest to a hyperplane are called “support vectors”, and influence the orientation as well as
the position of the hyperplane [16].

As can be observed in Figure 2.2 .Maximizing this margin provides reinforcement, to enable
the future data points to be classified with more confidence, and reducing the empirical risk
of misclassifications [17]

(a) Set of possible Hyperplanes (b) The Optimal Hyperplane

Figure 2.2: Selecting the Optimal Hyperplane in a 2D Feature Space [16]

SVMs use a kernel function to project the input training data to a feature space of higher
dimension, resulting in a linearly separable dataset. Often in high-dimension feature spaces,
overfitting is observed in classification tasks, however, in SVMs, it is controlled through
structural risk minimization [18].

By design, SVMs are binary classifiers. They can be extended to work with multiple classes,
and are called Multiclass Support Vector Machines [19]. This can be achieved by either
combining several binary classifiers, or by directly considering all of the data in one
optimization formulation.

5



2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs)1 are the most popular deep-learning architectures,
which have a powerful ablility of feature extraction and thus find their use in diverse fields,
including image recognition and classification.

In general, a CNN architecture is composed of four types of layers [21] which can also be
observed in Figure 2.3.

Figure 2.3: Structure of a Sample CNN [21]

Convolutional Layer

Convolutional Layers of a CNN serve as feature extractors in the architecture. They are
composed of multiple convolution kernels2, whose parameters need to be learned in the
training process. Each filter gets convoluted with the input, to compute an activation map
which is comprised of neurons. Each neuron in the activation map is only connected to a
small local region of the input, which allows the network to learn locally optimized filters
which can leverage the local spacial correlation between pixels and extract more relevant
features.

1Convolutional Neural Networks have emerged from Feed-Forward Neural Networks or Multi-Layer Per-
ceptrons. They typically consist of an input layer and an output layer, along with a variable number of hidden
layers. They make use of activation functions in the hidden layers, and the back-propagation algorithm for
computing the gradient values and updating the weights and biases in the network. For more details, refer to
Chapter II of the Deep Learning handbook [20].

2In image processing, convolution is the operation of adding each element (pixel) to its local neighbours,
weighted by a kernel (matrix).

6



Pooling Layer

This layer usually connects the previous convolutional layer, and is constructed with the aim
of reducing the resolutions of feature maps to aggregate the input features. Some of the
most commonly used pooling operations are max pooling and average pooling.

Fully Connected Layer

This layer is generally placed between pooling layer and logistic regression layer with the aim
of sending the learned distributed feature representation to one space so that high-level
reasoning can be performed. All neurons of a layer are connected to every single neuron of
the next layer.

Logistic Regression Layer

It is the last layer of a CNN and is widely used in multi-class classification architectures. The
softmax function is usually employed as the activation function of this layer, which predicts
the probability of a given sample belonging to a class, taking into account the sampled data
and the learned weights in the model.

In the testing phase, each data sample is assigned a probability value for each class, and it is
ultimately classified into the class which it had the highest probability for.

2.2 The Class Imbalance Problem

Supervised classification algorithms work with labelled training datasets to predict which
class a given (unseen) sample may belong to. In real-life applications, it is often the case
that in the training dataset, some classes have significantly higher number of data samples
than others. This has been observed in many domains, ranging from computer vision [22],
medical diagnosis [23], fraud detection [24], computer and networks security [25],etc.
Broadly, the two forms in which imbalance can be observed in datasets are [26]:

• Intrinsic Imbalance, which is due to the natural frequency of occurrence of data , and

• Extrinsic Imbalance, which is introduced through external factors such as data
collection and storage methods

A consequence of dataset imbalance problem is that standard classification learning
algorithms are often biased towards the majority class(es) and the data samples belonging to
minority class(es) get easily misclassified . As there is a genuine lack of data due to the
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infrequency of occurrence of some events, for example, in detecting nuclear leaks, it is
crucial to be able to learn from extremely underrepresented classes as they represent the
most important concepts. In most cases, binary classification problems arise with imbalanced
datasets, however, multi-class problem occurrences are also not rare, and are also more
difficult to solve due to the presence of several minority classes [27, 28].

It has been proven that class imbalance has a significant detrimental effect on the training of
classifiers on traditional machine learning classifiers [29], multi-layer perceptrons (MLPs)
[30], as well as deep-learning based classifiers [31]. There are several possible reasons for a
well-performing classification algorithm to not necessarily achieve the same performance for
an imbalanced dataset [32]:

• Standard performance measures such as accuracy are used for guiding the learning
process. However, accuracy is not a proper measure in case of imbalanced datasets as
it does not distinguish between the number of correctly classified data instances for
the different classes

• When the minority class samples are very small in number, they may be incorrectly
identified as noise and subsequently be discarded by the classifier. However, we also
need to consider the fact that the presence of few real noisy data points may also
cause a degradation in minority class identification as the number of training samples
available for such classes are very low

• The classification rules to predict a minority class are highly specialized, and may be
discarded in favour of the generic rules, or the rules which are used to predict the
majority class samples

Deep Learning models in specific use gradient descent optimization to adjust the weight
parameters of the network to minimize the loss function, or the error between expected and
actual output. It has been shown that in imbalanced datasets, the majority class dominates
the net gradient which is responsible for updating the model’s weights [33] which increases
the error for the minority class, causing the network to get stuck in a slow convergence
mode.

2.2.1 Measure of Dataset Imbalance

A common method to represent the imbalance in a dataset is through the maximum
between-class-imbalance level, which can be expressed as a ratio, ρ , between the maximum
and minimum class size, over all i classes. If Ci is the number of samples in class i,
then:
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ρ =
max{|Ci|}
min{|Ci|}

(1)

As an example, consider a dataset containing 1 million samples, of which only 1% represent
the minority class. In this case, ρ=100, which is very high. However, when we look at the
actual number of samples, we can observe that we have 10,000 samples from the minority
class, which still may be enough to train a classifier. Therefore, the total number of minority
samples available is of more significance than the percentage of minority.

2.2.2 Methods of Handling Class Imbalance

n order to remove the bias towards the majority classes in a dataset, there are various
modifications that can be made on the data as well as on the classification algorithms.
These methods can be of two types [34], as detailed below:

Data Level Methods

In this approach, the class distribution in the training dataset is changed in order to decrease
the imbalance and reduce noise (such as mislabelled samples), so that standard classification
algorithms can perform well on them.

Data Level Methods involve resampling of the data, until all classes in the data are equally
represented. In general, they are of two types (Figure 2.4):

Figure 2.4: Data Level Class Balancing Methods: Undersampling and Oversampling [35]

A. Random Oversampling (ROS) :
It is one of the most commonly used methods in deep learning [36, 37, 38]. It simply
involves the random replication of the minority samples to achieve a balance.
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Although over-sampling leads to increased training time due to increase in training dataset,
and may cause over-fitting3 in some cases [3], it is a widely suggested method with deep
learning [31, 39, 40] , especially for multi-class image data, where over-sampling to the level
of class data works best [31, 41],Further, it has also been shown that oversampling does not
cause the over-fitting of convolutional neural networks, as compared to some classical
machine learning models [31].

B. Random Under Sampling (RUS) :
This approach involves randomly discarding samples from the majority classes until each
class has similar number of samples.

An obvious disadvantage of this method is that it results in reduction of the total amount of
information that a model has to learn from.

However, in some situations, especially in big data applications, it may be preferable to have
a smaller dataset to reduce training time, and when done in an informed fashion, can be a
preferable approach [42].

Algorithm Level Methods

Algorithmic methods for reducing the effect of imbalance in datasets do not alter the
training distribution. Instead, adjustments are made to the learning process in a manner that
increases the importance of the minority class. This is done by introducing penalties, shifting
the decision threshold to reduce the bias towards the majority classes or assigning costs and
weights in a manner that is favourable to the under-represented class.

However, making such modifications to classification algorithms requires extensive domain
knowledge and problem-specific expertise to determine empirical factors, or can be
alternatively achieved via trial and error. Such an approach may be expensive, and even
impractical in some cases, and cannot be generalized to a variety of scenarios.

2.2.3 Data Augmentation using Image Transformations

Data Augmentation is the process of generating samples by applying random
transformations on the existing training data to improve the performance of classification
models [43]. Small affine transformations of data can preserve the labels of an image [44]
and improve the generalization error.

3Overfitting is the case where the model fits too closely to the training data and as a result is unable to
generalize to new data.
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Some of the most common geometric image transformation strategies are rotation,
translation, flipping, scaling, shearing, etc., and can be observed in Figure 2.5. These
transformations are applied on every pixel (x,y) of an image to obtain new pixels (x’, y’). As
an example, x’=x+2 and y’=y-3 would shift the image left by 2 pixels and down by 3 pixels,
whereas x’= -y and y’=x would rotate the image clockwise by a 90 degree angle.

Figure 2.5: Original Image (Left) and Transformed Images (Right) [45]

On the other hand, photo-metric transformations like blurring, whitening, etc. are applied by
changing the intensity and colour values of each pixel, which can be achieved by the use of
various filters and convolution operations. The details of the methods used by us will be
presented in Chapters 3 and 4.

