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Learning a metric embedding of hand poses with
Siamese networks for low-shot learning in

fingerspelling recognition

Kirill Ignatiev, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Gerard Lacey

We investigate a method for signer-independent fingerspelling recognition based on
learning a metric embedding of hand poses using siamese networks and using the em-
bedding to construct a low-shot classifier. We present an efficient neural network for
2D hand pose estimation and show how to use transfer learning to learn an embed-
ding of hand poses on a much smaller fingerspelling dataset than would be necessary
to train the full model from scratch. We find that our method successfully learns a
metric embedding of hand poses, but only reaches comparable levels of accuracy to
other methods for cross-signer fingerspelling recognition reported in the literature.



Summary

Fingerspelling is a subset of sign language in which most gestures are single-hand static
gestures. It has been shown that existing methods overfit to the particular signers
performing the gestures, resulting in same-signer accuracy rates of 90-95%, compared
to cross-signer accuracy of 40-45%, a substantial performance gap.

Following an analogy from natural language processing, we propose to model this
problem as one of low-shot learning by learning a metric embedding of hand poses. Each
new previously-unseen signer is assumed to have a small number of labelled gestures
available for each letter, and the model learns to compare this signer’s new gestures
to the small number of samples from the same signer, without direct comparison to
gestures in the training data.

We show how to train an efficient neural network model for 2D hand pose estima-
tion, and use transfer learning to enable the model to learn from the much smaller
fingerspelling datasets. The disparity in dataset size and quality renders training the
whole model from scratch infeasible, and this approach solves this problem.

We present the results on one standard dataset, KMNIST, and two fingerspelling
datasets. We find that the model can perform low-shot learning on KMNIST at rates
comparable to classifiers trained on the whole datasets even on characters not present
during training. We find due that the limited size and variability of images of fign-
erspelling datasets, the model only achieves rates of accuracy comparable with those

reported in the literature for other methods, around 45%.
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Chapter 1

Introduction

1.1 Motivation

The primary motivation for this work is recognition of sign language and other complex
hand gestures in unlabelled videos online. In this work we focus on a subset of this
problem, recognition of static hand gestures within individual frames. Computer sign
language recognition more generally is extremely important for developing computer
interaction methods for sign language speakers [9, 10], which are a large group of users
of up to 600,000 members not counting those who speak sign language as a second
language [11].

Both action recognition [12, 13, 14, 15] and gesture recognition [0, 17] are im-
portant problems in computer vision. The primary challenge is to take a video and
correctly identify the particular type of interaction between the subject and the en-
vironment. We are motivated by two primary examples of this, fingerspelling and
surgical knot tying.

In fingerspelling, the range of interactions is much more limited. Typically only
a single hand performs the gestures, and the subject needs not convey any extra in-
formation through facial expression, body pose, the non-signing hand, or arm motion.
By contrast in action recognition, a good model is required to learn to recognize all
aspects of the action.

This renders fingerspelling a harder, distinct problem. The details in the input

image that the model must respond to are necessary small. Indeed, in a typical fin-



gerspelling video sequence the signing hand occupies only a small part of the frame,
compared for example to the subject’s face. The gestures, seen in Figure 2.1, are of-
ten distinguished not by the general orientation of the arm or hand, as in action or
gesture recognition, but the much smaller differences in finger joint angles. Thus, for
example, a “B” and an “F” are quite similar, with the hand straight, distinguished by
the position of the thumb and whether the index finger is touching the thumb. As
another example, the main difference between a “7” and “8”, is whether the tip of the
thumb is touching the tip of the fourth or the middle finger. This means a computer
vision method for fingerspelling recognition is required to deal with the whole range of
hand poses. As we discuss in Section 2.3, the hand poses obtained from fingerspelling
are quite distinct from the hand poses obtained, for example, from object manipu-
lation. This is a limitation of some published datasets of hand poses for hand pose
estimation, if the protocol they were collected with was restricted to one or the other.
Both choices are reasonable, but they result in computer vision methods that do not
generalize between different sets of hand poses.

We reiterate that the general problem of sign language recognition is one of rec-
ognizing dynamic sequences of frames, in which both hands may be signing hands,
and in which facial expressions, body pose, and all finger positions contribute to the
particular gesture. In this work we focus only on the problem of recognizing static
fingerspelling gestures from static images extracted from such videos. A we discuss
later, a key difference is the availability of labelled training data. For fingerspelling
there exist relatively small datasets in which each image is labelled with the letter the
gesture in the image corresponds to. For sign language more generally, but also for
in-the-wild datasets [13], the labels are typically sequences letter applied to the whole
video sequence. This requires the method to not only correctly model hand poses, but
also include a sequence-to-sequence model for language translation, the two languages
being American Sign Language and American English.

A second motivating problem in gesture recognition comes from a separate domain,
surgical knot tying. Knot tying is a basic clinical skill taught to surgical students
through direct human supervision [19]. Unlike with sign language, where computer
recognition of sign language would enable the development rich user interface for sign
language speakers as well as sign language to text translation services, computer recog-

nition knot tying would enable the development of a machine supervision system allow-



ing surgical students to learn this particular basic skill more efficiently. The traditional
teaching method relies strongly on human supervision primarily because of the poten-
tial cost of mistakes [20, 21]. This process enables the teacher to directly intervene
in the learning process, correcting mistakes before they become habits. Research into
improving the efficiency of this teaching process primarily focuses on ensuring the
supervisors’ interventions are effective at preventing future mistakes [22]. Such one-
on-one supervision is nevertheless highly time-consuming for the supervisors, and we
consider what would be necessary to automate this process.

Similar to sign language and fingerspelling recognition, knot tying results in fine
finger motion. Unlike in sign language, knot tying further involves the external en-
vironment, specifically the suture and the body tissues. The hand poses involved in
knot tying are of a similar complexity to the fingerspelling alphabet [19], but they can
only be judged as correct or incorrect with respect to their relative position to the su-
ture and the tissues. Additional tools have been proposed to make this problem more
tractable, using multi-view cameras [23], depth sensors [21], and color marker gloves
[25]. This tools, however, are not available in the large amounts of unlabelled data
online, and require additional setup and equipment. What is needed is a system for
analyzing knot tying performance using RGB video only.

Knot tying, unlike fingerspelling, lacks labelled datasets, either synthetic or col-
lected from real-world videos. In this work we restrict our attention to static hand
pose recognition from still images. Comparing the results of hand pose estimation on
unoccluded hands [3] with the results on hands handling diverse objects [20], we can
see that even manipulating large, well-defined objects causes current methods based
on deep learning to fail. Prior to the advances in deep learning, work on hand pose
estimation was focused on only partial subproblems, such as detecting hand bounding
boxes in an image [27], or estimating full-hand gestures in 2D [17]. Whole-hand ges-
ture recognition in particular does not require as much accuracy from the hand pose

estimator as what would be required to accurately recover the finger joint positions.

1.2 Method

To motivate our method we being with an analogy from natural language processing

[28]. Tt is a common approach to view a sentence as a sequence of words wy - - - wy,



and ask for the probability that two words, w;, w; will occur together, p(w;,w;). This
probability can be computed directly for the most common from the large English
corpora that are freely available such as the Penn Tree Bank [29]. Thus we can estimate
the empirical distribution p(w;, w;) as the fraction of times that the pair w;w; occurs
directly in the corpus. To be precise, if e, is the one-hot coding vector corresponding

to the word w, the matrix p;; = p(w;, w,) is computed as
Zewie;“, (1.1)
i

suitably normalized. This approach is fundamentally unsatisfactory for two reasons.
First, such an explicit representation consumes a lot of memory. Second, only common
words can have their pairwise occurrence probabilities estimated this way accurately.
Uncommon related words will not have any information about them shared with sim-
ilar common words, and the semantic meaning of the words is partially lost in this
procedure. In the analogy with hand poses, this is equivalent to representing a hand
pose through 63 coordinates of the keypoints in 3D.

The word2vez model assigns a d-dimensional vector v : w — R? to each word w,

and models the probability of two words appearing next to each other as

p(wi, w;) = o(v(w;) - v(w;)), (1.2)

where o(z) = (1 + e *)"! is the sigmoid function. Words that are commonly seen
together in text receive similar embeddings v(w), with large cosine similarity. The
model is trained by iteratively updating the embedding vectors for every word to ensure
that words that occur close together in text receive similar embedding vectors. An
uncommon word w; to which the model assigns a similar embedding to the embedding
of a common word w; shares parts of the embedding with w;, and places in text where
pairs with w; appear frequently tell the model that w; may appear there also.

