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Contribution is fundamental to the concept of performance analysis. It is integral to
judging the worth of a person in a team, an employee in an organization, and par-
ticipants in any activity in general. With the industry stressing on rightsizing and
optimized workforce management, it is of paramount importance that the contribution
of employees is comprehensively monitored and adequately rewarded. However, the
subjective and bias-prone nature of existing processes has led to widespread employee
dissatisfaction, especially in the software industry. Traditional LOC-based metrics fail
to measure contribution as they do not consider the full range of activities performed
by a software engineer in a project. Thus, there arises a need for a comprehensive
metric to measure contribution. This research seeks to build a data-model to measure
the contribution of a software engineer in a software project by using data mined from
GitHub and Gitter. A high-level model for contribution is constructed and then ex-
panded, by a top-down approach, to create a model that considers both the amount of
work done, and its quality. This model represents an expert’s view of measuring con-
tribution. Using the data mined from GitHub and Gitter a data- model is constructed,
from bottom-up, that seeks to identify useful signals to quantify the concepts expressed
by the high-level top-down model. This data-model is conceptualized by applying the
principles of Measurement Theory in software engineering and is constantly refined
using defeasible reasoning to better quantify the concepts of the high-level model. Fi-



nally, an expert system is used to measure the contribution of a software engineer in
a project. The proposed solution is then subjected to a sanity test against the man-
ual evaluation methods proposed by the expert in the high-level model. The results
indicate that the data model is a reasonably accurate representation of the model pro-
posed by the expert and succeeds in providing a rank-ordering of developers consistent
with that obtained from a manual evaluation of contribution using the expert’s model,
though some loss in conceptual fidelity is observed.
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Chapter 1

Introduction

This chapter elucidates the motivation behind the research and lays out the research

question, the research objectives and potential challenges in conducting the research.

It is rounded off with a discussion of the technical approach proposed for solving the

research question and a brief outline of the overall structure of the dissertation.

1.1 Motivation

The OED defines contribution to be ”the part played by a person or thing in bringing

about a result or helping something to advance.”1 Though the definition is straight-

forward, quantifying a person’s contribution to a body of work has posed significant

challenges to researchers (Amor et al. 2006;Gousios et al. 2008).

The importance in measuring the contribution of a software developer to a project

stems from its intimate association with appraising the value of the software engineer to

the team or the organization, and its central role in the performance appraisal process

carried out in all major organizations (Thoti et al.,2015). In order to truly realize

the importance of measuring contribution of software engineers in an organization,

an understanding of the inherent shortcomings of the performance appraisal system,

followed by major organizations, is vital.

Flippo (1976) had defined performance appraisal to be ”the systematic, periodic and

an impartial rating of an employee’s excellence in the matter pertaining to his present

1https://www.oxfordlearnersdictionaries.com/definition/english/

contribution,accessed:04.08.2018

1

https://www.oxfordlearnersdictionaries.com/definition/english/contribution
https://www.oxfordlearnersdictionaries.com/definition/english/contribution
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job and his potential for a better job.” It is commonly accepted that an organization

performs best when the people in that organization perform optimally, or in other words

contribute effectively to achieving the organization’s goals.(Sanyal & Biswas,2014)

Most major corporations perform periodic performance appraisals of their employ-

ees to this end. While some may want to conduct these processes in a formally struc-

tured manner, others rely on informal interactions.

A 2015 study (Thoti et al.,2015) on the various performance appraisal methods

followed by Multi-National Corporations(MNC’s) of Indian origin, revealed a prepon-

derance of traditional methods of appraisal. Management tended to rely on highly

subjective analyses of contribution essays, project checklists and supervisor recom-

mendations. Recent research (Thoti et al.,2015) has brought to light the increasingly

negative attitude of IT employees towards such appraisal processes. A plurality of

IT professionals distrust the performance appraisal process and view it to be highly

prone to bias. (Gupta & Kumar,2013) Studies have also highlighted several shortcom-

ings of traditional performance appraisal methods, primarily due its subjective nature

which makes it unverifiable by others(Islam & bin Mohd Rasad,2006). Some prominent

shortcomings identified by Islam & bin Mohd Rasad (2006) are -

1. The Halo Effect, which causes appraisers to rate all traits or behaviours by

being excessively influenced by a single trait or behaviour, may lead to highly

biased appraisals in which those conducting the appraisal are inadvertently blind

to the bigger picture.

2. Errors of Central Tendency may also occur, in which, those conducting the

appraisal may give ratings around the middle of the rating scale to everyone in

order to play safe.

3. Personal Prejudice has also been found to be a major influence in performance

appraisals with several employees complaining of victimization as a result of poor

personal relations with supervisors and management.

Several researchers have appreciated the fact that contribution is not only context-

specific but should be considered in terms of characterizing employee activity. Though
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tools like GitPrime2, SonarQube3, waydev4, and Code Climate5 have taken strides in

helping to assess qualitative characteristics in software development, they still tend to

depend on the engineer’s contribution through code, while neglecting the vast array

of tasks actually performed. With the continued fixation of State-of-the-Art systems

on code-based metrics, there is an immense opportunity to explore the impact of non-

coding tasks, such as code-base administration and engagement on chat platforms in

order to obtain a comprehensive view of what contribution in software engineering

actually entails.

1.2 Research Question

This dissertation explores the question whether a data-model can be constructed to

calculate the contribution of a software engineer to a software project through signals

obtained from an open-source project repository in GitHub.

1.3 Research Objectives

To address the research question mentioned above, we have defined the following re-

search objectives:

1. To create a data-model for measuring the contribution of a Software engineer in a

project by analyzing the entire range of developer activity over a period of time,

considering both the amount of work performed and the quality of the work, as

opposed to traditional LOC based measures.

2. To identify useful signals from GitHub that can serve to approximate/quantify

the high-level concepts espoused in the data model.

3. To create a rule-based tool (Expert System) that would quantify the contribution

of a software developer using the metrics derived from the selected GitHub and

Gitter signals.

2https://www.gitprime.com/,accessed:04.08.2018
3https://www.sonarqube.org/,accessed:05.08.2018
4https://waydev.co/,accessed:05.08.2018
5https://codeclimate.com/,accessed:05.08.2018

https://www.gitprime.com/
https://www.sonarqube.org/
https://waydev.co/
https://codeclimate.com/
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4. To evaluate the data-model through a sanity test of the contribution values gen-

erated by the tool with the values estimated by a human expert (the author

himself for the purpose of this dissertation)

5. To visualize, by means of a dashboard, the relative contributions of the software

engineers to the project.

1.4 Research Challenges

1.4.1 The Nature of the Problem

Though the concept of contribution seems inherently simple and can be roughly defined

to be “an action or a service that helps to cause or increase something”, quantifying it

poses a significant challenge, as defining what actually consists of a useful contribution

to a body of work is highly subjective and context-based. For instance, writing 100 LOC

may be the benchmark for an effective contribution in a particular project, probably

one that deals with the implementing a novel solution or a particularly hard problem.

Projects dealing with more routine work, however, may see team members writing a

few thousand LOC every day and pushing multiple commits. It would be inherently

wrong to judge people simply on the amount of activity performed without taking

into consideration the importance of that activity in the grand scheme of things, and

the specific conditions under which that particular activity was performed. A good

illustration would be to say that Edgar Allan Poe contributed less to the horror-fiction

genre than Stephen King, simply because the latter has published more novels in

that genre. Tackling this problem in a qualitative manner might give us a reasonable

understanding of the key actors in a particular project and help identify some activities

which can be considered to be more important than others. But researchers have

struggled to quantify contribution of the identified actors or creating suitable metrics to

enumerate the relative value of the activities earmarked. The advent of Agile methods

of software development, and software development tools that eliminate the need of

writing code have increasingly rendered traditional LOC-based metrics obsolete.
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1.4.2 Inherent perils in mining GitHub

Research conducted to estimate participant contribution in software development projects

have largely used GitHub or other publicly accessible VCS(Version Control Systems) to

mine information and understand the mechanics of participant collaboration(Kalliamvakou

et al.,2016). However, this is not without its own set of challenges, some of which have

already been highlighted in previous research. (Kalliamvakou et al.,2016)

A primary concern while mining GitHub is the misalignment between the actual

and mined data. For instance, a study by Kalliamvakou et al. (2016) highlighted that

almost 40 % of the PR’s did not appear to be merged with the master branch when

mined from GitHub, even though they were, in reality.

Kalliamvakou et al. (2016) voiced other concerns centred on finding active projects

for data mining such as:

1. Most projects tended to be inactive for significant periods of time.

2. A vast majority of GitHub projects (around 70%) are personal, and thus have

only 1 committer.

3. Research has also established that most projects conduct some development ac-

tivities outside GitHub.

4. The PR-based nature of GitHub ensures that all code merges to the main code-

base (as represented by the Master branch) are for those commits which have

been deemed acceptable by peer reviews. Thus, though we see the successes in

creating new functionalities and fixing bugs, we do not glimpse the failures and

the learning curve which are critical to have a well-rounded view of contribution.

5. Some GitHub repositories have logs of activities by non-users as well. In some

cases, this is the result of the activity of users not being properly credited to their

GitHub account.

1.4.3 Difficulty in using the GitHub API

Using GitHub API to mine for data also becomes a challenge, due to the API exposing

a subset of the entirety of events or entities available on GitHub for that project, as well

as providing limited information regarding those entities.(Kalliamvakou et al.,2016)
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For instance, when we observe an Issue on GitHub site, we can clearly see all the

relevant information about the Issue creator, commenters, references made to the issue

and the pull request used to resolve the issue (if applicable). However, the Issue API

from GitHub provides only a subset of this data and the rest has to painstakingly

linked to the particular issue by mining information from a host of other API’s like the

Reactions API, the timeline API, etc.

1.4.4 Challenges in mining signals from Gitter chat

Mining chat boards or IRC applications to gauge participant engagement in terms of

effectiveness in communication, pro-activeness in taking up issues, resolving doubts

about the project in the community poses a significant challenge. The true challenge

is in delineating conversations and converting them into a usable ”Question asked” -

”Question Answered” - ”Acknowledgement to the answer” pattern. This becomes very

challenging due to the inherent nature of chat boards where questions may be answered

after a significant amount of time has passed, and there’s no definitive way of knowing

when a conversation has ended and who were the participants in that conversation

without extensive manual analysis.

1.5 Overview of Technical Approach

To address the research objectives previously outlined, a high-level data-model is con-

structed to calculate the contribution of a software engineer to a software project.

Following a top-down approach, contribution is broadly classified into three types, viz.

Direct Contribution(dealing with contribution made through code directly to the code-

base); Administrative Contribution(dealing with contribution made through Issue and

Pull-Request handling and housekeeping activities); Guidance Contribution(based on

engagement in the chat-boards, by asking pertinent questions, resolving queries and

being a positive influence on the community in general). Data mining from GitHub

and Gitter is done to collect signals which would help quantify the high-level concepts

espoused in the data-model. A bottom-up approach is followed to generate increasingly

complex metrics from simple counts of activities. This model is continuously refined

through sanity testing, conducted for chosen individuals, in order to judge the corre-
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lation between the contribution values generated through the mined signals and the

contribution scores given to these individuals by manual analysis. This process is re-

peated until a sufficient level of correlation is obtained. A dashboard is then utilized to

graphically display the calculated contribution values, for engineers, for every quarter.

1.6 Dissertation Outline

• Chapter 1 introduces the project to the reader by elucidating the motivation

behind the research, stating the research question and the research objectives

addressed in this dissertation, listing the research challenges and giving a brief

technical overview of the research.

• Chapter 2 presents an overview of the existing State-of-the-art methods employed

to estimate the contribution of software engineers in a project. This chapter

introduces the technology and research areas associated with the research carried

out in this dissertation and reviews relevant literature.

• Chapter 3 provides details about the design decisions made during the disserta-

tion and the reasoning for the same.

• Chapter 4 discusses the implementation details of this research. The technologies

that were used are described, alongside the justification for selecting them.

• Chapter 5 provides an overview and discussion of the observations gathered

throughout the research. The results of the research are also evaluated in light

of the research objectives.

• Chapter 6 concludes the dissertation in which conclusions are drawn about the

research and highlights the research contribution. It ends with a discussion on

the future work prospects.



Chapter 2

State of Art

This chapter discusses the State of the Art solutions, in the field of Software Metrics,

designed to calculate contribution and allied concepts like productivity. The chapter

gives a brief background into the development of traditional software metrics, their

shortcomings and discusses the advances made in academia and industry regarding the

estimation of contribution as a software engineering metric. The relevant literature

supporting the use of argumentation theory in crafting software metrics is also laid

down, as is the use of measurement theory to create software metrics.

2.1 Background

For a thorough assessment of the present state of software metrics used in the industry,

and their relative success in staying relevant given the rapid evolution of software

engineering practices; it is imperative to look into its history.

2.1.1 Software Engineering Metrics - Growth and Overview

The first dedicated study on software metrics was conducted by Gilb (1977), though

the origins of software metrics can be dated back to the 1960s(Fenton & Neil,1999).

The Lines Of Code (LOC) measure was popularly used as a means to assess both

developer productivity in terms of LOC and product quality(in terms of defects raised

per Kilo Lines Of Code). Some early resource prediction models were developed by

Putnam (1978) and Boehm (1981), which also utilized the LOC metric or depended

8
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on other related parameters like “delivered source instructions.”(Fenton & Neil,1999)

Akiyama (1971) pioneered the attempt to predict software quality when he put forward

his proposal for a basic regression-based model for defect density in software modules.

Akiyama’s work (Akiyama,1971) was considered to be have used LOC as a “surrogate

measure for program complexity” by authors such as Fenton & Neil (1999).

Fenton & Neil (1999), in the same work, draws our attention to the unsuitability

of using LOC as a “surrogate measure” for different aspects of program size such as

effort, functionality, and complexity. With the increasing diversity of programming

languages by the mid-1970s, several researchers proposed various measures of software

complexity. Pioneering work was done in the field of software complexity metrics by

Halstead et al. (1977)and McCabe (1976), while Albrecht (1979) and subsequently

Symons (1991) pioneered concepts of software metrics like function points which were

inherently independent of the programming language used.

With a profusion of software metrics taking center-stage, Grady & Caswell (1987)

carried out their landmark study into reporting the efficiency of software metrics used

in the industry. This work set the baseline for and inspired many subsequent studies

in this field.

Basili & Rombach (1988) proposed the concept of “GQM (Goal-Question Metrics),”

which strove to ensure that a specific goal drove any software-metric creation activity.

Though this approach was criticized for its emphasis on Top-Down metric develop-

ment, and subsequent lack of focus in considering what was possible to calculated from

bottom-up(Bache & Neil,1995, Hetzel,1993), it had several supporters in the indus-

try, notably Hall & Fenton (1997) who stated that “A metrics program without clear

and specific goals and objectives is certainly doomed to fail.” This concept led to re-

searchers focusing on quantifying concepts in software metrics, previously considered to

be solely measurable through qualitative analysis, like Productivity and Contribution.

In general, this approach can be credited with a bringing about a paradigm shift in

the approach to crafting software metrics as now researchers focused exactly on what

they wanted to measure, rather than use existing measures as an (often inadequate)

approximation.

The field of software metric development soon embraced the concept of using metrics

in empirical software engineering (Fenton & Neil.1999). Fenton & Neil (1999) clarified

the term “empirical software engineering” to mean “evaluating the effectiveness of
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specific software engineering methods, tools, and technologies.” A breakthrough in

this field was achieved in the work of Basili & Reiter (1981) who defined a metric

to have successfully passed its evaluation if the empirical results were acceptable, the

experiments repeatable, and the ability to independently validate the findings of the

tests performed. This was crucial as it established “a measurement theory basis for

software metric activities” (Fenton & Neil,1999).

2.1.2 Software Engineering Metrics - Limitations and Recom-

mendations

Though Software Metrics as a field of study has flourished, with a large number of texts

and journals dedicated to the subject, and most major IT companies having some form

of “software metric program” for in-house purposes; researchers have often highlighted

the increasing irrelevance of current software metric methods in the face of the ever-

evolving software industry.(Riguzzi,1996,Fenton & Neil,1999,Dhawan & Juneja,2013)

Fenton & Neil (1999) has categorically stated that “There is no match in the con-

tent between the increased level of metrics activity in academia and industry.” The

same paper(Fenton & Neil,1999) also says that “Much academic metrics research is

inherently irrelevant to industrial needs” and proceeds to state that this irrelevance is

in terms of both scope and content.

The irrelevance in scope is justified(Fenton & Neil,1999) because academic research

concentrates on metrics which cannot be scaled up to satisfy industrial needs and

depends on parameters which may not be easily measurable in a real-world context.

The irrelevance in content has been pointed out because academic research stresses

on creating detailed code metrics, whereas the industry seeks metrics which enable

more efficient processes and utilization of resources.(Fenton & Neil,1999)

Glass (1994) has emphatically stated in this context “What theory is doing with

respect to measurement of software work and what practice is doing are on two different

planes, planes that are shifting in different directions.”

Fenton & Neil (1999) state that the way forward for software metric development

is to be able to model both ”cause and effect relationships” and ”uncertainty and com-

bination of evidence” to create metrics relevant to present day industry requirements.