Even though these methods are the most intuitive and universally used, data augmentation
may involve many manual choices, which if made incorrectly, may result in uninformative
samples or detrimental effects on classification. While repetitiveness of data may result in
over-fitting of the classification model, it is also possible to produce incorrectly labelled data,
as illustrated in Figure 2.6.
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(a) Original Image (b) Flipped Image

Figure 2.6: Flipping Image (a) having class label “nine” from the MNIST dataset [46] would
result in (b), which should actually be labelled as class “six”, but in this case would be
incorrectly categorized as “nine”, causing confusion for the model

2.3 Generative Adversarial Networks

The Generative Adversarial Network (GANs) framework was first introduced for artificially
generating realistic images from scratch [12]. Since then, GANs have been employed for a
variety of image processing and computer vision tasks, such as generating high resolution
images from low resolution input images [47], texture synthesis in images [48], human face
synthesis, etc [49].

This generative capacity of GANs make them suitable for the purpose of data augmentation,
and many recent studies have shown to tackle the problem of imbalanced datasets in
classification by using variations of the GAN architecture.

This section introduces the architecture of Generative Adversarial Nets as a tool for training
data augmentation, and some proposed modifications to enhance their performance.

2.3.1 Vanilla GAN

The original architecture introduced by Ian Goodfellow et al [12] has been dubbed as
"Vanilla GAN". In this section we would be referring to it simply as “GAN”..

A GAN (Figure 2.7) consists of two sub-networks, which are competing Artificial Neural
Networks (ANNs), namely the ‘Generator’ (G ) and the ‘Discriminator’ (D). The Generator
learns the distribution of input data or from a sample noise distribution and generates new
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Figure 2.7: The Conceptual Model of Generative Adversarial Network [50]

data which is as realistic as possible. At the same time, the Discriminator, which is
essentially a binary classifier, is trained to distinguish between the real data points and
artificially generated data points (by the generator). Note that the GAN’s end goal is to
generate the relevant image, given a label.

A GAN is often defined as a two-player minimax game [12] in which G wants to minimize
the value function4 V, and D aims to maximize it. The next section details the value
function for Vanilla GAN.

Value Function for Vanilla GAN

To explain the value function of the Vanilla GAN, certain terms need to be defined:

• z : Noise vector

• x : Training Sample (or xreal)

• G(z):The output of the Generator G, or xfake

• D(x): Discriminator’s output for xreal. It takes the value of a probability function in
the range P(y|xreal)→ {0,1}

• D(G(z)): Discriminator’s output for xfake. It takes the value of a probability function
in the range P(y|xfake)→ {0,1}

4The terms "value function", "loss function", "cost function" and "objective function" have been used
interchangeably in this study
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The discriminator model should be such that it maximizes the score for real data (D(x))
and minimizes that of fake data D(G(z)). Therefore, at D:

Dlossreal = log(D(x)) (2)

The Equation (2) is a part of the overall loss function which when maximized, optimizes the
discriminator to recognize real images better.

On the other hand, minimizing the value in Equation (3) below optimizes the discriminator
to recognize the generated images better.

Dlossfake = log(1-D(G(z))) (3)

Now,
Dloss = Dlossreal + Dlossfake (4)

Therefore, using Equations (2), (3) and (4), the total value function for discriminator can be
defined as Equation (5).

Dloss =
1

m

∑
i=1

m log(D(x i)) + log(1− D(G (z i))) (5)

Similarly, the generator model should maximize the score assigned to the fake
data(D(G(z))). Therefore, at G :

Gloss = log(1− D(G (z))) = − log(D(G (z))) (6)

Using Equation (6), the total value function for G can be defined as:

Gloss =
1

m

∑
i=1

m log(1− D(G (z i))) (7)

Combining (5) and (7) we get the GAN value function (Equation (8)):

minGmaxDV(D,G) = E x∈ pdata(x)[logD(x)] + E z∈ pz(z)[log(1− D(G (z)] (8)

In Equation (8), the sum of the two expectations or mean values essentially represents the
Jensen-Shannon Divergence5 between the real data and the fake data generated.

5Jensen-Shannon Divergence is a measure of similarity between two probability distributions, bounded by
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GAN Training Process

The training process of a GAN can be viewed as a double feedback-loop [51] where the
discriminator is in a feedback loop with the real images and the generator uses the feedback
from the discriminator to learn how to produce images that are realistic enough to fool the
discriminator. The feedback process is repeated throughout the training phase, until Nash
Equilibrium is achieved6. This process is called Adversarial Training.

Figure 2.8: Discriminator Training Process [50]

[0,1]. More details can be found at: https://en.wikipedia.org/wiki/JensenShannon_divergence
6In Game Theory, when multiple interacting, non-cooperating participants are involved, Nash Equilibrium

is the state of stability achieved when no participant can benefit solely from changing its own strategy or
actions if the other players’ strategies remain constant.
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Figure 2.9: Generator Training Process [50]

The objective functions are learned jointly by alternating gradient descent. When G’s model
parameters are fixed and the first iteration is done, the D is trained by maximizing the
Jensen-Shannon Divergence to distinguish between real and fake data (Figure 2.8). In the
next iteration, the weights of D are fixed and G is trained by minimizing the Jensen-Shannon
Divergence to make the generated data as realistic as possible (Figure 2.9).This is why the
training of a GAN is defined as a ‘minmax’ game, and optimization can be done through any
algorithm such as gradient descent, until a pre-defined number of epochs, or for as long as
desired. The number of training epochs are generally decided based on whether the quality
of generated images is as expected.

Limitations of Vanilla GAN

Although Vanilla GANs have achieved state of the art results in many domains, they suffer
from certain drawbacks which have been outlined in this section:

• Nash Equilibrium is Hard to Achieve: The training process of GAN is based on
gradient descent. The two models, generator and discriminator, are simultaneously
trained to find a Nash Equilibrium. However, since both models update their loss
functions concurrently and independently, there is no guarantee of convergence [52]

• Vanishing Gradient Problem: Training a GAN loss function poses a dilemma. If
the discriminator is trained perfectly (especially early on in the training process), then
D(xreal)=1 and D(xreal)=0. From Equation (8) it can be observed that in this case,
the value of the loss function would become 0, and there would be no gradient left to
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update during the training iterations, hence leading to the vanishing gradient problem.
However, if the discriminator function is not trained to perfection then the generator
would not receive relevant feedback, meaning that the learned loss function would not
be good enough to generate realistic images

• Mode Collapse: This is a common failure observed in GANs where the generator
achieves a state where it always produces the same images as outputs. This may in
some cases be enough to fool the discriminator, but the low variety of images
generated is not representative of the complexities observed in real-world data
distribution [53]

• Lack of Proper Evaluation Metrics: There is no numerical value to signify
training progress. Therefore, the only way to tell when to stop the training process is
by inspecting the samples being generated, which is a highly subjective method

As a result of these issues, many extensions and alternatives of the GAN model have been
proposed, like Deep Convolutional GAN [54], Conditional GAN [55], Least Square GAN [56],
etc., but most of these use a more or less similar objective function as the original GAN, and
despite improvement in performance, still suffer from some of the same drawbacks.

Therefore, in the next sections, we have discussed the GAN variations which employ
significantly different objective functions the one used in Vanilla GAN.

2.3.2 Wasserstein GAN (WGAN)

The WGAN architecture [57] replaced the Jensen-Shannon divergence from the original GAN
architecture [12] with the Wasserstein Distance function7 [58] W(P,Q), which is a measure
of distance between the points in probability distributions P and Q.

Using Wasserstein distance and following the same naming conventions as in Section 2.3.1,
the value function for WGAN can be represented as Equation (9).

minGmaxD ∈ δ(V ,D) = E x ∈ preal[D(x)]− E z ∈ pz(z)[D(G (z))] (9)

In Equation (9), δ denotes the set of 1-Lipschitz functions8, meaning that the discriminator
loss should follow the Lipschitz constraint.

7Wasserstein Distance is also called the "Earth Mover Distance", as it can be informally interpreted as the
minimal cost of moving and transforming some quantity of mass (say, a pile of dirt) from the shape of one
probability distribution P to that of another probability distribution Q. The cost of moving in this scenario is
calculated as the product of the amount of mass moved and the distance by which it has been moved.

8A Lipschitz function is a function f such that |f(x)-f(y)| ≤ K|x-y| for all x and y, where K is a constant
independent of x and y.
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The training process of WGAN is similar to that of Vanilla GAN, except that the
discriminator is no longer directly learns to tell fake samples from real ones. Instead, it is
trained to learn the K-Lipschitz continuity function to help in computing the Wasserstein
distance. Since the discriminator in this architecture is trained for regression rather than
classification, the sigmoid activation function is also removed, and the log function is no
longer adopted in the loss function. During the training process as the value of loss function
decreases, the Wasserstein distance also gets smaller, bringing the distribution closer and
closer to that of the real data. However, since it is vital and tricky to maintain the
continuity of this function, weight-clipping is introduced. After every gradient update on the
discriminator loss function, the weights in each layer are clamped to the range of [-c,
c].