This may be thought of as a kind of a compression scheme, in which the full
{0,1} N-dimensional space of one-hot encodings of the full dictionary of N words
is compressed into the unit sphere of R?. This has become a standard technique in
natural language processing [25].

Hand poses, which play such an important part in sign language and fingerspelling



have no such obvious representation. Hand pose datasets traditionally annotate each
hand with 63 coordinates, the 3D coordinates of each joint, relative to an abstract
coordinate system attached to the camera. This particular embedding is the equivalent
of the one-hot coding above: it is precise, but loses important semantic information. A
human looking at a hand would notice whether the thumb is pressed against the base of
the fifth finger, for example, but this is a very small portion of the overall configuration
space of hand poses. Indeed, even large synthetic datasets such as [3] do not include
such eztreme poses, and focus mainly on sampling the joint angles uniformly at random.
Other datasets such as [30] focus on hand poses that occur during object manipulation,
and miss hand poses that may only occur elsewhere. By analogy with the word2vec
model, what is needed is a hand2vec model, a learned embedding of hand poses into a
low-dimensional space that discards the fine details of keypoint locations but instead
preserves the important semantic information present in sign language gestures.

This embedding cannot be learned directly from unlabelled video. Recall that the
word2vec model only requires unannotated texts, it does not require the words to be
labelled. This same approach is infeasible with hand poses in sign language recognition
because within a single fingerspelling sequence there may only be a small number of
frames with the specific letter gestures, but there will be many frames of transitioning
between the different hand poses. Without labelling the frames to establish which hand
poses are the salient ones that actually carry information, it is not possible to learn a
hand pose embedding using only unlabelled sequential information from a video.

In this work we propose an alternative method to learn such an embedding, and
investigate whether it allows us to construct a signer-independent classifier of finger-
spelling gestures.

In the context of signer-independent fingerspelling recognition, we propose to model
the problem as one of low-shot learning. Suppose that we know such an embedding
of hand poses similar in spirit to word2vec, and v(z1) - v(z3) is a cosine similarity
measure of how close the hand poses are between images x; and x5. As discussed in
Section 2.1, a key challenge of signer-independent fingerspelling recognition is that the
models overfit to the particular signers present in the dataset. Expressing this more

precisely in terms of the embedding, if z;. is the i-th example of the letter ¢ in the



training dataset, the classifier computes for an input image x

arg max NLC ZC o(v(z) - v(zie)), (1.3)

or a similar softmax function of similarities as in [31].
If the embedding correctly learns to compress and distribute hand poses across the
unit sphere in R?, the idea proposed in this work is that we can try to learn a better

classifier by using

arg (I:naXZU(’U(l') c0(Zje))s (1.4)

where Z;. are a small number S of images for letter ¢ collected from the same signer
as the input image x. If S were large, this would be little different from constructing a
new classifier on the signer of x. Using a low-shot approach, S is kept small, typically
10, and the classifier can reuse the embedding v learned on the much larger training
dataset, and only adapt itself to the new signer by selecting a small representative
number S of hand poses from the new signer.

The approach belongs to the wider transfer learning framework of trying to take
a model that was trained on a large general dataset and reuse it on a smaller less-
varied dataset [32]. We may think of the training dataset as the one that should
capture enough variability in hand poses to let the model learn an embedding, and
we can think of the 10 images per letter per new signer as a very small dataset that
should be representative of the new signer and therefore reduce the variance due to
inter-signer variability when the model is tested on this single signer. This assumption
appears to some extent to be self-contradictory. On the one hand to learn a meaningful
embedding the model must have access to a lot of the variability to compress the entire
configuration space of hand poses into a low-dimensional space. On the other hand, the
training dataset is assumed not to have enough variability to capture the idiosyncratic
features of the gestures of the previously unseen signer that the model will be tested
on.

Existing work in image recognition and natural language processing has generally
focused on using larger and larger datasets [33, 31]. We would still like to be able

to learn from smaller datasets. Specifically in the field of hand pose estimation, sign



language recognition and its subset of fingerspelling recognition, the large datasets
compared to those available in image recognition and machine translation are unavail-
able, and we would like to make use of the data we have. Assuming that the dataset
is both large enough to learn an embedding and small enough that existing models
overfit, we are ultimately making the assumption that the embedding-based method
makes more efficient use of the limited amount of data available to it, and the success
or failure of this method is largely about testing this assumption.

This approach makes the assumption that the number S of previously unseen sam-
ples from the new signer is sufficient to capture the idiosyncratic potion of their ges-
tures, and therefore increase the classification accuracy beyond the low level of 40-45%
reported in the literature on signer-independent fingerspelling. As we discuss in Chap-
ter 4, we ultimately find that this approach generates appropriate results on a test
dataset, specifically the 49-character KMNIST [35], but does not improve on signer-
independent fingerspelling accuracy. While using 10 images per letter for the new
signer provides enough information about per-signer variability to produce a classifier
that matches existing results, our conclusion is that the embedding learned on the
limited number of signers in the fingerspelling dataset is at least as specific to that

dataset as typical classifier would be.



Chapter 2

Background and Related Work

In this chapter we present the background for the implementation and results in Chap-
ter 3. In Section 2.1 we explain in detail the issues affecting sign language and finger-
spelling recognition accuracy on cross-signer datasets. It is already established that an
important problem in sign language and fingerspelling recognition is the issue of over-
fitting. Specifically, models tend to overfit to the particular dataset they are trained
on, such as clean in-the-lab datasets versus low-quality in-the-wild datasets. We focus
in particular on the divide between multi-signer and cross-signer model performance,
and the divide between studio and in-the-wild datasets. In Section 2.2, we survey
existing approaches to this general problem of overfitting to insuffiently varied data,
covering low-shot learning [36], matching networks [31], and also known techniques for
unsupervised deep learning. In Section 2.3, we focus on the recent progress made in
the problem of hand pose estimation, assess how it can be used as a building block
for a more general fingerspelling recognition system, and note the limitations of the

current state of the art.

2.1 Fingerspelling

Sign languages are separate languages in which grammatically structured sentences
consist of sequences of hand poses, gestures, and often facial expressions [37]. The
number of American Sign Language (ASL) speakers is not generally known [1 1], partly

because the speakers include both deaf people and people who speak ASL as a second



language. Being an important means of communication for many people, automatic
recognition of sign language is an important problem in computer vision.

Sign language as a whole includes many elements, hand poses, arm movement,
movements and gestures by both arms at the same time, both hands at the same
time, facial expressions, and some body motion. Each of these elements, while being
approximately described by the grammar of a sign language, is also partially unique to
the speaker, resulting in a great deal of variability in the actual gestures made while
speaking. Fundamentally, this is no different from automated speech recognition, but
the primary challenge in sign language recognition is the complexity of the underlying
data, with video and multiple hands and fingers, compared to the much simpler format
of audio data.

The American Sign Language (ASL) fingerspelling alphabet [38], shown in Fig-
ure 2.1, is a set of gestures, each representing a letter. Of the gestures, only a few are
dynamic gestures, and none involve both hands. As explained in Chapter 1, in the
scope this work we exclusively focus on static gestures, with the ultimate motivation
being to be able to extend this work to dynamic gestures also.

Fingerspelling datasets have generally been collected from two types of sources.
Some datasets like [7, 0] are collected in lab conditions, asking volunteers to successively
show each letter to the camera. The main reason for this particular approach is that
it results in correctly labelled images, and each frame of a video is assigned a single
correct letter, which is different from more general video datasets.

Depth information is often collected for sign language and fingerspelling datasets
developed in lab conditions [7, 39, 40]. This is was very useful prior to the advances
in deep learning that can handle hand pose estimation with only RGB data. Prior
to this progress, RGB+D data was generally used even for hand pose estimation, and
thus was largely necessary for fingerspelling recognition as well. Most available sign
language video do not include depth information at all, and represent the most common
source of spoken sign language. It is therefore desirable to focus specifically on RGB-
only fingerspelling recognition, ignoring depth information even when it is available.
Furthermore, as we discuss in Section 2.3, the primary accuracy issues in hand pose
estimation with convolutional neural networks are related to self-occlusion, occlusion
by objects, uncertainty about hand shape, and similar issues. Given the amount of

complexity that is added by requiring depth data, and given that depth data does not



0 1 2

Figure 2.1: American Sign Language alphabet, reproduced from [I]

address the primary issues with modern hand pose estimation methods, focussing on
RGB-only images is the correct approach.