It is in this background, that we must look into efforts made by academia to break



11

free of the stranglehold of traditional software metrics and establish metrics to quantify

concepts like contribution and productivity, which are considered vital to the indus-

try.(Gousios et al.,2008)

2.2 Characterizing effort through activity

This research gives importance to quantitatively analyzing developer activity as a mea-

sure of the contribution done.The work of Amor et al. (2006) in this field is particularly

significant as it argues comprehensively in favour of using activity signals to estimate

developer effort, especially in the area of Free and Open Source Software (FOSS). Amor

et al. (2006) states, that while determining effort is critical to all software engineering

projects; there has been relatively little progress made in this field beyond the classical

techniques employed.

Of the various traditional effort estimation models proposed (Cuadrado et al.,2002),

the model by Boehm (1981) considers seven parameters for estimation, viz. “algo-

rithmic cost modelling, expert judgment analogies, Parkinson’s Law, pricing to win,

top-down estimations, and bottom-up estimations”. Conte et al. (1986)’s method of

estimation proposed classification on the nature of the models before conducting an

estimate.

However, researchers argue (Amor et al.,2006) that since these models are primarily

dependent on the traditional LOC metric, they must be augmented by other signals of

activity which can be mined from public software repositories, especially in the case of

FOSS development.

Amor et al. (2006) argue that a thorough characterization of developer activity

would provide a much more comprehensive estimate of effort than traditional LOC-

based metrics and propose that a study of developer behaviour is more likely to produce

realistic results than an analysis of the project artifacts. For FOSS projects, this is all

the more important since they lack formal means to keep records of developer work

and depend mainly on poorly coordinated volunteer activity.

To this end Amor et al. (2006) analyzed a set of public software repositories using

various analysis tools like CVSAnalY1 – a web-based tool for mining data from a soft-

1http://cvsanaly.tigris.org/,accessed:04.08.2018

http://cvsanaly.tigris.org/
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ware repository(Robles, Koch, GonZÁlEZ-BARAHonA & Carlos,2004), MailingList-

Stats2 – a tool for analysing mailing list activity (Herraiz et al.,2006), GlueTheos3 – a

quantitative analysis tool that works on snapshots of the repository(Robles, González-

Barahona & Ghosh,2004), DrJones – a tool for performing empirical analysis of software

archaeology (Robles et al.,2005), CODD4 – an “authorship extraction tool” (Matellán Oliv-

era et al.,2003), and SLOCCount5.

Using these tools, they (Amor et al.,2006) arrived at a comprehensive estimation of

developer effort as a function of developer activity, as expressed by this set of formulae

cost = f(effort)

effort = g(activity) => cost = f(g(activity))

The work of Amor et al. (2006) helped set a strong precedent for future qualitative

analysis of developer contribution and was acknowledged by Gousios et al. (2008)

Though this work did not provide a detailed explanation about identifying and

measuring the sources of activity in a software project and the calculations involved

in estimating the cost; it helped set the tone for the investigations into the nature

of developer activity and the subsequent calculation of contribution from the same as

done in this research.

2.3 Quantifying Concepts through Measurement The-

ory

Whereas the previous two sections dealt with concepts supporting the creation of a

software metric like contribution (which was traditionally considered in purely quali-

tative terms), this section deals with the strategies employed in academia for creating

new metrics. This section provides the background for the creation of the contribution

metric defined by this research.

Whereas the previous two sections dealt with concepts supporting the creation

2http://libresoft.urjc.es/indexhtml?menu=Tools&Tools=MLStats,accessed:04.08.2018
3http://libresoft.urjc.es/index.php?menu=Tools&Tools=GlueTheos,accessed:04.08.2018
4http://codd.berlios.de,accessed:04.08.2018
5http://www.dwheeler.com/sloccount/,accessed:04.08.2018

http://libresoft.urjc.es/index html?menu=Tools&Tools=MLStats
http://libresoft.urjc.es/index.php?menu=Tools&Tools=GlueTheos
http://codd.berlios.de
http://www.dwheeler.com/sloccount/
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of a software metric like contribution (which was traditionally considered in purely

qualitative terms), this section deals with the strategies employed in academia for

creating new metrics. This section provides the background for the creation of the

contribution metric defined by this research.

A branch of measurement theory, “the representational theory of measurement”

has been often used to build software metrics. In general, Measurement Theory is

defined as a discipline for crafting fundamental rules for the correct use of a proposed

framework.(Alexandre,2002)

The representational theory of measurement in particular seeks to formalize com-

monly help beliefs about the working of a system. A set of data, representative of the

entity-attributes under consideration, is first gathered. This data is then manipulated

in a way such that the entity relationships stay consistent. (Fenton & Bieman ,2014)

According to Fenton & Bieman (2014) “our observation reflects a set of rules that we

are imposing on the set of people”

To exemplify that the measurement process is a mapping process between the em-

pirical and real-world data, Alexandre (2002) has given the following example:

“When we say that X is taller than Y, we define a binary relation between X and

Y. In this case, ”taller than” is an empirical relation for height.”

The basic rules for creating metrics using the representational theory of measure-

ment involve considering the real world as the domain and the mathematical world as

the range, and then adhering to certain rules as stated by Fenton & Bieman (2014):

“...) the representation condition asserts that a measurement map-ping M must

map entities into numbers and empirical relations into numerical relations in such a

way that the empirical relations preserve and are preserved by the numerical relations.”

The Figure 2.1 illustrates the stages of formal measurement postulated by Fenton

& Bieman (2014)

A major challenge encountered in this regard is the representation of complex re-

lationships between attributes, or when the representation of an attribute requires the

combination of several aspects. This requires the measurement process to be divided

into Direct and Indirect measurements. According to Alexandre (2002), “Direct Mea-

surement of an entity attribute involves no other attribute or entity. For e.g. Length

of Source Code (LOC) or Duration of testing process (Hours).”

Fenton & Bieman (2014) has defined Indirect Measurement of an attribute to be
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Figure 2.1: Formal Measurement Stages byFenton & Bieman (2014)

“obtained by comparing different measurements. For e.g. Number of defects divided by

module size gives the Module defect density.”

Another important consideration in this regard is the choice of Measurement Scales.

Since Direct Measurement of an attribute tries to map the observed system to the math-

ematical system, it encounters problems when the mappings are of different dimensions.

This necessitates the use of Measurement Scales to ensure appropriate analysis.

Five principal measurement scales have been identified, viz. Nominal(which clas-

sifies entities into categories), Ordinal(which performs rank ordering of the entities),

Interval(which defines the distance between two value points in the domain and seeks

to maintain a uniform distance or interval between all the value points), Ratio, and

Absolute.

Subsequent chapters will demonstrate how these measurement scales were used in

the creation of the data model to calculate contribution.

Of vital importance is the validation process followed to prove that the metrics suf-

ficiently capture the essence of the concept they represent. According to Pfleeger et al.

(1997), “a measure is valid if it satisfies the representation condition: if it captures in

the mathematical world the behaviour we perceive in the empirical world. For example,

we must show that if H is a measure of height, and if A is taller than B, then H(A)

is larger than H(B).” However, Alexandre (2002) warns that such proofs are empirical

in nature and difficult to replicate with sufficient rigour. Fenton & Bieman (2014)
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comments that “Currently there isn’t any accepted standard for validating a measure.”

Alexandre’s research (Alexandre,2002) also goes on to classify software engineering

metrics into three classes, viz. Processes, Products and, Resources.

Challa et al. (2011) have also outlined a way to quantify certain qualitative at-

tributes. They propose the quantification of software quality attributes on the basis of

a software quality model provided by the ISO, and define six attributes:

• Efficiency

• Usability

• Functionality

• Maintainability

• Portability

• Reliability

They (Challa et al.,2011) initially divide Software Quality into three components based

on Developer, User and Manager perspective as shown in Figure 2.2

Figure 2.2: Software Quality Components by Challa et al. (2011)
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These perspectives are further subdivided into characteristics and sub-characteristics

as shown in Figure 2.3 and Figure 2.4

Figure 2.3: division of Perspectives into Characteristics by Challa et al. (2011)

Figure 2.4: Subdivision of Characteristics by Challa et al. (2011)

Their use of hierarchical mapping of qualitative attributes to quantitative ones have

been replicated in creating the data model for Contribution, where Qualitative metrics

would be Direct Contribution, Administrative Contribution and Guidance Contribu-

tion; whereas Qualitative attributes are the base signals obtained from GitHub and

Gitter. This is explained in further detail in the next chapter.

The work reviewed in this section helped set the base for the design of the contri-

bution metric outlined in the next chapter.
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2.4 Argumentation Theory in Software Engineer-

ing

This research uses Defeasible reasoning and Argumentation Theory for both quantify-

ing contribution through a data-model as well as creating an evidence-based manual

model for calculating contribution. This section reviews research supporting the use of

such techniques in software engineering.

A key premise to the creation of the data-model for calculating contribution is

the use of personal opinions to construct a high-level model and the use of evidence-

based argumentation to construct, from the bottom up, an automated model which

can quantify those concepts.

This approach finds resonance in research as a survey conducted by Devanbu et al.

(2016) at Microsoft, required respondents to rank, in order of importance, the sources

of information which helped them form their opinions about software engineering pro-

cesses. It was found that respondents valued personal experience and peer opinion as

primary sources of information when formulating opinions.

The creation of a manual model to estimate contribution for validating the contri-

bution of a software engineer in a project based on the author’s own perspective can

be justified in the work of Rainer et al. (2003) who have established that “practitioners

most valued information that was provided by other practitioners, with the ideal type

of information being sourced from a local expert”.

The basis for this dissertation research has been the use of primary information,

i.e. information obtained through personal experience in creating the manual and

automated models for calculating contribution.

The use of Argumentation Theory in general and defeasible reasoning in particu-

lar has been utilized in software engineering for the development of theories in this

domain(Jørgensen & Sjøberg,2004, Sjøberg et al.,2008, Hannay & Jørgensen,2008)

The work of Johnson et al. (2012) propose that such efforts attempt to “generalize

local observations and data into more abstract and universal knowledge”. Substantial

research supports the importance of this approach in developing theoretical models

in software engineering especially in the field of Evidence Based Software Engineer-

ing.(Jorgensen et al.,2005, Brereton,2010)

Though our current scope of research tends not to hypothesize about the validity
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of the assumptions made in creating the model in a global scenario, it indeed forms a

crucial part of the future work planned in this regard.

Rainer (2017) defines arguments to be “a type of persuasive reasoning with a par-

ticular structure: a structure of assertions that, through inference, are intended to

support a conclusion”. A simple model of evidence-based argumentation is presented

in Figure 2.5 comprising of information, evidence, propositions and inferences.

Figure 2.5: Argumentation Model by Rainer (2017)

The evidence E is inferred from the information d, and in turn the probability of

proposition P is inferred from evidence E. This model borrows from previous work in

this field by Schum (2001), Anderson et al. (2005), Twining (1994) and Toulmin (2003).

Defeasible reasoning is defined by Walton (2015) “A defeasible argument is one in

which the conclusion can be accepted tentatively in relation to the evidence known so

far in a case, but may need to be retracted as new evidence comes in. A typical case of

a defeasible argument is one based on a generalization that is subject to qualifications.”

Rainer (2017) holds forth that both software engineers as well as software re-

searchers inherently make use of defeasible argumentation due to the constraints on

research, practical decision making and the “complex, ever-changing nature of software

practice”.

Though defeasible argumentation has long be reviled in literature as being inher-

ently fallible and thus unsuitable to represent expert opinion, Walton (2015) has argued

that “Although such reasoning may often be fallible, it is not always wrong, and such

reasoning is very often the predominant or even the only kind of reasoning available for

our decision-making...it is not helpful to condemn such[expert evidence as fallacious.
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Rather the problem is to judge in specific cases when an argument from expert opinion

can properly be judged as strong, weak or fallacious.”

Rainer (2017) has also recognized that ”the software engineering research commu-

nity would benefit from a greater appreciation of the range of reasoning and knowledge

that practitioners use”.

Walton’s research (Walton,2015) has also provided strong pointers in refining the

data model of the contribution created by outlining the three methods of evaluating

defeasible argumentation

• attack the premise

• attack the inference

• present a counterargument

This work makes extensive use of these principles to refine the automated evaluation

model to correspond the high-level concepts espoused in the top-down model as well

as make a reasonable approximation of the techniques used in manual evaluation.

2.5 Related Work in Academia

2.5.1 Software Engineering research using GitHub

In recent years the adaption of several features relevant to social engineering in signifi-

cant code hosting platforms has led to increased attention from researchers(Kalliamvakou

et al.,2016). Qualitative studies by Begel et al. (2013), Dabbish et al. (2012), and

Marlow et al. (2013) have led them to conclude that GitHub users tack the activi-

ties of co-contributors and form opinions about their role and potential capabilities.

Such evidence-based observations, helps them to contribute in a meaningful way to the

project and organize their contribution to complement that of others. Studies by Pham

et al. (2013),and Tsay et al. (2012) studied the implications of such social behaviour

on project success. Researchers have increasingly used tolls like GHTorrent and Git-

miner to study testing patterns (Kochhar et al.,2013), the programming languages used

(Bissyandé et al.,2013), issue reporting patterns (Bissyandé et al.,2013), and project

success (Tsay et al.,2012).
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Another key piece of research was carried out by Hauff & Gousios (2015) where the

researchers attempted to match developer profiles from GitHub to job descriptions.

Bissyandé et al. (2013) carried out a thorough study of over 100,000 projects through

the GitHub API to try and estimate the correlation between the number of issues

generated and project characteristics like age, team size etc. Their conclusion that issue

reporting was essential to collaborative development in GitHub projects underlined

the importance of contribution through issue administration as done in this research.

Dabbish et al. (2012) concluded that commit and issue comments were indicative of

commit quality and issue severity, which also led to these factors being considered in

this dissertation. A study by Guaman et al. (2017) proposed the use of SonarQube

and allied software to track code quality in software repositories. This led to the

incorporation of Pylint based code analysis in this research for checking the contribution

to code quality.

Though Kalliamvakou et al. (2016) have stressed upon the perils of data mining

through GitHub, the study of developer behaviour and its implications in project suc-

cess through GitHub has continued apace. However, most of these studies are qualita-

tive, and little work has been done to quantify project or performance metrics through

the data mined from GitHub.

2.5.2 State of the Art Research in measuring developer con-

tribution from GitHub

A primary source of inspiration for the current research was the work of Gousios et al.

(2008) in “Measuring developer contribution from software repository data.”

The authors postulated that the shift to agile development practices decreased the rel-

evance of traditional estimation models. Their work centred on the realization that

“Apart from source code, software infrastructures supporting agile and distributed soft-

ware projects contain traces of developer activity that does not directly affect the product

itself but is important for the development process” and led them to propose a model

that was an ensemble of traditional approaches with new parameters mined from soft-

ware repositories.

Given the importance of assessing contribution to “monitor the rate of project devel-

opment, identify implementation bottlenecks and isolate exceptional cases.” the authors
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propounded that software developers performed a wide variety of activities other than

writing code, especially in the domain of Open Source Software (OSS). In attempting to

identify indicators of contribution from actions performed in software repositories, the

authors considered tasks like defect-resolution and contribution to discussion boards

and mailing lists.

Given that there exists no clearly defined model to characterize contribution in

software engineering, Gousios et al. (2008) borrowed from the findings of Amor et al.

(2006) by using activity to determine contribution. Glass et al. (1992) proposed that

“clerical” and “intellectual” types of actions be made distinct when dealing with soft-

ware development. This was followed by a thorough taxonomic cataloguing of activities

performed in every stage of the Software Development Life Cycle (SDLC), which re-

mained a standard reference for both this research as well as the work done by Gousios

et al. (2008).

The model ultimately developed by Gousios et al. (2008) considered source code as

only a part of the activities done by a developer when estimating contribution.

For a developer d, a function C(d)was calculated as the sum of the total LOC coded

by the developer and the contribution function CF (d)

C(d)=LoC(d)+CF(d)

Utilizing a hierarchical approach suggested initially by Challa et al. (2011), the

authors performed a top-down assessment of activities performed in the project. Some

were adjudged to have a positive impact, whereas others were considered negative to the

project performance. Figure 2.6 gives details about the project resources, the actions

performed on them and their impact as postulated by Gousios et al. (2008) Given the

varying importance of each considered activity to the overall project, a weight was

assigned, and then this weighted sum was considered as given in the formula below

Atotal = αArep + βAml + γAbug + δAwiki + εAirc

where ”The value Ax denotes the sum of all the events affecting asset x in the project’s

lifetime”(Gousios et al.,2008)

The weights α, β. γ, δ, and ε are evaluated to be the percentage value of the sum

of all events for an asset x. Each asset type sum so calculated is broken down into a
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Figure 2.6: Categorization of activities and their impact by Gousios et al. (2008)

weighted sum of the measurable entities. The below formula shows the break-down for

Arep.

Arep =
∑

Wi ∗ Ai

Ai denotes the total number of actions and wi denotes the weight for each action.

The model was evaluated through a qualitative study of developer’s understanding of

whether the weights allocated to the actions were correct, and whether the surveyed

developers agreed about the positive or negative impact of certain activities to a project.

Another major challenge for the authors was to define a metric for work done in

software engineering terms. Sackman et al. (1966) has proposed a model of using

words as a unit of work by considering the entire code base as a body of text and

then assigning space-separated elements to represent thought. Other metrics were also

defined by Card & Scalzo (1999). However the authors failed to provide any conclusive

evidence in their own research about how they solved this problem.

