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Abstract

Citation or reference parsing involves extracting machine readable metadata
from a citation string. This paper details the work carried out in creating a
large, diverse and labelled citation dataset which can be used to train ML ci-
tation parsing tools. The dataset was created by adapting the citation styles
within CSL, collecting citation metadata from CrossRef and using the open-
source citation processor, citeproc-js. It contains 991,411,100 XML labelled
citation strings in over 1,500 different citation styles. These are composed
of a diverse range of citation types from a wide range of academic fields.
When the granularity of the training data is the same the 1 Billion Citation
Dataset was shown to be on a par with the state-of-the-art hand-labelled
training datasets (Hand-labelled Training Data Macro-Average F1 0.74 vs
Synthetic Training Data Macro-Average F1 0.74). These results indicate
that the 1 Billion Citation Dataset has a lot of potential for training a deep-
learning based citation parsing model and that this may lead to significant
improvements in the accuracy of citation parsing.
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Chapter 1

Introduction

1.1 Background

The accuracy of citation parsing is important for a number of reasons.
The quantity and quality of citations is a commonly accepted proxy for the
strength of an academic’s career [3, 4, 5]. The total number of citations
attributed to an academic can affect their career trajectory, whether they
receive funding [6] and ultimately, their academic legacy [7].

In order to accurately report an author’s citations search engines such
as Scopus [8], Web of Science [9] and Google Scholar [10] must be able to
extract citation metadata from each publication in their database. Failure
to accurately parse citations could affect the validity of their results and
subsequently, an author’s funding, status and future academic prospects.

Similarly, the impact factor of journal is a commonly accepted proxy for
relative importance [11, 12]. The calculation of an impact factor relies on
accurate information retrieval and citation parsing [13]. A journal’s impact
factor can affect individuals, journals, departments, universities [13] and even
whole countries [14].

Finally, academic search engines such as Google Scholar [10], Refseek
[15], and Microsoft Academic Search [16], and academic recommender sys-
tems, such as Mr Dlib [17], all rely on accurate citation metadata for data
organisation and information retrieval [18]. The relevance of their search
results relies on the ability to accurately parse citations.

Citation parsing involves extracting machine readable metadata from
a publication, bibliography or citation string. A citation parser accepts a
citation string as input. This string is typically formatted in a particular
citation style: Harvard, APA, IEEE etc. The job of a citation parser is to
extract the metadata from the given citation string and produce labelled
output. The following citation string is formatted in Harvard style:

Councill, I.G., Giles, C.L. and Kan, M.Y., 2008, May. ParsCit: an Open-source
CRF Reference String Parsing Package. In LREC (Vol. 8, pp. 661-667).
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The corresponding labelled output is shown in Figure 1.1. This is typi-
cally formatted in XML with the field names included as XML tags. Here,
the labelled output includes the authors’ names, the date, the title of the
article, the title of the journal, the volume, and the page numbers. Citation
parsing can be seen as undoing the process of formatting a citation string
[1].

Figure 1.1: An example of a citation string annotated in XML. Each field is
encapsualted within it’s own tag.

There are a number of existing approaches to citation parsing one of
which is supervised machine-learning. A supervised machine-learning ap-
proach requires labelled training data, an algorithm and a labelled test
dataset.

Popular Machine Learning algorithms used for citation parsing include
Support Vector Machines [19, 20], Hidden Markov Models [21, 22, 23, 24]
and Conditional Random Fields [18, 25, 26, 27, 28, 29, 30, 31]. Prasad et al.
[13] and Rodrigues et al. [32] are the only published authors who have used
a deep learning based approach. Tkaczyk et al. recently presented ParsRec,
a recommender-system which suggests the best citation parser for a given
citation string [33].

Finally, the strength of a citation parser is typically evaluated using the
metrics: recall, precision and F1 with the evaluation often subdivided by
field as shown in Table 1.1.

Field Precision Recall F1
Author 0.94 0.94 0.94
Journal 0.16 0.70 0.26
Volume 0.76 0.19 0.31
Pages 0.91 0.58 0.71
Date 0.84 0.64 0.72
Average 0.72 0.61 0.59

Table 1.1: Sample evaluation metrics subdivided by field.
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1.2 Research Problem

In spite of it’s importance citation parsing remains an open and difficult
problem. In 2018 Tkaczyk et al. [1] carried out a comparison survey of
ten open-source citation parsing tools, six machine-learning based tools and
four non machine-learning based. They reported that the ten tools had an
average F1 of 0.56, ML-based tools outperformed non ML-based approaches
by 133% (F1 0.77 for ML-based tools vs F1 0.33 for non-ML based tools)
and that the highest three performing tools were GROBID (F1 0.89) [26],
CERMINE (F1 0.83) [18] and Parscit (F1 0.75) [25].

There remains room for significant improvement in the field of citation
parsing however a number of issues contribute to making this challenging.

1. Citation Styles
A significant challenge associated with citation parsing is the exis-
tence of thousands of different citation styles [34] [25]. In formatting
a citation string certain information may be removed or abbreviated
depending on the particular citation style. Table 1.2 shows the same
citation formatted in Harvard and ACM styles. In the Harvard style
the authors’ first and middle names are abbreviated to their initials
and included after the authors’ surname. This is followed by the year
and month of publication. The terms Vol. and pp. are included to in-
dicate volume and page number. In ACM style the authors’ full names
are included, there are brackets around the date and neither volume
or page number are indicated by any proceeding terms. These differ-
ences are multiplied by the thousands of existing citation styles. The
challenge in citation parsing is how to extract this information without
prior knowledge of the citation style.

Style Citation
Harvard Councill, I.G., Giles, C.L. and Kan, M.Y., 2008, May. ParsCit:

an Open-source CRF Reference String Parsing Package. In
LREC (Vol. 8, pp. 661-667).

ACM Isaac G Councill, C Lee Giles, and Min-Yen Kan. ParsCit: An
open-source CRF reference string parsing package. LREC 8
(May 2008), 661-667

Table 1.2: A citation string formatted in Harvard and ACM citation style.
Each style has a different format for author, date, volume and page number.

2. Citation Types
A second difficulty associated with citation parsing is that the type of
citation is not known beforehand [1]. Citations for books, conference
papers, journal articles, websites, blog posts etc. usually contain dif-
ferent information. A citation for a website would typically include a

3



field for the URL and date-accessed, whilst a citation for a book would
often include a field for the publisher and book-title. Without knowing
the type of citation before parsing it is difficult to know what fields it
should contain.

3. Language Diversity
Another challenge for citation parsing is that the model must perform
well on a citations from a broad range of disciplines. Many disciplines
contain domain-specific language. For example, the vocabulary of Mi-
crobiology may have little in common with Astrophysics. Capturing
this diversity remains a challenge.

4. Errors
Finally, it is common for citations to contain formatting errors. Manu-
ally formatting citations can introduce human-errors such as: missing
or extra spaces, typos, missing punctuation and style-specific errors [1]
[35]. Optical Character Recognition (OCR) errors can also be intro-
duced during the process of converting scanned images into electronic
versions. Common OCR errors are: substitution errors, disambiguat-
ing between similar looking characters and breaking words into multi-
ple pieces [36].

The strength of a Machine Learning citation parser often reflects the
quantity and quality of the training data [35]. In order to train a Machine
Learning citation parser to perform well on unseen citations each of the afore-
mentioned challenges must be addressed in the training data. Namely, the
training dataset should incorporate the diverse range of citation styles and
citation types. It should contain citations from a broad range of disciplines
and also some of the more common formatting errors. In order to satisfy all
of these requirements the training dataset needs to be large.

Current training datasets for citation parsing have two fundamental prob-
lems. Firstly, they are homogeneous, with citations coming from a single
domain. This is problematic as many domains favour a particular citation
style. For example, ACM is a popular style in Computer Science whilst
Modern Languages Association (MLA) is a popular style in the Humanities.
Training a model on only a few styles will not help it perform well across a
range of domains. Further, limiting the training dataset to a single domain
will reduce the diversity of domain-specific language the model is exposed
to.

Secondly, the majority of existing training datasets are small, having
less than 8,000 labelled citations. It would be impossible for a training
dataset of this size to fully reflect the diversity of citation styles or types
that exist. Echoing these thoughts, a number of authors have commented

4



on the potential benefits of having more training data available [37, 38] and
the limitations of existing datasets [32].

Although training a Machine Learning citation parser on a large and
diverse dataset may lead to improvements in performance, producing such a
large, annotated dataset is not straightforward. Remember that the aim of
citation parsing is to produce labelled data such as that shown in Figure 1.1
when given a citation string. However, a Machine Learning citation parser
requires such labelled data for training. So there exists the frustrating cycle
of requiring a citation parser to produce labelled training data, which can
then subsequently be used to train a citation parser.

This goes a long way to explaining why the majority of existing datasets
are relatively small and homogeneous. Each of these datasets would proba-
bly have had to be compiled and annotated manually, perhaps with the help
of an existing citation parser, and this unenviable task would be very labour
intensive [19].

With only small training datasets available the majority of ML algo-
rithms used for citation parsing are relatively dated. These include SVM
(1960s) [39], HMM (1960s) [40] and CRF (2001) [41]. A lot of recent ad-
vances in ML can be attributed to deep-learning however, in spite of artificial
neural networks being around since McCulloch and Pitts in the 1940s [42],
it was only in the 2000s, as more data became available, that deep-learning
was able to overtake many traditional non deep-learning methods.

In 2018, Rodrigues et al. [32] and Prasad et al. [13] both separately
applied a deep-learning approach to the problem of citation parsing. Al-
though their training datasets are still relatively small - Rodrigues reported
a training dataset of 40,000 citations [32] - the results have been promising.
Prasad et al. showed that Neural Parscit outperformed their earlier, non
deep-learning approach, Parscit, with statistical significance, reducing the
macro error rate from 11.17% to 8.63% [13].

Yet it remains to be seen what effect a much larger training dataset
could have on the open problem of citation parsing. In much the same way
a large labelled dataset transformed the landscape for image classification,
the presence of a freely available, large, diverse and labelled citation dataset
may enable significant further advances to be made in the area of citation
parsing through the application of deep learning.

1.3 Research Question

The long-term goal of this project is to address the question:

• How would training a deep-learning citation parsing tool on a large,
diverse synthetic dataset affect the accuracy of citation parsing?
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The scope of this project does not include training a deep-learning model
so this dissertation will not give a conclusive answer to this question. How-
ever, in order to investigate the suitability of a large, synthetic dataset for
training a deep-learning model I will examine the following questions:

• How does a synthetic dataset compare to hand-labelled datasets when
training existing ML citation parsering tools?

• How does the size of the training dataset affect the performance of ML
citation parsers?

• How does the make-up of the training dataset (distribution of citation
types etc.) affect the performance of ML citation parsers?

1.4 Research Aims

The requirements for a training dataset for ML citation parsing are that
it is diverse and large. It should be diverse in citation styles, types and
domain and, in order to fully reflect this diversity, it needs to be large.

As outlined in Section 1.2 current available training datasets are both
homogeneous and small. In an effort to address this problem the primary
aim of my research is to produce a large, diverse and labelled training dataset.

The overall goal is to then investigate whether such a large and diverse
synthetic training dataset has the potential to be used for training a deep-
learning citation parsing model. In order to address this, I aim to investigate
how existing citation parsing tools compare when trained on both the syn-
thetic dataset and the out-of-the-box hand-labelled datasets.

The final task will be to experiment with different dataset sizes and make-
ups to determine if these make a significant difference to the performance of
a ML citation parser.

1.5 Prior Work

It should be noted that some of the source code used in this project was
previously developed by Martin Schibel, an intern working under Joeran Beel
at the ADAPT centre.
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Chapter 2

Background

2.1 Citation Strings, Styles and Fields

Some authors have made a distinction between the words “citation” and
“reference” using one word to refer to items contained in the body of a doc-
ument (e.g. Grennan 2019) and another to refer to items contained within a
bibliography at the end of a document [25]. However, “citation parsing” and
“reference parsing” are often used interchangeably. Here, a citation string,
such as:

I. G. Councill, C. L. Giles, and M.-Y. Kan, “ParsCit: An open-source CRF
reference string parsing package”, LREC, vol. 8, pp. 661-667, May. 2008.

refers to an individual entry found in the bibliography at the end of a docu-
ment.

As outlined in Section 1.2 a citation string is commonly formatted in a
particular citation style: ACM, IEEE, Harvard etc. The number of unique
citation styles is in the region of 1,000 [43] however, when variations of
styles are included this number increases to approximately 8,000 [44]. Often
academic fields or journals will have their own preference for a particular
citation style.