WGAN Advantages over Vanilla GAN

WGAN overcomes the limitations of WGAN as follows:

• Since in this architecture, the discriminator is trained to minimize the Wasserstein
distance metric instead of acting as a direct classifier between real and fake images,
achieving convergence is much simpler than in Vanilla GAN

• The Wasserstein distance function is continuous, which makes the overall training
process much more stable (as compared to Jensen-Shannon divergence used in Vanilla
GAN, which is discrete in nature)

• The value function of WGAN would also reflect the quality of the generated sample.
Lower values of loss (Wasserstein distance) would result in higher quality images, thus
providing a quantifiable metric to measure the training progress

• The issues of vanishing gradient as well as mode collapse are resolved, thus ensuring
diversity of training samples

Limitations of WGAN

Although the WGAN architecture addresses most problems, it introduces some of its own
due to the use of weight-clipping to satisfy the Lipschitz constraint. Some of them are
[59]:

• Vanishing and Exploding Gradients: When the clipping window is too small, it
would constrict the weights of each layer in the discriminator to a very small range,
which may lead the Gradient to either grow or decay exponentially, leading to
vanishing gradient or exploding gradient problems
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• Slow Convergence: When the clipping window is too large, it would lead to a very
slow decrease in the Wasserstein distance, hence leading to slow convergence

• Not suitable for Very Complex Data: Weight clipping causes the discriminator to
be biased towards simpler functions, i.e., to model very simple approximations to the
value function. This is an underuse of the capacity of WGAN and may not be enough
to fit complex data samples

To improve this architecture, weight-clipping is replaced in [59]. This is detailed in the next
section.

2.3.3 Wasserstein GAN with Gradient Penalty (WGAN-GP)

In [59], imposing a Gradient Penalty instead of weight clipping as a means to enforce
Lipschitz constraint is presented. The value function for WGAN-GP can be observed in
Equation (10). Here, L represents the loss function, x’ represents a sample from fake or
generated data, and represents randomly sampled data. Note that a "soft penalty" is
imposed (i.e. only on the randomly sampled data) to prevent tractability issues. The last
term in the equation is the penalty term, with λ being the penalty coefficient.

L = E x ∈ Preal[D(x)]− E x’ ∈ Pfake[D(x ′)]− λ Ex̂ ∈ Px̂
[(‖∇x̂ D(x̂)‖2 − 1)2](10)

Generally, for a 1-Lipschitz function, the maximum gradient norm should be 1. Therefore,
instead of applying weight-clipping, WGAN-GP loss function imposes a penalty if the
gradient norm moves away from its maximum target norm value of 1.

Advantages of WGAN-GP

WGAN-GP overcomes the limitations of WGAN and presents a much more efficient
architecture. Some key advantages over both Vanilla GAN and WGAN are listed below
[60]:

• Fast Convergence: Since the penalty term in the loss function forces all gradient
norms to go towards 1 when the discriminator is optimized, a unit gradient norm is
observed in the real and fake data distributions. This makes the WGAN-GP converge
much faster

• Stable Training: The training and optimizing process of WGAN-GP is much more
stable even with untuned default parameters and not carefully designed architecture
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• Quality Output: The meaningful loss function of this architecture helps determine
when the training process should be stopped

• High Quality Output: WGAN-GP generates samples of much higher variety, with
the least noise as compared to the other two architectures, which has also been
verified by [61]

For the above mentioned reasons, WGAN-GP is a suitable model for a wider range of
applications and datasets.
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3 Design

This chapter introduces the high-level design of the various architectures used in this study,
including the classification architecture, geometric transformation architecture (for data
augmentation) and the WGAN-GP architecture, along with the relevant qualitative and
quantitative metrics used to evaluate their performance. We have also summarized the
overall workflow of this study to ensure the clarity of the related outlined experiments in
Chapter 4.

3.1 Oversampling using Geometric Transformations

Some of the most common geometric and photo-metric transformations1 applied on images
to generate additional data while preserving the context of the image are rotation,
translation, shearing, scaling, flipping, zooming, blurring, whitening etc. In order to apply
these operations on minority classes, we will use the ImageDataGenerator class of the image
pre-processing module of Keras [62].

ImageDataGenerator allows us to [63]:

• Generate batches of tensor image data with real-time augmentation, which is looped
over (in batches)

• Configure randomized data transformations and/or normalization operations, which
are done on the training data

• Create data generator instances for batches of augmented images (with labels)

A general workflow of data augmentation using ImageDataGenerator can be observed in
Figure 3.1 above. Using this type of data augmentation we can ensure that the network
would see new variations of the existing data at each and every epoch during training.

1For more details on the mathematics behind some of these 2D image transforms refer here:
https://www.tutorialspoint.com/computer_graphics/2d_transformation
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Figure 3.1: Data Augmentation Approach of ImageDataGenerator [64]

3.2 Architecture of WGAN-GP

As highlighted in Chapter 2, WGAN-GP is a superior GAN architecture which is known to
achieve convergence without facing the issues of vanishing or exploding gradients. The
training process is very stable for this architecture, and it has also proven to generate highly
diverse data samples with low noise. It can achieve high quality results with almost no
hyperparameter tuning, making it a suitable choice for a wide variety of applications and
datasets. Therefore, we have adopted the WGAN-GP architecture for our study.

The basic architecture, training process and the specific loss function of WGAN-GP have
been explained in Chapter 2. The training algorithm of WGAN-GP is detailed in Figure
3.2.

The general methods for GAN architecture construction and the choices made in our model
are described in this section. Some of these are based on [54] and [65]:

• Use of Leaky ReLU: The Rectified Linear Unit (ReLU)2 activation function is a

2ReLU is a linear activation function unlike others, making it easy to optimize. For more details on ReLU
refer here: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-
networks/
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Figure 3.2: Training Algorithm of WGAN-GP [59]

widely adopted, efficient activation function that returns the input directly as the
output, or returns 0 when the input is 0.0 or less. However, the best practice for GANs
is to use a variation called LeakyReLU, which allows some values lesser than 0, and
learns the optimum cut-off for each node. In our architecture, we have used LeakyRelu
in both the generator as well as discriminator, with slope values being of the order of
the default value, 0.2.

• Use of Batch Normalization: Batch normalization is a technique used to improve
the speed, performance and stability of neural networks by normalizing the input layer
by adjusting and scaling the activations 3. We employ batch normalization after the
convolution layers. In the case of GANs, it helps avoid vanishing and exploding
gradients, as well as mode collapse.

• Using Gaussian Weight Initialization: Before starting the training process, the
weights (parameters) of the neural network must be initialized with small random
variables to prevent the activation layer from producing vanishing or exploding
outputs, which would cause very small or very large gradient updates, giving rise to
convergence problems. It is considered to be a good practice to initialize all weights
using a zero-centred Gaussian distribution, with mean value as 0 and variance value as
1/N, where N specifies the number of input neurons. Therefore, we have used Xavier
initialization 4 in our architecture, which is based on the same principle.

3For more details on Batch Normalization, refer here: https://machinelearningmastery.com/how-to-
accelerate-learning-of-deep-neural-networks-with-batch-normalization/

4For more details on Xavier Initialization, refer here: https://prateekvjoshi.com/2016/03/29/understanding-
xavier-initialization-in-deep-neural-networks/
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• Not using Max Pooling: A max-pooling layer is often used in CNNs to after each
convolution layer to downsample the input and feature maps. However, we would not
be using this approach as in the case of Generative Adversarial Networks, it has been
shown that having all convolutional layers allows the network to learn its own spatial
down-sampling, which leads to an increase in performance.

3.2.1 Evaluation Metrics for WGAN-GP

The training process of WGAN-GP is much more stable than that of Vanilla GAN and can
achieve convergence, but practically achieving convergence for the model in all cases is not
possible [66]. Therefore, in image-related problems, one common way to determine when the
generated samples become satisfying and realistic is by visual inspection. Therefore, we will
adopt this strategy to determine the number of training epochs, and to identify which
generated samples we can add to our dataset.

The ’Real or Fake?’ Human Perception Test

For re-validating the fact that the images being generated are photo-realistic, an experiment
can be conducted for each imbalanced class.

Ten of the fake images generated using WGAN-GP for the class in question are randomly
mixed with ten images sampled for that class from the real dataset. Using their best
judgement, a human subject is made to mark each of the twenty images as "real" or "fake",
without knowing the ground truth. This subject should not be aware of the distribution of
real and fake samples in the dataset, so that the labeling is not influenced by unrelated
assumptions.

This experiment can be conducted on a larger scale by sampling a bigger proportion of both
datasets (real and fake), and by involving multiple human subjects. In this study, I myself
have acted as the subject for this experiment.

Qualitative Evaluation Metrics for WGAN-GP

Since our goal is to use the WGAN-GP model to generate additional minority class images in
order to augment an imbalanced dataset and balance it, we aim to fulfil the following
criterion for our generated images through visual inspection [67]:

a. Generated images should be similar to the other images of the class in question. If this
target is not met, it would mean that the generator is not trained enough to produce
quality, realistic images
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b. Generated images must not all be the same, or repetitive. This will ensure that the
generator does not suffer from mode collapse problem

c. Generated images should be different from the images which are already present in the
training set. If not, it would mean that we have simply trained our generative model to
repeat the training data

Quantitative Evaluation of WGAN-GP Results using SSIM

To evaluate the above mathematically, the Structural Image Similarity (SSIM) metric
[68] is used. SSIM measures the human perceptual difference between two similar images.
We assign a value of 1 to SSIM when the two images are identical and as the differences
between the two images become more observable, the value is decreased (never below
0).

To verify the diversity of generated images, a number of images are repeatedly generated for
each class, and their SSIM is calculated.

To assess if the generated samples are diverse as compared to the pre-existing training data,
the SSIM between generated images and the closest available sample is computed.