This work(Gousios et al.,2008) provided the basis for conducting the current re-

search on measuring contribution and several concepts espoused here have been in-
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corporated into the project. However, this project begs to differ on the assigning

of absolute positive and negative attributes to certain activities like “Commit binary

files” as sometimes they may be essential to the project itself (such as when they con-

tain images), and it may require better organization in the repository. Finally special

mention must be given to the work of Reddy (2018), who, through his own thesis on

”Sociometrics in Software Engineering Measuring Dedication of Software

Developer through GitHub” proposed many of the fundamental processes used

in this research, including creation of data-models to compute abstract concepts in

Software Engineering.

2.6 State of The Art Systems in Industry

As compared to academia, industrial applications of measuring engineer productivity,

and by extension contribution, have been significant. This section outlines some of the

popular applications in this domain, and how they have influenced the course of the

research conducted.

The systems described in this section, only partly adhere to the comprehensive ap-

proach of calculating contribution as outlined in this research. However, they are sig-

nificant in the aspect that they break traditional norms for software metric estimation

and attempt to communicate essential concepts like developer and team productivity

in terms easily understandable to even those outside the domain of computer science.

2.6.1 GitPrime

A system that has come in the news in recent times is GitPrime6 due to its acquisition

by Pluralsight. GitPrime seeks to measure developer productivity in a comprehensive

manner and present it in a way understandable to non-IT personnel.

GitPrime allows software repository data to be mined from a variety of Version

Control Systems(VCS) like Git, GitHub, GitLab, and Bitbucket and provide a trans-

parency regarding team contribution and activity impact.(Rezvina (2019)) Using a

proprietary algorithm GitPrime calculates metrics like

6https://www.gitprime.com/,accessed:04.08.2018

https://www.gitprime.com/
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• Impact: This is a metric designed to calculate the difficulty involved in changing

a block of code in the code base. It considers things like LOC and number of

files affected to do so.

• Churn: This metric measures the rework or re-factoring done by a developer

while coding

• TT100 Raw: This metric represents the time taken by a developer to produce a

100 Lines of Code irrespective of its quality.

• TT100 Productive: This metric is similar to the above one, but considers the

time taken to produce 100 Lines of code after code churn has been factored into

the equation.

Figure 2.7: GitPrime dashboard from (Rezvina,2019)

GitPrime uses a set of well-designed dashboards to elucidate productivity in terms of

its fundamental metrics, and highlight leading contributors to the project. Figure 2.7

shows an example of the GitPrime dashboard

2.6.2 Code Climate Velocity

Velocity7 is an engineering Intelligence tool, similar to GitPrime which strives to bring

transparency to software development processes.

Velocity focuses on pull request analysis in GitHub and is able to mine data from

git, GitHub and BitBucket. It focuses on analyzing PR’s and their metadata to moni-

tor project progress and developer productivity. It makes the use of ”data-enrichment

7https://codeclimate.com/,accessed:05.08.2018

https://codeclimate.com/
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algorithms” to provide in-depth analysis beyond counts and averages of activities per-

formed.(Rezvina,2019)

Some of the metrics computed by Velocity to track productivity are:

• Impact: Similar to GitPrime, it also measures the difficulty in making changes

to the code base.

• Rework: This metric tracks the amount of re-factoring committed on their own

code and values this as a measure of developer productivity.

• Pull Request Activity Level: This metric tracks the effort behind integrating a

Pull Request to the code base and the activity performed on that Pull Request.

• Review Cycles: This metric details the contribution of Pull Request reviewers in

vetting a pull request before its merging with the code base. A higher Review

Cycle value tends to indicate potential issues with the Pull Request.

2.6.3 waydev

Another popular tool gaining attention in the market is waydev is waydev8, which also

tracks developer productivity in a way understandable to higher management. Using

metrics mined from git repositories it provides summary reports of developer activity

and productivity on a weekly basis.

2.6.4 SonarQube

Though SonarQube is not a conventional productivity analysis tool in the sens that it

primarily acts as a code quality platform, it bears mention in this study because of its

popularity and in-depth approach to code quality analysis.(Udara,2015)

SonarQube9 is an open source code quality management tool developed in Java and

maintained using sonarsource. It can be installed locally for direct or customized use.

This static code analysis tool takes Source Code files along with relevant binary

files as its input and performs analysis on the seven axes of code quality :

8https://waydev.co/,accessed:05.08.2018
9https://www.sonarqube.org/,accessed:05.08.2018

https://waydev.co/
https://www.sonarqube.org/
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• Bugs and Potential Bugs

• Coding Standards Breach

• Duplication

• Lack of Unit Tests

• Bad Distribution of Complexity

• Spaghetti Design

• Not Enough or Too Many Comments

SonarQube acts a useful tool for developers to track code quality, for managers as

a means of tracking down code changes, and a source of tracking technical debt for

non-IT personnel.

Though this research does not used SonarQube for code analysis, a similar tool

called Pylint is used, which operates on a similar principle.

This research has also included pointers for calculating Impact from both GitPrime

and Velocity and the focus on Pull Request-based Administrative contribution is in

part due to Velocity’s focus on Pull Requests given the Pull-Request based nature of

GitHub.

2.7 Summary

In this chapter, the State of the Art tools and research methods relevant to addressing

the Research question is discussed.

A brief background of the history and evolution of software metrics pertinent to

the research is provided. The limitations of traditional software estimation methods,

in measuring metrics like contribution, are also established. This is important to the

research as the aforementioned limitations were a primary source of motivation for

conducting this study.

Literature, supporting the estimation of effort in software development through

activity performed, is also reviewed to establish a theoretical base for the use of similar

methods; in this research, to calculate contribution.
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A brief outline of the application of Measurement Theory principles in creating

software engineering metrics is discussed as it forms the foundation for creating the

metric to calculate contribution.

Since Argumentation Theory using Defeasible Reasoning has been used to create

the data-model for calculating contribution, relevant research in this field has been

reviewed.

When reviewing related work in academia, the work of Gousios et al. (2008) has

been described in some detail as it constitutes (perhaps) the sole body of work which

deals with calculating developer contribution using software repository data.

Finally, some popular tools, used to measure team and developer productivity in

the industry, have also been discussed.

SOTA Code-based analysis Issue Analysis Pull Request Analysis IRC/Mail/Chat-based analysis
SonarQube Y N N N
GitPrime Y N Y N
Code Climate Velocity Y N Y N
waydev Y N Y N
Gousios et al. (2008) Y N N Y
Amor et al. (2006) Y N N Y
This Research Y Y Y Y

Table 2.1: Comparison of Current Research with State Of The Art

Most of the academic studies reviewed focused on qualitative assessments of devel-

oper behaviour and there remains a substantial gap in academia in the field of assessing

the contribution of software engineers in a project. In contrast, the tools being used

in industry propose methods and metrics to track developer contribution as well as

productivity. One of the goals of this research is to create an automated tool to assess

contribution of a developer in a software project, which would conform to the men-

tal model for contribution generated by a particular expert (in this case the author

himself). To this end, a brief comparison of the functionalities of the various State-

of-the-Art tools and approaches discussed and that of the current research is given in

Table 2.1.



Chapter 3

Design and Method

Chapter 3 provides a detailed description of the design decisions for the research by

building on the foundations, and stemming from the related work, reviewed in Chapter

2. Firstly a top-down approach is adopted to create a data-model for calculating the

contribution of software engineers in a project. This model is created using empirical

relationships as observed from the analysis of GitHub repositories, and is fleshed out

into a full-scale model for manually calculating contribution. In the second phase,

signals are mined from a particular GitHub repository to design, from bottom-up,

an automated process for calculating contribution as per the concepts espoused in the

high-level data model initially created. Numerical methods are then designed to ensure

the consistent calculation of contribution scores across both the models.

The automated model is then constantly refined to ensure that the base metrics

mined from GitHub are modelled to provide a reasonable quantification of the concepts

proposed in the high-level model

28
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An overview of the Design process followed can be seen in Figure 3.1

Figure 3.1: Design and Methods Overview

3.1 Background

This section provides a summary of the theoretical concepts which form the backbone

for creating the data-model for measuring contribution.

The purpose of the data-model is to quantify, and thus create a metric, for contribu-

tion according to an expert’s viewpoint (in this case the author himself). The measure,

so constructed, is of the form of a Goal-Question Metric as proposed by Basili & Rom-

bach (1988) (which has been discussed in the previous section). The design methods

utilized in this research follow the basic framework for creation of a Goal-Question

Metric as shown below:

• List the major goals

• Derive, from the goals, the major questions that must be answered in order to

meet said goals
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• Decide what must be measured to answer the questions satisfactorily.

In keeping with the spirit of this framework, a high-level categorization of the types of

contribution is conducted. This is followed by the creation of a set of parameters, for

each category, which symbolize the major components which make up these categories

of contribution. These actions help us to build a top-down abstract data model for

contribution.

Finally, a bottom-up model of contribution is created using signals mined from

GitHub and Gitter to determine which of these signals are useful, whether by them-

selves or in combination with other signals, in representing contribution as per the

high-level data model constructed.

Measurement Theory concepts, discussed in the previous chapter, are also impor-

tant.They provide the basis by which empirical relations between attributes can be

quantified through numerical relations between the same attributes using proper mea-

surement scaling. Figure 2.1 details the process for formal measurement principles to

create software metrics.

. The guiding principle behind the design stems from an understanding that con-

tribution be judged by evaluating the entire range of activities done by an engineer in

the light of the following :

• The magnitude of the work performed, such as number and frequency of commits

made, number of issues raised, etc.

• The impact of the work performed, such as significance of Pull Requests raised in

resolving bugs/blockers, Importance of comments made in resolving issues, etc.

• The diversity of activities performed, such as whether an engineer has solely

focused on coding as opposed to working on raising issues, engaging in productive

conversations in chat boards, fixing bugs, etc

• The scale of the quantity and significance of activities performed in comparison

to other participants in the project.

These principles are used to define the rule-set or the knowledge base for the infer-

ence mechanism.
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3.2 Top-Down Design

This section discusses the Top-down Model for contribution, which views contribution

from a management perspective. First the major domains of activity representing the

ways in which an engineer could contribute to a project were broadly categorized. The

broad domains were then sub-divided into domain-specific activities.

Research by Li et al. (2015), on the various attributes of a ”good software engineer”,

brought to light that different attributes were considered for engineers at different hi-

erarchical levels in an organization. This provided the cornerstone for the classification

of contribution into three major components

• Direct Contribution which deals with contributions done to the code base

of the project. All software engineering projects require engineers to do a bare

minimum of coding, though the bulk of the work is done either by junior engineers

and specialist coders. Though research (Amor et al.,2006) has protested the

undue importance given to LOC-based metrics in analyzing developer activity,

Gousios et al. (2008) considered contribution through code to be a vital aspect in

judging the contribution of a software engineer to a project. This research seeks to

measure direct contribution as the contribution of a software engineering through

code, by evaluating both the amount of work done, as well as the quality and

maintainability of the work.

• Administrative Contribution This component deals with the ”housekeeping”

tasks associated with maintaining the project, including handling issues and pull

requests. The importance of issue reporting and handling has been highlighted

in literature by Bissyandé et al. (2013) and reviewed in the previous section.

Given that GitHub follows a ”fork and pull” model of development (Kalliamvakou

et al.,2016) in which contributors make changes to personal or ”forked” copies

of the repository and initiate pull requests when they want the community to

incorporate these changes in the main code base, it is important that project

maintainers and owners contribute by thoroughly vetting such requests before

merging the branches with the code base (Gousios et al.,2014). In most organiza-

tions, project leads would be responsible for such activities, whereas open-source

projects rely on a few ”project maintainers” to perform these tasks. Often certain
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stakeholders in a project would dedicate most of their time to such activities in

order to ensure smooth project execution.

• Guidance Contribution This represents activities done to guide the project

team on the correct use of the project artifacts and to engender potential improve-

ments to the project itself. In organizations as well as Open-Source Software

development communities, there are experts, either professional consultants or

volunteers, who spread awareness about functionalities implemented, best prac-

tices for use, and resolve questions about the project in general. They provide the

support environment essential for attracting new contributors to the project, and

ensure that others benefit from their expertise. Most companies have dedicated

technical consultants who perform this role, whereas a few key project owners

and stakeholders act as helmsmen for open-source communities.

Previous research by Gousios et al. (2008) and Amor et al. (2006) have uti-

lized mailing lists and IRC chat-boards to analyze the effectiveness of developer

communication. This project uses the Gitter1 for a similar purpose as Gitter

is well-integrated with GitHub and actions of GitHub users can be openly and

consistently traced on Gitter.

Figure 3.2: Primary Categories of Contribution

1https://gitter.im/home,accessed:06.05.2018

https://gitter.im/home
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Figure 3.2 shows the three categories into which contribution is initially divided on the

basis of a broad classification of the types of activities performed.

3.2.1 Direct Contribution

Direct Contribution is the contribution done by an engineer, directly through coding,

to the project. Unlike traditional methods which focused solely on LOC and allied

metrics to quantify such contribution, a more thorough approach is proposed.

Direct Contribution has been categorized to consist of

• Contribution to the Code Base

• Contribution to Code Quality

• Contribution to Code Maintainability

Figure 3.3 illustrates this categorization.

Figure 3.3: Basic Top-Down Model for Direct Contribution
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This research recognizes the fact that a simple count of the quantity of code written

is pointless if the code has been written badly and if it takes significant effort to

maintain that code and make it understandable to others. This model is explained in

greater detail in the section 3.3.1

This model sought to refine the high-level concepts espoused in the Top-Down model

into concepts that could be analyzed directly by observing the activities performed by

developers in a project.
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3.2.2 Administrative Contribution

Apart from coding, most engineers in organizations are engaged in tasks like flagging

issues, raising defects, code reviews and fixing bugs. Participation in these tasks may

not necessarily require a change in the code base itself, or the need to do any coding

at all.

However, these tasks are equally important as they help streamline the process of

software development and help maintain the ”health” of project in general.

In GitHub, most of these activities are performed through Issues and Pull Requests,

which have been recognized to be critical to project development by Bissyandé et al.

(2013) and Gousios et al. (2014) respectively.

In this research Administrative Contribution is based on contribution to Issue Ad-

ministration (like flagging significant issues, identifying critical defects and blockers,

and tracking and ultimately resolving issues), and Pull Request Administration (like

helping add new functionalities to the code base, fixing defects in the code base through

Pull Requests, and reviewing Pull Requests before allowing them to be merged to the

code base).

Figure 3.4: Basic Top-Down Model for Administrative Contribution

Figure 3.4 illustrates this breakdown. A detailed study of the Top-Down model is

provided in Section 3.3.2.
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3.2.3 Guidance Contribution

All engineers require a guiding hand, from time to time, to set them on the right track.

Companies hire technical consultants expressly for this purpose. Senior members, and

indeed anyone with relevant expertise can, and often do, provide guidance to others

in the project. In Open-Source communities, this is all the more important as the

community at large grapples with challenges in using the product. Existing documen-

tation is frequently insufficient to handle particular issues and community members

usually pitch in to resolve these problems. The Guidance Contribution of engineers is

analyzed from their engagement in the project’s official Gitter chat board.Parameters

like keeping the community engaged in a positive way, resolving doubts, and raising

important issues are considered for this purpose. Figure 3.5 illustrates this concept.

Figure 3.5: Basic Top-Down Model for Guidance Contribution

The top-down model discussed in this section deals with the high-level concepts

proposed to calculate contribution.This is consistent with the primary stage of the

Goal-Question Metric framework discussed in Section 3.1, viz. listing the major goals

which define the metric. A more detailed discussion on each of these concepts and the

creation of the contribution metric is discussed in the subsequent section.
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3.3 Design of Model for Manual Evaluation

Once the Top-Down model was conceptualized, a more comprehensive model was de-

signed to calculate contribution for developers manually. This model was built using

the concepts proposed in the preliminary Top-Down Model and later used as a bench-

mark to evaluate the automated system built to calculate contribution using data

mined from GitHub and Gitter. This data-model was built using the Goal-Question

Metric framework discussed in Section 3.1, specifically the second stage of the frame-

work which sought to ” Derive from each goal the questions that must be answered to

to determine if the goals are being met.”and adhered to the principles of Measurement

Theory application for Software engineering as shown in Figure 2.1

The goal of this model was to demonstrate that a contribution score could be

calculated for an engineer using manual analysis and evaluation of activities performed

in the project. This would later pave the way for an automated approach which would

seek to quantify the concepts proposed by this model in terms of metrics obtained from

GitHub.

During the conception of this model it was not considered whether the modelling

would be suitably replicated from signals obtained in GitHub and Gitter, but stressed

on heuristics which can be followed in a manual evaluation process.

The model for Manual Evaluation has three major parts which correspond to the

three high-level concepts comprising contribution as set forth in Chapter Three, viz.

Direct Contribution, Administrative Contribution and Guidance Contribution.

The underlying principle driving the assignment of contribution scores through this

model is the fact that engineers must be evaluated on the quality of their work as

well as the amount of work done. Furthermore, those engineers observed performing

significantly better than their peers should be rewarded for their efforts, whilst those

found to under-perform should be penalized. Also, those engineers performing the

greatest diversity of tasks would be rewarded, though those not participating in any

task would not be penalized.