Other fingerspelling datasets are reused from more general sign language datasets.
For example, the RWTH-PHOENIX dataset [11] is a labelled set of videos, collected

10



from a news studio stream, with a limited set of 9 signers in total. The authors test
their methods’ performance on a cross-signer split of their data. Without a cross-signer
split, which means the training set includes the same signers as the signers in the test
set, they report 66% accuracy, compared to only 46% accuracy when the model is
tested on signers not within its training dataset. This behaviour is common to other
dataset, as we discuss below, and represents a fundamental challenge for fingerspelling
recognition: the models overfit strongly to the particular signers in the training dataset,
and most datasets, especially studio datasets, have too few signers to properly guard
the model against this. This limitation is common to other studio-based sign language
datasets [12, 43, 44], and the reported accuracy is similarly low. For example, the
authors of [11] report 67% top-20 accuracy on cross-signer sign language. Given the
low signer-independent accuracies reported even on fingerspelling, it is correct to focus
on fingerspelling with the current state of the art, rather than on the much more
difficult problem of full sign language recognition.

The poor signer-independent results standard in contrast to same-signer results
even on the harder problem of sign language recognition. For example, [15] report
99.3% accuracy on single-signer recognition with a restricted vocabulary of 232 signs,
which reduces to 87.8% on multi-signer recognition, and further down to 44.1% on
signer-independent recognition. Similarly, [10] report classification accuracy of 92% on
same-signer recognition with a vocabulary of 132 signs.

The largest known fingerspelling dataset to date is the ChicagoFSWild dataset [15].
It was extracted from 214 videos, collected from YouTube, ASLized, and DeafVideo.tv.
The videos cover a large number of different signers, and the fingerspelling sequences
were extract and manually annotated. Thus results in 7.3k sequences, with a median
number of 20 frames each. FEach sequence is annotated with a word, usually, but
may also contain spaces and word breaks. Because we focus on static fingerspelling
recognition in this, and therefore require each frame to be labelled with a letter, we
were unable to use this large in-the-wild dataset.

There are further limitations that we encountered using the ChicagoFSWild. Each
frame is a still from the original video, and there are typically two of the signer’s hands
visible in the frame. This creates two issues. First, we have to extract the hands’
bounding boxes, and second, we have to decide which hand is the signing hand for

fingerspelling. In the original work [18], this was addressed by training the entire model
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from the bottom up, based on convolutional neural networks (specifically AlexNet
[47]) for hand bounding box detection and hand pose estimation, and long short-term
memory recurrent networks for learning to translate between the features learned by
the CNN and the actual letters. However, partly due the small size of each hand in
the image, and partly due to the performance limitations of the hand pose detector
we used [2], it is not currently possible to accurately automatically extract the signing
hand from each frame. This would be necessary to apply an approach like ours, where
we need the input image to contain the cropped hand, with a letter label attached to
the image.

On [18] the authors reach 41.9% accuracy, which compares poorly to human-
level accuracy of 82.7%. This figure is in line with previous published research on
signer-independent fingerspelling recognition, and also signer-independent sign lan-
guage recognition. In principle, this could be solved by collecting a large enough
dataset, but the costs of this render this idea infeasible. This means that this problem
with cross-signer performance is unlikely to be solved by using a larger, more com-
plicated neural network architecture. Indeed, the architecture used in [1%] is already
quite complex, and it is required to solve multiple problems at once: (a)hand bounding
box detection, (b) signing hand bounding box detection, (¢) gesture recognition, (d)
sequence-to-sequence translation.

It is plausible to imagine that a better approach may be to train each individual part
separately. Indeed, while we found the performance of off-the-shelf hand bounding box
detectors insufficient to convert the ChicagoFSWild dataset for our purposes, a better
bounding box detector does not need to be trained specifically on the fingerspelling
dataset. It can instead be trained on a more artificially diverse dataset of synthetic
images such as [2, 3]. We suspect that the reason the specific methods used in [2, 3]
were insufficient on this dataset was the disparity in image quality, which generally
used large 256 x 256 pixel images, compared to a hand size of 32 x 32 that is more
typical of low-quality YouTube video in ChicagoFSWild. In this work we use, mostly
for other reasons, an image size of 64 x 64 and this is much closer to what is needed
for accurately recognizing hands in fingerspelling videos in the wild.

Gesture recognition may also conceivably be trained separately from the finger-
spelling dataset. Indeed, there are potentially two steps to solving this problem as

we do it in this work. We train a hand pose estimation neural network, and then use
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transfer learning to reuse the features for fingerspelling-specific gesture recognition.
The main reason we do this is the quality and quantity of data. Hand pose estimation
is a problem for which large synthetic datasets are available (Section 2.3), while the
datasets for fingerspelling recognition are primarily small, use low-quality images, and
come with only video labels rather than frame labels. Gesture recognition is there-
fore a second candidate for transfer learning, which has not yet been reported in the
literature.

Sequence-to-sequence translation is the third candidate in this system suitable for
transfer learning. In the field of machine translation it is already known that abstract
representations of languages can be learned without having every sentence in one lan-
guage be matched to the corresponding sentence in the other language [18]. This means
that it may not be necessary to train a language model from scratch based on the fin-
gerspelling data available, but it may be possible to reuse a model trained on the large

available corpora of English.

2.2 Siamese Networks and Low-Shot Learning

In this section we review a number of different approaches to low-shot learning that
may be suitable for signer-independent fingerspelling recognition. We may think of the
problem as one of weakly-supervised learning. As discussed above, the labelled finger-
spelling images are few, compared with the large amounts of unlabelled fingerspelling
videos available in general. The labels also do come in a convenient format of one
label per frame, restricting the kinds of models that can be applied to them. Some
of the issues presented in the settings are similar to issues present in natural language
processing more generally, being made only more complicated by the specific domain

of sign language.

2.2.1 Unsupervised Learning Approaches

The first important class of approaches we would like to examine is through the use of
deep unsupervised learning techniques. Unsupervised learning is an exciting topic in
deep learning, primarily because unlike more traditional computer vision techniques,

unsupervised deep learning techniques may be able to use the vast amounts of un-
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labelled data readily available online. One fundamental limitation of unsupervised
techniques when applied to sign language is that compared to image recognition tasks,
sign language recognition relies much more on the smaller, more fragile portions of the
input image.

In [19] it was shown that it is possible to learn an abstract representation of images
in an unlabelled dataset by using a jigsaw puzzle task. Similar in spirit to a super-
resolution task, a square fragment of the input image is cropped randomly, and is
split into several squares like a jigsaw puzzle. The model is fed as input a scrambled
configuration of the jigsaw pieces, and asked to predict the correct configuration of
these pieces. What the network is required to do, in effect, is to learn which image
pieces belong together in what order.

This process forces the model to learn an abstract representation of an input piece,
in order to use it as input to the final fully-connected layer that outputs the predicted
configuration. The purpose of the jigsaw puzzle task itself is to force this process to
happen, rather like the choice of a loss function defines the task the neural network
will perform.

It was already shown in [50], that in a typical convolutional neural network, for
which the authors used AlexNet [17], only the final layers in the network perform most
of the work of classification, whereas the first layers in the network are more general.
The jigsaw puzzle task therefore forces the network to learn to perform well on an
irrelevant task, but the initial layers of the network are then expected to be useful
in general, and represent something meaningful about the images in the unlabelled
dataset. The final accuracy using transfer learning for ImageNet classification is 34.6%
by retraining only the fully connected layers.

In the context of fingerspelling recognition, it is not clear what this intermediate
task should be. It is already a standard transfer learning technique [32] to do what
we do in Chapter 3, and reuse the layers learned for hand pose estimation in a net-
work for fingerspelling recognition. We do not want to conclude, however that this
approach is entirely unsuitable, because of the breadth of possible hand pose-related
intermediate tasks. Furthermore, as we emphasized in Section 1.2, learning an abstract
representation of hand poses would be a valuable step forward.

An example of another approach to unsupervised learning is DeepCluster [51]. Since

the authors’ goal is to learn a clustering of ImageNet without access to labels, the
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number of clusters is specified as hyperparameter for the model. By analogy with
k-means, the model then learns an embedding of the input images into an abstract

f-dimensional space, fp(x), minimizing the mean I, error of each cluster and updating

cluster assignments as in the standard EM-algorithm [52], thus minimizing
argmianmiang(x ) — Cy,? (2.1)
o N - n n n|l > .

where y,, € {0,1}*, 41 = 1 are the cluster assignments. This results in a clustering
that matches ImageNet labels 43% of the time.

The primary benefit of this approach, despite the complexity, is that it is indepen-
dent of the labels in the dataset, and can in principle be trained on a separate dataset.
In the context of fingerspelling, there is no equivalent concept of a cluster for hand

poses.