The fields of a citation string may also vary. Common fields include au-
thor, title and date however the exact fields present in a citation will depend
on the type of citation. The fields present in a website citation will typically
be different to those present in a book citation. A summary of common ci-
tation types and their respective fields is given in Table 2.1. It is also worth
noting that Table 2.1 is far from exhaustive and citations sometimes omit
fields depending on the citation style and the available information.
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Citation Type Fields
Journal Article Author, Date, Article Title, Journal Title, Volume,

Issue, Page, DOI
Conference Paper Author, Date, Title, Paper Title, Editor, Publisher,

Publisher Location, DOI
Chapter Author, Date, Chapter Title, Book Title, Editor,

Publisher, Publisher Location, DOI
Book Author, Date, Book Title, Editor, Publisher, Pub-

lisher Location, DOI
Website Author, URL, Date Accessed
Report Author, Date, Title, Editor, Publisher, Publisher Lo-

cation, DOI

Table 2.1: Common citation types and their respective fields.

2.2 Citation Parsing

2.2.1 Introduction

Parsing a citation involves splitting a citation string into it’s respective
fields. Citation parsing often exists as part of a larger workflow of document
processing. Figure 2.1 gives a typical example of the workflow of extracting
citation metadata from a PDF document.

First, the bibliography section of the document is identified, second the
bibliography is split into individual citation strings and finally, the metadata
is retrieved from each individual citation string by a citation parser.

Figure 2.1: A common workflow for parsing citations from a document.
1. The bibliography section is identified. 2. The bibliography is split into
individual citation strings. 3. The metadata is retrieved from each individual
citation string by a citation parser. [1]

8



2.2.2 Sequence Labelling

Supervised machine learning is one established approach to tackling cita-
tion parsing. In supervised machine learning citation parsing can be formally
defined as a sequence labelling problem [1]. In a sequence labelling problem
the input is a sequence of objects or features. The aim is to assign a la-
bel to each input object taking into account both the object itself and the
dependencies between neighbouring objects [1].

In citation parsing, the sequence of objects are individual words, punc-
tuation or blank spaces contained within the citation string. The individual
objects are commonly called tokens. The first task of a citation parser is to
split a given citation string C into a sequence of individual tokens {t1, t2,..
tn}. This process is called tokenization. The following citation string:

D. Foo, Abbreviations from Bar to Baz, Phys. Rev. 9, 34(2019)

split into individual tokens would be:

C = {D, ., , Foo, „ , Abbreviations, , from, , Bar, , to, , Baz, „ , Phys, ., ,
Rev, ., , 9, „ , 34, (, 2019, )}

Once a string has been tokenized the second task of the citation parser
is to assign to each individual token the correct label from a set of classes
C = {c1, c2,.. cn}. Commonly these labels correspond to the desired field
types, with “other” being used for any token that is not part of a field.

Table 2.2 shows the same citation with tokens and their corresponding
label. Blank spaces are removed for brevity. AU-FN refers to the author’s
first name and maps to the author field. OTH refers to the “other” field and
is used for blank spaces and punctuation not belonging to a particular field.

Unfortunately, different citation parsers can assign different labels to in-
dividual tokens. Biblio [45], Parscit [25] and Science Parse [46], three pop-
ular citation parsing tools, label the author’s full name as one field while
other tools label first name, middle name and surname with distinct labels.
Furthermore, different training datasets can also assign different labels to
different fields with some being more or less fine-grained than others.

After predicting the labels for each token, tokens with a common field
can be concatenated. Figure 2.2 summarises the overall flow of a sequence
labeller.
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Token Label
D AU-FN
. AU-FN

Foo AU-SN
, OTH

Abbreviations TITLE
from TITLE
Bar TITLE
to TITLE
Baz TITLE
, OTH

Phys JOURNAL
. JOURNAL

Rev JOURNAL
. JOURNAL
9 VOLUME
, OTH
34 ISSUE
( OTH

2019 DATE
) OTH

Table 2.2: A citation string split into it’s respective tokens and assigned
label.

Figure 2.2: The workflow of a sequence labeller. 1. Citation String is to-
kenized. 2. Labels are predicted for individual tokens. 3. Common token
labels are concatonated.
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2.2.3 Training Data

In order to train a supervised machine learning citation parser labelled
tokens such as those shown in Table 2.2 are needed. In practice, this training
data is usually stored as labelled XML and then converted into a sequence
of labelled tokens. Figure 2.3 shows the corresponding XML for the labelled
tokens in Table 2.2. Again, the exact nature of the XML tags may vary
depending on the citation parser being used.

Figure 2.3: An example of labelled XML which is used as input to a train a
ML citation parser.

Another common format for training data follows the CoNLL conven-
tion. In this format, each line of the file contains a token followed by the
corresponding label. A blank line is used to separate individual citations.
The citation:

D. Foo, Abbreviations from Bar to Baz, Phys. Rev. 9, 34(2019)

in CoNLL format is shown in Table 2.3.

2.3 Evaluation Methods

The strength of a citation parser is typically evaluated using the metrics
recall, precision and F1. These are defined as follows:

• Recall = TruePositive
TruePositive+FalseNegative [47]

• Precision = TruePositive
TruePositive+FalsePositive [47]

• F1 = 2∗Precision∗Recall
Precision+Recall [47]

The terms positive and negative here refer to a citation parser’s predicted
label for a given token or field and the terms true and false refer to whether
that token or field has been labelled correctly.

Recall can be viewed as the proportion of actual positive labels that were
correctly predicted. Precision can be viewed as the proportion of predicted
positive labels that were correct. F1 combines recall and precision into a
single metric. It is the most commonly reported figure for measuring the
performance of citation parsing tools.
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D author
. author

Foo author
Abbreviations title

from title
Bar title
to title
Baz title

Phys journal
. journal

Rev journal
. journal
9 volume
34 issue
2019 date

Table 2.3: An example of a citation string in CoNLL format used to train a
supervised ML citation parser.

The evaluation of a citation parser is commonly subdivided by field as
shown in Table 2.4. Sometimes both macro and micro averages are reported.

Field Precision Recall F1
Author 0.94 0.94 0.94
Journal 0.16 0.70 0.26
Volume 0.76 0.19 0.31
Pages 0.91 0.58 0.71
Date 0.84 0.64 0.72
Macro-Average 0.72 0.61 0.59
Micro-Average 0.79 0.74 0.76

Table 2.4: Sample evaulation metrics subdivided by field.

To calculate the macro-average, the metric for each field is calculated
independently and the mean of all fields is calculated. In Table 2.4, there
are five fields. The sum of all entries for F1 is 2.94 and the macro-average is
2.94/5 = 0.59. The macro-average may not always be the most useful metric
due to class imbalance [48]. In citation strings the classes are highly likely
to be imbalanced with fields such as author and title occurring more often
than URL or Note.

Micro-average is calculated by aggregating the contributions of all fields
and dividing by the total number of contributions. For example, in calcu-
lating precision, we would sum the number of True Positives for every field
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and divide by the sum of the total number of True Positives and False Pos-
itives. Typically, in citation parsing this figure would be higher than the
macro-average, again, due to class imbalance.

The F1 micro-average would be a commonly reported single figure used
to represent the overall strength of a given citation parser. Both token-level
and field-level results for recall, precision and F1 are reported. Preference
is usually given to reporting the more meaningful field-level result however,
some papers report both.
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Chapter 3

Related Work

CiteSeer, first developed in 1998, was an early attempt to create an
automatic citation indexing system using citation parsing [49]. In subsequent
years citation string parsing has become an established research problem and
a number of different approaches have been proposed. These include: regular
expressions, knowledge bases, template matching, and supervised machine
learning.

3.1 Regular Expressions, Knowledge Bases and Tem-
plate Matching

Early efforts to the problem of citation parsing, such as that by Kunnas
[50], used regular expressions. As Tkaczyk et al. [1] and Zhang et al. [19]
comment, regular expressions can work well when the data has little noise,
the number of citation styles is small and the citation styles are predefined.
However in real-world data these conditions are rarely met and further, reg-
ular expressions lack adaptability, are expensive to maintain and don’t scale
well [19].

In an effort to address these shortcomings a number of authors combined
regular expressions with knowledge bases [51, 52, 53]. A knowledge based
approach involves populating the system with knowledge from relevant and
available data sources. This knowledge may include journal titles and au-
thors’ names. During the citation parsing process a field extracted from the
citation string can then be matched against the known knowledge base.

Constantin et al. [53] created PDFX, a rule-based system which de-
constructs a given PDF into an XML document describing the document’s
logical structure. Evaluating across three different datasets they report an
average F1 score of 0.74 for reference parsing. Their results did not include
documents created using OCR.

Cortez et al. [52] used a knowledge based approach to create FLUX-CiM.
They conducted experiments matching seven fields: author, title, date, jour-
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nal, volume, issue and page, across three domains: health science, computer
science and social science, and they reported that FLUX-CiM achieves pre-
cision and recall above 94%.

Heckmann et al. [51] detail a knowledge based approach which use
Markov logic networks (MLN) [54]. They evaluate their model on a novel
data set featuring sparse and noisy data and they report a 24.8% increase in
F1 score (0.88) over the popular CRF ML approach.

Summarising these knowledge based approaches Tkaczyk et al. [1] com-
ment that they work best when the knowledge base forms a closed set. How-
ever, once again, they can be difficult to maintain.

A third approach to the problem of citation parsing is template match-
ing. This approach involves matching a given citation to a database of known
citation templates. This step is usually followed by applying regular expres-
sions or template-based rules.

A template-based approach performs well when the number of citation
styles is limited. Multiple authors report field-level accuracy of above 90%
when experimenting with 22 or fewer citation styles [35, 55]. Hsieh et al.
[56] also report a decrease in the average field error rate by 70% (2.24% vs
7.54%) when compared with the popular machine learning CRF approach.

However, as Chen et al. comment “the query processing performs better
when the template database is consistent with the test data [35].” With
BibPro, a citation parser developed using a sequence alignment tool called
BLAST (Basic Local Alignment Search Tool), they reported the highest
average field-level accuracy when evaluating on a dataset containing only six
distinct citation styles [35].

With thousands of citation styles in use the challenge for a template-
based approach is scalability [25, 13]. ParaTools [57] maintains 400 templates
to match citation strings but adding new templates and maintaining existing
templates remains cumbersome.

Another significant challenge associated with a template-based approach
is that errors within the citation string, caused by human error or OCR, may
produce citation strings that do not strictly adhere to the template format.
Council et al. comment that “the lack of portability makes the approach
unsuitable for high volume data processing [25].”

3.2 Machine Learning

3.2.1 An Overview

Figure 3.1 shows that the number of papers which have adopted a ML
approach to citation parsing greatly outnumbers those who have used non-
ML methods. Since 2010, 77% (24) of 31 reviewed published papers surveyed
in the area of citation parsing have adopted a ML-based approach. This
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perhaps reflects the growing consensus around the strengths of using ML
methods.

Figure 3.1: The number of papers which have adopted a ML-based and a
non ML-based approach to citation parsing between 2000 and 2019

The four most common ML approaches are Support Vector Machines
(SVM) [19, 58] Hidden Markov Model (HMM) [21, 22, 23, 24], Conditional
Random Fields (CRF) [31, 18, 25, 26, 27, 28, 29, 30] and deep-learning
[13, 32].

Figure 3.2 shows the proportion of the 24 ML papers reviewed which
used each model. Here, 12.5% used SVM, 29.2% used HMM, 50% used CRF
and 8.2% used deep-learning.

Figure 3.2: The proportion of ML papers which used SVM, HMM, CRF and
Deep-Learning

Figure 3.3 shows how the popularity of certain ML models have changed
over time. It highlights how HMM was more common pre-2010, CRF has
remained consistently popular and a deep-learning approach has only been
explored in the last two years.
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Figure 3.3: The changing popularity of ML citation parsers

Unlike template matching or regular expressions a ML approach does not
require expert knowledge to keep the citation parser up to date. Tkaczyk
et al. [1] showed that the performance of ML models can be improved by
retraining a ML model on task-specific data. Reviewing ML-based citation
parsers they showed that the top three performing tools improved their F1
score by an average of 10% when re-trained on task-specific data.

The implication is that in order to improve a models performance on
a particular citation style, or domain-specific language, a ML model only
needs to be re-trained on more up-to-date data. This removes the constraint
of having to create a new template or adapt an existing knowledge base. As
Tkaczyk comments “it is comparatively easy to make sure the models are up
to date by repeatedly retraining them on newer data [1].”