3.3 Architecture of Classification Model

In this research, we have used a modified version of Convolutional Neural Network, which is
a hybrid of CNN and SVM, as it has shown to perform better on object recognition tasks as
compared to using only CNN [69].

This hybrid architecture of CNN and SVM is expected to outperform the individual
architectures, as it incorporates the merits of both SVM and CNN architectures and reduces
their limitations. Some such merits are listed below [70]:

• The learning method of CNN is theoretically the same as that of MLP, where
Empirical Risk Minimization (minimizing errors in training set) is used. When
backpropagation is used and the first decision boundary or hyperplane is found, the
training process is stopped and no attempt is made to improve the solution, regardless
of whether the separating hyperplane found is at the local or global minima. This
reduces the generalization ability of MLP.

On the other hand, in SVMs, Structural Risk Minimization is used and a fixed training
distribution is considered. The separating hyperplane obtained in SVM is a global
optimum solution, reached when the maximum distance from support vectors on
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either side is achieved. Therefore, the generalization ability of SVMs is maximized,
hence enhancing the classification accuracy of the hybrid model.

• MLP tends to assign high confidence values to misclassified samples located near the
decision boundary, due to which such errors are not recognized later on.

However, the SVM calculates the estimated probability of each class on one test data,
providing more reliable label predictions. This also helps to develop a more efficient
mechanism for the rejection of wrong results.

• The CNN architecture is an automatic salient feature extractor. These features are
invariant to shift and shape distortions due to the shared weights on feature map. On
the other hand, SVMs would require a custom-designed feature extractor, which would
not be strong enough to take into account the connections between nearby pixels in an
image. Therefore, CNN is a far superior feature extractor than SVM.

• SVM suffers from O(n2) time complexity, which makes it unsuitable for large datasets
[71]. A common approach adopted to work on SVMs with bigger datasets is to sample
a portion of data from each class and train it on reduced number of samples. This
leads to inefficient or insufficient information extraction. However, in our architecture,
this would not pose a problem as the features are learned using the CNN, not SVM.

In this model, the trainable CNN architecture extracts features from the data, and the SVM
is used to recognize unknown patterns. A simple CNN structure from [72] is adopted as a
feature extractor and can be observed in Figure 3.3. The input layer is a normalized matrix
of size S1 X S1. The second and third feature map layers having N1 and N2 feature maps
respectively are trained to do feature extraction at different resolutions. Each neuron on a
feature map connects to 25 neurons in the previous layers, defined by 5 X 5 convolution
filters. The strength of this connection is defined by the weights in the kernel. All the
neurons in one feature map share the same kernel and connecting weights. The latter of the
architecture consists of fully-connected Multi-Layer Perceptron layer with N3 neurons in the
hidden layer and 10 neurons (for 10 classes) in the output layer.

Since a large number of weights need to be learned, therefore, a large training dataset is also
required. Therefore, this is an ideal architecture to study the effects of imbalance in dataset
and how classification accuracy increases when the total number of training samples increase
as an effect of balancing the dataset. The hybrid architecture of CNN and SVM (Figure 3.4)
is created by replacing the last output layer in Figure 3.3 with a multi-class SVM
classifier.
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Figure 3.3: CNN Model used in Classification Architecture [69]

Figure 3.4: Hybrid Architecture of CNN and SVM [69]

The last layer of CNN outputs estimated probabilities for a given input which are calculated
using an activation function which takes into account the learned weights and bias in the
training process. However, this result cannot be comprehended by other classifiers.
Therefore, the SVM uses this information as a feature vector in the hybrid architecture.

In the hybrid architecture, the original CNN (with the output layer) is trained on the input
dataset until convergence is achieved. Then, the output layer is replaced with the Radial
Bias Function (RBF) of SVM. The output from the CNN hidden layer is taken as a feature
vector for training the SVM. Once trained, this SVM is able to perform the classification
task on unseen data.

In particular, the CNN architecture adopted for FMNIST dataset (having 28 x 28 sized
images) is shown in Figure 3.5
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Figure 3.5: Architecture of the CNN model adopted for FMNIST (28 x28 x1 images)

The first convolutional kernel applied on the input images of 28x28x1 is of the order of 5x5.
The ReLU activation function is used with it. Then, a 2x2 kernel is used to perform Max
Pooling5 with a stride value of 2 (so that the pooled regions remain non-overlapping). The
second convolutional and pooling layers are similar to the first, but down-sampled, followed
by a dropout regularization of 0.25. The dropout layer It randomly omits subsets of neurons
(or features) at each iteration of the training procedure and helps overcome overfitting.

3.4 Performance Evaluation Metrics for Classification

To have a proper understanding of how a classification model is performing, it is important
to evaluate it on multiple metrics.

These metrics are usually inferred from a Confusion Matrix, which can be seen as a
summary of classification results (Predicted Numbers) on a set of testing data for which the
actual values (Actual Numbers) are also known.

Consider a multi-class classification problem on a dataset containing n classes. The
generalized format of the confusion matrix for the same can be observed in Table 3.1.

5Max-Pooling is a down-sampling technique to reduce the computational complexity and
cost, and also as a measure to avoid overfitting. For more information on Max Pooling:
https://computersciencewiki.org/index.php/Max-pooling/Pooling
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Table 3.1: Confusion Matrix for Multi-Class Classification [73]

The minority classes are called the “positive classes” and the majority classes are called the
“negative classes” In general, all the results obtained can be divided into four
categories:

• True Positives: The cases in which the samples belonging to a positive class are
correctly identified. The total number of True Positive instances in the system, across
all classes (TTPall) can be calculated as Equation (1).

In essence, it is the sum of the diagonal elements in the confusion matrix.

TTPall =
n∑

j=1

x jj (1)

• False Negatives: The cases in which data samples from positive classes get
misclassified. The total number of cases of False Negatives for each class i (TFNi) can
be calculated as Equation (2).

In essence, it is the sum of all elements in a column, except for the element which
belongs to the diagonal (or True Positive).

TFNi =
n∑

j=1
j 6=i

x ij (2)

• False Positives: The cases in which a sample from a negative class gets misclassified
under other labels. The total number of cases of False Positives for each class i
(TFPi) can be calculated using Equation (3).

In essence, it is the sum of all elements in a row, except for the element which belongs
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to the diagonal (or True Positive).

TFpi =
n∑

j=1
j 6=i

x ji (3)

• True Negatives: The cases in which a data sample belonging to a negative class is
correctly classified. The total number of cases of True Negatives for each class i
(TTNi) can be calculated as Equation (4).

In essence, it is the sum of all the values of the confusion matrix, excluding the row
and column belonging to the class i.

TTNi =
n∑

j=1
j 6=i

n∑
k=1
k 6=i

x jk (4)

3.4.1 Accuracy

Accuracy is the most widely used metric for evaluating classifier performance, and it can be
computed using (5) for multi-class datasets. Accuracy represents the ratio of the number of
correct predictions to the total number of predictions.

Overall Accuracy =
TTPall

Total Number of Testing Entries
(5)

However, in case of imbalanced datasets, the Accuracy metric has a number of limitations
[74].As an example, if the majority class represents 99% of all cases, there is a high
probability of the classifier assigning the majority class label to all test cases, leading to
classifier accuracy of 99%, which is misleading as in most cases the correct identification of
the minority class samples are of more interest to us.

More specifically, if the train set is imbalanced and the test set is balanced, the decision
threshold moves to reflect the estimated class prior probabilities and cause a low accuracy
measure in the test set while the true discriminative power of the classifier does not
change.

Therefore, we evaluate the classification performance on other metrics as well.
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3.4.2 Precision

Precision measures how many predictions were correct, i.e., the ratio of how many of the
predicted labels are actually present in the ground truth of the dataset. For multi-class
datasets, the Precision for each class i (Pi) can be calculated using (6).

Pi =
TTPall

TTPall + TFPi
(6)

Since precision takes into account the number of incorrectly labelled samples, it is a metric
that is sensitive to class imbalance.

However, by itself, this metric is insufficient as it provides no insight to the number of
samples from the positive group which were mislabelled as negative. Note that in case of
imbalanced datasets, majority classes are usually called “negative” and the minority classes
are called “positive”.

Therefore, Precision needs to be studied in conjunction with another metric called
Recall.

3.4.3 Recall

Recall, or True Positive Rate is a ratio of how many predicted labels are the same as actual
labels to the total number of actual labels or data samples for a class i. For multi-class
datasets, the Recall value for each class (Ri) can be calculated using (7).

Ri =
TTPall

TTPall + TFNi
(7)

Since Recall is only dependent on the positive group, it is not affected by imbalance.

However, it does not consider the number of negative samples that are misclassified as
positive, which may be problematic for imbalanced datasets with many negative
samples.

Note that in case of imbalanced datasets, majority classes are usually called “negative” and
the minority classes are called “positive”.

Therefore, there is a trade-off between precision and recall, and which metric should be
given more weightage is problem-specific.
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3.4.4 F1-Score

The F-Measure of F1-Score ((8)) is a combination of precision and recall using harmonic
mean, where coefficient β is used to adjust the relative weightage of precision to recall.

F1-Scorei =
(1+β2) * Recall * Precision

β2 * Recall *Precision
(8)

When β < 1, more weight is assigned to precision (when β → 0, only precision is considered)
and when β >1, recall is favoured (when β → ∞, only recall is considered).

In our case, since we are trying to obtain results for general scenarios and are considering
multiple datasets, we assign β=1, hence giving equal weightage to both parameters.