2.2.2 Generating New Training Data

Another semi-supervised approach that was investigated in earlier work is based on the
idea of generating new training data using generative adversarial networks. Let us first
define a GAN. Consider a dataset X, which we think of as a probability distribution
over all possible images, and a discriminator D : x — |0, 1] that takes an input image
and outputs the estimated probability density for x being sampled from X, px(z). We
have a dataset {z} that contains only positive examples z, and if we were to train D

with the obvious loss function
— E,x log D(z), (2.2)

the network would learn that every input belongs to X, and learn the trivial probability
density function px(z) = 1.

We now define a generator G : z — X, which takes as input random noise, and
generates an image. We can now train G' to produce images that D will recognize as

belonging to X, which means minimizing

E.~zlog(1 — D(G(2))) (2.3)

15



We would like the discriminator in turn to learn to accept true images x ~ X, and

reject fake images G(z) ~ G(Z), minimizing the loss function
—E,wxlogD(z) — E..zlog(l — D(G(z))). (2.4)

It can be shown [32] that this procedure results in a discriminator that learns the true
p.d.f. D(z) = px(z) in equilibrium, and a generator that can generate images following
the same distribution as X.

When carried out on ImageNet, or CelebA-HQ [53], this procedure results in a neu-
ral network G that can take random noise and sample from a probability distribution
approximately equal to the distribution the training dataset was sampled from, gener-
ating images from ImageNet, or faces from CelebA-HQ. Further work on conditional
GANs [54] allows us to train a function G, for each known class ¢, and sample images
from that particular class.

In the context of low-shot learning, the authors of both [55, 50] consider having a
small number of examples of a particular class, and a much larger body of examples.
They learn a particular generator G(x, z) that takes as inputs an image and random
noise and is able to sample from the distribution of images in the large dataset that
are close to the input image x. The authors show evidence that this procedure can
generate new training samples starting from a smaller number of available examples .

An example of using GANSs to learn meaningful abstract embeddings of images is the
work of [57], where the authors train two generators G xy, Gy x for transforming images
between two domains X and Y, with a further siamese network S and approximately
impose the constraint that mapping images with S to an abstract embedding space

preserved magnitudes and orientation in that embedding space,
S(x1) — S(x2) = S(Gxy(21)) + S(Gxy(22)), (2.5)

together with a hinge loss on S to ensure it does not learn the trivial function 0.
The authors show that this is a powerful tool for learning semantic information about
images, as the network S learns a semantic embedding of images and thus, for example,
if 1 and xo are two similar images that differ in style, the vector S(xs) — S(z1)

represents the operation of style transfer, and given a third image x5 in the style of x1,
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an image with the embedding vector S(x3)+ (S(x2) —S(21)) is the image z3 transferred
to the style of x,.

In the context of fingerspelling and hand pose recognition, the primary challenge
to using GANs to represent probability distributions over the space of hand poses is
the complexity of the hand pose space together with the fact that it is only indirectly
captured by the rendered image of a hand pose. This means there is no known way
to train GANs to learn a prior over hand poses, or over fingerspelling gestures, or to
generate new hand pose images. Indeed, generating hand poses on its own is a trivial
problem, as most hand poses are admissible except those that violate the joint angle
constraints of the hand bones. A potential workaround for this challenge would be to
use learn a prior over hand poses in unlabelled fingerspelling videos, but this approach
is likely to be substantially harder than generating an equivalent labelled synthetic
dataset.

2.2.3 Siamese Networks and Low-Shot Learning

Siamese network, introduced in [58], are a general term for using a model in which the
same neural network appears twice with shared weights. As an illustrative example,
consider the problem of classifying pairs of images of faces according to whether they
represent the same person. Let fy : X +— R be a neural network that maps images
in X to an abstract d-dimensional representation. Let (x1, 1), (22, y2) be two pairs of

labelled images, and consider modelling the probability that y; = ys by

oI~ f (w22 (2.6)

This results in a model which applies the same neural network to two different images,
and outputs two d-dimensional vectors. The similarity s = || f(x1) — f(x2)||* between
the embeddings f(x1), f(x2) then estimates the probability that x;,z, are images that
belong to the same class. Note that in this process, we only require the label v o,
whether the images are in the same class, but the training procedure does not need

the actual labels ¥y, y2, and is therefore somewhat independent of the true number of

classes.
In one-shot learning on the Omniglot dataset [59], siamese networks were one of
the first successful approaches [36, 60]. The Omniglot dataset consists 15 to 40 hand-
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written examples per letter collected from 50 alphabets. The one-shot learning task
on Omniglot takes one image from each of C different letters, for example C' = 20,
and then asks the model to classify an unseen image as belonging to the same class as
one of the C' one-shot examples. In [30], this is done by selecting d = 4096, using a

convolutional neural network for fy, and using the prediction

o (aT|f(x1) = flxs)]) (2.7)

where « is a vector of learnable parameters, and | - | represents elementwise absolute

value. The model is then trained by using a binary cross entropy loss

Lio=wyi2logpia+ (1 —yi2)log(l —pi2), (2.8)

for each presented positive or negative pair of images (1, Z2, 1 2). The total number of
classes, |C| = 4,800 is greater than the number of features d in the embedding vector,
so the model in effect compresses the information available in the input image, unlike
a classifier that would predict a probability distribution over |C| different classes. The
training procedure also imposes a metric structure on the learned embedding fp(z), in
this case using the [y norm.

In the context of fingerspelling, and specifically with the analogy with natural
language processing of Section 1.2 in mind, we are interested in learning a metric
embedding of hand poses similar to the embedding learned in [36] for the images in
the Omniglot dataset.

2.3 Hand Pose Estimation with Neural Networks

We now review the progress made in recent years on the problem of 2D and 3D hand
pose estimation. Following the discussion in Chapter 1, we would in particular like to

examine this progress on three main questions:

o its ability to successfully generalize to tasks beyond direct estimation of keypoint

locations, such as more general gesture recognition,

o its ability to robustly handle a wide range of hands, which is strongly desirable

for any application to fingerspelling,
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o and its computational complexity, in other words its ability to be used as a

building block for larger systems that work with RGB images of hands.

These are the question primarily because we aim to use a convolutional neural network
for hand pose estimation as a building block for the problem of fingerspelling, and are
therefore somewhat less interested in its performance on specific benchmarks.

The problem of hand pose estimation is similar to the problem to the extent that
each image x € R3¥*#24%22 comes with 21 labels, ground-truth locations of the 21
keypoints y € R?*2! in the case of hand pose, and 16 keypoints in the case of body
pose.

Much of the success in the field of body pose estimation was spurred by the MPII
Human Pose benchmark [61], which provided a very large set of 25k diverse images,
covering 40k human people, with annotations of 16 keypoint locations in 2D image
coordinates (ankles, knees, hips, pelvis, thorax, neck, head, shoulder, elbow, wrist).
The particular benefit of having such a large dataset is that it is sufficient to train a
large convolutional neural network without overfitting, but such large datasets are also
in some sense rare and expensive to collect. Other datasets, such as HumanFEva [62],
and Human3.6M [63] are captured in controlled enviroments. From the point of view
of deep learning, this is undesirable because a neural network-based model can easily
overfit to the particular style of images and the restricted number of settings. Indeed
this particular effect later led to the creation of better synthetic hand pose datasets
[3], as we will discuss below.

Due to the cost of correctly annotating a large dataset of body poses, a similar
dataset of annotated hand poses, specifically one that relies on in-the-wild captured
video with real people, does not yet exist. The challenges of collecting such a dataset
are primarily two. First, manually annotating 2D and 3D keypoint locations in an im-
age, although possible, is harder than in the case of body pose datasets. Unlike common
body poses, which include relatively little self-occlusion, most interesting hand poses,
even simple and common ones such as fists, ones that appear in the alphabet for Amer-
ican sign langage (Figure 2.1), involve a great deal of self-occlusion. While a human
can easily recognize the specific gesture, and perceive the relative positions of fingers
and their joint positions, it is substantially harder, compared to synthetic images, to
accurately label all occluded keypoints including completely occluded fingers. This

problem is alleviated by constructing synthetic datasets in which all keypoint locations
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are known a priori.

Second, extracting hand images from in-the-wild videos results in very low-quality
images, similar to what can be seen in Figure 3.22, or in [18]. As reported in [18], the
resulting images are often extremely small, and include large amounts of motion blur.
In a typical video, the hands occupy only a very small part of the frame, and both the
hands and the fingers move very quickly. While it is an important challenge to produce
a robust model for estimating 3D hand pose from small motion-blurred images, this
is not currently a solved problem yet [1], and most existing work uses large synthetic
high-quality images of 224 x 224 pixels. To note, the image size we will use in this
work, 64 x 64 results in lower accuracy, but is much closer to the typical size of a hand
extract from a real video.