3.2.2 Support Vector Machines and Hidden Markov Models

SVM is a general-purpose ML classifier that has been applied to the task
of classifying tokens within a citation string. Okada et al. [58] combined
SVM and HMM. Using 5-fold cross validation with 4,651 citations, they
found that their combined approach had recall 14% higher than an SVM
approach (0.988 vs 0.974).

Zhang et al. [19] compared structural SVM with conventional SVM.
Structural SVM utilizes the contextual information contained within neigh-
bouring features. Using 600 references for training and 1800 references for
testing taken from PubMed [59], they found that structural SVM outper-
formed SVM on field-level accuracy (96.95% vs 95.59%). Although the re-
sults of Zhang and Okada are promising, Zhang reports that SVM performed
worse than the state-of-the-art CRF model [19].

Another ML approach to citation parsing is Hidden Markov model (HMM).
HMM is a probabilistic model which assumes that the system to be modelled
is a Markov process with hidden states.
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Hetzner [24] presents a simple HMM-based model which utilizes the
widely available Viterbi algorithm. Trained and evaluated on the popular
Cora dataset the model achieves comparable performance to other bench-
mark HMM models however their results are inferior to the CRF-based work
of Peng and McCallum [60].

Yin et al. [61] describes a variation of HMM model which considers
words’ bigram sequential relation and position information. Using 4-fold
cross validation on 736 labelled citations, they note a 3.6% improvement in
the performance of Bigram HMM compared with regular HMM (F1 0.991 vs
F1 0.868).

Ojokoh et al. [62] made further improvements utilizing a trigram HMM.
Using 4-fold cross validation with three different training datasets ranging
in size from 300 to 712, they reported recall, precision and f1 scores of above
95%. Interestingly they report that increasing the size of the training dataset
from 275 citations to 537 citations only improved accuracy by 0.07%.

3.2.3 Conditional Random Fields

Among the different ML approaches CRF is by far the most popular
method with 50% of 24 surveyed ML papers adopting a CRF-based model.

In 2018, Tkaczyk et al. [1] carried out a comparison survey of ten existing
citation parsing tools. They reported that the highest three performing tools,
GROBID (F1 0.89) [26], CERMINE (F1 0.83) [18] and Parscit (F1 0.75) [25],
all used a CRF algorithm. Unfortunately, this comparison survey, did not
include the two existing deep-learning approaches. This was due to missing
resources, in the case of Neural Parscit [13] and because the work was carried
out after the survey was completed, in the case of Rodrigues et al. [32].

GROBID [26] is a CRF based tool that can parse individual citation
strings as well providing wider functionality in document processing. With
it’s performance in the recent comparison survey of Tkaczyk et al. [1] it can
be considered the state-of-the-art in CRF based citation parsing. GROBID
is trained on 7,800 labelled citations and evaluating on the CORA dataset
Lopez reported a field-level accuracy of 95.7%.

CERMINE [18] is another CRF citation parser that exists as part of a
larger document processing tool. It is able to extract citation strings, their
metadata and the structured content of a document’s body directly from
a PDF. CERMINE won best performing tool award in the 2015 Semantic
Publishing Challenge [63]. This included tasks related to parsing citations.

Inspired by Peng and McCallum [60], Parscit [25] is an open-source CRF
based tool that can locate, parse and retrieve the context of citation strings.
Parscit is deployed as part of CiteSeerX [64], a large computer science dig-
ital library. Using 10-fold cross validation on the CORA dataset Parscit
showed 4.4% improvement in comparison to Peng and McCallum’s earlier
work (micro-average F1 0.95 vs macro-average F1 0.91).
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3.2.4 Deep Learning

Advances have been made in recent years in the application of deep learn-
ing techniques to a variety of Natural Language Processing (NLP) tasks in-
cluding sequence-labelling. The state-of-the-art architectures for sequence la-
belling include a CRF prediction layer [65], word-embeddings and character-
level word-embeddings. They are trained either with Convolutional Neural
Networks (CNNs) [66] or Recursive Neural Networks (RNNs) using Bidirec-
tional Long-Short Term Memory (BiLSTM) layers [67].

Rodrigues et al. [32] apply and compare the architectures of Lample
et al. [67] and Ma and Hovy [66] to the task of reference mining. They
define reference mining as the “detection, extraction and classification of
bibliographic references [32].” Their model was trained and evaluated on
citations extracted from a corpus of literature on the history of Venice. Word
embeddings were pre-trained using Word2Vec [68] on the entire publications
from which they extracted citations and the model was trained on 40,000
citations. Extensive tuning was undertaken. Their final model outperformed
a CRF baseline by 7.03% achieving an F1 of 0.896.

Prasad et al. [13] also examined how well a deep-learning approach would
handle the task of citation parsing. They carried out extensive model ex-
perimentation and tuning using both word-embeddings and character-based
word-embeddings. Their final model deployed a Long Short-Term Memory
(LSTM) neural network with a layered CRF over the output. In compari-
son against Parscit [25], a CRF-only based citation parser, they reported a
significant (p < 0.01) improvement.

Comparing the results of Prasad and Rodrigues is challenging. They both
use a different CRF baseline and both models are trained and evaluated
on different datasets. However, given that their available training data is
“relatively small” [32], their results are promising and highlight the potential
of a deep-learning approach.

3.2.5 Meta-Learning

Aware that different citation parsing tools can perform better or worse
depending on the citation string given and the fields to be extracted, Tkaczyk
et al. explored a meta-learning approach to citation parsing [33]. They
presented ParsRec, a recommender-system which suggests the best citation
parser for a given citation string.

They explored two approaches to meta-learning recommendations. The
first learnt the best citation parsing tool for a given citation string whilst
the second, learnt the best tool for a given field. Evaluating on 105,000
references from the Chemistry domain, they found that the second approach
achieved a 2.6% increase in F1 (0.909 vs. 0.886, p < 0.001) over GROBID,
the best individual parsing tool.
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3.3 Comparing Approaches

Drawing a fair comparison between existing citation parsing tools is chal-
lenging for a number of reasons. These reasons include the chosen evaluation
metrics, the different capabilities for fine-grained extraction and the evalua-
tion datasets in use.

3.3.1 Evaluation Metrics

There is no single established metric for evaluating the performance of a
citation parser. In a survey I conducted of 31 papers on the topic of citation
parsing, between 2000-2018, evaluation metrics reported included:

• Precision

• Recall

• F1

• Field-level Accuracy

• Token-level Accuracy

• Word-level Accuracy

• Micro Average

• Macro Average

• Field-error Average

The most commonly reported metric was F1 at 55%. F1 was reported along-
side recall and precision in 45% of papers. Average values of F1 were reported
as micro-average, macro-average or just “average” with not every author be-
ing explicit in which average they were using.

The second most popular metric reported was accuracy at 51%. Here,
some authors made the explicit distinction between token-level and field-
level accuracy. Other authors reported a single figure without making their
choice of average explicit. Note that the totals for F1 (55%) and accuracy
(51%) don’t add up to 100% as some authors reported both metrics. The
lack of a single chosen evaluation metric makes comparing the results from
different approaches challenging.

3.3.2 Fine-Grained Extraction

The exact number of fields that each citation parser is either tested on or,
is capable of extracting, varies. Table 3.1 summarises the fields extracted by
six popular open-source citation parsing tools. The most fine-grained tools,
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Tool Approach Extracted Fields
Biblio Regular Expressions author, date, editor, genre, is-

sue, pages, publisher, title, vol-
ume, year

BibPro Template Matching author, title, venue, volume, is-
sue, page, date, journal, bookti-
tle, techReport

CERMINE CRF author, issue, pages, title, volume,
year, DOI, ISSN

GROBID CRF authors, booktitle, date, editor,
issue, journal, location, note,
pages, publisher, title, volume,
web

Parscit CRF author, booktitle, date, editor, in-
stitution, journal, location, note,
pages, publisher, tech, title, vol-
ume

Neural Parscit Deep-Learning author, booktitle, date, editor, in-
stitution, journal, location, note,
pages, publisher, tech, title, vol-
ume

Table 3.1: The approach and extracted fields of six popular open-source
citation parsing tools.

Parscit [25] and Neural-Parscit [13], can extract twelve different fields whilst
the least fine-grained tool, CERMINE [18], can extract eight different fields.

The varying number of fields a citation parser can extract adds to the
complexity of comparing tools. For instance, GROBID [26] makes the dis-
tinction between title and book-title whilst CERMINE [18] simply reports
title. It is possible that the results of GROBID in reporting title will be
below that of CERMINE as GROBID has the added task of distinguish-
ing between a book-title and an article title. However, perhaps the lower
performance on title may be acceptable in view of the finer-grained output.

3.3.3 Evaluation Datasets

Comparing different citation parsing tools is also made difficult by the
fact that different authors use different datasets for evaluation and these
datasets vary greatly in size, domain and homogeneity. Table 3.2 summarises
the evaluation datasets used by nine citation parsers. Of these nine examples,
44% report results from a single evaluation dataset, 44% of authors report
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results for multiple datasets and 22% of authors use an amalgamation of two
or more datasets.

Citation Parser Evaluation Dataset Size Domain
Structural SVM [19] PubMed 1800 Health Science
HMM [24] Cora 142 Computer Science
Bigram HMM [61] ManCreat 712 NA
BILBO [69] Umich NA Chemistry, Biology,

Humanities, Tech-
nology

Trigram HMM [62] Cora 500 Computer Science
Flux-CiM 300 Computer Science
ManCreat 712 NA

Parscit [25] Cora 200 Computer Science
Flux-CiM 300 Computer Science
CiteseerX 200 Artificial Intelli-

gence
GROBID [26] PubMed 90079 Health Science

Cora 1295 Computer Science
CERMINE [18] Cora + Citeseer 3438 Computer Science
Neural Parscit [13] Cora 500 Computer Science

Cora + FluxCiM +
ICONIP + humani-
ties

1053 Cross-Domain

Table 3.2: Evaluation datasets used by nine citation parsing tools broken
down by size and domain.

As well as the fact that there is no consensus on a gold standard evalua-
tion dataset a number of other issues surround the datasets which do exist.
Table 3.3 summarises popular evaluation datasets along with their size and
domain.

A primary problem with the datasets in Table 3.3 is their homogeneity
– every citation in the dataset coming from a single domain or sub-domain.
The aim of a citation parser is to perform well on citations from a variety
of domains and across a wide range of citation styles and types. Therefore,
evaluating their performance on a dataset from a single domain will not fairly
reflect how a citation parser will perform across the full range of citations
that exist today. A number of authors [13, 18, 25, 69] have tried to address
this issue by evaluating on multiple datasets across two, or sometimes, three
domains.

The Cora dataset in Table 3.3 is one of the most widely used datasets
in the field of citation parsing but unfortunately, as a number of authors
have commented, it contains significant weaknesses [37, 13, 25]. Firstly it is
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Dataset Name Size Domain
Cora [70] 1295 Computer Science
Citeseer [49] 1563 Artifical Intelligence
Umass Citation Field Extrac-
tion Dataset [37]

1829 Physics, Mathematics, Com-
puter Science, Quantitative
Biology

FLUX-CiM CS [71] 300 Computer Science
FLUX-CiM HS [71] 2000 Health Science
PubMed [59] 29000000 Biomedical
GROTOAP2 [72] 6858 Biomedical, Computer Sci-

ence
CS-SW [71] 578 Semantic Web Conferences
Venice [32] 40000 Humanities
ManCreat [62] 712 NA

Table 3.3: Summary of existing labelled citation datasets.

homogeneous, with citations coming exclusively from the Computer Science
domain. It is also “small” and only has labels for “coarse-grained fields”
[37]. For example, the author field does not label each author separately.
Prasad et al. echo these comments saying that a “shortcoming of the field
is that the evaluations have been largely limited to the Cora dataset, which
is... unrepresentative of the multilingual, multidisciplinary scholastic reality"
[13].

A final problem is that training and evaluating datasets often are taken
from the same domain. Table 3.4 lists six examples of citation parsers
which were trained and evaluated on the same domain or, in some instances,
dataset. The problem with this approach is that a single domain will not
fairly reflect the diversity of citation styles in existence. Furthermore, per-
forming well on one homogeneous dataset or domain will not necessarily
reflect a tool’s performance on unseen citations from a different domain.