The below sections describe in detail the structuring of the model for calculating

each of these components
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3.3.1 Components of Manually Verifiable Design Model - Di-

rect Contribution

The manual model for calculating direct contribution to the code base emphasizes on

estimating the software engineer’s contribution to the code base of the project, both

in terms of activity done (e.g. in terms of commits done), and the quality of the

contribution made.

Figure 3.6: Detailed Model for Direct Contribution

As illustrated in Figure 3.6 the manually verifiable model for calculating Direct

Contribution, depends on three main factors, which depend on sub-factors themselves

–

• Contribution to the Code base

• Contribution to Code Quality

• Contribution to Code Maintenance
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Contribution to the Codebase

Figure 3.7: Modelling Contribution to Code Base

The various factors considered when checking the contribution to the code base,

represented in the Figure 3.7 are described as follows:

• The frequency of commits – the frequency of commits done as a measure of con-

tribution to the code base has been established in several research papers (Gousios

et al.,2008). This metric is calculated by finding the number of commits done by

the engineer over a specified period of time by manually counting commits done

or even with the help of the GitHub API.

• Impact of the commits - The concept of Impact is an attempt to estimate the

extent to which a commit has affected the code base. GitPrime defines Impact

to be a metric which answers the question “Roughly how much cognitive load did

the engineer carry when implementing these changes? 2 It is estimated from the

number of files affected, by a developer, in a commit.

• New functionality added to the code base - Several research papers (Gousios et al.,2014)

as well as state-of-the art applications in this domain like GitPrime and Velocity

stress on the importance of considering the amount of new functionality added to

2https://help.gitprime.com/metrics/what-is-impact, accessed:04.08.2018
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a code base while estimating the significance of the commit made, thus it forms a

core component of the manual evaluation process of estimating the contribution.

New functionality is considered in terms of number of new files created, as well

as the average number of new methods created per file.

Contribution to Code Quality

Figure 3.8: Modelling Contribution to Code Quality

The concept of peer-code review, as a process of having source code manually

inspected by engineers other than the author, has been recognized as a valuable tool

for improving software quality (Sadowski et al.,2018). Fagan (1999), helped formalize a

structured approach for reviewing code. Time, and research-based evidence, has helped

validate the benefits of conducting code reviews, especially in finding potential bugs

and vulnerabilities in the code (Shull & Seaman, 2008). However, the cumbersome and

time-consuming nature of this process has proven to be a major hindrance in universal

use of this process (Rigby,2012). Several organizations have turned to light-weight

tools to perform code analysis in order to increase the efficiency of this process.

Considering the recommendation to use code quality estimation tools like Sonar-

Qube by Guaman et al. (2017), Pylint is used for the purpose of this research. Figure

3.8 illustrates the detailed model to calculate code quality
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Contribution to Code Maintainability

Figure 3.9: Modelling Contribution to Code Maintainability

The manual evaluation model for measuring code maintainability focuses on two

things.

• The change made to the quality of the code itself

• The quality of commenting done when editing a piece of code

The difference made to the code quality through a commit can be easily adjudged

using a code analyzer to check the difference made to a file by multiple commits and

identifying committers who have increased or decreased the overall quality of the code.

However, measuring the quality of commenting done is a more nuanced process. The

significance of comments in code maintainability cannot be overstated (Steidl et al.,

2013). The method for evaluating the quality of comments is based on a procedure

laid down in a study by Steidl et al. (2013) in their research on this topic.



42

This research utilizes the code quality model defined by Steidl et al. (2013) and

illustrated in Figure 3.10 for judging commit quality.

Figure 3.10: Code Quality model by Steidl et al. (2013)

To evaluate comments using this model, the comments have to be first categorized

into discrete types as proposed by Steidl et al. (2013)
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Copyright comments These include information about copyrights or licensing in-

formation associated with the code in the source file. They are to be found at the

beginnings of each new file. A standard example of this is given below in Figure 3.11

-

Figure 3.11: Copyright Comment from Adobe

Header Comments These provide a brief description of the functionality of the code

and other related information like author name, revision number, etc. A standard

example of this is given below in Figure 3.12 -

Figure 3.12: Header Comment Example
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Member comments These describe method functionality and are usually situated

before the member declaration. These are especially essential for documenting API’s.

A standard example of Header comment is given below. A standard example of this is

given below in Figure 3.13 -

Figure 3.13: Member Comment Example

Inline comments These are found inside a method body and describe details about

the implementation.A standard example of Header comment is given below. A standard

example of this is given below in Figure 3.14 -

Figure 3.14: Inline Comment Example

Section comments These are used to identify and provide information about a bunch

of methods which have a similar functionality.

Code comments Sections of code commented out, especially if that code was used

for debugging purposes.

Task comments Provides details about tasks, set out by the developer, to be im-

plemented in the particular source file. These are typically to-do comments.

Once the comments have been categorized into the above-mentioned sections, the

following quality model is used to assess the quality of the comments and the relevant

comment types associated with each quality attribute.

Coherence This attribute deals with how the code and its associated comments are

inter-related. For instance, member comments must be related to member names in the
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member declarations that follow them. Member and inline comments must also provide

insights about non-trivial details (beyond the scope of the current code) to enhance

understanding of the project implementation and design. This is especially important

in an open-source development environment where many different developers work on

the same piece of code.

Figure 3.15 is a piece of code3 which is essentially a member comment which provides

detailed implementation notes about a section of code A not so good example of a

Figure 3.15: Good Example of a Coherent Comment

coherent comment is one that has failed to capture the essence of the method which it

seeks to elucidate. Figure 3.16 is from the scikit-learn repository which. The comment

highlighted in red was incomplete in its description of the plotting API and it has been

subsequently replaced by a more coherent comment highlighted in green.

Figure 3.16: Caption

Usefulness This attribute deals with the clarity with which a comment outlines the

intent of the code. The heuristic behind this is that deleting a ’useful’ comment would

make understanding the source code considerable harder.

The below Figure 3.17 from GitHub Scikit-Learn repository represents a set of

3https://blog.codinghorror.com/code-tells-you-how-comments-tell-you-why/, accessed :
04.08.2019
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comments which describe in detail the procedure to correctly document parameters

and attributes and adds considerable value to the body of the document.

Figure 3.17: Good Example of a Useful Comment

Completeness It helps enforce some global aspects of the system such as placing

copyright comments at the start of every new file or placing section comments before

a set of related getter and setter methods.

Consistency This attribute concerns itself with ensuring that a similar pattern is

followed for commenting throughout the project. This may be to enforce a global

coding standard, or the particular standards set in the project.For instance, writing

comments in a language not understood by all members of the community is a poor

sign of comment consistency.

The detailed description of how this model is quantified to provide a score for Direct

Contribution is defined in Chapter 5

3.3.2 Components of Manually Verifiable Design Model - Ad-

ministrative Contribution

The concept of calculating Administrative Contribution for a software engineer arises

out of concerns expressed in research (Kalliamvakou et al., 2016) regarding the fact

that there are sections of the project team who, being at senior positions, tend to

contribute more by ‘housekeeping’ activities rather than direct coding. These people

are primarily concerned with ensuring that the proper processes are in place to track

major issues and that code is added to the main code base only after it is thoroughly
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vetted.

In GitHub, all concerns raised by the developer community are usually expressed

as Issues and since GitHub follows a Pull-Request based model, any addition to the

code base must be raised as a Pull Request, which then undergoes scrutiny by the

community at large.

The model for administrative contribution has two major components described in

Figure 3.18

• Contribution to Issue Administration

• Contribution to Pull Request Administration

Figure 3.18: Detailed Model for Administrative Contribution



48

Issue-based administrative contribution

When considering the contribution made to Issue administration we look at a range of

factors some of which are based on quantifying activities performed, while others are

based on quality-assessment of the activities themselves. In broad terms this was clas-

sified as Regular Issue Administration Initiative and Issue Resolution Administration

Initiative respectively. This is illustrated in Figure 3.19

Figure 3.19: Detailed Model for Issue-based Administrative Contribution

Regular Issue Administration Initiative

Regular Issue Administration Initiative considered activities like Raising Issues,

Closing Issues, Raising Issues for Bugs/Blockers, Closing Bug/Blocker Issues on their

resolution, Tagging issues to milestones, Segregating issues into categories based on

their nature.

For calculating Regular Issue Administration Initiative some components are trivial

in their choice, such as numbers of issues raised and closed, and they provide a general

indicator of the level of engagement of an engineer in bringing to light certain concerns

in front of the community and in ensuring that said concerns are marked as closed on

their resolution.

Since, GitHub does not have a dedicated Bug-tracking system, any Bugs/blockers

are raised as Issues. Initially, the engineer raising the issue may not be certain that

the problem encountered is a bug or a blocker, and seeks advice on the same from the

community. Others then investigate the matter and decide to label it as a bug or a

blocker if they deem fit to do so. This component is included in the manual estimation

of contribution as a means to include defect-tracking initiatives by engineers in the

project.

Assigning issues to milestones has been considered to be indicative of administrative
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foresight as it helps in ensuring that the issue is resolved within the time-frame set for

completing that milestone.

Another consequence of GitHub not having a dedicated defect-tracking systems is

that most concerns raised as issues have to be labelled into discrete categories in order

to provide clarifications to the community about the nature of the problem encountered.

This is done through labelling the issues with a wide variety of labels. If the labelling

is not subsequently changed by another member of the community, then the engineer

is considered to have correctly recognized the issue for what it is, for e.g. a bug, a

blocker, a regression issue, an API issue etc.

Previous research (Gousios et al., 2014) has focused on trying to understand the

significance of such labelling and has put forward evidence that different labels have

differing importance relative to the project. For instance an issue labelled ‘High Prior-

ity’ is likely to be more critical to the project than an issue labelled ‘Low Priority’. This

is consistent with the assigning of criticality and priority to defects in defect-tracking

tools like HP ALM.

In order to calculate a score for labelling issues, the categories are first divided into

three broad sections, A, B and C, with A being of highest importance and C of least

importance. Unlabelled issues were also checked individually and their importance was

assigned by the author on the basis of personal understanding.

The categorization is described as follows -

Category A - Bug, Blocker, Good First Issue, Hard, Help Wanted, High Priority,

Large Scale

Category B - Build/CI, Documentation, Enhancement, Medium Priority, Moderate,

Regression

Category C - All the rest of the categories available.

Issue Resolution Administrative Contribution

The Issue Resolution Administrative Contribution was calculated in a more nuanced

manner. It depended on assessing the importance of an engineer in contributing to the

resolution of an issue.

When checking for contribution to resolving an issue an in-depth analysis of the

comments made by an engineer, and the event-actions performed were analyzed and

graded on the basis of the following heuristics, which were influenced by several popular
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blogs and articles on the topic4,5 Some of the heuristics involved in this are -

Duplication is to be avoided in raising issues. It is possible that duplicate issues

are raised for the same problem, due to the contributors working without much formal

communication between them, but they must be identified by the community and closed

as soon as possible. Contributors will be penalized if they have raised a duplicate issue,

and contributors who have identified duplicate issues will be rewarded for their action.

An issue for an issue One issue needs to be raised for every concern faced. It may

seem convenient to raise a single issue for a set of problems which were encountered at

the same time. However for efficient defect tracking, different issues must be raised for

different aspects of the same problem. A generic example6 can be as follows

Bad Practice : ”the form needs a subject field and the submit button doesn’t work”

Good Practice: Issue 1 – “Add subject field to form” Issue 2 – “Submit button causes

405 error”

Appropriate Titles Giving appropriate titles to issues is vital in ensuring that the

community gets a sense of what the issue is about. Titles should be brief, specific and

provide enough context for a person to get a sense of what the issue is about without

having to go through the body of the issue. A good example form the scikit-learn repo

itself is given in Figure 3.20

Figure 3.20: Example of Concise Title

4https://medium.com/nyc-planning-digital/writing-a-proper-github-issue-97427d62a20f,Accessed:
15.08.2019

5https://wiredcraft.com/blog/how-we-write-our-github-issues, Accessed: 15.08.2019
6https://medium.com/nyc-planning-digital/writing-a-proper-github-issue-97427d62a20f,Accessed:

15.08.2019
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If the issue is about a potential bug in the code, then the title must contain in-

dicators as to what the problem actually is. In Figure 3.21 is shown an issue which

highlights a bug in the scikit-learn project.

Figure 3.21: Example of Concise Title

Also, it is a good practice to start writing issue titles by stating facts first and

putting opinions later. Figure 3.22 showing an issue from the scikit-learn repo is a

good example.

Figure 3.22: Example of Factual Title

Following proper formatting Formatting is essential to making the message ex-

pressed by an issue as crystal clear as possible. GitHub provides the option to format

text using Markdown and has several customized markdown options. Using markdown

to format the issue-body allows for consistency in the issues raised. Also, using links

for pointing to specific areas of concern or putting relevant screen-shots to augment

findings is highly beneficial in improving overall comprehension.
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Tagging the people responsible for coding a particular functionality, or those who

have helped in issue resolution is also a great way of seeking attention or giving credit

where it is due. Engineers following proper markdown styling and bolstering their

findings with links and screen-shots have been rewarded for their efforts in the manual

evaluation process. Figure 3.23 from the scikit-learn repo illustrates proper formatting

and use of code output information to clarify the issue raised.

Figure 3.23: Example of good Formatting
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Clear Reproduction Steps An issue must have clear reproduction steps associated

with it so that the community at large can attempt to reproduce the same issue on their

own initiative. Reproduction steps must be precise and easily replicable. Providing

details about the expected and actual results also helps in issue resolution. This is

especially important in case of Issues dealing with Bugs. Engineers following this

standard are rewarded for their actions, and vice-versa. Figure 3.24 is a good example

from the scikit-learn repository

Figure 3.24: Example of Step Reproduction

Use of Standard Templates Wherever possible, it is best to use the standard tem-

plate for the project used for raising issues to maintain consistency. It also worthwhile

to attach the results of investigations carried out to resolve the issue in the issue body.

Engineers adhering to the template format and proactively showcasing their own efforts

for issue resolution are rewarded and vice versa.

Precise Commenting in Issues When providing comments to help resolve issues,

it is of paramount importance to be as precise as possible in asking questions and in

giving solutions. Precise correlations must be drawn between the solution suggested

and the methods considered, including relevant references.
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PR-based administrative contribution

Github utilizes a ”fork and pull” model in which developers create personal copies of

repositories and generate a pull request when the want their changes to be incorpo-

rated into the main code base. This makes reviews of such pull requests an extremely

vital part of the Github work-flow. An in-depth examination of how Pull Requests

work in GitHub was conducted by Gousios et al. (2014). and this study revealed this

pull-request based model to offer scope for ”fast turnaround, increased community en-

gagement and decrease in time needed to incorporate contributions”. This research also

proved that the reasons for rejecting pull requests were rarely technical. This chain of

thought led to the realization that a considerable amount of effort is required to raise

the pull request in a way acceptable to the project maintainers and the community at

large, as well as to ensure that the pull request satisfies the functional and technical

requirements set for the project. The detailed model for PR-based administrative con-

tribution is described in Figure 3.25 below The PR-based administrative contribution

Figure 3.25: Detailed Model for PR-based Administrative Contribution

model in turn depends on three components -

Pull Request Regular Initiative Contribution which comprises of contribution through

raising and merging pull requests. These represented fundamental administrative tasks

in handling pull requests. A detailed calculation of Pull Request Regular Initiative

Contribution from such tasks is provided in chapter 5

Pull Request Troubleshooting Initiative which deals with raising pull requests to fix

bugs and blockers. GitHub does not have any dedicated Defect Tracking module and

thus, all Bugs/Blockers raised through issues and accepted as such are handled through

Pull Requests. A detailed calculation of Pull Request Regular Initiative Contribution

from such tasks is provided in chapter 5.
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Pull Request Review Initiative deals with the activity of reviewing Pull Requests.

In the ”fork-and-pull” model followed by GitHub all Pull Requests raised must be

thoroughly vetted by the community before merging the code branch with the main

code base. A detailed calculation of Pull Request Regular Initiative Contribution from

such tasks is provided in chapter 5.

Apart from this another metric is calculated. This is the Pull Request Importance

Score. This is to represent the relative importance of the contributor raising the Pull

Request, as compared to others in this domain. While the other categories dealt with

concepts which could be largely represented through quantity counts, this metric seeks

to judge the quality of the people raising these requests by monitoring their behaviour

during Pull Request handling. An easy of approximating this value is through a check

of the number of times a certain pull request was referenced by others. This would give

a good indication of the importance of the Pull Request to the code base in general

and in turn the importance of the contribution of the person initiating it.

However, the quality of contribution is to be judged in a more nuanced manner by

considering the clarity with which the developer has raised the request.