There have been published many new datasets for hand pose estimation since the
advances in deep learning made 3D hand pose estimation feasible. As discussed in
Section 1.1, we specifically look for datasets that use RGB images, as opposed to
RGB+D images. The Stereo Hand Pose Tracking Benchmark [6/] was published with
18k images, collected from a single person with six backgrounds and different lighting
conditions. Once again, the limitations of this dataset with respect to its diversity, the
diversity of hand shapes, hand poses, backgrounds and lighting, limit its usefulness for
training deep neural networks. The Dexter+Object dataset [65] contains 3.1k images
was also collected in a lab, and focused on images of hands manipulating a cube. It is
also limited in the variety of hand poses, hand shapes, and backgrounds and lighting,
but importantly it includes object manipulation, which means a successful model is
required to deal with the hand being occluded by an object. The images came from a
total of 6 videos, and all used the same object.

Object occlusion, in general, is an important theme in hand pose estimation re-
search. As was pointed out in [26], which published a new dataset for hand pose
estimation with object occlusion, increasing the number of videos to 6k, and the num-
ber of objects to 150, significantly decreases the performance of CNN-based methods
that were trained either with no occlusion or with occlusion by the same small num-
ber of objects from a restricted set of objects. To be more precise, this increases the
typical Iy error of 2D keypoints from around 20px to above 50px. This means even
the best published models suffers from substantial overfitting to the dataset that they

were trained on, and we cannot determine whether, for example, a 10px [y error on
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the test set leads to a similarly low generalization error on a different dataset. This is
especially so with respect to hands occluded by objects.

There are yet other datasets, such as the NYU Hand Pose Dataset [66], which was
published using registered color images, which makes it much harder to use for training
CNN-based models. Furthermore, this dataset contains only 3 subjects, which further
limits its utility.

One of the first successful works on 3D hand pose estimation was the work of
[2], and it used a convolutional neural network. Unlike later work, which generally
uses convolutional-deconvolutional architectures, as well as batch normalization as the
primary regularization method, [2] used a simpler pure-convolutional neural network
architecture shown in Figure 2.2. One implication of this architecture, discussed in
Section 3.3, is that we find that using a large number of layers, here 512, results in
overfitting when attempting to transfer the network’s learned features to other, much
small datasets. To train their network, [2] created their own synthetic dataset using 20
freely available 3D models of humans, performing 39 actions, for a total of 41k images.

The authors further demonstrate that the model produces sufficiently accurate key-
point location estimates, by training a 3-layer fully-connected neural network on the [(]
that takes as inputs a vector of 3D keypoint locations z € R3*2! and produces per-class
log-odds. This procedure reaches a similar level of classification accuracy, 66.8%, as
reported in the original dataset [0].

One of the limitations of synthetic datasets such as [2] is the generally artificial
style of images. In [3], the authors report their finding that neural networks overfit
to the particular style of images. They introduce an alternative method of generating
hand pose datasets, based on style transfer with generative adversarial networks. This
dataset was published and is freely available, and this is the dataset we will use in
Section 3.1. The authors of [3] train a style transfer network for unpaired images,
transferring style between real hands captured with a camera and synthetic hands
rendered with a model. They report better results with models trained on the dataset
generated with GAN transfer. A key benefit of this approach is that it frees the authors
from having to collect a wide variety of hand models for rendering, as the variety of
hand colors and textures should be captured by the GAN style transfer model. The
hand pose estimation network, based on ResNet-36, produces scoremaps, and has its

output modified by the priors imposed on it by hand, specifically joint angle constraints,
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Name | Channels Size

(input) 3 256 x 256

2 x Conv+ReLU 64 256 x 256

MaxPool 128 x 128

2 x Conv+ReLU 128 128 x 128
MaxPool 64 x 64
4 x Conv+ReLU 256 64 x 64
MaxPool 32 x 32
5 x Conv+ReLU 512 32 x 32
Depth-wise dual-path layer 533 32 x 32
5 x Conv+ReLU 128 32 x 32
Depth-wise dual-path layer 5H4 32 x 32
5 x Conv+ReLU 128 32 x 32
Conv(k = 1) (output scoremap y) 21 32 x 32

Figure 2.2: Architecture used by [2].

frame-to-frame (temporal) smoothness constraints, and known-skeleton fitting to the
3D keypoint estimates. This results in typical 3D keypoint errors of under 20mm, and
median 2D keypoint errors of under 7px.

This still, however, results in models that overfit to the hand shape [1]. In [1], the
authors use primarily the non-synthetic datasets mentioned above, together with the
Panoptic dataset [07]. This is important for the question of which dataset features the
neural networks will overfit to, as the totality of images is smaller and less varied than in
the synthetic datasets such as [3]. The authors use a different dataset for investigating
generalization errors, a combination of [61] and a New Zealand sign language dataset.
While this renders their reported results not directly comparable to other works, their
results point out an important issue. Specifically, their models are explicitly tested on
in-the-wild images, rather than synthetic or studio images, and they report 2D keypoint
errors 20px versus 60px errors for [2]. This in particular implies that while synthetic
datasets have been extremely useful for training large CNN-based models, they also
limit these models in how well they generalize to in-the-wild data.

A further clue to how we know what the models overfit to is the particular approach
chosen in [1]. The MANO model [30] is a hand model collected in lab conditions from
volumetric scans of volunteers who were going through a protocol of manipulating

objects in prescribed ways. The model differs greatly from the presentation of hand
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pose models we used above in several respects. First, it contains 15 joints (not 21).
Second, it is based on 3D scans of volunteers’ hands, with a 3D mesh reconstructed
from those scans. This allows the model to include blendshapes [63] of hand shape,
which means a 20-dimensional vector of real numbers approximately describes each
hand shape. This has a further effect that this model is capable of representing non-
rigid hands. Hand pose, on the other hand, is represented using 9 PCA components
of the hand poses observed in the lab conditions. This is problematic for the purposes
of fingerspelling, as many shapes in the fingerspelling alphabet cannot be represented
using the few chosen PCA components, which can be seen directly by visual comparison
of Figure 2.1 and [30)].

The authors of [1] then train a neural network to output the parameters of a MANO
model, minimizing the reprojection error of the keypoints from the MANO model
rendered with the parameters computed by the neural network. This rather roundabout
method of estimating hand pose is successful in not overfitting to hand shape, but it is
unclear whether it can successfully capture all the hand poses not represented explicitly
by the MANO model.

Having summarized the key works in the recent progress on hand pose estimation,
we would like to point that it is still not clear which features of hands in the available
datasets the neural network models overfit to. The above can only be a partial list of
mis-features of the synthetic datasets. Furthermore, computational considerations are
not generally being considered in the design of these neural network architectures. It
would be very useful to the research community to have a high-quality high-speed hand
pose estimation model included in a common project like OpenCV [69]. The published
models are either too inaccurate on in-the-wild images, or are too computationally
intensive to be of use for building other real-time systems on top of them. The work
of [1], for example, uses a ResNet-50 network, which cannot generally be made to run
in real time except with substantial effort through the use of non-standard deep learn-
ing frameworks. An alternative, which has not been pursued in the literature to our
knowledge, and which we do not pursue here, would be to create a rich parameterized
hand model that includes both blendshapes for hand shape, and more richness of hand
pose than is available in the MANO model, and use that to train a more efficient hand

pose estimation model that can be more readily used in practice.
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Chapter 3
Implementation and Results

We now describe the main contributions of this thesis, their implementation and results.
In Section 3.1, we describe the building block, the convolutional neural network for
recognizing hand keypoint locations in 2D, and show that it achieves results close
to state-of-the-art at substantially higher framerates. We focus in particular on the
architecture choices that allow the neural network to be fast at both training and
inference, the choices in training the neural network that ultimately allow it to be
trained in under 10 minutes on a machine with a single NVIDIA P100 GPU. We train
the neural network on a scaled down version of a standard synthetic dataset, and show
that the neural network achieves only marginally worse results on the same dataset,
despite having access to %6 of the pixels in the downsampled images, and having much
better inference times at real-time framerates.

In Section 3.2, we demonstrate the other building block of the fignerspelling recogni-
tion system, the method for learning metric embeddings using siamese neural networks.
We demonstrate this method as a low-show learning method on KMNIST [35], a dataset
of hand-written Japanese characters. Unlike on fingerspelling datasets, which are ex-
pensive to collect and generally do not contain enough variability in their data samples
to train a robust classifier based on a neural network, KMNIST is sufficiently large
and clear that we are able to investigate what embedding the neural network actually
learns. We investigate the ability of the network to classify characters from classes
that were not present at training, and use adversarial example generation techniques

to show that it learns an ensemble of orthogonal feature detectors. Finally, because of
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a multi-headed neural network architecture, we are able to partially investigate how
much data the siamese neural network needs to learn a metric embedding.