As an experiment to investigate this point I retrained GROBID [26] using
70% of it’s original training data. This model was then evaluated on the
remaining 30% of it’s unused training data as well as the Cora dataset. The
retrained Grobid had a micro-average F1 of 0.951 when evaluated on the
remaining 30% of it’s training data and a micro-average F1 of 0.745 when
evaluated on Cora. This is a performance drop of 21.6% and highlights how
there can be large fluctuations in a model’s performance depending on how
it is evaluated.
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Citation Parser Training Domain Evaluation Domain
Structural SVM [19] Health Science Health Science
HMM [24] Computer Science Computer Science
Deep Mining [32] Humanities Humanities
Bigram HMM [61] Cross Validation Cross Validation
Trigram HMM [62] Cross Validation Cross Validation
CERMINE [18] Computer Science &

Health Science
Computer Science

Table 3.4: Examples of ML citation parsing tools which are trained and
evaluated using datasets from the same domain.

3.3.4 Comparing Approaches Conclusion

Drawing comparisons between tools which have been evaluated on dif-
ferent datasets is debatable, at best. Fortunately in 2018, Tkaczyk et al. [1]
carried out a comparison survey of ten existing citation parsing tools, six
machine-learning based tools and four non machine-learning based. Evalu-
ated on 64,495 references taken from the Chemistry domain, the results show
that on average ML-based tools outperform non ML-based approaches by
133% (F1 0.77 for ML-based tools vs F1 0.33 for non-ML based tools). Fur-
thermore the lowest performing ML-based citation parser, Anystyle-Parser
[73], outperformed the best performing non-ML based citation parser, Biblio
[45], by 28.6% (F1 0.54 vs F1 0.42).

Tkacyzk et al. [1] also reported that the highest three performing tools,
GROBID (F1 0.89) [26], CERMINE (F1 0.83) [18] and Parscit (F1 0.75)
[25], all used a CRF algorithm. Unfortunately, they were not able to include
the two deep-learning methods in their survey. This was due to missing
resources, in the case of Neural Parscit [13] and because the work was carried
out after the survey was completed, in the case of Rodrigues et al. [32].

3.4 Training Datasets

Table 3.5 summarises the size and domain of the training datasets used
by eight ML citation parsing tools.

It is worth highlighting two points from this table. Firstly, many of these
datasets were compiled from a single domain or sub-domain. Cora contains
citations solely from Computer Science, PubMed [59] contains citations from
MEDLINE, a health science database and Venice contains citations from a
corpus of documents on the history of Venice. As previously noted, many do-
mains have their own domain-specific language and preferred citation style.
Training a model on a single domain’s technical language and only a few

24



Citation Parser Training Dataset Size Domain
GROBID [26] NA 7800 NA
CERMINE [18] GROTOAP2 6858 Computer Science

& Health Science
Structural SVM [19] PubMed 600 Health Science
HMM [24] Cora 350 Cora
Bigram HMM [61] ManCreat 712 NA
Trigram HMM [62] Cora + FluxCiM +

ManCreat
1512 Computer Science

Deep Mining [32] Venice 40000 Humanities
SVM + HMM [58] IEICE Transactions

on Fundamentals of
Electronics, Com-
munications and CS

4651 Computer Science

Table 3.5: Training datasets of eight ML citation parsing tools.

styles will not help it perform well across a range of domains.
The second point to note is the size of the training datasets. Aside from

Rodrigues et al. [32] who have used a deep-learning approach and a training
dataset of 40,000 citations, the remainder of tools are trained on datasets
smaller than 8,000 citations. Given the vast array of language and citation
styles that exist it would be impossible for a training dataset of a such a
size to fully capture this diversity. A number of authors have echoed these
thoughts commenting on the potential benefits of having more training data
available [37, 38] and the limitations of existing datasets [37, 32, 13].

In an effort to address these problems, in 2018 Ryan [74] created a dataset
with 400,000 unique references in fifty different citation styles using web
scraping. However, attempts to further develop the size and diversity of
this dataset were hampered by computational and resource constraints. Un-
fortunately no record was given that any existing ML citation parser was
successfully retrained using this dataset.

Deep-learning has led to huge advances in recent years in a variety of fields
including image classification [75], sentiment analysis [76], image recognition
[77], video translation [78] and text generation [79].

For image-classification, prior to deep-learning, small, hand-crafted datasets
were typically used to train models. Datasets such as NORB [80], Caltech-
101/256 [81] and CIFAR-10/100 [82] were of the order of tens of thousands.
To produce CIFAR-10, students were paid to classify ten different objects,
with the final dataset containing 6000 images of each object [82].

The advent of new, larger datasets such as LabelMe [83], which contains
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hundreds of thousands of images, and ImageNet [84], which contains over 15
million labelled images, enabled the application of deep-learning in this field.
In the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
Krizhevsky et al. [75] achieved a winning error rate of 15.3% using a deep-
learning approach for classifying images. This was a 41.6% improvement on
the second best entry which used non deep-learning methods.

The size of the training datasets available and used for citation parsing
are in stark contrast to those available in other areas of machine learning. It
remains to be seen the effect a large and diverse training dataset can have
on this open research problem.
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Chapter 4

Methodology

4.1 Citation Style Languages

In order to create the 1 Billion Citation Dataset a particular XML-based
language called Citation Style Languages (CSL) will be used. A brief intro-
duction to CSL is given below. This is then followed by a detailed description
on how CSL was used to create the 1 Billion Citation Dataset.

4.1.1 Introduction

Reference management tools such as Zotero [44], Mendeley [85] and End-
Note [86] are used to help individuals to organize their research. They are
also used to automatically generate citations and bibliographies in any re-
quired citation style. However, in order to format references in the desired
style these programs must contain some description of each citation style in
a machine-readable format. Citation Style Language (CSL), an XML-based
language, can be used to provide exactly this, namely, a machine-readable
description of citation styles and bibliographic format [2].

Figure 4.1 provides an overview of the CSL ecosystem. There are four
components that are used by a CSL processor to generate a citation. These
are: an item’s style, a locale file, metatdata information and citing details.

4.1.2 Citation Styles

In CSL there are two types of citation styles: independent and dependent.
An independent CSL style defines the format of a citation. It provides details
about the citation’s layout, punctuation and overall structure [87]. It will
answer questions such as: should an author’s first name be provided or just
their initial, should a DOI be included, where does the date go in the citation
etc. It also provides style metadata, information which describes the style
itself. This could include the name of the person, who created the style, the
date the style was created etc.
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Figure 4.1: An overview of the CSL Ecosystem. An item’s style, locale file,
metadata and citing details are all combined in a CSL processor to produce
a citation string or bibliography. [2]

Dependent styles on the other hand contain only style metadata. They
are used as pointers to independent styles and are useful when multiple CSL
styles share the same citation format [87]. If multiple journals use the same
citation format, each individual journal can have their own dependent style,
which then points to a single independent style which defines the citation
layout. This has the benefit that if a publishing group decide to change their
citation format for a group of journals, only a single, independent style, will
have to be updated.

4.1.3 Locale Files

Locale files are used to define language-specific phrases in a citation
string. For example, the following citation string makes use of a US En-
glish locale file:

Hartman, P., Bezos, J. P., Kaphan, S., & Spiegel, J. (1999, September
28). Method and system for placing a purchase order via a communications

network. Retrieved from https://www.google.com/patents/US5960411

Changing the locale file to German will alter the text “Retrieved from” to
the German “Abgerufen von”. The complete citation string will then appear
as:

Hartman, P., Bezos, J. P., Kaphan, S., & Spiegel, J. (28. September 1999).
Method and system for placing a purchase order via a communications
network. Abgerufen von https://www.google.com/patents/US5960411

Each language has it’s own locale file and these enable CSL styles to be
largely language independent [87].
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4.1.4 Item Metadata

Item metadata stores the bibliographic details of the entry you wish to
cite. This may include the author’s name, the journal title, the date, the
page number etc. Reference managers typically have their own method of
storing an item’s metadata however common formats include JSON, BibTeX
and Research Information Systems (RIS).

4.1.5 Citing Details

Citing details refer to context-specific information. For example, if an
item has already been cited in a document this may mean that future cita-
tions of the same work are given in a more compact form. Citing details are
not relevant for creation of the 1 Billion Dataset but are included here for
completeness.

4.1.6 CSL Processor

Each of the four items – citation style, locale file, item metadata and
citing details – are fed into a piece of software called a CSL processor. The
CSL processor then generates the desired citation string and/or bibliography.
Many reference management tools make use of open-source CSL processors
such as citeproc-js [88].

4.1.7 CSL Example

Figure 4.3 shows an example of a small independent CSL style. In reality
CSL styles are much longer. In Figure 4.3 the style’s metadata is contained
within the <info> tags. For example, the name of the style is given as
Example Style and the style’s creator is listed as John Doe. Next, the locale
file is listed as English: <locale xml:lang="en">. The remainder of the CSL
can be viewed in three parts:

• <macro>

• <citation>

• <bibliography>

Macros are reusable pieces of XML. The macro in Figure 4.2 details that
an author’s name should appear as an initial followed by a full stop (M.
Grennan). The remainder of the macros are removed for brevity.
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Figure 4.2: An example of a macro contained within a CSL independent
style.

<Citation> details how an in-text citation should appear. Here the code
generates citations like: M. Grennan et al., 2019. Finally, the XML within
<bibliography> details how a reference in a bibliography should appear.

Figure 4.3: An example of an independent CSL style.
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4.2 Creation of 1 Billion Citation Dataset

4.2.1 Introduction

As shown in Figure 4.4, combing an XML citation style, an item’s meta-
data and locale file in a CSL processor will produce a citation string. In
Figure 4.4 the following citation string is produced: M. Grennan, 1st August
2019, The 1 Billion Dataset.

Figure 4.4: Combining a CSL Style, an item’s metadata and locale file in a
CSL processor will produce a citation string.

However, training data for ML citation parsers must be labelled XML
citation strings such as that shown in Figure 4.5. In order to create this
training data the XML citation styles were edited. These edited citation
styles, along with a locale file and an item’s metadata, were then combined
with a CSL processor to produce the desired labelled citation strings.

Figure 4.5: An example of labelled XML which is used as input to a train a
ML citation parser.

Figure 4.6 gives a high-level overview of the process. What follows is
a description of the steps undertaken to create the 1 Billion Dataset along
with the motivation behind each step.

4.2.2 Editing Citation Styles

The aim in creating the 1 Billion Citation Dataset was to create a dataset
that contains as many different citation styles as possible. Although some
styles are more commonly used than others it was decided to include equal
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Figure 4.6: An overview of the process of creating the 1 Billion Citation
Dataset. The citation styles were edited and combined with citation meta-
data records and a locale file in a CSL processor. The final output is labelled
XML citation strings.

numbers of each citation style. In this way, a researcher should be able to
use the 1 Billion Dataset to create their own training data specific to their
needs. Should they require training data with a particular citation style, or
set of styles, the aim is that these styles will all be contained within the 1
Billion Dataset. With this in mind 1,564 independent XML citation styles
were obtained from the official CSL repository on github [89].

As described in the Introduction 4.2.1, combing each XML citation style
with an item’s metadata in a CSL processor would generate a citation string.
However, we require a dataset of labelled citation strings. The first task in
creating the 1 Billion Citation Dataset was to edit the 1,564 XML citation
styles so that each field (author, title etc.) would contain a prefix tag (<au-
thor>, <title> etc.) and a suffix tag (</author>, </title> etc.).

Table 4.1 gives examples of fields both before and after the prefix and
suffix tags were added. In each citation style the field name was either
contained within a label called name or variable. As an example in Table
4.1, the publisher field is contained within a text tag and is labelled with
variable. The date field is contained within a date-part tag and is labelled
with name.

The author field is slightly more complicated. Different citation parsing
tools require slightly different formatting for their training data. Some tools
such as GROBID [26] require that all the authors names are contained within
a single author tag. For example, here the authors M. Grennan and U.
McMenamin are contained within an outer author tag:

<author>M. Grennan, U. McMenamin</author>

Other tools such as Biblio [45] and Parscit [25], require individual au-
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Field Original CSL Edited CSL
publisher <text variable="publisher"/> <text variable="publisher"

prefix="<publisher>"
suffix="</publisher>"/>

date <date-part name="year"/> <date-part name="year"
prefix="<year>"
suffix="</year>"/>

title <text variable="title"> <text variable="title"
prefix="<title>"
suffix="</title>"/>

issue <text variable="issue" <text variable="issue"
prefix="(" suffix=")"/> prefix="(<issue>"

suffix="</issue>)"/>

Table 4.1: Original CSL tags and CSL tags after a prefix and suffix tag has
been added.

thors to be encapsulated within their own tag. Here, M. Grennan and U.
McMenamin are contained within their own individual name tags. Both are
encapsulated within an outer author tag:

<author><name>M. Grennan</name>, <name>U.
McMenamin</name></author>

Finally, some tools tag an author’s first name, middle name and/or sur-
name separately. For example, here M. is contained within a firstname tag
and Grennan is contained within a surname tag:

<author><firstname>M.</firstname>
<surname>Grennan</surname></author>

In an effort to make the 1 Billion Dataset as widely usable as possible
an author’s first name, middle name and surname were given separate tags.
This means that, with only a slight modification, the 1 Billion Dataset can be
converted into all of the previously mentioned formats. For instance, should
a citation parser require a single author tag the inner tags for an author’s
first name, middle name and surname can just be removed.