The range of F1-Score is [0,1], where 1 is a perfect classification, i.e., perfect precision and
recall values, and the worst is at 0.

3.5 Deep Learning Frameworks

Many deep learning frameworks are available as libraries for implementing machine learning
models and neural networks, such as Tensorflow [75], Keras [14] and Pytorch [76]. This
section briefly describes the structure and working of the frameworks employed in our
implementation. [77].

3.5.1 Tensorflow

Tensorflow is an open source machine learning library, offering high flexibility and
performance as well as portability among platforms and devices. It operates by developing a
static computational graph for the operations, wherein nodes represent the functions or
operators and the edges are data (tensors). The programming stack for tensorflow can be
observed in Figure 3.6.It is great for back-end implementation and has a huge community
support, making it a popularly adopted library.
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Figure 3.6: Tensorflow Programming Stack [78]

3.5.2 Keras

Keras is a front-end layer, which runs on top of other popular deep learning frameworks such
as Tensorflow, Theano [79], Microsoft Cognitive Toolkit [80], etc. The Keras stack can be
observed in Figure 3.7. It is a user-friendly API with built-in support and pre-defined
functions for CNNs. It enables faster experimentation with neural networks as it supports
aribitrary network architectures.

Figure 3.7: Keras Programming Stack [78]
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3.6 Overall Workflow

The different modules and the overall workflow of the project are summarized in Figure
3.8.

Figure 3.8: Workflow of the Dissertation

We will be first training the hybrid CNN-SVM classifier on the imbalanced datasets, and
obtain the test accuracy, precision, recall and F1-score for the same. Then, we will perform
dataset augmentation using traditional methods (geometric transforms and photo-metric
transforms) to obtain a balanced dataset (Balanced Training Dataset 1), which would be
used to re-train the classifier and to obtain the classification results. Finally, the dataset
balancing process will be done using the WGAN-GP architecture, which would result in a
balanced dataset again (Balanced Training Dataset 2), which would again be used to
re-train the classifier and obtain results. The Classification Results (1), (2) and (3) are
obtained on the corresponding test dataset, which remains unchanged from the original
datasets. These results would then be compared and contrasted in Chapter 5 to gain a
thorough understanding of the effect of data imbalance and data augmentation using
different methods.
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4 Implementation

This chapter makes use of the design decisions outlined in Chapter 3 to implement the
frameworks required for conducting experiments relevant to the research question. The
technical setup and the datasets used in this study are first explained, followed by the exact
classifier model details and data augmentation using both traditional methods as well as
using WGAN-GP.

4.1 Technical Setup

4.1.1 Coding-Related Details

The implementation of all modules and architectures used in this study has been done in
Python 3, with Keras and Tensorflow as the deep-learning frameworks. Some other Python
libraries used in the experiments are: scikit-learn, matplotlib, pandas and numpy.

4.1.2 Hardware Support

For general implementation, Google Colaboratory [81] has been used, which is a free Jupyter
notebook environment, optimized for machine learning tasks with GPU and TPU support,
platform-independent and having most of the dependencies resolved. The implementation
was done on on 12 GB RAM with GPU support.

However, for the training of WGAN-GP, more powerful and customized hardware support is
required. Therefore, we used Intel i7 7700k CPU, with one GTX 1080 GPU, on Ubuntu
16.04 Platform.
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4.2 Datasets

For testing and evaluating our proposed methodology, we have considered two benchmark
datasets: Fashion MNIST or FMNIST [10] and CIFAR-10 [11]. A brief summary of the two
can be seen in Table 4.1. Note that these datasets have equal number of instances in each
class and no natural imbalance can be observed in either of them.

Table 4.1: Dataset Summaries for Original Datasets [10, 11]

The characteristics and significance of these datasets have been briefly described in this
section.

4.2.1 FMNIST

The Fashion-MNIST dataset contains 28 x 28 grayscale images of clothing articles. It has
60,000 images in the training set and 10,000 images in the testing set. The data is divided
into ten, labelled from 0 to 9, which can be observed in Figure 4.1.

This dataset was created by Zalando Research [82] to “serve as a direct drop-in replacement
of the original MNIST dataset for benchmarking machine learning algorithms” [83]. The
MNIST dataset [46] is a benchmark dataset which is often the first point of validation for
any machine learning or data science algorithm. However, a few reasons for not using it as
pointed out in [83, 84] are:

• MNIST is a very easy dataset in which most pairs of data can be distinguished from
one another by a single pixel only. This is not representative of real world datasets
which are often much varied and complex, and therefore is not an appropriate
benchmark for modern-day computer vision applications

• MNIST is an overused dataset, which, due to its simplicity, often wrongly proves
inefficient algorithms applied on it to be efficient

Therefore, we have chosen FMNIST dataset as a benchmark to validate our research.
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Figure 4.1: FMNIST Dataset Labels and Example Images [10]

However, as mentioned before, this dataset is perfectly balanced and each class contains
exactly 6,000 train instances and 1,000 test instances. Therefore, for the purpose of
studying the effects of class imbalance, we have dropped 5300, 5500, 5000 and 5450
instances from the training sets of the four classes of Dress (3), Coat (4), Sandals (5) and
Sneaker (7) respectively. The imbalance created in the train set can be observed in Figure
4.2, where the X-axis displays the training labels (0 to 9) and the Y-axis depicts the
corresponding frequency of data samples.
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Figure 4.2: Class Distribution in FMNIST Dataset After Imbalancing

However, the test set is left untouched, and still contains 1000 instances per class.

The imbalance ratio (Equation (1)) for this dataset would be ρ=6000/500 or ρ=12.

4.2.2 CIFAR-10

The CIFAR-10 Dataset [11] is a subset of the Visual Dictionary or 80 Million Tiny Images
Dataset [85], which is a comprehensive dataset of images gathered from the web.

It consists of 32x32 colour images divided into train and test sets of sizes 50,000 and 10,000
respectively. There are 10 mutually exclusive, non-overlapping classes, labelled internally
from 0 to 9, and having more meaningful label names such as ‘airplane’, ‘bird’, ‘cat’, etc., as
can be observed in Figure 4.3.

CIFAR-10 is one of the most widely used datasets in Machine Learning [86] and is more
representative of real world problems than FMNIST as it contains coloured images of real
objects. Therefore, the performance of our methodology on this dataset would be indicative
of how it would perform on most image datasets pertaining to real-life applications.
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Figure 4.3: Class Labels and Examples of CIFAR-10 Database

As with FMNIST, CIFAR-10 is naturally balanced, therefore, we force imbalance it by
dropping 2500, 3500, 4000 and 4500 instances from the train set of classes automobile (1),
bird (2), cat (3) and horse (7) respectively. The frequency of classes after introducing this
imbalance can be observed in Figure 4.4. The X-Axis shows the labels of the training set (0
to 9) and the Y-Axis displays the corresponding number of data instances. Note that the
test dataset is remained untouched.
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Figure 4.4: Data Distribution of CIFAR-10 after Imbalancing

Note that the number of instances dropped from each class is lesser than the images
dropped from the classes of FMNIST. This is because CIFAR-10 is a more complex dataset,
which means that not only the effect of imbalance would be observed more easily, but also
that the training time would increase as the imbalance increases.

As before, the test set of the classes are not changed for the experiments.

The imbalance ratio (Equation (1)) for this dataset would be ρ=5000/500 or ρ=10.

We will investigate the effects of imbalance on classification on both FMNIST and CIFAR-10
datasets in order to do a comparison of the results on datasets of increasing complexity and
validate our research.

4.2.3 Dataset Augmentation by Image Transformations

In order to balance the imbalanced datasets, we generate additional data using
ImageDataGenerator class of image pre-processing module of Keras (Refer Chapter 3), for
the minority classes by applying various geometric and image transforms on the samples

40



available to us (keras.preprocessing.image.ImageDataGenerator(arg1, arg2, ....)).1

Some of the arguments of ImageDataGenerator [62] that we have used in our experiments
are described below (Table 4.2):

1The code available here has been used as a reference: https://github.com/franneck94/MNIST-Data-
Augmentation/blob/master/mnist.py
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Table 4.2: Some ImageDataGeneration Arguments with Descriptions [62]
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Specifically, the ImageDataGenerator arguments used for augmenting the training sets in
imbalanced FMNIST and imbalanced CIFAR-10 datasets are shown in Figure 4.5 (a) and
Figure 4.5 (b). The new images generated as a result of applying these can be observed in
Chapter 5.

(a) For Imbalanced-FMNIST (b) For Imbalanced-CIFAR-10

Figure 4.5: Custom ImageDataGenerator Arguments used for the two datasets

Note that more randomness is introduced through the ImageDataGenerator arguments in
augmenting the FMNIST dataset as compared to the augmentation for CIFAR-10, as
FMNIST images are grayscale as well as simpler than those in the latter, and the possibility
of generating same or similar samples, or not having enough variation in the generated
images is higher. Variability of generated images is emphasized upon in our experiments to
ensure that the model does not overfit, as that would affect the classification accuracy and
results.

4.3 Dataset Augmentation using WGAN-GP

The WGAN-GP architecture2 is developed using Tensorflow framework. The specific neural
network models developed for the generator and the discriminator would vary for the two
datasets due to the difference in image dimensions, and they have been summarized in the
subsections below.