Finally, in Section 3.3, we combine the two building blocks, a fast 2D hand pose es-
timation neural network, and the method for learning metric embeddings using siamese
networks, to demonstrate a system for cross-signer fingerspelling recognition. We apply

it to a cross-signer fingerspelling dataset, and investigate its performance.

3.1 Faster 2D Hand Pose Estimation

We begin by describing the implementation of a faster, more efficient convolutional
neural network for 2D hand pose estimation, specifically key point location. This
accounts for the hand pose feature extractor used in Section 3.3. The individual archi-
tectures, and training choices, are already widely known in the literature, but have not
yet been applied to the problem of 2D hand pose estimation, resulting in unnecessary
complexity when using transfer learning to build systems using prior art. One of our
main findings, we believe, is that in the existing literature insufficient attention was
paid to the issue of performance, and that performance was traded off for quality of

results to an unreasonably degree.

3.1.1 Network Architecture

We based our main neural network architecture choices on the work on MobileNetV2
[70, 5], having investigated a number of alternative network architectures, specifically
residual networks [71], shuffle networks [72], and dual-path networks [73].

There are two primary approaches to neural network design for hand pose estima-
tion. The primary existing one, as in the works [3, 2] is a convolution-deconvolution
neural network architecture 3.1. For this approach the primary determinant of infer-
ence speed and accuracy is (a) the depth of the network, (b) the number of internal
features in the final layers preceding the deconvolutional block, and (¢) the number of
channels in the final convolutional layers before the pooling step.

The other existing approach, as used in [1], is to use an existing neural network
architecture, as trained on ImageNet, as reuse it with only the final classification layer

replaced by a domain-specific layer.
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We used a number of comparable designs, generated by simply varying the param-
eters (a—c), and investigated their effects on performance. We find that the primary
causes of poor inference speed on input images are (a) the size of the image (we saved
a factor of = by scaling images by 1 in both dimensions), and (b) the number of chan-
nels in both the convolutional and the deconvolutional block. We did not find that the
depth of the network, keeping the number of channels approximately constant had as
much of an effect.

In this architecture, the primary purpose of the bottleneck between the convolu-
tional and deconvolutional blocks is to “compress” the hand pose features extracted
from the image. Each channel 7 in the final convolutional layer after the pooling step is
essentially a learned map ¢;(x) mapping an input image x € R3x256x256 t5 ¢, (1) € R?*,
using the typical 256-channel network.

If ' = 256 is the number of channels in the convolutional layers, the number of
learnable parameters in a convolutional layer is O(C?). Thus halving the number of
channels can be profitably performed on those layers that have a large number of
channels C already, and also on those for which the constant of proportionality of C*
in C2W H is particularly large.

This is the case for most layers in the deconvolutional block. In the convolutional
block, as seen in Figure 3.1, the image size gets progressively halved. This is conven-
tionally done [74] in order to learn CNN features with a large receptive field size, which
for a deep network means learning features that take the whole image into account.
This implies that in the convolutional block, the cost in number of trainable parameters

is proportional to

C*W H /4%, (3.1)

where d is the depth measured in “blocks”, which are units of consecutive convolutional
layers with a downsampling convolutional layer with stride 2 at the end. Thus reducing
C for convolutional blocks is ineffective.

Deconvolutional blocks, a staple of image segmentation neural networks [75], on

the other hand have the number of parameters proportional to
C(d)*44, (3.2)
where d again measures depth from the start of the first deconvolutional block, in units
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deconvolutional architectures |

Name | Channels Image size / stride
(input) 3 64 x 64
Conv+BN+ReLU 32 64 x 64/2
InvertedResidual 16 32 x 32
InvertedResidual 32 32 x 32
InvertedResidual 32 32 x 32
InvertedResidual 32 32 x 32
InvertedResidual 32 32 x 32/2
InvertedResidual 64 16 x 16
InvertedResidual 64 16 x 16
InvertedResidual 64 16 x 16
InvertedResidual 64 16 x 16/2
InvertedResidual 128 8 x 8
InvertedResidual 128 8 x 8
InvertedResidual 128 8 x &
InvertedResidual 128 8 x 8/2
Conv+BN+ReLU 128 4 x4
(extracted features)
Conv' +BN 64 8 X 82
Conv'+BN 64 16 x 16 % 2
Conv' +BN 32 32X 32%2
Conv' +BN 32 64 x 64
Conv 21 64 x 64

being the number of blocks,

d =log, W.

C?*dWH,
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Figure 3.1: Hand pose heatmap regression network for 21 heatmaps, one per keypoint.

of the number of stride-2 layers (see Figure 3.1). Here C(d) is the a free parameter,
the chosen number of layers at depth d. Following existing literature on convolutional-
|, C(d) is usually chosen to be inversely proportional
to d, C(d) ~ 1/d. Finally, in a deconvolutional architecture the final output is an
image of size C(d')W H, with W and H being the original image dimensions, and d’

This analysis implies that the greatest savings can be made in the latter deconvo-

lutional layers, where the number of learnable parameters is proportional to



which is substantially larger than
C*W H /4°, (3.5)

for the convolutional layers. This is the first reason that motivates sacrificing bench-
mark accuracy for performance, the benchmark accuracy decreases at a rate slower
than C?, the number that determines performance.

The second reason is that, as discussed in 3.3, our ultimate goal is to use the internal
bottleneck layer of the convolutional-deconvolutional network as a feature extractor.
More precisely, if # are the learnable network parameters, we first approximately solve

the optimization problem
0 = argminyE, ,cx L(y, deconvy(convy(r))) (3.6)

where x,y € X are the training samples, X the empirical data distribution, and L the
heatmap regression loss function.

Our system design in Section 3.3 relies on having access to learned features for
the multi-headed neural network architectures. In our case we use convy, which maps
images in R3*64x64 to vectors in R'?8. Having learned the weights @ according to 3.6,
we fix the mapping convy, the learned feature extractors, and use convy(z) as inputs to
the siamese neural networks.

The primary concern in this procedure is, as always, whether the new neural net-
work will overfit the available training data, which we discuss in Section 2.1. The
technique we use for reducing overfitting [32] thus coincides with the technique for in-

creasing performance as discussed above: reduce the number of channels C' in convy(z).

3.1.2 Efficient Training

Similar to the previous section, a number of techniques widely used in state of the
art research on image recognition have not yet been applied to hand pose estimation,
leading to unnecessarily lower training performance. This means we present the appli-
cation of techniques in both standard textbooks [32], and current image classification

research [70].
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Data augmentation

We used a number of standard data augmentation techniques [76, 32], in the following

order:
o Resize image;
« Gaussian blur with a radius of 1 pixel (out of 64);
« Color jitter, modifying contrast, brightness, hue, and saturation by 40%:;
o Image color normalization;
o White Gaussian noise of magnitude 0.01;

« Cutout regularization [77] using a square of 8 x 8 pixels (out of 64).

Training procedure

Following [76], we initialized all linear and convolutional layers using the Xavier ini-
tialization [78]. We initialized all batch normalization layers to the identity, except the
batch normalization layers at the ends of residual blocks, which we initialized to zero
following [70].

We trained the networks using a procedure consisting of 5 warmup epochs with a
learning rate of 107°, followed by Nesterov accelerated gradient descent [79] using a

learning rate schedule based on warm restarts [30)],

me=ny + (N —ny) % L (1 + cos 2WM> . (3.7)
2 Fnext — Kiast

In [30] it was shown that using the warm restart schedule for stochastic gradient descent

improved performance of vanilla stochastic gradient descent. Warm restarts were set,

experimentally, at epochs 5 and 10, out of a total of 20 epochs, which was sufficient
for convergence.

Varying the optimization method did not produce better results than stochastic

gradient descent with warm restarts. Furthermore, we were unable to replicate the

success reported in the literature for the more recent methods. Specifically, we found

that Adam [31] did not outperform stochastic gradient descent with warm restarts, and
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that AdaBound [32] performed more poorly than either Adam or stochastic gradient
descent. AdaBound in particular results in both worse training error and worse gen-
eralization error. We were unable to determine the cause of this discrepancy, having
used the standard implementations of SGD and Adam provided in PyTorch, as well
as the author-published implementation of AdaBound. One potential source of this
behaviour is the difference in the benchmarks used by different published works on
large-scale optimization methods. We note that the authors AdaBound report their
results primarily on MNIST and CIFAR-10 [33], whereas the authors of SGDR worked
mainly with CIFAR-100 [¢3]. It is plausible that the smaller size of the CIFAR-10
dataset, and the small number of classes in it, contribute to the findings regarding
optimization methods being less easily generalizable to other, larger, and more com-
plicated datasets.