Also considered is the willingness of other members of the community to accept the

pull request into the code base. This point is evidenced by the number of corrections

to the pull request sought and related clarifications sought.
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For instance, a good way to ensure that the contents of your pull request are crystal

clear to the community is to document the issue (if any) it seeks to address, and to

clearly lay out the scope of changes represented by the pull request. The Figure 3.26

mentions an instance of a well-defined Pull Request from the scikit-learn repo in GitHub

Figure 3.26: A Well defined Pull Request
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Another indicator of good contribution is a pull request which has been unanimously

accepted by the community as evidenced in Figure 3.27 The quality of the contributions

Figure 3.27: A Unanimously Accepted Pull Request

done by the engineer in the field of Pull Request administration are factored into the

contribution score assigned. A detailed example of this is given in Chapter 5
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3.3.3 Components of Manually Verifiable Design Model - Guid-

ance Contribution

The core principle behind deducing Guidance contribution is to evaluate the amount of

engagement on the Gitter chat board as well as the quality of such engagement. This

is illustrated by Figure 3.28 shown below

Figure 3.28: Detailed Model for Engagement Contribution

When we deal with the amount of engagement, concepts like the number of total

messages authored, the number of times mentioned by others in chats, number of ques-

tions asked, number of questions answered all come up as vital indicators of quantifying

engagement. In short, the footprint of an engineer’s activity on the chat board can be

measured by counts of these activities. How they sum up to calculate contribution is

dealt with in chapter 5.

Quality of engagement is more nuanced and can be determined by judging the

quality of conversations, an engineer has participated in, in the chat board. These

conversations usually take the form of a ”Question asked” - ”Question Answered” -

”Answer Acknowledgement” pattern, with the particular engineer’s contribution to the

conversation coming in one or more of these pattern types. The heuristics employed

for judging the Quality of Engagement in the conversation are -

• It is considered a positive contribution if the user has avoided spamming in the

blog and has stuck to meaningful conversations.

• It is considered a positive contribution if the engineer has promptly answered a

question.

• It is considered a positive contribution if the engineer has answered a question

thoroughly and with sufficient technical context.

• It is considered a positive contribution if the engineer has received a positive

acknowledgement for the answer given.



59

A detailed explanation of how an engineer is scored on Guidance Contribution is

shown in Chapter 5 and is also shown in the Appendix.

Total contribution is calculated by summing up the scores for Direct, Administrative

and Guidance contribution from this model

This section discusses, in detail, the components of a model for contribution which

can be calculated using a manual analysis of activities performed. The scoring scheme

used for calculating the contribution is discussed in detail in chapter 5 and an example

of using some these components for calculating contribution is discussed in the Ap-

pendix attached. This model was created to allow the contribution of an engineer in

a project to be calculated through purely manual effort, although the use of tools like

Pylint was considered. Some of the basic metrics dealing with counts of activities can

be more easily calculated using the GitHub and Gitter API’s to mine the data for sub-

stantial periods of time. Later on, when it was decided to use this model to evaluate the

performance of the data-model created solely from metrics gathered from GitHub and

Gitter, the model adapted to using the standardized methods of creating a Total Score

for a metric component as defined later in Section 3.5.3 to quantify the concept of re-

warding those engineers observed performing significantly better than their colleagues

and penalizing the under-performers and utilized the Inference Mechanisms designed

for the Bottom-Up data-model, to formalize the concepts of evaluating engineers on

both the quality and quantity of the work performed and rewarding those who per-

formed the greatest diversity of tasks. These concepts were stated at the beginning of

this section, and were quantified using the formulae and inference systems designed for

the Bottom-Up model to ensure uniformity in Measurement Scaling during evaluation.

3.4 Bottom Up Design

The Bottom Up design initially considers the base metrics mined from GitHub and

Gitter and uses them, either individually or in a certain combination, to represent the

concepts described in the detailed Top-Down model of contribution described above.

In some cases, a combination of metrics which provide a reasonable representation

of the concepts espoused are used, even though they may not exactly correspond to

the methods described in the model.

This has been done because of the time and resource constraints of the current
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research. This section answers the third phase of the framework for the Goal-Question-

Metric, viz. ”Decide what must be measured to answer the questions satisfactorily”.
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Reasoning Logic for metric aggregation

In the subsequent section, it will be observed that some higher-level concepts have been

characterized by a single signal whereas other require a combination of signals. Before

proceeding to analyze the choice of basic signals from Gitter to quantify higher level

concepts, it is important to understand the logic behind the design decisions made.

This logic has been constructed using by using the principles of defeasible reasoning,

as it does not claim to provide deductive proof of the suitability of the measures created,

and accepts that there might be exceptions to these rules.

First, the set of base signals obtained from GitHub and Gitter are considered, then

the following algorithm is applied

if a single base level signal is sufficient to represent a higher-level concept then

Allocate the metric to the concept

Calculate the Percentile-based score and Z-score for the metric

Calculate the total score for the metric

Evaluate the correlation with the manually assigned score

if The correlation is sufficiently strong then

Finalize the allocation of the signal to the concept

else

Obtain more base signals and repeat the process

end if

else

Obtain more base signals and repeat the process

end if
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Figure 3.29: Flowchart for creating Bottom-Up Metrics
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This can be represented by the flowchart in Figure 3.29. An instance of a single

signal used to represent a concept is that of Average Pylint Score to represent Con-

tribution to Code Quality. As already explained in the previous sections, contribution

to code quality has been determined to be effectively measured through standard code

quality tools as it ensures a thorough adherence to coding standards and is far less

cumbersome than a manual verification of the same. This concept was espoused in the

data model suitable for manual evaluation as well, and is consistently mapped in the

Bottom-Up data model from GitHub signals.

However, contribution to the code base required more than one signal from GitHub

for its quantification as it relied on multiple heuristics for its conception.

This algorithm was essential in deciding the combination of signals used to represent

model concepts and in refining the automated model to meet the standards of the

manually verifiable process designed for calculating contribution.

3.4.1 Bottom-Up Design for Direct Contribution

Figure 3.30: Bottom-Up Modelling for Direct Contribution

Figure 3.30 describes the Bottom-Up creation of the model for measuring Direct

Contribution from base signals obtained from GitHub.

The bottom-up model describes the signals from GitHub obtained to represented

the higher-level concepts representative of Direct Contribution, as stated in the detailed

model described in the previous section.
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Bottom-Up Design for code base Impact

As detailed in the previous section, contribution to the code base consisted of

• Frequency of commits done which was represented by the number of commits

done per quarter by a developer. this proved to be completely appropriate to the

task at hand.

• Impact of the commits done which was represented by the number of files created

per commit on an average over a quarter. This is a technique which is followed

by State of the Art applications like GitPrime and proved to be completely ap-

propriate to the task at hand.

• New additions done to the code base which was represented by the number new

files created quarterly. The count of new functions added per file was not consid-

ered as it proved to be difficult to identify new functions created in an automated

way from the code base and would require a well-tuned text analyzer to be cre-

ated specifically for this purpose, and was not possible within the limited time

frame for this dissertation.

Figure 3.31 represents the Bottom-Up Design model for code base Impact

Figure 3.31: Bottom-Up Design model for code base Impact
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Bottom-Up Design for Code Quality

As detailed in the previous section, contribution to the code quality consisted of the

code quality score for the developer. This was represented by the Average Pylint score

for all the commits made by the developer in a quarter. Figure 3.32 represents the

Bottom-Up Design model for code quality

Figure 3.32: Bottom-Up Design model for Code Quality

Bottom-Up Design for Code Maintainability

As detailed in the previous section, contribution to the code maintainability consisted

of

• The change done to the code quality itself which was calculated by tracking

the difference in the Pylint score (for code quality) of individual files across

commits and then assigning the differential score to the developer responsible for

the commit (and thus the changes made to the file). This method would track

whether a developer had increased or decreased the code quality of program files

through changes made in the commits. However, this method would only consider

files where there had been a code change and not a change in comments done

• The quality of comments done was not possible to be determined using automa-

tion as a highly-refined text analysis system would first be required to segregate
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the commits themselves and then the quality of those commits would also have

to be determined. This was de-scoped from the automated system designed as

it would not be possible to create this system in the limited time-frame of the

project.

Figure 3.33 represents the Bottom-Up Design model for code maintainability

Figure 3.33: Bottom-Up Design model for Code Maintainability
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3.4.2 Bottom-Up Design for Administrative Contribution -

Issues

The Bottom-Up design for Administrative Contribution was segregated into Adminis-

trative contribution for Issues and Pull Requests. This section deals with Administra-

tive Contribution through Issues. Figure 3.34 describes the Bottom-Up creation of the

model for measuring Administrative Contribution for Issues from base signals obtained

from GitHub.

Figure 3.34: Bottom-Up Modelling for Administrative Contribution - Issues

The bottom-up model describes the signals from GitHub obtained to represented

the higher-level concepts representative of Administrative Contribution from Issues, as

stated in the detailed model described in the previous section.

Regular Initiative

The model for Regular Initiative Contribution for Administrative Contribution through

Issues consists of the following metrics taken from GitHub

• Number of issues raised by a developer in a quarter

• Number of issues raised for Bugs/Blockers in a quarter

• Number of issues closed by a developer in a quarter
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• Number of Bug/blocker issues closed

• Number of milestones added to issues by a developer over a quarter

• An identification score for labels added to categorize issues. This identification

score is calculated by the formula
∑

(Number of labels identified*Weight−age
of label category) where labels of category A,B, and C as defined in the previous

sections receive weights of 3,2,and 1 respectively.

These metrics calculated from GitHub signals were exact representations of the

concepts espoused in the detailed model suitable for manual evaluation. Figure 3.35

describes the Bottom-Up creation of the model for measuring Regular Initiative for

Administrative Contribution for Issues from base signals obtained from GitHub.

Figure 3.35: Bottom-Up Modelling for Administrative Contribution - Issues - Regular
Initiative

Issue Resolution Initiative

The model for Issue Resolution Initiative Contribution for Administrative Contribution

through Issues consists of the following metrics taken from GitHub

• Number of likes received by a developer’s comments in Issues over a quarter.

This represented the quality of the comment as reflected by its approval from the

community.
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• Number of technically important comments. This was calculated by counting

the number of comments made by a developer which immediately led to an event

in the Issue timeline, for instance a labelling activity, a cross-reference to a Pull

Request. It was hypothesized that comments which are useful to the resolution

of an issue are directly followed by an activity on the basis of that comment.

• Valid template count. This was done by checking in the issues raised by a de-

veloper for a standard template in the form of a Description of the issue, fol-

lowed by the Steps/Code to Reproduce, Expected Results, Actual Results and

Thoughts/Comments.

The heuristics defined for checking developer contribution to issue resolution considered

factors like duplication of issues, and appropriate titling which could not be checked

through an automated process as these were far too contextual for the application of

standard checks. However, a lion’s share of the heuristics including proper formatting,

presence of reproduction steps, providing precise comments and following standard

templates were represented through these metrics mined from GitHub. Figure 3.36

describes the Bottom-Up creation of the model for measuring Issue Resolution Initiative

for Administrative Contribution for Issues from base signals obtained from GitHub.

Figure 3.36: Bottom-Up Modelling for Administrative Contribution - Issues - Issue
Resolution Initiative
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3.4.3 Bottom-Up Design for Administrative Contribution -

Pull Requests

The Bottom-Up design for Administrative Contribution was segregated into Admin-

istrative contribution for Issues and Pull Requests. This section deals with Admin-

istrative Contribution through Pull Requests. Figure 3.37 describes the Bottom-Up

creation of the model for measuring Administrative Contribution for Pull Requests

from base signals obtained from GitHub.

Figure 3.37: Bottom-Up Modelling for Administrative Contribution - Pull Requests

The bottom-up model describes the signals from GitHub obtained to represented

the higher-level concepts representative of Administrative Contribution from Pull Re-

quests, as stated in the detailed model described in the previous section.

Regular Initiative Pull Requests

The modelling for Regular Initiative of Pull Requests was calculated through the fol-

lowing signals from GitHub

• Number of Pull Requests raised by a developer in a quarter

• Number of Pull Requests merged by a developer in a quarter

• Average Number of commits done per Pull Request in a quarter
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The Number of Pull Requests raised and merged quantify the level of engagement of

the developer in Pull Request administration, and the average number of commits done

per Pull Request is a signal to quantify the amount of work done by the developer in

the Pull Request. This model is represented by Figure 3.38

Figure 3.38: Bottom-Up Modelling for Administrative Contribution - Pull Requests-
Regular Initiative

Troubleshooting Initiative Pull Requests

This section defines the model to track the contribution of a developer in resolving

defects through Pull Requests. The modelling for Troubleshooting Initiative of Pull

Requests was calculated through the following signals from GitHub

• Number of Pull Requests raised by a developer for Bug/Blockers in a quarter

• Average Number of commits done per Pull Request for Bug/Blockers in a quarter

The Number of Pull Requests raised for fixing Bugs/Blockers quantifies the level of

engagement of the developer in Pull Request administration, and the average number

of commits done per Pull Request is a signal to quantify the amount of work done by

the developer in the Pull Request. This model is represented by Figure 5.8
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Figure 3.39: Bottom-Up Modelling for Administrative Contribution - Pull Requests-
Troubleshooting Initiative

Review Initiative Pull Requests

This section defines the model to track the contribution of a developer in reviewing Pull

Requests. A major activity in Open Source Communities is to review Pull Requests

before merging them to the main code base.

This is represented by the Number of Reviews done by a developer over a quarter.

This model is represented by Figure 3.40

Figure 3.40: Bottom-Up Modelling for Administrative Contribution - Pull Requests-
Review Initiative
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Relative Importance of Pull Requests

This section defines the model to estimate the importance of the contribution made

by a contributor in raising the Pull Requests. This is measured by the Number of

times the Pull Requests made by a developer are cross-referenced by other developers,

which serves as an indicator of the importance of that particular Pull Request to other

changes made to the code base.

Some other metrics like judging the quality of the Pull Requests raised by an anal-

ysis of the Pull Request body, and the unanimity of the community’s approval of the

pull request (either through direct acceptance, without suggesting changes, or positive

comments) could not be estimated within the scope of this approach. This model is

represented by Figure 3.41

Figure 3.41: Bottom-Up Modelling for Administrative Contribution - Pull Requests-
Relative Importance
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3.4.4 Bottom-Up Design for Guidance Contribution

The Bottom-Up design for Administrative Contribution was segregated into scores for

Guidance - engagement and Guidance - Quality of engagement

This is represented in the Figure 3.42

Figure 3.42: Bottom-Up Model for Guidance contribution

For calculating Guidance-Engagement which represents the engagement in terms of

quantity of relevant activities performed on the chat board, we consider the following

• Number of messages by the engineer in a quarter

• Number of mentions by the engineer in a quarter

• Number of Questions asked by the engineer in a quarter

• Number of questions answered by the engineer in a quarter

• Number of issues raised by the engineer on the chat board (utilizing the issue

reference made to the message)
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These metrics model the concept of the quantity of work done as a measure of

Guidance. This is illustrated by Figure 3.43

Figure 3.43: Bottom Up Model for Engagement

For calculating Guidance- Quality of Engagement which represents the engagement

in terms of the quality of the relevant activities performed on the chat board, we

consider the following

• Proportion of positive posts made by the engineer in a quarter. This is obtained

by a ratio of the number of posts which returned a positive sentiment to the

number of posts which returned a negative sentiment.

• Quality of answers. This is obtained as a count of the number of acknowledge-

ments to the engineer’s posts which returned a positive sentiment.

• Proportion of Questions answered. This returns a ratio of the number of times

the engineer was mentioned in a question to the number of times an answer was

given for that question.
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These metrics model the concept of the quality of work done as a measure of

Guidance. This is illustrated by Figure 3.44

Figure 3.44: Bottom Up Model for Quality of engagement

Some simple heuristics were employed to check whether a chat was a question or

an answer

• A question can be identified by the presence of question marks, or if the sentence

begins with a ”WH” word like ”What”, ”Why”, ”Which”, ”Who”, ”When”, etc.

• To identify an answer, the chat directly beneath a question is considered, as this

has the highest probability of being the answer. Though there are several excep-

tions to this rule. Sometimes the question itself is mentioned as ”¿ ¡¡Question

body¿¿ in Gitter, and this helps to identify the answer.

• Acknowledgements usually follow the answer.

3.5 Inference Mechanism

The below sections define the Inference Mechanisms used to quantify contribution from

the components defined in the Bottom-Up model. Expert systems tend to replicate

the decision-making abilities of human experts by using a Knowledge Base or a set of

rules (primarily as a set of If-Else statements) to solve complex scenarios. A similar
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Knowledge base has been used for the three components of contribution with minor

variations in each, and are described individually in the respective sections.

A standard mathematical transformation is used across the Inference Mechanism

as it maintains the uniformity of measurements and helps scale all the measures to a

single standard. The below sections define the standard mathematical formulae used

and the Inference Procedure for the contribution categories.

3.5.1 Core Mathematical Formulae Used

As defined in Figure 3.29, once a signal or a set of signals are assigned to represent

a concept, they undergo a standard mathematical transformation. These calculations

are used across both Manual and Automated calculation of Contribution in order to

enforce uniformity of values.

Percentile score

First, each raw-value obtained as a signal from GitHub is given a percentile score. This

percentile score is calculated as follows -

• Calculate the First Quartile (Q1), Second Quartile (Q2) and Third Quartile (Q3)

values for the entire distribution of raw values for that signal.

• Then assign a score of 1, 2, 3, or 4 based on whether the raw value is less than

or equal to the Q1 value, greater than the Q1 value but less than or equal to the

Q2 value, greater than the Q2 value but less than or equal to the Q3 value, and

greater than the Q3 value respectively.