The training of WGAN-GP involves the simultaneous training of generator and discriminator,
and as the number of training epochs increase, the image output becomes more and more
realistic. For the purpose of this study, instead of waiting for model convergence to start
sampling data for dataset augmentation, I monitored the outputs through each epoch, and
sampled the data starting the epoch at which a realistic output was observed for the first
time. Note that this observation is based on the personal perception of the researcher and
can be influenced by their level of understanding of the datasets, coginitive ability, etc.

At the start of the training process, it can be observed that the generator’s outputs are very
2The code available here has been used as a reference: https://github.com/caogang/wgan-gp
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noisy, but start looking more and more realistic as the process goes on, as can be observed
in Figures 4.7 and 4.9.

4.3.1 WGAN-GP Model Description for FMNIST

WGAN-GP was trained separately for each of the four minority classes of ’Dress’, ’Coat’,
’Sandal’ and ’Sneaker’ to generate images class-wise, until each class reached a total of
6,000 instances. The models of the generator and the discriminator of WGAN-GP for
28x28x1 images of FMNIST are described in Figures 4.6(a) and 4.6(b).

(a) Generator Network

(b) Discriminator Network

Figure 4.6: WGAN-GP Model Description for FMNIST Dataset
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The results generated through some of the epochs can be observed in Figure 4.7. Notice
that since this dataset contains smaller, less-complex images, training over a very few
epochs can also give great results, and starting Epoch 25, realistic-looking samples are
generated for class ’Coat’.

(a) Epoch 0 (b) Epoch 13 (c) Epoch 25

Figure 4.7: Data Generated for the Minority Class ’Coat’ in Imbalanced-FMNIST using
WGAN-GP

4.3.2 WGAN-GP Model Description for CIFAR-10

As in the previous section, WGAN-GP model for CIFAR-10 dataset was trained on the
training set of the four minority classes of ’automobile’, ’bird’, ’cat’ and ’horse’, to generate
fake data for the purpose of balancing each class to a total of 5,000 instances. The models
of the generator and discriminator of WGAN-GP for 32x32x3 images of CIFAR-10 are
described in Figures 4.8(a) and 4.8(b).
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(a) Generator Network

(b) Discriminator Network

Figure 4.8: WGAN-GP Model Description for CIFAR-10 Dataset

Since CIFAR-10 contains more complex images than FMNIST, the generator would typically
need to be trained for a lot more epochs to be able to learn the features effectively and start
generating realistic looking images as outputs. The generated images sampled at arbitrary
epochs of WGAN-GP training phase for the class ’horse’ can be observed in Figure 4.9.
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(a) Epoch 5 (b) Epoch 21 (c) Epoch 27

(d) Epoch 54 (e) Epoch 71 (f) Epoch 102

(g) Epoch 127 (h) Epoch 260 (i) Epoch 406

Figure 4.9: Data Generated for the Minority class ’Horse’ in the Imbalanced CIFAR-10 using
WGAN-GP

Starting from training epoch 406, the generator starts generating realistic-looking image
outputs for the minority class ’horse’.
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4.4 Classification Architecture

The classification model is implemented in Keras. Based on the design choices described in
Chapter 3, the hybrid CNN-SVM architecture is constructed for the two datasets separately,
since they have different image dimensions and hence would have different layer dimensions
as well.

The final layer of the trained CNN model is replaced with SVM as the prediction layer. The
CNN is then trained via SVM through cross-validation.

As highlighted in Chapter 3, SVM has a time complexity of O(n2) or higher, making it
computationally complex and expensive. Therefore, in our implementation, we have
randomly sampled 1000 instances from each class (in both datasets) in case of balanced
datasets, and proportionately reduced the number of samples of imbalanced classes in the
scenario of imbalanced datasets. The details of the number of instances sampled per class
are specified in the following subsections.

Apart from the three datasets mentioned in Figure 3.8, the classifier is also trained on the
original, balanced datasets of FMNIST and CIFAR-10.

4.4.1 CNN Model Description for FMNIST

The CNN model for FMNIST dataset, which takes images of dimensions (28 x 28 x 1) as
input, can be observed below:

Layer (type) Output Shape Param #

=================================================================

conv2d_15 (Conv2D) (None, 28, 28, 64) 640

_________________________________________________________________

activation_21 (Activation) (None, 28, 28, 64) 0

_________________________________________________________________

conv2d_16 (Conv2D) (None, 28, 28, 64) 36928

_________________________________________________________________

activation_22 (Activation) (None, 28, 28, 64) 0

_________________________________________________________________

max_pooling2d_7(MaxPooling2) (None, 14, 14, 64) 0

_________________________________________________________________

dropout_11 (Dropout) (None, 14, 14, 64) 0

_________________________________________________________________

conv2d_17 (Conv2D) (None, 14, 14, 128) 73856
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_________________________________________________________________

activation_23 (Activation) (None, 14, 14, 128) 0

_________________________________________________________________

conv2d_18 (Conv2D) (None, 14, 14, 128) 147584

_________________________________________________________________

activation_24 (Activation) (None, 14, 14, 128) 0

_________________________________________________________________

max_pooling2d_8(MaxPooling2) (None, 7, 7, 128) 0

_________________________________________________________________

dropout_12 (Dropout) (None, 7, 7, 128) 0

_________________________________________________________________

conv2d_19 (Conv2D) (None, 7, 7, 256) 295168

_________________________________________________________________

activation_25 (Activation) (None, 7, 7, 256) 0

_________________________________________________________________

conv2d_20 (Conv2D) (None, 7, 7, 256) 590080

_________________________________________________________________

activation_26 (Activation) (None, 7, 7, 256) 0

_________________________________________________________________

conv2d_21 (Conv2D) (None, 7, 7, 256) 590080

_________________________________________________________________

activation_27 (Activation) (None, 7, 7, 256) 0

_________________________________________________________________

max_pooling2d_9(MaxPooling2) (None, 3, 3, 256) 0

_________________________________________________________________

dropout_13 (Dropout) (None, 3, 3, 256) 0

_________________________________________________________________

flatten_3 (Flatten) (None, 2304) 0

_________________________________________________________________

dense_7 (Dense) (None, 1024) 2360320

_________________________________________________________________

activation_28 (Activation) (None, 1024) 0

_________________________________________________________________

dropout_14 (Dropout) (None, 1024) 0

_________________________________________________________________

dense_8 (Dense) (None, 1024) 1049600

_________________________________________________________________

activation_29 (Activation) (None, 1024) 0

_________________________________________________________________
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dropout_15 (Dropout) (None, 1024) 0

_________________________________________________________________

dense_9 (Dense) (None, 10) 10250

_________________________________________________________________

activation_30 (Activation) (None, 10) 0

=================================================================

The distribution for sampling instances from the imbalanced training dataset for SVM can
be observed in Table 4.3. The test set also consists of a total of 6500 instances (reduced
from 10,000) to match the training set size, however, in that case, the number of instances
in each class is kept equal to reflect balanced classes.

Table 4.3: Data Distribution of Training Data Sampled from Imbalanced FMNIST for SVM

4.4.2 CNN Model Description for CIFAR-10

The CIFAR-10 dataset contains images of dimensions (32 x 32 x 3), and thus requires
different dimensions of layers than FMNIST. The CNN model structure for CIFAR-10
classification is given below:

Layer (type) Output Shape Param #

=================================================================

conv2d_1 (Conv2D) (None, 32, 32, 64) 1792

_________________________________________________________________

activation_1 (Activation) (None, 32, 32, 64) 0

_________________________________________________________________
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conv2d_2 (Conv2D) (None, 32, 32, 64) 36928

_________________________________________________________________

activation_2 (Activation) (None, 32, 32, 64) 0

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 16, 16, 64) 0

_________________________________________________________________

dropout_1 (Dropout) (None, 16, 16, 64) 0

_________________________________________________________________

conv2d_3 (Conv2D) (None, 16, 16, 128) 73856

_________________________________________________________________

activation_3 (Activation) (None, 16, 16, 128) 0

_________________________________________________________________

conv2d_4 (Conv2D) (None, 16, 16, 128) 147584

_________________________________________________________________

activation_4 (Activation) (None, 16, 16, 128) 0

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 8, 8, 128) 0

_________________________________________________________________

dropout_2 (Dropout) (None, 8, 8, 128) 0

_________________________________________________________________

conv2d_5 (Conv2D) (None, 8, 8, 256) 295168

_________________________________________________________________

activation_5 (Activation) (None, 8, 8, 256) 0

_________________________________________________________________

conv2d_6 (Conv2D) (None, 8, 8, 256) 590080

_________________________________________________________________

activation_6 (Activation) (None, 8, 8, 256) 0

_________________________________________________________________

conv2d_7 (Conv2D) (None, 8, 8, 256) 590080

_________________________________________________________________

activation_7 (Activation) (None, 8, 8, 256) 0

_________________________________________________________________

max_pooling2d_3 (MaxPooling2 (None, 4, 4, 256) 0

_________________________________________________________________

dropout_3 (Dropout) (None, 4, 4, 256) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 4096) 0

_________________________________________________________________

dense_1 (Dense) (None, 1024) 4195328
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_________________________________________________________________

activation_8 (Activation) (None, 1024) 0

_________________________________________________________________

dropout_4 (Dropout) (None, 1024) 0

_________________________________________________________________

dense_2 (Dense) (None, 1024) 1049600

_________________________________________________________________

activation_9 (Activation) (None, 1024) 0

_________________________________________________________________

dropout_5 (Dropout) (None, 1024) 0

_________________________________________________________________

dense_3 (Dense) (None, 10) 10250

_________________________________________________________________

activation_10 (Activation) (None, 10) 0

=================================================================

The distribution for sampling instances from the imbalanced training dataset for SVM can
be observed in Table 4.4. As in FMNIST, the test set size is also reduced to 6500, with each
class having equal representation to reflect class balance.