In the 1 Billion Dataset, a family tag was used to represent the author’s
surname and a given tag was used to represent their first name and/or middle
name. Figure 4.7 shows an example of a macro for author before and after
tags for author, family and given are added. The prefix and suffix for family
and given are contained within each individual name-part tag.
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Figure 4.7: The macro for author before and after the name-part tags have
been added for the fields family and given. Note, &lt; is used to represent
the special character < in XML.

Before editing, the macro in Figure 4.7 will produce the following string:
M. Grennan. After editing, the macro will produce the following labelled
author field:

<author><given>M.</given> <family>Grennan</family></author>

Should a citation contain multiple authors their names will be contained
within the outer author tag, for example:

<author><given>M.</given> <family>Grennan</family>,
<given>U.</given> <family>McMenamin</family></author>

A similar approach is taken with macros for editor.

4.2.3 Locale File

CSL locale files, in combination with the XML citation styles, enable
citations to be created in many different languages. In creating the 1 Billion
Dataset the US-English locale file was used.

4.2.4 Item Metadata and Crossref

The requirements for the 1 Billion Dataset are that it is diverse and
large. The diversity of citation styles has been addressed. In order to obtain
diversity in domain and citation type a large source of accessible citation
metadata is required.

One large, freely-available source of scholarly metadata is Crossref [90].
CrossRef is a not-for-profit organisation that collates, tags and shares meta-
data on scholarly publications. Their records contain over a hundred billion
items from a diverse range of academic fields.

677,000 records were obtained from Crossref using their public API.
Crossref’s random_doi method was used to obtain random records. These
records were returned in JSON format in a single 2.2Gb file.
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Each of these records was then converted into a labelled citation string
in each of the 1,564 different citation styles. So for every item obtained from
Crossref it appears 1,564 times in the 1 Billion Dataset.

Finally, when implementing this process the 2.2Gb file from Crossref was
split into 219 smaller files each of size 10Mb. Each 10Mb input file produced
a 2Gb output csv file. An overview of this process is shown in Figure 4.8.

Figure 4.8: The 2.2Gb Crossref JSON file was split into 219 10Mb Input
Files. Each input file produced a 2Gb csv output file.

4.2.5 CSL Processor

Citeproc-js [88] was chosen as the CSL processor for the following reasons.
It has been in operation for over a decade, it is open-source and it is widely
used, integrated into both Mendeley [85] and Zotero [44]. Furthermore, it
has an active and responsive community of developers.

In order to use citeproc-js the input data must be in JSON form and
follow the citeproc-js JSON schema. The citeproc-js JSON schema requires
both an id and a type field. Id is required to uniquely identify the citation
and type identifies the citation type (e.g. journal, book etc.) The type field
determines what subsequent fields are allowed.

A number of steps were required to change the JSON data obtained
from Crossref into the citeproc-js JSON format. Firstly, Table 4.2 shows tag
names which were directly changed. Secondly, empty tags were removed and
finally, any tags not allowed as input for citeproc-js were removed.
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Crossref Tag citeproc-js Tag
short-container-title container-title-short
short-title shortTitle
journal-article article-journal
book-chapter chapter

Table 4.2: Tag names which were changed when making the Crossref JSON
compatible with the citeproc-js JSON schema

Figure 4.9 shows the following citation:

Tkaczyk, D., Collins, A., Sheridan, P., & Beel, J. (2018, May). Machine
learning vs. rules and out-of-the-box vs. retrained: An evaluation of

open-source bibliographic reference and citation parsers. In Proceedings of
the 18th ACM/IEEE on joint conference on digital libraries (pp. 99-108).

ACM.

in Crossref JSON. The same citation is shown in citeproc-js JSON in Figure
4.10. It can be seen that the citeproc JSON is considerably smaller than the
Crossref JSON.
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Figure 4.9: An example of JSON returned by Crossref.
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Figure 4.10: An example of Crossref JSON after being edited for use with
citeproc-js.

4.2.6 Indexes

In an effort to provide information for future users of the 1 Billion Dataset
three pieces of metadata were included with each labelled citation. These
were:

1. The DOI of the citation

2. The citation type (book, journal article etc.)

3. The citation style (Harvard, MLA etc.)

Both the citation type and the citation style were included as indexes in an
effort to reduce space. A separate lookup table is provided for both. Table 4.3
shows the most common citation types along with their respective indexes.
The complete list of citation types along with their respective indexes is
given in Appendix 10.3.

38



Index Citation Type
3 article-journal
5 book
7 chapter
8 dataset
22 paper-conference
27 report
36 reference-entry
37 journal-issue

Table 4.3: Most common citation types in the 1 Billion Dataset and their
respective indexes.

4.3 Training existing ML citation parsing tools on
1 Billion Citation Dataset

4.3.1 Introduction

The primary research question I want to address is whether the synthetic
1 Billion Citation Dataset has the potential to be used for training a deep-
learning citation parser.

In an effort to address this question the citation parser GROBID is
trained using a subset of the 1 Billion Dataset. This model is then com-
pared with the out-of-the-box version of GROBID which was trained using
hand-labelled datasets. Further details on the reasoning behind choosing
GROBID and the size and make-up of the training data are given in the
following sections.

4.3.2 Training GROBID with the 1 Billion Citation Dataset

There were a number of reasons why GROBID was chosen as the citation
parsing tool for training using the 1 Billion Dataset. Firstly, as mentioned
previously, in a 2018 comparison survey of existing citation parsing tools,
Tkaczyk et al. found that GROBID was the state-of-the-art with the highest
F1 score of 0.89 [1]. This was a 7.2% improvement on the second highest
scoring tool, CERMINE, which had an F1 score of 0.83 [1].

Secondly, as well as being state-of-the-art, GROBID is established, widely-
used and open-source. It has been in development since 2008 and been
open-source since 2011 [91]. It also has an active and generous community
of developers.

Finally, GROBID has excellent documentation. This covers important
areas such as the required format of training data, how to carry out training
and how to use your own evaluation data. For all of these reasons GROBID
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was chosen as the ML citation parsing tool for training on the 1 Billion
Dataset.

What follows is a description of the steps taken to make the 1 Billion
Dataset compatible for training GROBID, the training datasets created to
investigate each of the research questions and the evaluation datasets used.

4.3.3 Making the 1 Billion Citation Dataset compatible with
GROBID

The training data for ML citation parsers is typically labelled XML how-
ever, the exact make-up of the labels for different citation parsing tools can
vary. As outlined in Section 4.2.2, these labels can vary in how fine-grained
they are, for example, whether they label individual authors separately or
together. They can also vary in whether they differentiate between article
titles and book-titles. Finally, the exact labelling can also vary. For example,
is the author field labelled as <author> or <name>.

The 1 Billion Dataset was created with as fine-grained labelling as possi-
ble. As outlined in Section 4.2.2 an author’s first-name, middle name and/or
surname were tagged separately. This will enable the 1 Billion Dataset to
be used with multiple citation parsing tools regardless of their format. How-
ever, this did mean that in it’s original format the 1 Billion Dataset was not
compatible with GROBID.

A number of steps were taken to make the 1 Billion Dataset compati-
ble with GROBID. Table 4.4 shows the original XML tags in the 1 Billion
Dataset that were either unchanged or directly substituted for a different la-
bel. For example, the <editor> tag remains exactly as is whilst the <page>
tag is changed to <biblScope unit=”page”>.

Original 1 Billion Dataset XML tags GROBID XML tags
author author
issued date
page biblScope unit="page"
volume biblScope unit="volume"
issue biblScope unit="issue"
orgName orgName
publisher publisher
editor translator editor
editor editor
DOI idno type="doi"
URL ptr type="web"

Table 4.4: The original XML tags in the 1 Billion Dataset and the corre-
sponding tag used to train GROBID.
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GROBID requires that brackets are placed outside of the date tag. For
example, (<date>1984</date>) is acceptable whereas <date>(1984)</date>
is not. Entries in the 1 Billion Dataset containing brackets inside the date
tag were changed so that the brackets were placed directly outside the date
tag.

GROBID labels all the authors as a single field so in order to make the 1
Billion Dataset compatible with GROBID the <family> and <given> tags
were removed. The <author> tag remained unchanged. For example, the
author field:

<author><family>Grennan</family>,
<given>Mark</given></author>

would appear after editing as:

<author>Grennan, Mark</author>

GROBID has four different types of title tags depending on the nature of
the item being referenced. Table 4.5 summarises these tags and where they
are used.

GROBID Title Tag Description
title level=”a” For article title
title level=”j” For journal title
title level=”s” For series title (e.g. Lecture Notes in Mathematics)
title level=”m” For book title and any other non-journal biblio-

graphic item (e.g. conference proceedings title)

Table 4.5: The four different title tags used by GROBID along with a de-
scription of where they are used.

The 1 Billion Dataset has two different types of title tags, namely <ti-
tle> and <container-title>. The <title> tag is used to label the article or
chapter title of a reference and maps directly to GROBID’s <title level=”a”>
tag. However, <container-title> is used to label journals, books and non-
bibliographic titles. No distinction is made between them.

A challenge was how to map the <container-title> tag to GROBID’s
three other different title tags. This challenge was addressed by using the
citation type lookup index as given in Table 4.3. The citation type index
details the type of citation (e.g. book, journal-article, chapter etc.). Based
on this information, an appropriate tag could be chosen as a substitute for
<container-title>. The mappings chosen for the most common citation types
are given in Table 4.6.
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Citation Type GROBID Title Tag
article-journal title level=”j”
book title level=”m”
chapter title level=”m”
paper-conference title level=”m”
dataset title level=”m”

Table 4.6: The title tag used for each citation type

4.3.4 Training Datasets

A citation parser is typically used in information retrieval by academic
search engines and digital libraries. Given that the aim of the citation parser
is to perform well on unseen citation strings, ideally a training dataset would
reflect the data on which these searches are carried out and the distribution
of citation types, styles and domains in popular use. Unfortunately we can
only estimate this data so the choice was made to experiment with different
make-ups of training data.

Figure 4.11 shows the distribution of citation types of three different
training datasets used. All three training datasets were created using the 1
Billion Dataset and each dataset contains over 1,000 citation styles.

Figure 4.11: The distribution of citation types in three different training
datasets used to train GROBID.

“10k Unbalanced” contains 75% journal articles, 13% chapters, 6% con-
ference papers and 1% books. “10k Balanced” contains 25% of each type:
journal article, chapter, conference paper and books. “10k Journals” contains
25% journal articles, 17% chapters, 17% conference papers and 16% books.
It also contains 25% citations which just contain a journal title and not a
paper title.
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In an effort to investigate how the size of the training dataset affects the
performance of GROBID six different training datasets were used. These
had sizes: 1k, 3k, 5k, 10k, 20k and 40k.

Finally, as outlined in Section 3.3.2, different citation parsing tools have
more or less fine-grained labelling. Here, the out-of-the-box GROBID train-
ing data is more fine-grained than the 1 Billion Dataset. The following
tags are present in the out-of-the-box training data and not in the 1 Billion
Dataset:

• institution: the institution for theses or technical reports

• note: a description of the type of technical report (E.g. PhD, MSc etc.)
or any indications related to the reference not covered by a previous
tag 1

• pubPlace: location of the publishing institution

In an effort to determine whether there is any difference, aside from gran-
ularity, between models trained with hand-labelled data and the synthetic
1 Billion Dataset it is necessary to compare models trained with the same
granularity of data. Therefore, GROBID was retrained using it’s out-of-
the-box training data with citations containing the following tags removed:
institution, note and pubPlace. This model was compared with GROBID
retrained on the 1 Billion Dataset.

4.4 Evaluation Datasets

The challenges associated with evaluation datasets currently in use were
extensively discussed in Section 3.3.3 of Related Work. Briefly recapping the
main points, there is no gold-standard evaluation dataset and the datasets
that do exist are small and homogeneous, often coming from a single domain.