Z-Score

The Z-score represents the distance, in terms of number of standard deviations, a data

point is away from the mean. The Z-score for the raw values is calculated using the

formula

Zscore = (Data− µ)/(σ)
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Total Score

The Total score for the metric is then calculated by multiplying the Percentile score

by -1,1,2, or 4 based on whether the Z-score is less than -1, greater than -1 but less

than or equal to +1, greater than +1 but less than or equal +2, and greater than +2

respectively.

The reasoning behind this set of mathematical transformations is to ensure that the

developers are not only graded according to their relative rank in the population, but

are also awarded for performing better or worse than others in the same rank group.

For instance, someone with a score of 2 and someone with a score of 20 fall in the same

rank group and receive the same percentile score, however the person with a score of 2

will get a lower total score due to a lower Z-score.

3.5.2 Inference Procedure for Direct Contribution

The below section discusses the procedure to calculate Direct Contribution.

For the raw values obtained for Commits done per quarter, Number of files affected

per commit calculated quarterly, and Number of new files created quarterly the stan-

dard mathematical transformations for calculating Percentile score, Z-score and Total

score defined in Section 3.5.1 are used. The total scores obtained are then added to get

the Total Score for Code base Impact contribution. Similarly total scores for Average

Pylint score, and total difference to Pylint score made through commits and calculated

quarterly are obtained to get the Total Score for Code Quality contribution, and Total

score for Code Maintainability respectively.

Once the scores for Total Score for Code base Impact contribution, Total Score for

Code Quality contribution, and Total score for Code Maintainability are obtained the

following set of rules are applied

Divide the population under consider into thirds

if the total score for a component falls into the 1st third for the population then

Allocate a label of Low and a graded value of 1 for that sub-component

else if the total score for a component falls into the 2nd third for the population

then

Allocate a label of Medium and a graded value of 3 for that sub-component
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else if the total score for a component falls into the final third for the population

then

Allocate a label of High and a graded value of 5 for that sub-component

end if
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Finally the graded values obtained for each of the sub-components are added to get

the direct Contribution score for the engineer. Figure 3.45 illustrates this concept.

Figure 3.45: Inference Mechanism to calculate Direct Contribution

3.5.3 Inference Procedure for Administrative Contribution

The below section discusses the procedure to calculate Administrative Contribution.

First Administrative Contribution score for Issues is calculated For the raw values

obtained for Number of issues raised, Number of issues raised for bugs/blockers, and

Number of issues closed, Number of Bugs/Blockers closed, Identification score, and

Number of milestones added the standard mathematical transformations for calculating

Percentile score, Z-score and Total score defined in Section 3.5.1 are used. These values

are then added to obtain the Total Score for Regular Initiatives in Issue Contribution

Similarly, the raw values obtained for Number of likes, Number of technically impor-

tant comments, and Valid Template count the standard mathematical transformations

for calculating Percentile score, Z-score and Total score defined in Section 3.5.1 are

used. These values are then added to obtain the Total Score for Issue Resolution

Initiatives in Issue Contribution
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Once these values are obtained the algorithm created in section 3.5.3 is used to

obtain a score for Administrative Contribution through Issues.

Figure 3.46 represents this calculation procedure

Figure 3.46: Calculation of Issue based Administrative Contribution through Inference
Mechanism

For calculating Administrative Contribution through Pull Requests we calculate

the total scores for the primary sub-components first. For the raw values obtained for

Number of Pull Requests raised, Number of Pull Requests merged, and Average number

of commits done per PR, the standard mathematical transformations for calculating

Percentile score, Z-score and Total score defined in Section 3.5.1 are used. These

values are then added to obtain the Total Score for Regular Initiatives in Pull Request

Contribution

For the raw values obtained for Number of Pull Requests raised for Bugs/Blockers,

and Average number of commits done per PR for Bug/blocker issues, the standard

mathematical transformations for calculating Percentile score, Z-score and Total score

defined in Section 3.5.1 are used. These values are then added to obtain the Total

Score for Troubleshooting Initiatives in Pull Request Contribution

For the raw values obtained for Number of Pull Requests reviewed the standard

mathematical transformations for calculating Percentile score, Z-score and Total score

defined in Section 3.5.1 are used. These values are then added to obtain the Total

Score for Review Initiatives in Pull Request Contribution
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For the raw values obtained for Number of times the Pull Requests was referenced

the standard mathematical transformations for calculating Percentile score, Z-score

and Total score defined in Section 3.5.1 are used. These values are then added to

obtain the Total Score for PR Importance

Once these values are calculated, the process to estimate Pull Request Contribution

score is as follows -

Divide the population under consider into thirds

if the total score for a component falls into the 1st third for the population then

Allocate a label of Low and a graded value of 1 for that sub-component

else if the total score for a component falls into the 2nd third for the population

then

Allocate a label of Medium and a graded value of 3 for that sub-component

else if the total score for a component falls into the final third for the population

then

Allocate a label of High and a graded value of 5 for that sub-component

end if

Sum up the graded values for Total Score for Regular Initiatives in Pull Request

Contribution, Total Score for Troubleshooting Initiatives in Pull Request Contribu-

tion, Total Score for Review Initiatives in Pull Request Contribution

Multiply to this core the graded value for PR Importance to obtain the final graded

score for Pull Request Contributions
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Figure 3.47 represents this calculation Finally when the Issue and PR Administrative

Figure 3.47: Calculating PR Contribution through Inference Mechanism

Calculations scores are obtained, we use the same algorithm defined in section 3.5.3 to

calculate the Administrative Contribution Score. Figure 3.48 represents this calculation

Figure 3.48: Calculation of Administrative Contribution through Inference Mechanism



84

3.5.4 Inference Mechanism for Guidance Contribution

For calculating Guidance Contribution we calculate the total scores for the primary

sub-components first. For the raw values obtained for Number of Messages, Number

of Mentions, Number of questions asked, Number of Questions answered, and Number

of issues raised the standard mathematical transformations for calculating Percentile

score, Z-score and Total score defined in Section 3.5.1 are used. These values are then

added to obtain the Total Score for Guidance-engagement

For the raw values obtained for Proportion of Positive posts, quality of answers,

and Proportion of Questions answered the standard mathematical transformations for

calculating Percentile score, Z-score and Total score defined in Section 3.5.1 are used.

These values are then added to obtain the Total Score for Guidance-Quality of En-

gagement

Finally when the Guidance-engagement and Guidance-Quality of engagement Cal-

culations scores are obtained, we use the same algorithm defined in section 3.5.3 to

calculate the Guidance Contribution Score. Figure 3.49 represents this calculation

Figure 3.49: calculation of Guidance Contribution through Inference Mechanism

3.6 Design Limitations

The primary limitation of the data-model created to measure contribution is the fact

that the expert system knowledge base constructed is based on the opinions of only
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the author. However, the aim of this research was not to create a model which would

be universally valid and cater to a universal definition of contribution, and future work

considers exploring the possibilities of creating such a model.

A limitation of the model, created bottom-up, from metrics in GitHub is that it

was not able to fully capture the entire range of heuristics proposed by the model to

be used for manual validation. The implications of this are discussed in chapter 5

3.7 Summary

In this chapter, a conceptual design for contribution was created by using a top-down

approach. A more detailed model was then designed from the concepts espoused by

the first model which was capable of assessing the contribution of an engineer to a

project by using manual verification methods. It was not considered at this stage as

to whether this model would be suitable for the design of an automated system from

GitHub. This was followed by a model, designed using a bottom-up approach, by

using data mined from GitHub and Gitter. This model underwent refinement until

it was able to reasonably represent the heuristics proposed in the manually verifiable

model. For the ease of calculations a standardized set of mathematical formulae were

designed which would represent the significance of the contribution of developers with

respect to their peers. Finally, a knowledge base or set of rules were designed for the

expert system which would calculate contribution. This expert system represented the

codification of the concept of rewarding quality performance of a sufficient magnitude

across the different contribution types. Total contribution is calculated as the

sum of the three contribution types



Chapter 4

Implementation

In this chapter, the implementation details are talked about, and the technologies that

used are described.

4.1 Programming Language Used

Python : Python1 is a high-level, interpreted, general-purpose programming language.

The python design philosophy is to implement a significant number of white spaces for

code readability. Python 3.7.4 is used in the project implementation. The program-

ming language is based on Object-Oriented Programming Paradigm for writing clear,

logical codes for small and large scale products. Python is used as the primary program-

ming language because of the many Open-Source libraries available for Data Analysis

implemented in Python.

Java : Python2 is a general-purpose high level object-oriented programming lan-

guage developed by Sun MicroSystems. Java is being used in the project for the devel-

opment of web based dashboard using Java Servlet. The open source Java Development

Kit, OpenJDK3 is being used in the project to avoid licensing issues. Java is selected to

be the language to develop the dashboard because of its platform-independent nature.

There are a lot of Integrated Development Environments available for the development

and easy availability of servers for the deployment of the application. The Apache

1https://www.python.org/,Last Accessed on 13 August 2019
2http://oracle.com/java/,Last Accessed on 13 August 2019
3openjdk.java.net,Last Accessed on 13 August 2019
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Tomcat server is used in this project.

4.2 Using GitHub to measure contribution

Developers use version control systems to manage their projects. GitHub is a commonly

used source control repository for open-source projects as well as private projects. This

project analyses the scikit-learn repository from GitHub.

Tools used in the implementation are :

1. MongoDB4 : It is a popular cross-platform NoSQL database, especially useful

for creating a document-oriented database. since this project utilizes JSON files

for analysis, MongoDB has been used.

2. PyMongo5 : Is a python distribution which provides tools to interact with

MongoDB from Python.

3. PyLint6 : It is a static code analysis tool used for measuring code quality in

Python.

The steps involved in analysis of GitHub data is :

1. Data Gathering : The data gathering involves the collection of data from the

scikit-learn repository in GitHub for analysis.

2. Analysis : The collected data is analyzed and results are obtained from this

module.

4.2.1 Data Gathering

The data gathering from GitHub involves Configuration management, and gathering

Pull-request, Issue, and Commit data from the scikit-learn repository for analysis.

4https://www.mongodb.com/,Last Accessed on 13 August 2019
5https://api.mongodb.com/python/current/,Last Accessed on 13 August 2019
6https://www.pylint.org/,Last Accessed on 13 August 2019

 https://www.mongodb.com/
 https://api.mongodb.com/python/current/
 https://www.pylint.org/
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Configuration Management

Configuration management refers to the management of the configuration file con-

fig.py. In the configuration file we have to provide the details of the git repository

to be analyzed. A user token is generated and is provided in the configuration file

to identify the user to obtain access to the information from the git repository. The

information is collected only from the repository which is being configured in the con-

figuration file. This configuration file also allows data mining to continue either from

the last saved point, or begin anew.

Mining Commits

Whenever a user creates a new file or modifies an existing file it is committed to the

repository. Information like the number of commits done by a user, the number of files

generated per commit, and the number of new files created are all obtained from this

module. Additionally, the quality of the commit is also analyzed by using Pylint. The

mineData/mineRepositoryCommit.py file will fetch all the information about the

commits that are made in the repository and find out the code quality using the PyLint

library or API. This is saved to the MongoDB Database for future analysis.

Mining Issues

Executing the file mineData/mineIssues.py will fetch the information about the

issues that are created in the configured repository and save it to the database. This

module fetches data from the GitHub Issues API, but also the GitHub Issues/Timeline,

Issues/Labels, and Issues/Milestones API’s to gather the information required for anal-

ysis.

Mining Pull Requests

Once a feature is completed or an issue is resolved the code is required to be merged

with the master branch of the repository. For this a pull-request is created. The

details of the Pull Requests in the repository are by the mineData/minePR.py file.

The collected information are then stored to the Database. This module requests
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information from the GitHub/Issues/timeline API as well as the Pull request API as

GitHub considers all Pull Requests to be issues and saves their data accordingly.

4.2.2 Data Analysis

All the raw data gathered from the configured GitHub repository is stored in the

database. This data is used to calculate the Administrative Contribution Score and

Direct Contribution scores on a quarterly basis. This analysis is carried out by

misc/analyse quarter issues pr commits.py and saves the final results to a .csv

output file. this program contains the expert system for calculating Direct and Ad-

ministrative Contribution codified as a set of If-Else rules.

4.3 Gitter Contribution Analysis

In this section we discuss the implementation details for the analysis of Gitter data.

The Gitter data analysis module is implemented in Python using JupyterLab.

JupyterLab : JyputerLab is an IDE for Python from a Open-Source Project called

Project Jupyter7. The JupyterLab IDE is often used by professional Data Analysts

for analysis in Python. JupyterLab allows developers to run the code as small sequences

leveraging the fact that Python is an interpreted programming language. This helps

the user to analyze the output of individual code snippets before the completing the

entire project or module.

The implementation includes

1. Data Collection : This stage involves gathering information from the Gitter

chat groups which represent the GitHub repository we intend to analyze.

2. Chat Classification : This modules handles conversation delineation by segre-

gating text into a set of questions, answer and acknowledgement texts. The body

of data which are not captured by the heuristics for this approach are considered

to be unclassified text.

3. Sentiment Analysis : Sentiment analysis is done on the conversations that are

extracted from the Gitter data.
7https://jupyter.org/,Last accessed on 13 August 2019

https://jupyter.org/
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4. Creation of Secondary Metrics : The primary metrics include the chat clas-

sification values and sentiment analysis values. Secondary metrics are created

from the primary metrics for further evaluation and analysis in the model.

4.3.1 Data Collection

The Gitter chat data, required for analysis, is gathered using the Gitter-API 8. The

first step in the data collection process is to register the user and obtain a user-token

from the developer dash board. The generated token is then added to the token file in

the source code. The data is gathered from Gitter by executing the file getdata.py.

This program will fetch the data from all chat-rooms of which the user a member. The

gathered data is then saved to an archive folder as a json file with the chat-room name.

4.3.2 Chat Classification

The retrieved chat information requires to be classified as a question, an answer, or

an acknowledgement for further analysis of the conversations taking place in the chat-

room. For data classification a trained system or model is required and to create

that model the Natural Language Toolkit (NLTK)9 is used. The NLTK contains

different corpora for training and testing purposes while implementing Natural Lan-

guage Processing. The training and testing is done on the Net Promoter Score (NPS)

chat corpus that contains real-time chat information. This is a standard chat data-set

available online for Natural Language processing on real-time chat information. In

GitterAnalysis.ipynb notebook file the function dialogue act features(post) is

being used to tokenize the the chat data and train the model using a Naive Bayes

Classifier on the tokenised NPS corpus implemented in NLTK module.

After training of the model using NPS dataset the gitter conversations are passed

to the trained model which classifies the sentence according to its type. first as a

question or an answer, and then into the nature of the question like ’clarification’ or

’wh-question’, or the nature of the answer like ’y-answer’.

8https://developer.gitter.im/docs/welcome,Last accessed on 13 August 2019
9https://www.nltk.org/,Last accessed on 13 August 2019

https://developer.gitter.im/docs/welcome
https://www.nltk.org/
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4.3.3 Sentiment Analysis

Apart from identifying the questions, answers and acknowledgements present in the

chat, the sentiment of the conversation is to be identified as either positive or negative.

A model requires to be trained to do the sentiment analysis. For this purpose, the

Internation Movie DataBase (IMDB) review corpus 10 is used. The system is trained

with the help of NLTK and Scikit-Learn11 libraries in Sentiment Analysis.ipynb

notebook file. The trained model is saved as pickle files for future use.

The trained model is then accessed inside GitterAnalyisis.ipynb and the Gitter

data is fed to the trained model to find the sentiment of the conversation components.

The model also provides the confidence of the sentiment which is calculated by the

model.

4.3.4 Creation of Secondary Metrics

The results obtained after classification and sentiment analysis of conversation com-

ponents are appended to the data which gathered from the Gitter chat-room. The

resulting data-frame contains the classification and sentiment as the primary metrics,

and is used for the creation of secondary metrics. The secondary metrics involve things

like the total number of questions asked by the user, total number of answers given by

the user and total number of positive and negative responses given by the user. These

secondary metrics are used for the evaluating Guidance Contribution. The creation of

secondary metrics is done by the calculations.ipynb file.

4.4 Dashboard Creation

In this section we discuss the implementation of a dashboard in Java to represent the

data analyzed by the modules described above.

The dashboard is created using Java Servelets and deployed using the Tomcat

server. The functioning of this module can be described by the Sequence diagram

in Figure 4.1 The values for Direct, Administrative and Guidance Contribution are

10https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset,Last accessed on 13 Au-
gust 2019

11https://scikit-learn.org/stable/,Last accessed on 13 August 2019

https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset
https://scikit-learn.org/stable/
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Figure 4.1: Sequence diagram for dashboard

obtained as excel files and are manually merged to create a single document.

1. The browser/client will first fetch the developer’s details and yearly contribution

details from the excel file using Apache POI12 and Fillo13 (a java external api).

2. The End-Users will then select the developer of their choice and submit the form.

3. After the form submission, the request will go to the controller/servlet and servlet

will fetch developer contribution score from the excel sheet using Apache POI.

the Servlet with extract the data and send the contribution score to the JSP

where highchart.js14 will be used to create graph on dashboard

12https://poi.apache.org/,Last accessed on 13 August 2019
13https://codoid.com/fillo/,Last accessed on 13 August 2019
14https://code.highcharts.com/highcharts.js/,Last accessed on 13 August 2019

https://poi.apache.org/
https://codoid.com/fillo/
https://code.highcharts.com/highcharts.js/
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Figure 4.2: Dashboard Screen

Figure 4.2 shows the Dashboard screen. The main panel of the dashboard shows the

contribution of the developer over a year, with data points showing the contribution

score calculated for each quarter. The right hand side of the dashboard shows, by

means of a sliding panel, the Direct Contribution, Administrative contribution, and

Guidance Contribution scores for an engineer.