The learning rate was set to a large initial value of 0.1. As discussed in [$1], while
large learning rates lead to much slower convergence, large learning rates have in fact a
regularizing influence on the neural network. The target minimal learning rate was set
at 107%, and our experiments showed that changing this value did not affect keypoint
location accuracy.

In order to make the most efficient use of the available computing power, we used a
large mini-batch size of 1024. This was made possible by our earlier choice of a smaller
number of channels in the convolutional-deconvolutional layers, as the mini-batch size
is severely limited by the available GPU memory. Typical mini-batch sizes for networks
such as ResNet-50 [71] are, in comparison, 256, but can also be as low as 128 as in [73].

We did not use half-precision floating-point training. Although reported in [35] to
be valuable for very large neural networks trained on ImageNet, we tested the difference
using [20], and found the difference to be negligible (1.1ms vs 1.0ms, within standard
error of each other in benchmarking).

We trained the networks on a machine with a single P100 GPU, at a rate of approxi-
mately 1 minute per epoch. With the choices made above, we found this is substantially
better than the training performance of a more typical architecture ResNet-50 (used

in [3, 4]), which resulted in 10 minutes per epoch.
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Figure 3.2: Test error convergence for hand keypoint heatmap regression, [, pixel
distance. The model was refined further after this run.

Heatmap regression

When selecting the loss function for hand pose 2D keypoint estimation we compared
heatmap regression to pixelwise binary cross entropy.

In heatmap regression, the network outputs a single real number per pixel, ¢; ;(z).
The target function for heatmap regression is a Gaussian kernel centered around the
true keypoint location of a small pre-determined size, which we chose to be 2 pixels

(for an image of size 64 pixels). Thus the target heatmap is given by

Yii = e—((uz‘—ﬂ)QJr(1JJ'—13)2)/27”27 (3.8)
and the loss function is
1
L= > (o) — i)™ (3.9)
,J

The alternative to this loss is the pixelwise binary cross entropy loss,
1
L= Z BCE(o(¢i,;(2)), ¥i5), (3.10)
17]

where y; ; must be normalized appropriately compared with the heatmap [y loss above.
In our experiments we found negligible accuracy differences between Iy heatmap re-

gression and pixelwise binary cross entropy, and chose heatmap regression.
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Figure 3.3: GANerated hand pose samples

3.1.3 Comparisons and Results

The test loss convergence, following this procedure is shown in Figure 3.2, and took 10
minutes total before converging. The inference times and [ pixel errors in predicted
2D keypoint locations are shown in Figure 3.4, and compared with existing work. Note
that there are some discrepancies about how keypoint errors are reported, we chose
mean [y pixelwise error, and converted other reported results where this measure was
not directly available.

We further experimented with a progressively descreasing schedule for the r param-
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|2 Bl [ Ous
Number of channels | 256 512 2048 128
Inference time (ms) | 5 13 26 1
Average 2D keypoint error (px) | 14 8 9 16

Figure 3.4: Comparison of performance for 2D hand pose estimation. Keypoint error
is measured in pixels in a 256-pixel image. Data: [3, 2, 1] and our own work. Keypoint
error numbers are re-computed using the data in the cited papers, to make them
directly comparable as average [, errors measured in pixels.

eters, which controls how accurate the heatmap is expected to be, which is an approach
inspired partly by [53]. We found this to be of no particular benefit, primarily because
with the default setting of » = 2px the network converged quickly, and thus progres-
sively decreasing r to encourage the network to become more and more precise was
not necessary. Setting » = 1px did, however, cause the network to converge poorly,
leading to much higher mean [y error at 30px (compared to 16px).

One particular property of the GANerated dataset [3], a sample of which is shown
in Figure 3.3 is that hands, while unoccluded in our case, take extremely unnatural
positions and finger angles. This serves to regularize the network and avoid overfitting

to only the common hand poses.

3.2 Learning Embeddings on KMNIST using Siamese
Networks

In order to apply the proposed method described in Section 1.2 to fingerspelling, we
would like first to investigate whether the method works on a similar problem in a
known domain, and then to investigate in more detail what the method actually learns
about the dataset, and what features it learns. The latter cannot be done directly
in the fingerspelling setting, as discussed in Section 2.1 because labelled fingerspelling
datasets are expensive to collect and severely limited in the variety of gestures and
signers represented. We therefore first look for a different dataset to establish that the
method should work.

Looking for a dataset with a medium number of classes, we settled on the KMNIST
dataset [35]. This dataset is illustrated in Figure 3.6. Each 28 x 28 image belongs to
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Figure 3.5: Heatmap regression results, highlighted in red, for the downsampled GAN-
erated dataset (64 pixels), best seen in colour. Highlighted are the base of the wrist
the tip of the fingers (across columns).

one of 49 classes, and each class is a Japanese character. The variability within each

class is significant: each image is a handwritten character, and therefore the images
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Figure 3.6: A random selection of samples from the KMNIST dataset. Note the amount
of variability between characters in the same class.

differ in the style of stroke as well as the variation permitted by the Japanese writing
system. This is a fascinating dataset, and we urge the reader to read [35] for further
details.

There is a limited analogy with cross-signer fingerspelling. In fingerspelling, the
exact gesture performed for a particular letter differs both within the alphabet to
the extent permitted by the system, and also between signers, as different signers
performing the same gestures produce only a small amount of variability by themselves.
As discussed earlier, this is partially responsible for the substantially lower accuracy
rates of fingerspelling recognition in the wild versus in the lab. Thus for fingerspelling,
as discussed in 2.2 we treat the problem as if there is a known body of symbols with
limited variability, followed by a larger unlabelled body of symbols with much greater
variability, which we would like to classify based on knowing only a few labels per class,
an reduction to the problem of low-show learning.

The analogy we propose for this particular experiment is to split the 49-character

dataset by characters, specifically a 40-character training set, and a 9-character test
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set. We then describe a procedure for learning a function ¢,
¢ : RV RS (3.11)

where f is the number of features chosen to be with a small factor of log,(49). This
learning procedure results in a distance metric on the outputs of this function ¢, with
¢(x1) - - - ¢(x9) measuring the similarity of images x; and .

Having done this on the 40-character training dataset, we find that ¢ can meaning-
fully distinguish the other 9 character from the testset, both by themselves, but also
in the presence of the original 40 characters. This then leads into the presentation in
Section 3.3.

3.2.1 Learning a Siamese Embedding for the KMNIST dataset

We used fundamentally the same neural network design for the KMNIST dataset as
for the fingerspelling dataset. This ensures that the choices made with respect to
neural network architecture and training are transferrable, and ensures we can draw
conclusions about the neural networks and the learned embedding independently of the
dataset quality issues already discussed in Section 2.1. We therefore present a precide
description here, and present the changes made to accommodate the hand pose and
fingerspelling domain separately in Section 3.3.

We begin by describing the basic classifier architecture based on MobileNetV2
[5], which is shown in full in Figure 3.7. Following [5], the basic block consists of
Conv+BN-+ReLU layers,

x +— min(6, ReLU(BN(convy(z)))). (3.12)

Batch normalization is the primary method of regularization in this network design.
The layers are then arranged in inverted residual blocks, as shown in Figure 3.8. We
use the standard cross-entropy loss function. The network is trained with stochastic
gradient descent with warm restarts [$0], according to the procedure described in Sec-
tion 3.1.2, same as for the hand pose network. Due to the lower complexity of the
KMNIST dataset, this takes 30 seconds per epoch on an NVIDIA P100 GPU.

In [5] it was found that this architecture is superior in performance to other conven-
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Name | Channels Stride Size
(input) 1 1 28 x 28
Conv+BN+ReLU 32 1 28 x 28
InvertedResidual 32 1 28 x 28
InvertedResidual 32 1 28 x 28
InvertedResidual 32 1 28 x 28
InvertedResidual 64 2 14 x 14
InvertedResidual 64 1 14 x 14
InvertedResidual 64 1 14 x 14
InvertedResidual 64 1 14 x 14
InvertedResidual 64 1 14 x 14
InvertedResidual 96 2 77
InvertedResidual 128 1 7T
InvertedResidual 32 2 4 x4
AveragePool 32 1x1
(extracted features)
Dropout(0.5) 32 1x1
FullyConnectedLinear |C| 1x1

Figure 3.7: The basic classifier architecture, the convolutional block above the line, the
classification block below.