Further, it was found that some of the existing data available was used
to train the out-of-the-box version of GROBID. Using this same data for
evaluation purposes would lead to heavily biased and meaningless results.

In order to draw fair conclusions there was a need for a new, “unseen”
evaluation dataset. Therefore, both in an effort to fairly evaluate the 1
Billion Dataset and as a contribution to the community, time was devoted
to creating a completely new evaluation dataset.

For ease of discussion, the out-of-the-box version of GROBID which was
trained using hand-labelled data will be referred to as the “hand-labelled”
model. GROBID retrained on a subset (10,000 citations) of the 1 Billion
Dataset will be referred to as the “synthetic” model.

1note is contained within the 1 Billion Dataset but the information contained within the
note tags of the 1 Billion Dataset and what GROBID expects do not match up therefore
this field was excluded.
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4.4.1 Unseen Evaluation Dataset

An evaluation dataset, although much smaller than the 1 Billion Dataset,
should still be diverse in citation style, language and domain. Equally
it should contain errors commonly found in citation strings: OCR errors,
spelling errors, incorrect spacing, punctuation etc. What follows is a brief
description of the steps taken to create this dataset.

First, twenty words were chosen from the homepage of different university
departments. The words were: bone, recommender systems, running, war,
crop, monetary, migration, imprisonment, hubble, obstetrics, photonics, car-
bon, cellulose, evolutionary, resolutionary, paleobiology, penal, leadership,
soil, musicology.

Each of the twenty words was then searched in Google Scholar. From each
of these searches the first four available PDFs were taken and within each
PDF four citation strings were chosen at random. This gave approximately
sixteen citation strings for each of the twenty keywords and in total, there
were 300 citation strings.

GROBID’s out-of-the-box model was used to preliminarily tag each of
these 300 citation strings. Following this, each string was manually checked
and edited to ensure that it had been correctly tagged. Errors included
within the dataset include: OCR errors, incorrect spacing and punctuation.

Both the hand-labelled and synthetic models were then evaluated using
this “unseen” evaluation dataset.

4.4.2 CORA Dataset

Both models, hand-labelled and synthetic, were also evaluated using the
popular CORA dataset. This dataset was obtained in it’s original format
from the website of Andrew McCallum [70], the creator of the dataset.

The limitations of the CORA dataset were extensively discussed in Sec-
tion 3.3.3. Furthermore, it was found on investigation that some of the
CORA dataset was included in the out-of-the-box GROBID training dataset.
For this reason, CORA was not used to compare the relative performance of
the hand-labelled and synthetic models.

However there were two reasons for evaluating the synthetic model on
CORA. Firstly, it was included for completeness. In this way the model
trained on synthetic data could easily be compared with other existing tools
that had been evaluated on CORA. Secondly, it was used to highlight any
potential areas of weakness in the 1 Billion Dataset.

In spite of it’s popularity, reformatting the CORA dataset to be compat-
ible with GROBID was not without challenges. Similar to how the 1 Billion
Dataset had to be re-formatted to be compatible with GROBID some of the
original tags in the CORA dataset had to be renamed. A complete list of the
mappings from the original tags to the reformatted tags is given in Table4.7.
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Original CORA tags GROBID tags
author author
title title level="a"
journal title level="j"
volume biblScope unit="volume"
pages biblScope unit="page"
address pubPlace
booktitle title level="m"
date date
publisher publisher
editor editor
institution institution
note note
year date

Table 4.7: The original XML CORA tags and the corresponding tag used to
train GROBID.

In many cases, in it’s original format, a space existed both before a closing
tag and after an opening tag. For example, the author field often looked like:

<author> Mark Grennan </author>

as opposed to the following, without spaces:

<author>Mark Grennan</author>

This was a problem as GROBID is sensitive to blank spaces. Therefore, had
GROBID tagged the author field as: <author>Mark Grennan</author>
this would be marked as incorrect. In order to rectify this, any spaces oc-
curring either after an opening tag or before a closing tag were removed.

Similarly, GROBID is sensitive to punctuation. A number of fields, such
as volume and pages, were changed so that punctuation was placed outside
the tag. It is important to note that moving the punctuation outside of the
tag did not change the structure of the citation string but rather, how the
string was labelled. Examples of punctuation that were changed are given
in Table 4.8.

As well as this, any brackets that occurred within the date tag were
moved outside the tag. Further, 47 duplicate citations were identified and
removed.

Finally, XML by it’s nature is unforgiving. Any misspelt tags or missing
tags will prevent the document from being processed. In the original CORA
dataset a number of citations had these errors. This added to the time it
took to reformat CORA.
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Original CORA tags Reformatted CORA tags
<pages>893,</pages> <pages>893</pages>,
<volume> 76, </volume> <volume>76</volume>,
<date> 1981. </date> <date>1981</date>.
<volume> 31: </volume> <volume>31</volume>:
<pages> pp. 141-155. </pages> pp. <pages>141-155</pages>.

Table 4.8: Examples of punctuation that were moved outside of the tags in
the CORA dataset.

4.4.3 Other Evaluation Datasets

As well as evaluating on the “unseen” dataset and the CORA dataset,
both models were also evaluated using a subset of the 1 Billion Dataset (5,000
citations).

Further, GROBID was also re-trained using 70% of it’s original training
data (5,460 citations). The remaining 30% of it’s original training data (2,340
citations) was then used as an evaluation dataset. Here, GROBID retrained
on 70% of it’s original data was compared with the synthetic model.

Both of these evaluation datasets are heavily biased and the results should
not be used to draw conclusions about the relative performance of the syn-
thetic and hand-labelled training data. These evaluations were primarily a
form of exploratory analysis.

The expectation was that the synthetic model would perform better when
evaluated on the synthetic 1 Billion Dataset and similarly, that the hand-
labelled model would perform better when evaluated on the hand-labelled
30% dataset.

4.5 Evaluation Metrics

As discussed in Section 3.3.1 the most commonly reported metric for
evaluating citation parsing is F1 although there is no single accepted metric.
For completeness, recall, precision and F1 are reported. Formulas and details
about the calculation of these metrics can be found in Section 2.3 of the
Background Chapter.

Both micro and macro-average results are reported at the field-level.
Again, details about how these averages are calculated can be found in Sec-
tion 2.3 of the Background Chapter.

Both averages are reported at the field-level. This was deemed to be more
meaningful than the token-level results. Finally, as well as the overall aver-
age, recall, precision and F1 are reported for the following ten fields: author,
title, book-title, journal, date, editor, volume, issue, pages and publisher.
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Chapter 5

Results

5.1 Analysis of 1 Billion Citation Dataset

The final format of the 1 Billion Citation Dataset is a csv with four
columns: DOI, citation type, citation style and labelled citation string. A
separate lookup table is provided for citation type and citation style. Table
5.1 gives an example of the layout.

DOI Type Style Labelled Citation String
10.1186/s12967-016-0804-1 3 471 <author><family>Yang</family>,

<given>C.</given>... etc.
10.1037/ser0000151 3 1084 <author><family>Goetter</family>

<given>EM</given>...
etc.

Table 5.1: The final format of the 1 Billion Dataset csv. Columns exist for
DOI, citation type, citation style and XML labelled citation. A separate
lookup table is provided for the indexes for citation type and style.

The final dataset has 991,411,100 labelled citation strings and is 438Gb
in size. This is composed of 219 * 2Gb files. Figure 5.1 gives the percentage
breakdown of the 1 Billion Dataset by citation type. Journal articles are the
most common type of citation making up 75.9% of the 1 Billion Dataset,
followed by chapter citations (12.4%) and conference papers (5.6%).

Table 5.2 provides further detail with columns included for total num-
ber of labelled citations, number of unique citation strings and percentage
of dataset. The number of unique citations is found by dividing the total
number of citations by the 1,564 citation styles. The total number of unique
citations is 633,895 which means that of the original 677,00 Crossref records,
43,105 were not processed correctly. A complete breakdown of all categories
including "other" is given in Appendix 10.2.
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Figure 5.1: The percentage breakdown of citation types contained within
the 1 Billion Dataset

Citation Type Number of La-
belled Citation
Strings

Number of Unique
Citation Strings

Percentage

Journal Article 752,005,608 480,822 75.9%
Chapter 122,562,727 78,365 12.4%
Conference Paper 55,706,868 35,618 5.6%
Dataset 17,003,027 10,872 1.7%
Reference Entry 8,371,603 5,353 0.8%
Book 7,077,100 4,525 0.7%
Other 28,684,167 18,340 2.9%
Total 991,411,100 633,895 100%

Table 5.2: Breakdown of Citation Types contained within 1 Billion Dataset.

A look at the percentage breakdown of citation styles reveals that of the
1,566 original styles, four did not work and 55 did not process every citation
correctly. This largely explains the missing records.

Each of the 1,505 citation styles which processed every record correctly
contains 633,966 unique citations. The total number of citation types in each
citation style is given in Table 5.3.
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Citation Type Number of Labelled Citation Strings Percentage
Journal Article 481,203 75.9%
Chapter 78,616 12.4%
Conference Paper 35,504 5,6%
Dataset 10,778 1.7%
Reference Entry 5,072 0.8%
Book 4,438 0.7%
Other 18,386 2.9%
Total 633,996 100%

Table 5.3: Breakdown of Citation Types contained within each Citation Style
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5.2 Evaluating on the 1 Billion Dataset

An evaluation dataset composed of 5,000 synthetic citations was created
from the 1 Billion Dataset. The results of evaluating the synthetic and hand-
labelled training datasets using this synthetic evaluation dataset are given
in Table 5.4. Here, micro-average for recall, precision and F1 are reported
at the field-level.

As expected, the model trained using synthetic training data was su-
perior to the model trained using hand-labelled data when evaluating on
synthetic data. There was a 32.9% difference between the models trained
using synthetic and hand-labelled data (F1 0.93 vs F1 0.70, p < 0.01). As
discussed in Section 4.4.3 these results are heavily biased.

Training Data Precision Recall F1
Hand-Labelled 0.70 0.71 0.70
Synthetic 0.93 0.93 0.93

Table 5.4: Evaluating models trained using hand-labelled and synthetic
training data using a synthetic evaluation dataset created from the 1 Bil-
lion Dataset.

Table 5.5 shows the F1 broken down by field for the models trained using
hand-labelled and synthetic training data. The fields in which there is the
largest difference in F1 are: book-title (F1 0.29 vs F1 0.75) , publisher (F1
0.55 vs F1 0.94) and title (F1 0.54 vs F1 0.87).

Field Hand-Labelled Training Data Synthetic Training Data
author 0.74 0.93
book-title 0.29 0.75
date 0.92 0.96
issue 0.81 0.91
journal 0.63 0.90
pages 0.90 0.98
publisher 0.55 0.94
title 0.54 0.87
volume 0.88 0.94
Micro-Average 0.70 0.93
Macro-Average 0.69 0.91

Table 5.5: F1 broken down by field for the models trained using hand-labelled
and synthetic training data. Evaluated on 5,000 synthetic citations from the
1 Billion Dataset.
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5.3 Evaluating on 30% of GROBID’s Original Train-
ing Data

GROBID was trained using 70% (5,460 hand-labelled citations) of it’s
original training data. The remaining 30% (2,340 hand-labelled citations)
was then used as an evaluation dataset.

The results of evaluating the synthetic and hand-labelled training datasets
using this evaluation dataset are given in Table 5.6. Again, micro-averages
for recall, precision and F1 are reported at the field-level.

Training Data Precision Recall F1
Hand-Labelled (70% original training data) 0.95 0.95 0.95
Synthetic 0.83 0.75 0.78

Table 5.6: Evaluating models trained using hand-labelled and synthetic
training data using an evaluation dataset created from 30% of GROBID’s
original training data.

This time, as expected, the results have been reversed. When evaluating
using 30% of GROBID’s original training data the model trained using hand-
labelled data outperforms the model trained with the synthetic data. Again,
it is worth acknowledging that these results are also biased.

The F1 values broken down by field are given in Table 5.7. The fields with
the largest difference in F1 are: book-title (F1 0.77 vs 0.15) and publisher
(F1 0.87 vs F1 0.38).