The drop-downs can be used to select the engineer whose contribution score is to

be displayed, and the year for which the score is to be displayed.

4.5 Summary

Chapter 4 discussed the various technology decisions made in creating the system.

The chapter discussed in detail the methods implemented to gather and analyze data

from GitHub and Gitter and the way they are represented in the dashboard. A major

limitation of the implementation, due to time constraints, is the inability to fully

combine the front end of the system with the back-end, as the excel sheet which serves

as input to the dashboard has to be created by combining the inputs of the two analysis

modules, and then be ready for use by the dashboard.



Chapter 5

Results and Evaluation

This chapter sets out the results of the research performed and their evaluation against

the standards set. An outline of the process of calculating contribution through manual

means is first provided. Then the results obtained from the automated expert system

are compared to the results from the manual model. The degree of correlation between

the values obtained from the two methods are examined. Any differences observed

in the trend and rank-ordering are also examined and discussed through pertinent

examples. A detailed case study of the manual verification process is provided in the

Appendix.

5.1 Scoring Process for Manual Evaluation of Di-

rect Contribution

This section discusses the scoring process to be followed when calculating contribution

through manual evaluation using the model defined in Section 3.3

5.1.1 Calculating Direct Contribution

The scoring method for Direct Contribution emphasizes on estimating the software

engineer’s contribution to the code base of the project, both in terms of activity done

and the quality of the contribution made.

94
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5.1.2 Calculating Contribution to the code base

The frequency of commits is calculated as the number of commits done over a given

period of time. For the purpose of this evaluation, the number of commits done over a

quarter is calculated. This can be done by manually checking the number of commits

from the GitHub UI or can be checked using the GitHub API. Since this is a raw count

of an entity, the scoring process follows the algorithm defined in Section 3.5.3. The

Total score for the metric is calculated through the Percentile Score and the Z-Score

as defined in Section 3.5.3.

The Impact of the commits is also a raw value of the number of files affected per

commit over a period of time. This is also handled in a similar fashion, with the Total

score for the metric being calculated through the Percentile Score and the Z-Score as

defined in Section 3.5.3. The New functionality added to the database consists of raw

data scores for the number of new files created over a quarter and the number of new

functions generated as a result of creating new files through commits. The Total score

for each of the metrics is calculated through the Percentile Score and the Z-Score as

defined in Section 3.5.3, and then their sum is considered to be the Total score for New

functionality added to the database

. Therefore to calculate Contribution to the code base from these scores, we need

Figure 5.1: Sample scores for manual calculation of Contribution to code base

to add up the total scores for each of the components
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From the example in Figure 5.1

Contribution to the code base =
∑

(Frequency of commit score, Impact of commits,

New functionality added to the codebase)

=
∑

(3, 2, (3, 2))

= 10

5.1.3 Calculating Contribution to code Quality

The contribution to code quality is calculated as the average Pylint score of commits

done over a given period of time. The Total score for each of the metrics is calculated

through the Percentile Score and the Z-Score as defined in section 3.5.3. From the

Figure 5.2: Sample scores for manual calculation of Contribution to code quality

sample given in Figure 5.2

Total score for Contribution to Code Quality is (2 ∗ 1) = 2

5.1.4 Calculating Contribution to Code Maintainability

Code Maintainability consists of two things, The change made to the quality of the

code itself, and The quality of commenting done when editing a piece of code.

For calculating the score for the change made to the source code quality itself, we

calculate the average change in code quality made to a set of files, by a developer, over

a series of commits. This is calculated by assessing the difference in Pylint scores for a

set of files as they undergo changes due to a series of commits. The difference between

the Pylint score (indicative of code quality) of the file before the commit was made

and the post-commit score is calculated and is assigned to the developer who made the

commit.
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For all developers under consideration a similar process is followed and the aggre-

gation of Pylint score differences is calculated.

Figure 5.3: Sample data of change to code quality

For Developer A, on the basis of Figure 5.3, the total change made to the file code-

quality score/number of changes made = (1/1) =1 Whereas, for Developer B, it will

be (-2+1)/ (2) = (-1)/2= -0.5

For assessing commit quality

• For every comment found in the commit logs for the files affected by the commit,

we check whether the commits are Coherent, Useful, Complete and Consistent

on the basis of the quality model.

• If the comments are found to have the afore-mentioned attributes, then they are

assigned a score of 1, other wise 0 is assigned.

• The percentage of comments which adhere to the quality standards is calculated.

• We consider the value of the percentage of comments adhering to quality stan-

dards made.

• We then calculate the total score on the basis of the algorithm in Section 3.5.3
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Figure 5.4: Sample Data for calculating code maintainability

Based on the sample data in Figure 5.4, Code Maintainability score can be calculated

as the sum of the two-sub scores = 2+2 = 4 Direct contribution is then calculated

as per the inference mechanism discussed in Section 3.5.2, in which we proceed to

categorize these scores into Low, High and Medium Categories based on which third

of the population an engineer falls into, for a particular score metric. Falling into a

category of Low gives the engineer a score of 1, Medium gives 3 and High gives 5.

These are then added to give the final Direct Contribution score for the engineer.

5.2 Scoring Process for Manual Evaluation of Ad-

ministrative Contribution

The scoring process for Manual Evaluation of Administrative Contribution constitutes

the Manual scoring for the Issue-based and Pull-Request based Administrative contri-

bution.

5.2.1 Scoring for Issue-based Administrative Contribution

This consists of calculating the scores for Number of Issues Raised, Number of Issues

Closed, Number of issues raised for bugs and blockers, Number of bugs/Blocker Issues

closed, Number of instances where issue was attached to a milestone and Number of

instances where issue was segregated into a category (Identification Score).

All metrics excluding the identification score are directly calculated from raw counts

of the activities. The identification score is determined using the formula given in

Section 3.4.2, i.e. by the formula
∑

(Number of labels identified*Weight − age of
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label category) where labels of category A,B, and C as defined in the previous sections

receive weights of 3,2,and 1 respectively. For the values so obtained, the total score is

calculated using the algorithm given in section 3.5.3. The scores are then added up to

give the Regular Initiative Issue-based Administrative Contribution score From Figure

Figure 5.5: Sample data for Manual Calculation of Regular Initiative for Issue-based
Administrative Contribution

5.5 we can calculate the Regular Initiative Issue-based Administrative Contribution

score = 8+4+1+2+1+3 = 19

For Issue Resolution Initiative Administrative Contribution Score we look at the

contribution of each developer in resolving the issues, as discussed in Chapter 3, some

of the major factors considered here are –

• Avoiding Issue Duplication

• Raising a single issue for every concern faced

• Proper titling of issues including indicating potential bugs in Issue title
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• Properly formatting the issue-body for greater ease of understanding

• Following a standard template for raising issues and including Issue reproduction

steps

• Making comprehensive issue resolution recommendations and providing relevant

examples where necessary.

Indicative examples are provided in Section 3.3.2, and more details are available in the

appendix. Every instance where an engineer is seen to adhere to these guidelines, a

positive score of 1 is given and -1 is awarded where these guidelines are flaunted. The

score so calculated is converted into a total score on the basis of the algorithm defined

in section 3.5.3 As evidenced from the sample data in Figure 5.6, the Issue Resolution

Figure 5.6: Sample Data for Manual Calculation of Issue Resolution Initiative Issue-
based Administrative Contribution

Initiative Administrative Contribution Score, we get the value of 3. Once the Issue

Resolution Initiative score for Issue-based Administrative Contribution and the Regular

Initiative score for Issue-based Administrative Contribution has been computed we use

the inference mechanism defined in Section 3.5.3 to calculate Issue based Administrative

Contribution.

5.2.2 Scoring for PR-based Administrative Contribution

It is calculated by first evaluating the contribution from its primary components

1. Regular Initiative

2. Troubleshooting Initiative

3. Review Initiative
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4. Pull Request Importance Score

Regular Initiative

This consists of calculating the scores for Number of Pull Requests Raised, Number

of Pull Requests Merged, Average Number of files changed per Pull Request, Average

number of commits done per Pull request.

The first two measures represent basic administrative tasks done by the engineer,

and the latter two signify the effort made in raising the pull request. However, all these

measures depend on raw data for these activities, and for the purpose of evaluation are

calculated over the course of a quarter.

Once the raw measures are obtained their Total Scores are calculated on the basis

of a Percentile Score and a Z-score as defined in Section 3.5.3. The sum of these total

scores, so obtained are then considered to be the Regular Initiative Score for PR-based

Administrative Contribution.

Figure 5.7: Sample Data for Manual Calculation of Regular Initiative Score PR-based
Administrative Contribution

From Figure 5.7, we can calculate the Regular Initiative Score PR-based Adminis-

trative Contribution to be 8+4+1+1 = 14 The Troubleshooting Initiative score is calcu-

lated from the raw values for the number of Pull Requests Initiated for a Bug/Blocker

and the Average number of commits done for a Pull Request raised for a Bug/Blocker

issue. As with the Regular Initiative, the first measure represents basic administrative

tasks done by the engineer, and the latter signifies the effort made in raising the pull

request.
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Once the raw measures are obtained their Total Scores are calculated on the basis

of a Percentile Score and a Z-score as defined in Section 3.5.3. The sum of these total

scores, so obtained are then considered to be the Troubleshooting Initiative Score for

PR-based Administrative Contribution.

Figure 5.8: Sample Data for Manual Calculation of Troubleshooting Initiative Score
for PR-based Administrative Contribution

From Figure 5.8, we can calculate the Troubleshooting Initiative Score for PR-based

Administrative Contribution = 16+3 = 19 For calculating Review Initiative Score for

PR-Based Administrative Contribution, we obtain the raw data value for the number

of Pull Requests reviewed by an engineer over a period of time.

Figure 5.9: Sample Data for Manual Calculation of Review Initiative Score for PR-
based Administrative Contribution

From Figure 5.9, we can calculate the Review Initiative Score for PR-based Review

Contribution = 16

To calculate the Score for Quality of the Pull Request we adapt a more nuanced

strategy, in which the clarity with which the developer has raised the request is con-

sidered. Also considered is the willingness of other members of the community to

accept the pull request into the code base. This point is evidenced by the number of

corrections to the pull request sought and related clarifications sought.
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Pull Requests which are raised clearly with links to existing issues (if relevant),

and stating the purpose of the pull request are considered to be good examples. Pull

requests which have been passed unanimously without any requirement of revisions

are also considered ideal. These cases stipulate that a score of +1 be awarded to the

concerned engineer for the contribution. However, Pull Requests which do not state

its objectives, or the scope of which exceeds the objectives stated and are identified as

such by the community are to be penalized with a score of -1.

In case a Pull Request needs a lot of revisions, the comments of the developers

needs to be factored in.

Furthermore for every pull request cross-referenced a score of +1 is to be awarded to

the engineer for raising a significant Pull Request, as cross-referencing is considered to

be a sign of good PR-handling1. The final score obtained may be quite large and thus

needs to be processed as per the algorithm in Section 3.5.3 to obtain a final score. Once

the Regular Initiative Score for PR-based Administrative Contribution, Troubleshooting

Initiative Score for PR-based Administrative Contribution, Review Initiative Score for

PR-based Review Contribution, and Score for Quality of the Pull Request, we calculate

the Pull Request-based administration score by the inference mechanism specified in

Section 3.5.3.

5.2.3 Scoring for Guidance Contribution

Guidance contribution was measured in terms of the engagement of users in the chat

board on Gitter and the quality of such engagement.

Engagement Score for Guidance Contribution

The contribution made by the amount of engagement was calculated by tracking -

1. Total Number of messages by a person in the chat board

2. Number of times the person the person was mentioned in a conversation.

3. Number of questions asked

1https://codeinthehole.com/tips/pull-requests-and-other-good-practices-for-teams-using-github/,
accessed : 13.08.2019
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4. Number of Questions answered

5. Number of issues raised in the board

The Total Score for these metrics are to be calculated using the algorithm in Section

3.5.3, and are summed up to give the Engagement score for Guidance Contribution.

Quality of Engagement Score for Guidance contribution

A score of +1 is to be given for positive contributions like asking non-trivial questions,

replying promptly to questions, writing answers of high quality and technical soundness

and keeping the community engaged in general.

For instance, engaging in detailed conversations may only be positive when there is

a serious technical question being discussed. Otherwise, it may be considered negative

if a person is wasting someone else’s time by asking trivial questions

Putting a simple +1 or ’me too’ in discussions on issues are not considered a positive

contribution, even though they may help represent the magnitude of an issue.

Not answering questions even when mentioned or spamming are discouraged and

penalized with a score of -1.

5.2.4 Scoring for Total Contribution

The total contribution is calculated as a sum of the scores obtained for Direct, Admin-

istrative and Guidance contribution.

5.3 Data Collection for Evaluation

The collection of data for evaluation was done by analyzing the activities of 13 engi-

neers in the scikit-learn project for a quarter,viz. the first quarter of 2019, specifically

the months of January, February and March. The names and other details of these

engineers has been withheld to prevent bias and for confidentiality purposes.

Contribution was measured for these developers manually over that period of time

by analyzing the activities done in the repository.

The contribution for these developers, and others in the project were also calculated

from the automated expert system, designed and displayed on the dashboard.
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Some instances of the manual contribution calculation process for engineers is out-

lined in the appendix.

5.4 Results and Evaluation

This section details the results for contribution scores calculated from the automated

data-model and the manual evaluation process. The correlation between the two is

observed and the relative pattern of the values obtained from both are compared. The

rank-ordering of the developers from both the models are also compared.

A discussion of key observations from the results and inferences from and explana-

tions of the same are then provided.

5.4.1 Results and Discussion

Table 5.1 shows the Total Contribution Scores calculated from the Data-Model as well

as by Manual Evaluation. The correlation coefficient value between these two models

is 0.77 which suggests a strong positive correlation between these two values.

Developer Score from Model Score from Manual Evaluation
A 27 28
B 19 26
C 19 22
D 15 22
E 15 26
F 11 22
G 11 20
H 11 12
I 11 20
J 11 22
K 7 12
L 7 12
M 7 18

Table 5.1: Comparison of Total Contribution Scores from model and manual evaluation

Figure 5.10 given below shows the graphical plot of these values. From both the

graph and the table, it is clear that the Manual Verification process returns a con-



106

Figure 5.10: Line-graph for the total contribution scores calculated by the data-model
and manual evaluation

sistently higher score for contribution than the Data-Model. There are no instances

where the data-model has returned a higher value than the Manual Evaluation model,

which leads us to infer that there is a definite loss of fidelity when contribution is cal-

culated by the data model. Another interesting result is obtained when we check the

rank-ordering for the engineers on the basis of the two models as described in Table

5.2 and Table 5.3

Rank Developer Total Contribution Score from Model
1 A 27
2 B 19
2 C 19
3 D 15
3 E 15
4 F 11
4 G 11
4 H 11
4 I 11
4 J 11
5 K 7
5 L 7
5 M 7

Table 5.2: Rank Ordering of Engineers by the Data-Model
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Rank Developer Total Contribution Score from Manual
1 A 28
2 B 26
2 E 26
3 C 22
3 D 22
3 F 22
3 J 22
4 G 20
4 I 20
5 M 18
6 H 12
6 K 12
6 L 12

Table 5.3: Rank Ordering of Engineers by Manual Evaluation

It is evident from both the tables that Engineer A holds the top rank regardless of

the evaluation method used.

Another pattern presents itself when we split the lists into 2 sections of top-6 and

bottom-6 engineers, with the 7th ranked person in either group being in the middle.

Even though, the relative ranking may have changed slightly, Engineers A,B,C,D, and E

hold the top-6 ranks in either evaluation model. The bottom six also remain relatively

unchanged with the exception of Engineers J and G swapping places for the 7th spot.

With respect to relative positions in the list, apart from Developer A at the top,

Developer B has managed to retain the 2nd spot in both rank-ordered lists

Developers D and F also remain 3rd in their respective lists. Developers G and H

also retain the 4th spot in both listings. Finally Developers K and L remain at the

respective bottom positions of 5th and 6th for both models.

Thus, we can draw the inference that the overall rank-ordering structure remains

similar across both models, even with the loss of fidelity.

For a detailed analysis into the metrics responsible for this loss of fidelity, the

Direct Contribution, Administrative Contribution, and Guidance Contribution scores

obtained from both the metrics were plotted. Graph 5.11 and its associated table,

Table 5.4 compare the results of Direct Contribution Scores obtained from both the

models.
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Figure 5.11: Line-graph for the Direct Contribution scores calculated by the data model
and manual evaluation

It is observed that apart from a single data-point for Developer A, all the other data

points show that the manual evaluation model has scored higher than the data-model.