Table 4.4: Data Distribution of Training Data Sampled from Imbalanced CIFAR-10 for SVM
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5 Results and Discussion

This chapter presents the results obtained in the intermediate steps of the study as well as
the final values of the classification metrics obtained for each of the datasets. These results
are compared and contrasted and critically analysed to derive insights regarding the research
question being addressed.

5.1 Data Generation using Image Transforms

An example of images generated by applying geometric and photo-metric transforms on a
sample of minority class ’Dress’ of FMNIST dataset can be observed in Figure 5.1. The
same for a sample of class ’cat’ from CIFAR-10 can be observed in Figure 5.3.

This method of image data augmentation is simple and intuitive, and results in fairly
representative label-preserving samples. However, note that this method has certain
limitations, which can be explained using Figure 5.1:

• Notice that the bottom right image as well as the second image in the first row in
Figure 5.1(b) are not representative of a dress anymore. We can observe loss of
context in this case

• The first image in second row of 5.1(b) looks quite similar to some data samples of
’T-Shirt’ class (Refer to Figure 5.2), and if too many such instances are generated, it
can cause wrong features to be learned

• Since the basic image remains the same, this method fails to introduce a good variety
in the dataset, hence restricting the amount of features that can be learned, or
possibly causing overfitting in extreme cases
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(a) Original Image

(b) New images generated using Image Transformations

Figure 5.1: An example of Generating New Data using Image Transforms on ’Dress’ sample
of FMNIST dataset

Figure 5.2: A sample of ’T-Shirt’ class from FMNIST, which looks similar to some of the
images in 5.1(b)
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(a) Original Image

(b) New images generated using Image Transformations

Figure 5.3: An example of Generating New Data using Image Transforms on ’cat’ sample of
CIFAR-10

Note that the images generated for ’cat’ data sample from CIFAR-10 (Figure 5.3) do not
exhibit such issues to the same extent (apart from the lack of variability). This is because
the images in CIFAR-10 are semantically more complex, and hence easier to tell apart from
one another. However, it is still possible to generate data that is not truly representative of
the given class, such as an instance when the image of a ’cat’ looks similar to that of a ’dog’
(Refer to data samples of ’dog’ class of CIFAR-10 in Figure 5.4).
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Figure 5.4: Images from the class ’dog’ of CIFAR-10 which may look similar to some ’cat’
images generated

5.2 Data Generation using WGAN-GP

Some of the data samples generated for the ’Dress’ minority class of imbalanced FMNIST
dataset are shown in Figure 5.5 (b), and can be contrasted with Figure 5.5 (a), which
displays randomly sampled data points from the ’Dress’ class of original FMNIST dataset.
The same can be observed for the ’cat’ class of imbalanced CIFAR-10 dataset, where the
real and fake images can be observed in Figures 5.6(a) and (b).

(a) Original Images

(b) Fake Images Generated using WGAN-GP

Figure 5.5: Comparison of Real Images and Fake Images generated using WGAN-GP for
’Dress’ class of FMNIST
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(a) Original Images

(b) Fake Images Generated using WGAN-GP

Figure 5.6: Comparison of Real Images and Fake Images generated using WGAN-GP for ’cat’
class of CIFAR-10

The Figures 5.5 and 5.6 is a good example of how the ’real’ and ’fake’ images are mixed for
the ’Real or Fake?’ test for determining how realistic the generated images are to a human
subject. I conducted this experiment on myself, and labeled all of the generated images for
FMNIST as ’real’.

Since CIFAR-10 consists of images of real objects, some of which are close in appearance
(such as ’cat’ and ’dog’), the lower resolution of the images makes the identification process
a bit difficult. As an example, I correctly labeled one ’fake’ sample as ’fake’ from the ’cat’
class. However, the reason for making that decision was that the image was too zoomed in
and blurred, making it look more like noise. Apart from that, I correctly labeled 2 instances
from the ’bird’ class as fake, as they lacked a body structure. For the other two classes
(’automobile’ and ’horse’), all samples were labeled as ’real’.

Note that the generated images demonstrate the following qualities:

• Realistic looking, and impossible to tell apart from the original dataset images of the
same class by a human observer

• Preservation of context or semantic information of the class in question, meaning that
the features of the cat class from the real images have been efficiently learned through
this architecture

• Samples are not repititive, signifying that there is no overfitting
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• Samples generated are variable or diverse in nature, therefore resulting in an efficiently
augmented dataset which contains samples representing many possibilities

5.3 Classification Results Obtained

This section summarizes the results obtained for Validation1 Accuracy, Precision, Recall and
F1-Score of the classifier used for the variations of the two datasets considered. As
mentioned in Chapter 3 (Figure 3.8), the four variations of each dataset considered are:
’Original Dataset (Balanced)’, ’Imbalanced’ (after removing instances of some classes),
’Balanced using Image Transforms’ (resulting from data augmentation for minority classes
using images generted by geometric and photo-metric transforms) and ’Balanced using
WGAN-GP’ (resulting from data augmentation for minority classes using images generated
by WGAN-GP). The classifier is separately trained on each of these datasets and these
trained models are used for evaluation. However, as mentioned in Chapter 4, no change is
made to the test set of these datasets.

The results for FMNIST and CIFAR-10 will be documented in different sub-sections, and the
overall observations will be analysed and discussed in the subsequent section of this
chapter.

Classification Results for FMNIST

The performance of the classifier on FMNIST is evaluated using the testing metrics recorded
in Table 5.1.

It becomes obvious that imbalance causes the classifier’s performance to go down, with the
Accuracy being reduced by 5.25% , and the F1-Score going down by the same amount as
well.

The effect of this imbalance is reduced in the datasets balanced using data augmentation
techniques. While using traditional image transforms results in an improvement of
approximately 4% in testing Accuracy, and of around 4.3% in the F1-Score, it can be
observed that WGAN-GP does a much better job and increases the Accuracy and F1-Score
by 5% and 4.5% in comparison to the imbalanced dataset.

1Note that "Validation" and "Testing" are used interchangeably in this study.
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Table 5.1: Testing Metrics for Classification of Variations of FMNIST

Although these metrics represent the overall classifier performance, a much more intuitive
and informative way to study the effects would be to observe the confusion matrices for each
case. The relevant classes to study for us would be the ones which we create an imbalance
in, that is, ’Dress’, ’Coat’, ’Sandal’ and ’Sneaker’.

For the original dataset (Figure 5.7), we can observe that the majority of the test samples
are correctly classified.

Figure 5.7: Confusion Matrix for Original FMNIST Dataset Classification
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From the confusion matrix of the imbalanced dataset2 (Figure 5.8), it is interesting to note
that despite the imbalance, the accuracy of classification for ’Sandal’ and ’Sneaker’ is still
very high (95% and 88.7%).

However, a visible degradation can be observed for the class ’Coat’, for which the least
number of training samples were present. Data belonging to ’Coat’ class gets misclassified
43% of the times, and it can be seen that most of them are misclassified as ’Pullover’ or
’Shirt’, which are majority classes, and may have certain similar characteristics to ’Coat’.
Thereofore, a bias towards majority classes is prominent in this case.

Figure 5.8: Confusion Matrix for Imbalanced FMNIST Dataset Classification

On being balanced using both techniques (Figure 5.9 and Figure 5.10), we can see that the
number of correct classifications for each of the imbalanced classes becomes almost the
same as it was in the original dataset. However, on an average, the numbers are higher for
the dataset augmented using WGAN-GP.

2The total number of samples are less per class as the test dataset was reduced to 6400 with nearly equal
instances of each class for fitting the SVM better, as mentioned in Chapter 4.
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Figure 5.9: Confusion Matrix for Classification of FMNIST Dataset Balanced using Image
Transforms

Figure 5.10: Confusion Matrix for Classification of FMNIST Dataset Balanced using WGAN-
GP

Classification Results for CIFAR-10

The performance of the classifier on FMNIST is evaluated using the testing metrics recorded
in Table 5.1. It can be observed that the negative impact of class imbalance in this case is
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higher than observed in FMNIST, with a drop of 9.2% in Testing Accuracy, and 10.07% in
F1-Score. The improvement observed as a result of data augmentation is also higher as
compared to FMNIST. Using geometric and photo-metric transforms, an increase of 6.8% in
Accuracy and of 7.5% in F1-Score is observed. This is much higher when the dataset is
balanced using images generated by WGAN-GP, with an increase of 8.2% and 8.26%, in
comparison to the imbalanced dataset.

Table 5.2: Testing Metrics for Classification of Variations of CIFAR-10

While studying the confusion matrices obtained for the different classification tasks
performed, we will focus on the four imbalanced classes in particular, which are ’cat’,
’automobile’, ’horse’ and ’bird’.