Field Hand-Labelled Training Data Synthetic Training Data
author 0.95 0.83
book-title 0.77 0.15
date 0.99 0.95
issue 0.91 0.73
journal 0.95 0.78
pages 0.98 0.78
publisher 0.87 0.38
title 0.93 0.75
volume 0.98 0.86
Micro-Average 0.95 0.78
Macro-Average 0.92 0.69

Table 5.7: F1 broken down by field for the models trained using hand-labelled
and synthetic training data. Evaluated on 2,340 hand-labelled citations from
GROBID’s original training data.
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Although the results have been reversed it is interesting to note that the
same fields – book-title and publisher - have the largest difference in both
evaluations. This points to an area in which the labelling of the 1 Billion
Dataset may differ from the out-of-the-box GROBID training data.

5.4 Evaluating on CORA

As detailed in Section 4.4.2, some of the CORA dataset is contained
within the out-of-the-box GROBID training data. Further, the CORA dataset
has limitations as outlined in Section 3.3.3. Therefore evaluations using
CORA should be seen as a further tool for investigation rather than a mea-
sure of relative performance.

The results of evaluating on CORA models trained using hand-labelled
and synthetic training data are given in Table 5.8. The percentage difference
between the model trained using hand-labelled data and the model trained
using synthetic data is larger for recall (19.0%) than for precision (11.1%).

Training Data Precision Recall F1
Hand-Labelled 0.72 0.79 0.75
Synthetic 0.64 0.64 0.64

Table 5.8: Evaluating models trained using hand-labelled and synthetic data
on the CORA dataset.

The field-level results are given in Table 5.9. It is noteworthy that the
fields with the largest difference in F1 are again: book-title (F1 0.67 vs F1
0.16), publisher (F1 0.83 vs F1 0.33) and title (F1 0.90 vs F1 0.79).

Field Hand-Labelled Training Data Synthetic Training Data
author 0.91 0.89
book-title 0.67 0.16
date 0.87 0.86
issue 0.64 0.60
journal 0.52 0.53
pages 0.75 0.73
publisher 0.83 0.33
title 0.90 0.79
volume 0.76 0.70
Micro-Average 0.75 0.64
Macro-Average 0.76 0.62

Table 5.9: F1 values broken down by field when evaluating on the CORA
dataset.

52



The difference in results for the fields: author, date, issue, journal, pages
and volume are not significant at the 5% significance level.

5.5 Evaluating on the "Unseen" Dataset

The results of evaluating on the "unseen" dataset models trained us-
ing hand-labelled and synthetic training data are given in Table 5.10. The
model trained with hand-labelled data outperforms the model trained with
synthetic data in precision, recall and F1. The percentage difference between
the two models is again larger for recall (12.8%) than for precision (6.8%).

Training Data Precision Recall F1
Hand-Labelled 0.89 0.87 0.88
Synthetic 0.83 0.76 0.80

Table 5.10: Evaluating models trained using hand-labelled and synthetic
data on the "unseen" dataset.

The field-level results are given in Table 5.11. Although the model trained
using hand-labelled data has a higher F1 across all fields the results are not
significant at the 5% significance level for the fields: date, issue, pages and
volume. The fields with the most significant differences are book-title (p <
0.005) and publisher (p < 0.00001).

Field Hand-Labelled Training Data Synthetic Training Data
author 0.91 0.84
book-title 0.35 0.16
date 0.97 0.97
issue 0.87 0.83
journal 0.86 0.79
pages 0.96 0.94
publisher 0.87 0.46
title 0.79 0.70
volume 0.96 0.94
Micro-Average 0.88 0.80
Macro-Average 0.84 0.74

Table 5.11: F1 value broken down by field when evaluating on the "unseen"
dataset.
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5.6 Effect of granularity

GROBID was trained using it’s original training data with citations con-
taining the following tags removed: institution, note and pubPlace. The F1
scores for this model along with the model trained using the synthetic data
are detailed in Table 5.12.

Both models were evaluated on the "unseen" Dataset. Although the
model trained using hand-labelled data has a higher micro-average F1 0.82
than the model trained using the synthetic 1 Billion Dataset F1 0.80, the
results are not significant at 5% level.

Training Data Precision Recall F1
Hand-labelled 0.84 0.79 0.82
Synthetic 0.83 0.76 0.80

Table 5.12: Evaluating using the "unseen" dataset when both training
datasets have the same level of granularity. The difference in F1 (0.82 vs
0.80) is not significant at the 5% significance level.

Table 5.13 shows the results at the field level for both models. Here, it
can be seen that the macro-average F1 0.74 is the same for both models.
The out-of-the-box model has a higher F1 for author, issue and title whilst
the model trained using synthetic data has a higher F1 for book-title and
publisher.

Removing citations containing the pubPlace tag from GROBID’s origi-
nal training data has significantly reduced the performance of GROBID in
predicting book-title. This is further discussed in Chapter 6 on Discussion.

Field Hand-Labelled Training Data Synthetic Training Data
author 0.89 0.84
book-title 0.15 0.16
date 0.98 0.97
issue 0.87 0.83
journal 0.81 0.79
pages 0.96 0.94
publisher 0.27 0.46
title 0.76 0.70
volume 0.95 0.94
Micro-Average 0.82 0.80
Macro-Average 0.74 0.74

Table 5.13: F1 values broken down by field when both training datasets have
the same level of granularity.
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5.7 Effect of changing make-up of Training Data

As outlined in Section 3.4, three different datasets were created to exam-
ine the effect of changing the distribution of citation types within a training
dataset. These were named “10k Unbalanced”, “10k Balanced” and “10k
Journals”.

Figure 5.2 shows the results for precision, recall and F1 for models trained
on each of the three datasets. The models were evaluated on the “Unseen”
dataset. The model trained on “10k Unbalanced” dataset has the highest
precision 0.76, recall 0.83 and F1 0.80. The difference between the model
trained on the “10k Unbalanced” dataset and the other two models is signif-
icant at 5% significance level.

Figure 5.2: Precision, recall and F1 for models trained on the "10k Bal-
anced", "10k Unbalanced" and "10k Journals" datasets. Each dataset was
created from the 1 Billion Dataset.

Table 5.14 shows the results broken down by field. Interestingly, al-
though “10k Balanced” contains more book citations (25%) compared with
“10k Unbalanced” (1%) it does worse at predicting the book-title field (F1
0.12 vs F1 0.16) and the title field (F1 0.56 vs F1 0.70). Adding in citations
containing just the journal title, “10k Journals”, did not improve the result
for predicting journal title (“10k Unbalanced” F1 0.79 vs “10k Journals” F1
0.72).
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Field 10k Unbalanced 10k Balanced 10k Journals
author 0.84 0.80 0.80
book-title 0.16 0.12 0.10
date 0.97 0.94 0.97
issue 0.83 0.77 0.81
journal 0.79 0.68 0.72
pages 0.94 0.92 0.95
publisher 0.46 0.46 0.40
title 0.70 0.56 0.56
volume 0.94 0.92 0.93
Micro-Average 0.80 0.75 0.76
Macro-Average 0.74 0.69 0.69

Table 5.14: F1 broken down by field for GROBID trained on "10k Unbal-
anced", "10k Balanced" and "10k Journals". Evaluation was conducted on
the "unseen" dataset.

5.8 Effect of increasing the size of the training dataset

Figure 5.3 shows the F1 field-level micro-average value as the size of the
training dataset increases. Results are shown for each of the four evaluation
datasets: 1 Billion 5k Sample, 30% Grobid Evaluation Dataset, CORA and
the “Unseen” dataset.

Figure 5.3: The F1 score for each evaluation dataset as the size of the training
dataset increases

56



The results show that increasing the size of the training data from 1,000
to 10,000 improved F1 regardless of the evaluation dataset. However, when
the training dataset increased in size from 10,000 to 40,0000 there was no
clear pattern. The F1 score either didn’t improve further (1 Billion 5k Sam-
ple, 30% Grobid Evaluation Dataset), regressed (“Unseen” dataset) or im-
proved (CORA). The overall indication is that increasing the size of the
training dataset above 10,000 does not lead to a clear improvement in per-
formance.

Figure 5.4 shows the length of time it took to train the GROBID model
as the size of the training dataset increased. The training time increased
linearly as the size of the training data increased. A model with a training
dataset of size 40k took 76 hours to train. Training was carried out using
n1-standard-8 CPUs on Google Compute Engine.

Figure 5.4: The training time in hours as the size of the training dataset
increases. Training was carried out using n1-standard-8 CPUs.
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Chapter 6

Discussion

6.1 Analysis of the 1 Billion Citation Dataset

The requirements for the 1 Billion Dataset as outlined in the Research
Aims in Section 1.4 were that it should be diverse in citation styles, type and
domain and also, that it should be large. With over 991k labelled citations
the final dataset satisfies the requirement to be large.

Secondly, the dataset is diverse in citation styles with a total of 1,564
citation styles represented. Each citation style has over 633k labelled cita-
tions. An advantage of both the size and diversity of the dataset is that
should a future researcher wish to just focus on a particular style or styles
there should be adequate labelled citations available.

The third requirement for the dataset was that it is diverse in citation
type. At first glance, with 75.9% of the dataset made up of journal article
citations, 12.9% made up of chapter citations and all other citation types
making up the remaining 11.2%, it appears that the dataset does not capture
this required diversity.

However, an advantage of the size of the 1 Billion Dataset is that even
for less common citation types there still remains a large number of cita-
tions. For example, monograph makes up only 0.4% of the dataset but this
includes nearly 4 million citations. Similarly, dissertation makes up 0.3% of
the dataset but contains over 2.5 million citations. A potential negative is
the low proportion of books (0.7%). However, in spite of the low proportion
there still remains over 7 million labelled book citations.

Finally, the source code and accompanying documentation is freely avail-
able on github (https://github.com/BeelGroup/1-Billion-Citation-Dataset)
allowing anyone to create their own dataset containing citation metdata,
styles and types as required.
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6.2 Format of the 1 Billion Citation Dataset

The final format of the 1 Billion Dataset is a csv with four columns:
DOI, citation type, citation style and labelled citation string. An advantage
of this format and having a citation type lookup column means that it is
easy to create a dataset composed of any desired citation types. A future
researcher would be easily able to supplement training data that they may
already have with other desired citation types from the 1 Billion Dataset.

A challenge associated with training ML citation parsing tools is that
many tools have different formats for their training data. As discussed in
the Methodology in Section 4.2.2, different tools may have more or less fine-
grained training data. They may also tag field names differently. For exam-
ple, some tools use <author> whilst others use <name>.

When creating the 1 Billion Dataset it was decided to tag individual
authors’ names independently. For example, Mark Grennan is tagged as:

<author><given>Mark</given> <family>Grennan</family></author>

An advantage of this format is that regardless of whether a citation parsing
tool labels authors as a single field, as individual authors or as individual
names, the 1 Billion Dataset can be made compatible with each of these
formats. For example, to create a single author field simply involves removing
the <given> and <family> tags.

A potential negative of the format of the 1 Billion Dataset is the use
of the <container-title> tag. This tag is used interchangeably to represent
journal titles, book titles and series titles. A disadvantage here is that some
citation parsing tools may have different tags for each of these items. For
example, <journal> may be used for a journal title and <book> for a book
title.

In Section 4.3.3 it was outlined how the citation type, given in the citation
type index, of a particular citation could be used to map the <container-
title> tag to an appropriate label. For example, if the citation type is book
the <container-title> tag can be changed to <book>. However, this in-
creases the labour associated with using the dataset.

An advantage of the work carried out during this project is that the code
associated with converting tags from one label to another (e.g. <author> to
<name>) has already been developed. This work is detailed on the project’s
github. Aside from the <container-title> tag, converting from one label to
another using this code simply amounts to changing entries in a dictionary.
Time was devoted to ensuring that the documentation associated with this
work is clear.
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6.3 Addressing the Research Question

The principle research question being addressed in this project is what
is the potential of the 1 Billion Dataset for training a deep-learning citation
parsing model.

Evaluating on the “unseen” dataset the results showed that the model
trained on hand-labelled data was superior to the model trained using syn-
thetic data (Hand-Labelled F1 0.88 vs Synthetic F1 0.80). However, once
the training data had the same level of granularity - pubPlace, note and
institution tags were removed - it was found that there was no significant
difference between the two models (Hand-Labelled F1 0.82 vs Synthetic F1
0.80).

Why did granularity (pubPlace, note, institution) make such a big differ-
ence? I believe that a lot of the observed difference can be explained by the
lack of a book-title tag. GROBID requires that all non-journal bibliographic
items use the same title tag. For example, titles for dissertations, conference
papers and books are all labelled the same in the training data.

However, the hand-labelled training data has an additional pubPlace tag.
This is used to tag publishing location. The advantage of this tag, I believe,
is that it is primarily used with books and therefore, essentially amounts to
a book tag. This enables the model with pubPlace tags to superiorly learn
what is, and what is not, a book citation.