Developer Direct Cont. Score from Model Direct Cont. Score from Manual
A 10 9
B 4 7
C 6 7
D 2 7
E 4 7
F 2 5
G 2 5
H 4 5
I 4 5
J 4 5
K 2 5
L 2 5
M 2 3

Table 5.4: Comparison of Direct Contribution Scores from model and manual evalua-
tion

A deeper analysis of the components of Direct Contribution for the two models revealed

that this is due to an imbalance in the scores generated by the inference mechanism

for Code Maintainability.

While the code maintainability impact for all others is consistent across both mod-

els, it is found that A had got a better score in the data-model evaluation than the
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manual evaluation.

This was due to Developer a having missed out on some essential commenting while

writing new functions and thus being penalized for it. However, as the functions were

by themselves of good quality, the difference to code quality calculated through Pylint

was not negative.

This will be illustrated in detail in the Appendix.

This, however, was a clear sign, that in situations where the approximations used

(in this case using Pylint to check change in code quality does not work in cases where

only comments have been changed) can prove to be fallible when exceptions arise. Next

Figure 5.12: Line-graph for the Admin Contribution scores calculated by the data
model and manual evaluation

the Administrative Contribution scores were analyzed for both the models. Which led

to the observation that, though the manual evaluation model produced scores of greater

magnitude than the Data-model, there were several instances of the scores matching.

Also, the scores did not differ by more than two points during any time.

Since, the data-model had used some approximations for Issue-Resolution Initia-

tive and Pull-Request Importance factor based on observations, it proved that those

approximations did give a reasonable approximation of the quality of work done.

Cases where an important issue comment surfaced, but was not considered by the

data-model due to no event following it in the timeline, led to the loss of fidelity.
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Developer Admin Cont. Score from Model Admin Cont. Score from Manual
A 10 8
B 4 4
C 6 8
D 2 4
E 4 4
F 2 4
G 2 4
H 4 6
I 4 4
J 4 4
K 2 4
L 2 4
M 2 4

Table 5.5: Comparison of Admin Contribution Scores from model and manual evalua-
tion

Finally the Guidance contribution scores for the two models are analyzed. The results

for Guidance contribution score for both the models is analyzed and it is observed that

the contribution scores from the manual evaluation are in general of a higher magnitude

than the ones from the data-model. Though in some cases, the scores were the same.

Analysis laid out the fact that the cause for this was some conversations getting

missed from the scope of things as they were not of a question-answer form or were

too apart in time for the system to relate.
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Figure 5.13: Line-graph for the Guidance Contribution scores calculated by the data
model and manual evaluation

5.4.2 Summary

A comparative analysis of the contribution scores for the data model and the manual

evaluation model revealed that the data model suffered a loss of fidelity because the

approximations used failed in cases where the heuristics for those approximations met

exceptions.

In general, there was no scenario in which the data model outscored the manual

evaluation model for calculating total contribution, though an anomaly was recorded

in Direct Contribution.

However, the data-model, built using signals from GitHub was able to provide

a reasonably accurate representation of the high-level model(evaluated manually) by

giving a consistent rank-ordering of the engineers for total contribution. The same

engineer (Developer A) was first in both rank-ordered lists, with other engineers also

holding the same position in both the lists. The upper half of both lists featured the

same engineers (although in a slightly different order), and the lower half was similarly

arranged with only one exception.

Another notable outcome of the model is represented in Figure . One of the main

objectives for building this data model was to ensure that the entire range of activities
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Developer Guid. Contri. Score from Model Guid. Contri. Score from Manual
A 7 11
B 11 11
C 7 11
D 11 15
E 7 11
F 7 11
G 7 13
H 3 11
I 3 11
J 3 3
K 3 3
L 3 3
M 3 11

Table 5.6: Comparison of Guidance Contribution Scores from model and manual eval-
uation

performed by an engineer would be considered for calculating contribution, rather than

simply code-based metrics. This is aptly demonstrated as the No. 2 ranked engineer in

GitHub’s list of contributors for the scikit-learn project, shows a similar contribution

level to the person placed at No. 24, thereby showing the inherent weakness of relying

solely on code-based metrics and the success of the research objective of the project ”To

create a data-model for measuring the contribution of a Software engineer in a project

by analyzing the entire range of developer activity over a period of time, considering

both the amount of work performed and the quality of the work, as opposed to traditional

LOC based measures.”
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Figure 5.14: Comparable Contribution scores for engineers ranked differently by
GitHub



Chapter 6

Conclusion

Chapter Six concludes the dissertation. Its goal is to show that the research objectives

depicted in Chapter One have been met, to list the limitations of the current work, to

state the research contribution this dissertation represents, and to discuss the future

work prospects.

6.1 Objective Assessment

6.1.1 Creation of Data Model to Measure Contribution

Research Objective To create a data-model for measuring the contribution of a Soft-

ware engineer in a project by analyzing the entire range of developer activity over

a period of time, considering both the amount of work performed and the quality of

the work, as opposed to traditional LOC based measures. The primary objective of

this dissertation was the creation of a data-model to measure the contribution of a

software engineer to a project by analyzing the various activities carried out by the

developer in the project.The first phase of this work consisted of creating a high-level,

top-down, mental model for contribution and then fleshing it out by expanding upon

the concepts to create a detailed model that supported the calculation of contribution

through manual means. This model did not consider whether the heuristics used to

calculate contribution could be automated.

Then in the next phase, signals were mined from both GitHub and Gitter to create

a model that would reasonably quantify the concepts espoused in the detailed top-down

114
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model. Using a bottom-up approach, the base metrics/signals from GitHub and Gitter

were used to create a model was created which reasonably addressed all the heuristics

for calculating contribution as expressed in the first model. On analysis, this model

gave similar relative positions when rank-ordering the selected group of developers, as

given by the top-down (or mental) model for contribution.

6.1.2 Mining GitHub and Gitter for useful signals

Research Objective To identify useful signals from GitHub that can serve to approx-

imate/quantify the high-level concepts espoused in the data model.

Another objective of this research was to identify signals available from GitHub and

Gitter which would be useful in measuring the contribution of a software developer in

a project.

For this purpose, GitHub and Gitter were mined for a wide range of metrics which

would help to analyze the activities done by developers in a project, and thus help

quantify contribution. The metrics used for this model were later fed to an expert

system to measure contribution.

6.1.3 Creation of an Expert System to measure contribution

Research Objective To create a rule-based tool (Expert System) that would quantify

the contribution of a software developer using the metrics derived from the selected

GitHub and Gitter signals.

To address the research question, an expert system was constructed which would

use a set of rules as the Knowledge Base to measure contribution from a set of signals

obtained from GitHub and Gitter.

6.1.4 Evaluation of the Data-Model

Research Objective To evaluate the data-model through a sanity test of the contri-

bution values generated by the tool with the values estimated by a human expert

In pursuing the research goals, a sanity test was conducted to evaluate the perfor-

mance of the contribution scores generated for a group of engineers in the scikit-learn

project against the values obtained through a manual evaluation of the heuristics used
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in the top-down model. Both models gave nearly consistent relative positions to the

developers when rank-ordering the assessed individuals.

6.1.5 Dashboard Creation

Research Objective To visually assess, by means of a dashboard, the relative contri-

butions of the software engineers to the project.

A dashboard was created to display the contribution score of an engineer across the

four quarters of a fiscal year.

6.1.6 Final Remarks

The significant result of this research has been to demonstrate that a data-model can

be constructed using signals from GitHub which is consistent with a mental model of

contribution created by an expert.

This clearly demonstrates the potential of using real-time data mined from software

repositories to help objectively quantify concepts like contribution and maybe even

performance which were considered to be purely subjective.

Though the research is not proven to be generally valid across repositories and en-

gineer expertise and is refined to imitate the mental model of a particular expert, it

nevertheless paves the way for future research to consider whether building a general-

ized model would be possible given the highly-contextual nature of what is understood

to be ”contribution”.

Also, given the highly subjective and bias-prone methods followed in industry to

judge contribution, this project provides a framework to quantify contribution in terms

of activity performed and create a repeatable and verifiable process which can be used

in the industry for performance appraisals.

6.2 Limitations

The data-model was able to accurately replicate all concepts dealing with an estimate

of the quantity of work done, whereas some approximations had to be used while

quantifying the quality of work done. An example is the concept of contribution to
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issue-resolution which was done by using a set of observed, measurable heuristics like

Number of Likes obtained for comments, and categorizing those comments succeed by

an event like cross-referencing or labelling to be important to issue resolution. While

these served as good approximations, there were also several instances where man-

ual evaluation would discover other engineers contribution to issue resolution, whose

comments could not be captured by the scope of these heuristics.

With respect to analyzing conversations in Gitter chat, the heuristics used were

capable of identifying conversations which took place within a reasonable span of time.

Instances of conversations lingering on in the chat board over a period of weeks were

not captured by the heuristics employed by the system.

Furthermore, the data-model was consistent in measuring contribution with respect

to a specific view of contribution, and a specific project repository. Further work is

needed to analyze whether the model would be consistent in measuring contribution

globally, across projects as well as expert views of other engineers.

. The front-end also needs more work as it is currently able to display data from an

excel or .csv file produced by the back-end system which measures contribution. Better

integration of front-end and back-end systems needs to be done in order to build a more

robust product.

6.3 Research Contribution

This section discusses the research contribution. A data-model was constructed which

employed an expert system to measure the contribution of a developer in a project by

considering a wide range of activities and not just code-based metrics like traditional

approaches. This data model’s results were found to be consistent with respect to the

results obtained by manual evaluation of contribution of the author’s own model of

contribution.

The data-model produced as a result of this research considers a more comprehen-

sive range of activities performed by engineers than existing State-of-the-Art systems

as shown in Chapter 2.

The tracking of developer activity in an open-source chat board like Gitter to mea-

sure Guidance contribution is a novel approach which seeks to observe the engagement

of engineers with the community at large. This is especially relevant for open-source
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projects which use these forums as sounding boards to judge community satisfaction

with their work. These platforms are also important for improving the quality of

project deliverables as many issues with the project are raised on these platforms,

allowing project owners to identify and correct them.

6.4 Future Work

This research represents the first step in creating a universal model for measuring

contribution that would be generalized across project repositories as well as expert

opinion. Future work would focus on exploring the possibilities of creating a more

comprehensive high-level model that would be generally acceptable to engineers across

cultures and organizations.

Given the highly contextual nature of contribution, it would be interesting to see

whether the definition of what qualifies as a ”useful contribution” varies across cultures

and organizations or if there is a middle ground where an understanding can be reached

as to what is contribution, and how it is to be evaluated.

It would also be interesting to use advanced text analysis methods to design an

automated process of evaluating the quality of code comments, issue and pull request

comments and user chats on Gitter to make the data model more comprehensive.
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Bissyandé, T. F., Lo, D., Jiang, L., Réveillere, L., Klein, J. & Le Traon, Y. (2013), Got

issues? who cares about it? a large scale investigation of issue trackers from github,

in ‘2013 IEEE 24th international symposium on software reliability engineering (IS-

SRE)’, IEEE, pp. 188–197.

Boehm, B. W. (1981), ‘An experiment in small-scale application software engineering’,

IEEE Transactions on Software Engineering (5), 482–493.

Brereton, P. (2010), ‘A study of computing undergraduates undertaking a systematic

literature review’, IEEE Transactions on Education 54(4), 558–563.

Card, D. & Scalzo, B. (1999), Measurement for object-orienated software projects, in

‘Proceedings of the 6th International Symposium on Software Metrics, Florida’.

Challa, J. S., Paul, A., Dada, Y., Nerella, V., Srivastava, P. R. & Singh, A. P. (2011),

‘Integrated software quality evaluation: a fuzzy multi-criteria approach’, Journal of

Information Processing Systems 7(3), 473–518.

Conte, S. D., Dunsmore, H. E. & Shen, Y. (1986), Software engineering metrics and

models, Benjamin-Cummings Publishing Co., Inc.

Cuadrado, J. J., Amescua, A., Garcıa, L., Marbán, O. & Sánchez, M. I. (2002), Revision

and classification of current software cost estimation models, in ‘6th World multi-

conference on systemics, cybernetics and informatics. Orlando, FL’, pp. 339–341.

Dabbish, L., Stuart, C., Tsay, J. & Herbsleb, J. (2012), Social coding in github: trans-

parency and collaboration in an open software repository, in ‘Proceedings of the ACM

2012 conference on computer supported cooperative work’, ACM, pp. 1277–1286.

Devanbu, P., Zimmermann, T. & Bird, C. (2016), Belief & evidence in empirical soft-

ware engineering, in ‘2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE)’, IEEE, pp. 108–119.



121

Dhawan, S. & Juneja, N. (2013), ‘Relevance of software metrics for a software project’,

International Journal of Advanced Research in Engineering and Applied Sciences

2(10), 77–87.

Fagan, M. E. (1999), ‘Design and code inspections to reduce errors in program devel-

opment’, IBM Systems Journal 38(2.3), 258–287.

Fenton, N. & Bieman, J. (2014), Software metrics: a rigorous and practical approach,

CRC press.

Fenton, N. E. & Neil, M. (1999), ‘Software metrics: successes, failures and new direc-

tions’, Journal of Systems and Software 47(2-3), 149–157.

Flippo, E. B. (1976), Principles of personnel management, McGraw-Hill.

Gilb, T. (1977), Software metrics, Winthrop Publishers.

Glass, R. L. (1994), ‘A tabulation of topics where software practice leads software

theory’, Journal of Systems and Software 25(3), 219–222.

Glass, R. L., Vessey, I. & Conger, S. A. (1992), ‘Software tasks: Intellectual or clerical?’,

Information & Management 23(4), 183–191.

Gousios, G., Kalliamvakou, E. & Spinellis, D. (2008), Measuring developer contribution

from software repository data, in ‘Proceedings of the 2008 international working

conference on Mining software repositories’, ACM, pp. 129–132.

Gousios, G., Pinzger, M. & Deursen, A. v. (2014), An exploratory study of the pull-

based software development model, in ‘Proceedings of the 36th International Con-

ference on Software Engineering’, ACM, pp. 345–355.

Grady, R. B. & Caswell, D. L. (1987), Software metrics: establishing a company-wide

program, Prentice-Hall, Inc.

Guaman, D., Sarmiento, P., Barba-Guamán, L., Cabrera, P. & Enciso, L. (2017),

Sonarqube as a tool to identify software metrics and technical debt in the source

code through static analysis, in ‘7th International Workshop on Computer Science

and Engineering, WCSE’, pp. 171–175.



122

Gupta, V. & Kumar, S. (2013), ‘Impact of performance appraisal justice on employee

engagement: a study of indian professionals’, Employee relations .

Hall, T. & Fenton, N. (1997), ‘Implementing effective software metrics programs’, IEEE

software 14(2), 55–65.

Halstead, M. H. et al. (1977), Elements of software science, Vol. 7, Elsevier New York.

Hannay, J. & Jørgensen, M. (2008), ‘The role of deliberate artificial design elements

in software engineering experiments’, IEEE Transactions on Software Engineering

34(2), 242–259.

Hauff, C. & Gousios, G. (2015), Matching github developer profiles to job advertise-

ments, in ‘Proceedings of the 12th Working Conference on Mining Software Reposi-

tories’, IEEE Press, pp. 362–366.

Herraiz, I., Robles, G., Amor, J. J., Romera, T. & González Barahona, J. M. (2006),
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Appendix A

Appendix

A.1 Calculating Contribution for Developer A by

Manual Evaluation

N.B. The actual names of the developers in the scikit-learn project are withheld for

confidentiality purposes.

To calculate Direct Contribution, we need to first calculate separately the contribu-

tion made to the Code base, the contribution to Code Quality and the contribution to

Code Maintenance. Contribution the Code Base depends on Frequency of Commits,

Impact of the commits, and New functionality added to the code base

N.B. For those values calculated directly from counts of attributes avail-

able through GitHub API, examples of direct calculations and detailed pro-

cedures have already been have been shown. For those values calculated

through manual assessments, pertinent examples have been shown here in

the appendix to represent the chain of thought followed while assessing

them.

First we begin with Developer A who was found to have a lower score in code

Maintainability when analyzed manually as compared to the data-model

A reason for this may be found in the test created here which does not have a

clarifying comment. This activity was penalized.

However, Developer A also wrote clear comments in other areas of code snippet,

which were rewarded, for instance below figure shows well-documented comment of the
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Figure A.1: Comment-less code

parameters to be used for a function which is both coherent as well as useful (as per

the code quality model) However, the percentage of such comments were rather less,

Figure A.2: Coherent and Useful Comment

in fact less than 50%.

In Issue Administration, Developer A was not consistent in raising Bugs in a stan-

dard template. Out of 4 bugs raised by Developer A, none were in the standard

template used in the project and Developer A was penalized for this.
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bugA.png

Figure A.3: Unformatted bug

Another example is shown below

However, one such unformatted bug did raise a pertinent issue and was rewarded.

In conversations as well Developer a was not particularly helpful in resolving issues

as shown below
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bug2A.png

Figure A.4: Unformatted bug2

Figure A.5: Good Issue Raised

However, Developer A really excelled at the chat board. He was active in replying

to questions
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Figure A.6: Unhelpful Comment

Developer A was also praised by peers for his efforts and thus scored well overall in

Guidance Contribution due to accumulating points for these kind of activities.
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on chatA.png

Figure A.7: Prompt Reply by A

This sums up a manual estimate of why Developer A did not score well for Direct

and Administrative Contribution, but excelled at Guidance contribution.
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Figure A.8: Recognition from peers
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