From Figure 5.11, we can observe that the instances of ’cat’ and ’bird’ classes are only
correctly classified 69.5% and 78.3% of the times. Therefore, to observe the impact of
imbalance, this needs to be kept in mind.
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Figure 5.11: Confusion Matrix for the Classification of Original CIFAR-10

The impact of imbalance can be observed in Figure 5.12. The most visible difference can be
observed for classes ’bird’, ’cat’ and ’horse’, where only 48.45%, 33.42% and 50.5% of the
data samples are correctly classified. Further, it can be observed for class ’cat’ that the
majority of misclassified samples are classified as ’dog’, which indicates a bias towards that
majority class. It is also interesting to note that for the original dataset, 10.5% of the
samples for ’dog’ class were classified as ’cat’, however, in the imbalanced dataset, only 3%
of ’dog’ data samples are wrongly labeled as ’cat’. This is also a reflection of how minority
classes have little contribution to the overall features learned.
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Figure 5.12: Confusion Matrix for Imbalanced CIFAR-10 Dataset Classification

After balancing the dataset using data augmentation, from both Figures 5.13 and 5.14, it
can be observed that the results are similar to Figure 5.11 for the original dataset. As in the
case of FMNIST, on an average, the number of correct predictions for each of the
imbalanced classes is more when data augmentation is done using WGAN-GP.

Figure 5.13: Confusion Matrix for Classification of CIFAR-10 Dataset Balanced using Image
Transforms
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Figure 5.14: Confusion Matrix for Classification of CIFAR-10 Dataset Balanced using Images
Generated by WGAN-GP

Changes related to precision, recall and F1-Score can also be observed in this class-by-class
manner using the confusion matrices.

5.3.1 Analysis and Discussion

From the results obtained in this study, it is observed that class imbalance has a detrimental
impact on the performance of a classifier.The data belonging to minority classes get
mislabeled as instances of the classes which are in majority.

However, it was observed in some minority classes, that despite the imbalance, most of their
samples were being classified correctly. This was more eminent in FMNIST than CIFAR-10,
and can be attributed to the fact that all the classes are non-overlapping and perfectly
separable3. The classifier used in this study was strong enough to learn the features from
less data as well, as the images are relatively simple. In such cases, it might be possible to
maintain the classifier’s performance without performing any data augmentation at all.

It is fair to say that as dataset complexity increases, the impact of class imbalance also
increases.

3Although the CIFAR-10 dataset is also composed of non-overlapping classes, there are some similarities
between certain classes such as ’automobile’ and ’truck’, which can often be a cause of confusion.
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Another noticeable fact is that WGAN-GP generates images that are much more realistic,
relevant and diverse, as compared to the training set obtained when additional images are
generated by applying image transformations. Therefore, WGAN-GP results in superior
quality training dataset, which ultimately results in better classification performance.
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6 Conclusion

The task of image classification is a vital component of many day to day applications. The
occurrence of imbalance in datasets collected from real-life domains is unavoidable due to
numerous factors. It has been established that this imbalance has a detrimental effect on the
performance of classifiers. In this research we explored the traditional methods of data
augmentation to create balance in imbalanced datasets, by using geometric and
photo-metric transformations, which led to an observable improvement in the performance
of the Hybrid CNN-SVM Classifier. Using this as a baseline, we then generated new samples
for the minority classes of the imbalanced datasets using an improved variation of the
Generative Adversarial Network, called Wasserstein Generative Adversarial Network using
Gradient Penalty. This method of dataset augmentation outperforms the traditional method
in terms of the quality and variability of the samples generated, which eventually leads to a
significant improvement in the classifier performance. It is also important to note that the
performance improvement becomes more noticeable as the complexity of the dataset
increases. Thus, it can be concluded that Generative Adversarial Networks provide a more
advanced and promising data augmentation solution for the class imbalance problem in
datasets and can increase the efficiency of classification models in such scenarios.

However,it is important to understand if the effects observed are specifically due to
imbalance in dataset, or are simply a result of the overall reduction in quantity of data. This
is a question that can be further explored. Certain other limitations of this study, and the
methods proposed to overcome them, have been outlined in the section below.

6.1 Limitations and Future Work

In the course of implementation and evaluation of this research, certain limitations were
noticed. This section describes them, with suggestions for extending this research and
overcoming them.

In this research, we have identified the imbalanced classes in a dataset by manual inspection
and trained the WGAN-GP architecture class-by-class, to generate more instances of each
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specific class in question. This approach is not sufficient for practical applications due to the
need for human involvement, and also because usually, minority classes have scarce data
samples, which makes it challenging to train a GAN for the generation of new images.

To overcome this issue, an autoencoder-based initialization strategy can be adopted, as seen
in [67], in which the adversarial training is done on the entire dataset at once, i.e., both
minority and majority classes. This enables the GAN architecture to extract general features
for the specific dataset, and then apply class conditioning on the latent space [87, 88], which
helps the autoencoder learn what the generative model inputs should be like for different
classes, and help drive the image generation process towards the desired classes.

Another reason why the WGAN-GP training process adopted in this research requires human
intervention is because the images being generated during each epoch are deemed as
“realistic” or “not realistic” based on the perception of the researcher. Therefore, the number
of training epochs cannot be pre-determined and the outputs should be monitored and
visually inspected. However, a number of GAN evaluation metrics [89] can be leveraged to
automate this process and let the GAN determine the quality of the output mathematically.
Some such metrics are inception score [90], GAN Quality Index [91], etc. The SSIM metric
introduced in Chapter 3 can also be implemented to study the diversity and variability of the
metrics generated.

It would also be interesting to experiment with different GAN architectures such as Auxiliary
Classifier GAN [92], Conditional GAN [55], Balancing GAN [67], etc. to understand if that
has an impact on the results.

Another important thing to note is that this research only considers imbalance in terms of
skewed class distribution, which is given by the imbalance ratio in Equation (1). However, it
would also be important to test our hypotheses on a range of values of imbalance ratio, as
the results can be poor for both high and low values of imbalance ratio [93] and it would
help us to understand the pattern of behaviour for the same.

In this research we have only experimented with one classifier architecture. To extend this
research, it would be important to experiment with more complex deep neural networks such
as ResNet [94] which have been proven as more efficient in image classification of balanced
datasets. Additional classification metrics such as Balanced Accuracy [95], G-Mean [96] and
most importantly, Area under the ROC (Receiving Operators Characteristics) Curve [97]
which plots the true positive rate over false positive rates, providing a visualization to depict
the trade-off between correctly classified positive samples and incorrectly classified negative
samples.

Further, it has been identified that the skewed distribution by itself may not be the only
factor hindering the learning process [34, 98]. Therefore, it would also be important to
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consider the additional factors that may have a detrimental effect on the classification
results on an imbalanced dataset [29]. Some of the characteristics that can be taken into
account for a more comprehensive study are:

• The problem of class overlapping or class separability of a dataset [99, 100]

• Impact of presence of noisy data in imbalanced datasets [101, 102], which has been
shown to have a greater impact on minority classes than usual cases [103]

• Dataset shift problem [104, 105], which is the case where training data and test data
follow different distributions, and can often occur due to bias in sample selection

• Impact of borderline sample points which are located in the areas surrounding class
boundaries, where minority and majority classes overlap [41, 106]

• Effect of lack of information or density in training data [107], where the small dataset
size is not sufficient to learn a generalized distribution and leads to model overfitting

It would also be a good idea to conduct the experiments on bigger and more complex
datasets such as Imagenet [108] to validate how increase in dataset size and complexity
affects the classification results. This would also give us an opportunity to use techniques
such as Data Undersampling and draw a comparison with the methods considered by
us.

Last but not the least, it may be interesting to experiment on datasets which are naturally
imbalanced, such as GTSRB [109], which is a traffic sign recognition dataset, and may be
beneficial in smart city applications such as self-driving cars. It may also be beneficial to
extend the research beyond image datasets to numerical and textual data. The KEEL
dataset repository [110] also provides a number of imbalanced datasets with varying
imbalance ratios and have pre-processed them using a variety of proven techniques such as
Synthetic Minority Over-Sampling Technique (SMOTE) [111], Borderline [112], Safe Levels
[113], etc., which would help in comparing and evaluating the effectiveness of GANs as a
tool to combat class imbalance.
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Appendix A

The time taken to train the WGAN-GP on the various imbalanced classes of the two
datasets is recorded here, to give an estimation of the computational complexity and cost
involved. The technical set-up has been described in Chapter 4.

WGAN-GP Train Durations for FMNIST

The four imbalanced classes in this dataset are ’Sandal’, ’Dress’, ’Sneaker’ and ’Coat’,
mentioned in order of ascending imbalance (i.e. the class ’Coat’ contains the least quantity
of samples among these four classes). The train times for each of these classes is shown in
Table A1.

Table A1: Train Times of the Minority Classes of Imbalanced-FMNIST on WGAN-GP

WGAN-GP Train Durations for CIFAR-10

The four imbalanced classes in this dataset are ’automobile’, ’bird’, ’cat’ and ’horse’,
mentioned in order of ascending imbalance (i.e. the class ’horse’ contains the least number
of samples among these four classes). The train times for each of these classes is shown in
Table A2.
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Table A2: Train Times of the Minority Classes of Imbalanced CIFAR-10 on WGAN-GP

82



Appendix B

The codes and scripts implemented for the purpose of this study, along with all relevant
datasets, results, saved models and compile and deployment instructions have been made
available at the following link:

https://drive.google.com/drive/folders/1oGHEXht-
GGm1keeriqP4HN9ZBIB7lQ1V?usp=sharing
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