Without access to this labelling the model trained on synthetic data
has no way of differentiating between different non-journal items. Titles for
thesis, conference papers and books were all labelled the same in the training
data and yet, the model was being asked to differentiate between titles and
book-titles.

It is important to note that although pubPlace is not a tag within the 1
Billion Dataset, as outlined previously, it is possible to change the container-
tag title within the 1 Billion Dataset to appropriate journal, book, disserta-
tion etc. tags as required. Therefore the lack of granularity for non-journal
titles is not an inherent flaw of the 1 Billion Dataset but merely the way
GROBID requires it’s training data to be formatted.

The other field which the model trained on synthetic data consistently
struggled to predict was publisher. This field is also associated with book
citations and again, I think the lack of a separate book tag, or suitable
synonym such as pubPlace, is the reason for this poor predictive performance.

Further, journal title and book-title are inherently linked. If the model
incorrectly predicts journal title for a book-title the precision of the journal
title field will be negatively affected as will the recall for the book-title field.
Therefore, if the model trained on hand-labelled data is superior in predicting
book-title this will result in better results for all related fields including:
journal, title and publisher.

Fields not linked to title such as volume, issue, page number and date
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have similar results in both models (Hand-labelled Macro-Average F1 0.94 vs
Synthetic Macro-Average F1 0.92). This provides further evidence that there
is no significant difference between the performance of the model trained on
synthetic data compared with the model trained on hand-labelled data.

The results showed that for Conditional Random Fields, the algorithm
used by GROBID, there is no clear improvement in performance once the size
of the training dataset goes above 10k. Ultimately, the dataset was designed
to enable the application of deep-learning in citation parsing and typically,
the performance of deep-learning models improves with more data. It is
unlikely that these results would be replicated with a deep-learning model.

That said, the flattening of performance as the size of the training data
increases may point to a potential limitation of the 1 Billion Dataset. The
dataset was created without noise. There is no extra white spaces, OCR,
spelling or punctuation errors within the dataset. It is possible that above
a certain size this lack of noise reduces how much the model can learn from
the training data.

The final research question addressed was how the make-up of the train-
ing dataset affects the performance of the citation parser. The results here
indicated that the distribution of citation types has a significant impact on
overall performance.

The results also showed that predicting the performance from the make
up of the training data was not always intuitive. For example, the “10k
Balanced” dataset contained 25% book citations yet performed worse in pre-
dicting book-titles than the “10k Unbalanced” dataset, which only contained
1% books. Here, the results indicated that it is best to experiment with
different distributions of citation types in the training data when trying to
improve performance.
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Chapter 7

Conclusion

As detailed in the Related Work in Chapter 3 the majority of existing
citation parsing tools use small, hand-labelled training datasets. These are
typically in the region of five to ten thousand labelled citation strings.

Many diverse fields have made significant advances in recent years due
to the availability of more data and the application of deep-learning. The
work of Rodrigues et al. [32] and Prasad et al. [13] in 2018 has given an
early indication that citation parsing is also likely to benefit from applying
deep-learning methods.

However, to date the largest training dataset, used by Rodrigues et al.
[32], has only 40,000 labelled citation strings. In the area of deep-learning
this would be considered a small dataset. Further, this dataset lacks diver-
sity, with citations coming solely from the humanities.

The 1 Billion Dataset is many orders of magnitude greater than any other
available training dataset. It has been shown to be diverse in citation style,
type and domain. It also contains indexes for citation type and style which
enables the creation of datasets to fit any requirement.

When granularity is the same, the 1 Billion Dataset has been shown to
be on a par with the state-of-the-art hand-labelled training dataset. This
indicates that it should be very suitable for applying to deep-learning meth-
ods.

With deep-learning models outperforming more “traditional” models in
so many diverse fields, the signs are that training a deep-learning model on
the 1 Billion Dataset may lead to significant improvements in the accuracy
of citation parsing. The 1 Billion Dataset can enable this future work to
develop in the application of deep-learning to citation parsing.

Finally, training a ML citation parsing tool using synthetic data is novel.
Typically ML citation parsing tools are trained using hand-labelled data and
although Ryan [74] created a synthetic training dataset, there is no account
that this dataset was successfully used to train a citation parsing tool. To
the best of my knowledge, this is the first time experiments have been con-
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ducted using completely synthetic training data.

Below are listed the key contributions of this project:

• The 1 Billion Citation Dataset
As outlined above, this dataset is unique in the field. It is unique in
both scale and diversity. It will be freely available for future researchers
to use and has been shown to have the potential to significantly advance
the field of citation parsing.

• Code and documentation
Time and effort was put into both the code and documentation for
this project. The work taken in developing code to convert the 1
Billion Dataset from one format to another is likely to be of bene-
fit to any future researcher who wishes to use the 1 Billion Dataset.
This work is available here: https://github.com/BeelGroup/1-Billion-
Citation-Dataset.

• “Unseen” evaluation dataset
The “unseen” evaluation dataset contains 300 hand-labelled citations
from a diverse range of fields. With the limitations of existing evalua-
tion datasets detailed extensively in Section 3.3.3 in Related Work, this
dataset, although small, may be used again as an evaluation dataset in
the future. Further, it may help in the development of a gold-standard
evaluation dataset.

• Contribution to open-source community
In working with the existing libraries citeproc-js [88] and GROBID [92]
I had two contributions accepted into their latest releases. With GRO-
BID there was a dependency issue. I suggested an upgrade that fixed
the issue and this was adopted. (https://github.com/kermitt2/grobid/issues/432)
With citeproc-js, I caught a bug associated with an incorrect numeric
type for a variable. I suggested a fix and this was adopted in the fol-
lowing release. (https://github.com/Juris-M/citeproc-js/issues/110)

• Summary of existing training and evaluation datasets
Although the challenges associated with citation parsing have been
well documented no previous paper has given a summary of the size
and domain of existing training and evaluation datasets. I conducted
a survey of 31 papers between 2000 and 2019. From this I summarised
all available information related to the size and domain of the training
and evaluation datasets used. I also summarised the evaluation metrics
used in each paper. I believe that this is a significant contribution to
the field and should help to raise awareness of the potential limitations
of existing datasets.
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Chapter 8

Summary

Chapter 1 introduces the background and motivation for creating the
1 Billion Dataset. It details the research problem, research question and
research aims of the project.

Chapter 2 gives some background information including an introduction
to citation strings, styles and fields. It also gives an overview of citation
parsing as well as detailing common evaluation methods.

Chapter 3 gives a detailed literature review. This includes an in depth
study into existing datasets and a discussion of the challenges associated
with comparing different approaches within the field.

Chapter 4 details the methodology. This includes a description of Ci-
tation Style Languages and how they were adapted to create the 1 Billion
Citation Dataset. It also list the motivation for training GROBID using
the 1 Billion Dataset along with a description of the training datasets used.
Finally, it details the steps taken in creating an “unseen” evaluation dataset.

Chapter 5 lists the results. This includes an analysis of the 1 Billion
Citation Dataset as well as the results in training GROBID using a subset
of the 1 Billion Dataset. It details what effects the granularity, the make-up
and the size of the training data had on performance.

Chapter 6 provides a discussion of the results. This includes the ad-
vantages and disadvantages of the format of the 1 Billion Dataset. It also
provides context for the results of training GROBID using the 1 Billion
Dataset.

Chapter 7 provides a conclusion, summarising the significance of the 1
Billion Citation Dataset and the work completed. It also details the overall
key contributions of this dissertation.

Finally, chapter 9 provides suggestions for areas of future work as well as
a discussion of the limitations of this project.
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Chapter 9

Future Work and Limitations

One of the downsides of this project was that no deep-learning citation
parsing model was successfully trained using the 1 Billion Dataset. As pre-
viously mentioned, there currently exist only two published accounts of a
deep-learning approach to citation parsing, namely Rodrigues et al. [32] and
Prasad et al. [13]. Extensive time and effort was given to trying to train these
tools using the 1 Billion Dataset but ultimately this proved unsuccessful.

With Rodrigues et al. [32] I ran into dependency issues. At the time of
writing there are three open issues on their github and all relate to similar
dependency challenges. With Prasad et al. [13] I emailed the author and
opened an issue on github however again, I faced implementation blocks. It
is perhaps worth noting, that Tkaczyk et al.’s comparison survey of existing
citation parsing tools in 2018 also faced similar obstacles and they were not
able to include the deep-learning work of Prasad et al. due to “missing
resources” [1].

With this in mind, the obvious area for future work is to train a deep-
learning model using the 1 Billion Dataset. Sufficient work has been under-
taken in this dissertation to prove the potential of this work.

One of the more surprising results observed was that the performance
increase flattened off once the size of the training dataset increased beyond
10k. It would be interesting to investigate whether this pattern is observed
with other citation parsing tools trained on the 1 Billion Dataset. Further, it
would be interesting to investigate how the performance of a model changes
when a hand-labelled training dataset is increased in size. This could indicate
whether it is the model or the training data that causes the performance to
flatten off when the training data goes above 10k.

Future work could also investigate the effects on performance of more or
less fine-grained training data. Here, experiments could be conducted with
citation parsing tools with different levels of granularity for their training
data.

A disadvantage of the 1 Billion Dataset as highlighted in the Discussion,
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Chapter 6, is the use of the <container-title> tag. By using the citation
type lookup index it is possible to map the <container-title> tag to more
meaningful labels such as: journal, book, conference-paper etc. This method
was used to make the 1 Billion Dataset compatible with GROBID.

Future work could be done to carry out this mapping for the entire
dataset and replace the <container-title> tag with appropriately named
tags. This would make the dataset easier to use and reduce the labour
associated with converting from one training data format to another.

Given that a citation parsing tool will ultimately have to parse real-world
citation strings, many of these citation strings will contain errors. Therefore
another potential area for future work would be to introduce some noise into
the 1 Billion Dataset and examine the effect this has on performance. Noise
could include: extra white spaces, OCR errors, extra or missing punctuation.
Noisy training data may improve the ability of a citation parsing tool to parse
real-world citation strings.
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Chapter 10

Appendices

10.1 Project Repository

All code and documentation associated with this project can be found at
the following repository: https://github.com/BeelGroup/1-Billion-Citation-
Dataset

10.2 Citation Types

Table 10.2 gives a complete breakdown of all citation types contained
within the 1 Billion Dataset.
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Citation Type Number of Citations Percentage
article-journal 752,005,608 75.9%
chapter 122,562,727 12.4%
paper-conference 55,706,868 5.6%
dataset 17,003,027 1.7%
reference-entry 8,371,603 0.8%
book 7,077,100 0.7%
journal-issue 6,274,342 0.6%
report 5,843,498 0.6%
monograph 3,970,516 0.4%
other 3,507,453 0.4%
dissertation 2,597,706 0.3%
standard 2,397,654 0.2%
reference-book 2,063,251 0.2%
posted-content 1,011,099 0.1%
journal 306,900 0.0%
proceedings 196,686 0.0%
peer-review 184,286 0.0%
report-series 126,501 0.0%
book-part 106,274 0.0%
book-section 51,504 0.0%
book-series 20,172 0.0%
journal-volume 12,296 0.0%
proceedings-series 9,366 0.0%
book-set 4,663 0.0%
Total 991,411,100 100%

Table 10.1: Complete breakdown of Citation Types contained within the 1
Billion dataset

10.3 Indexes

Table 10.2 shows the complete list of all citation types contained within
the 1 Billion Dataset along with their respective indexes.
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Index Citation Type
0 article
1 article-magazine
2 article-newspaper
3 article-journal
4 bill
5 book
6 broadcast
7 chapter
8 dataset
9 entry
10 entry-dictionary
11 entry-encyclopedia
12 figure
13 graphic
14 interview
15 legislation
16 legal_case
17 manuscript
18 map
19 motion_picture
20 musical_score
21 pamphlet
22 paper-conference
23 patent
24 post
25 post-weblog
26 personal_communication
27 report
28 review
29 review-book
30 song
31 speech
32 thesis
33 treaty
34 webpage
35 proceedings-article
36 reference-entry
37 journal-issue
38 reference-book
39 dissertation
40 posted-content
41 standard
42 other
43 monograph
44 book-part
45 peer-review
46 journal
47 proceedings
48 book-series
49 report-series
50 book-section
51 book-set
52 journal-volume
53 proceedings-series

Table 10.2: Complete list of citation types contained in the 1 Billion Dataset
along with their respective indexes
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