Name | Channels Stride Size
(input z) c w X h
Conv+BN-+ReLU 4c 1 w X h
DepthwiseConv+BN+ReLLU 4c stride w X h
Conv d 1 w X h

BN
(output y) w X h

x4y if c = ¢, otherwise y

Figure 3.8: The inverted residual block [5], shown with expand ratio 4, with ¢ input
channels and ¢ output channels.

tional architectures such as ResNet-18. We further compared the classifier architecture
with one based on dual-path networks [73], and found that on the KMNIST dataset
using a dual-path network did not offer any statistically significant advantages, result-
ing similar accuracies of ~ 94% while sacrificing performance. Network inference and
training speed were explicit goals, allowing us to efficiently train and compare multiple

approaches later on. The resulting neural network is of the same depth as the one in
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[5], but uses fewer channels and works on smaller images to avoid overfitting to the
KMNIST dataset with 40 classes versus ImageNet’s 1000. The number of channels
and the number of features in the final convolutional layer was selected heuristically
to minimize the number of learnable parameters while still achieving good accuracy of
around 94%.

When reporting results, we found that taking the same network and training it
multiple times (with random re-initializations) resulted in somewhat random general-
ization errors on the test set, of around 0.5%. For this reason we do not always follow
the literature in reporting accuracies to the fourth digits of precision, as we found that
the noise present in the training process is substantially larger than that.

Following the discussion in Section 2.2, the embedding we would like to compute is

a learnable non-linear function
¢ RV RS (3.13)

where f ~ 10 is the number of features, depending on some parameters ¢, with the

property that for two input images x; and x5, the quantity

(1) - d(x2) (3.14)

measures the similarity between x; and x5, and there is an additional constraint that

the embedding lies on the unit sphere

lp(2)]| = 1. (3.15)

This embedding is independent of whether the labels vy, yo of x1, x5 are known.
The basic motivation behind this approach can be seen by taking the number of
features to be f = 1. In this case, ¢ is a simple linear discriminant, and the model

predicts that images x1, x5 belong to the same or different class according to

sign(@(z1) - ¢(x2)). (3.16)

When the number of features is greater, but still small, on order of 10, the em-

bedding distributes the input images on the unit sphere in R!?, and the angle between
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¢(z1) and ¢(x9) measures whether the models predicts z; and x5 to belong to the same
or different class. Unlike in the linear discriminant case, the particular angle threshold

cannot be set by hand, so we model the probability of y; =y, as

P12 = 0(B+ a’p(z1) - ¢(x2)), (3.17)

where ¢(z) is normalized to the unit sphere.

The learnable parameters «, 8 directly determine the fraction of the 10-dimensional
unit sphere that each sample x is “close to”. Since the model can overfit to classes by
selecting a large a and a large negative 3, resulting in very narrow clusters of points,

we introduce a regularization loss on 8 by
Lg=Xs|Bl,  Ag=0.25. (3.18)

The value of the regularization weight A3 was selected to be 0.25 based on the model’s
performance on the validation set. Typical learned values for «, 5 were around (—1, +2).

To describe the loss function for learning the embedding, we first consider, as in
Section 2.2, what happens to images in a single mini-batch when we do not know
directly the classes y; for the images x;, but we do know whether the images pairwise
belong to the same class, i.e., y; ; = 1ly; = y;.

In the pure classification case we can use the cross-entropy loss function, which
takes as inputs a class y; and predicted class-wise log-odds p;., and minimizes the
cross-entropy between p; . and 1;,. In the siamese case, there is no way to make the
network output a probability distribution over classes, because the classes are not
explicitly modelled.

Therefore in each mini-batch we take y; ; = 1,,—,., and the pairwise similarity

pij = o(B+a®o(x) - ¢(x;)), (3.19)
and use binary cross entropy as the loss function,

Lpcr = BCE(p;j,yi ), (3.20)
BCE(p, y) = —(posylogp + (1 — y) log(1 — p)). (3.21)
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The extra parameter pos = |C| — 1 accounts for the fact that there is a large imbalance
between positive and negative examples given to the network during training. In a
typical mini-batch, there will be 1/|C| positive pairs of images with the same class, so
pos = |C] — 1. The total loss, then, is

L= Lycg + L. (3.22)

This loss function that is defined within a mini-batch has several implications.
First, the network must be capable of being trained on a GPU with large mini-batches,
and the parameters and their gradients must fit in memory. We found this to be
a limitation with alternative network designs based on ResNet-50, specifically later
for the fingerspelling dataset where the images are larger. With the MobileNet-based
design we can use mini-batches of size 1024 and above, meaning there are enough
positive example pairs in each mini-batch. Second, since the loss function is now
random and defined per mini-batch, this has a regularization effect on the training
process, similar to the discussion in [87] on how normalizing channel activations within
a mini-batch leads to better generalization performance.

Having defined the loss function, we define the network architecture as shown in
Figure 3.9, where ¢q is the mapping learned in the first block of the classifier in Fig-
ure 3.7, the extracted features. This results in a multi-headed network architecture
(Figure 3.10) where we learn one network for a single classification task on a dataset,
then reuse a large block of it with a new network attached to its end to extend it to a
second task, in this case learning the cosine similarity embedding.

In this case, primarily the block that computes the embedding is no longer a con-
volutional neural network because it starts with the small number of learned features
from the first network block. We choose a dual-path network to compute the embed-
ding, as it was reported in [73] to be a more efficient architecture for learning more
complex features than residual blocks.

Having learned the feature extraction block ¢, in the classifier network, we freeze
its weights, and train only the part of the network that computes the embedding in
Figure 3.9 using the procedure of Section 3.1.2.
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Name | Channels Stride Size
(input) 1 1 28 x 28
(extracted features) 32 1 1

LinearDpLayer 48
LinearDpLayer 64
LinearDpLayer 80
LinearDpLayer 96
LinearDpLayer 112
LinearDpLayer 128
LinearDpLayer 144
LinearDpLayer 160

Dropout(0.5) 32

FullyConnectedLinear f

Figure 3.9: Siamese embedding network, f is the number of features, typically f = 10.

(input image)
extracted features ¢o(z) (Figure 3.7)
classifier embedding

Pic o(x:)
Figure 3.10: Multi-headed network architecture

Name | Channels
(input x) c
Dropout(0.25) c
FullyConnectedLinear 4c
BN+LeakyReLLU
FullyConnectedLinear, y | ¢+ Ac

append(z + y[: ¢, y[c :])

Figure 3.11: Linear dual-path layer, which creates Ac new channels.

Generalization to unseen characters

The loss function of Eq. 3.22 imposes a cosine similarity metric on the embedding
¢(z). Let us now consider a completely dataset, the 9-character dataset that was not
available to the network during training. Although it has not seen the individual full
shapes during training, it nevertheless has seen most of the individual components that
make up the shapes, namely the brush strokes, their edges and corners.

Given a set of labelled samples (z;,y;), we take S = 10 prototypes from each class,
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{Zi.}. To classify a new image z, we compute the similarities

Pie =0 (B +a’d(x) - ¢(zi)) (3.23)

for each known prototype of each class, S|C| in total. Given these similarity scores, we
predict the class of x as

arg max max pj . (3.24)

We investigated alternative ChOiCGS, such as using
arg max E i.Cs .
g . S - pl,c

as well as the more complicated choice used in [31]

) eBta’d(z) d(zic)

Y, eAtato(@io) dwi)’ (3.26)

arg max
C

but we found no meaningful difference, likely due to the lower complexity of the dataset
compared with ImageNet, and used the first, simpler choice.

Note that in this procedure the original class labels do not appear, and the model
remembers only the features learned by the network on the pairwise comparisons within
randomly-selected mini-batches. In particular, the labels y; are not restricted to any
particular classes except by accuracy.

This process introduces the same conflict as is common to all transfer learning prob-
lems [88]. Namely, in order for the network to perform well on the initial classification
task, and to learn a useful embedding, it must learn the features present in the training
dataset, without too much overfitting. The new classes on which the siamese embed-
ding will be asked to do classification must satisfy two constraints: (a) be close enough
to the original dataset that the learned features are useful, and (b) be far away enough
from the original dataset to offer utility above training a simple classifier. Given the
results presented in the next section on KMNIST, we believe that the KMNIST dataset

satisfying these constraints only to some degree, as discussed below.
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3.2.2 Results

Classification Accuracy

We first assess the classification accuracy of the learned embedding on the seen and
unseen characters.

The first-stage classifier network on its own reached 94.7% accuracy on the test
portion of the 40-character dataset. It is by design not capable of classifying unseen
characters. By comparison the state of the art reported in [35] was achieved by a
variant of ResNet-18, giving 97.33% accuracy. The lower accuracy of our classifier is a
consequence of its simpler architecture.

As our goal is learning a more accurate metric embedding, we experimented with
whether increasing specifically the classifier accuracy (using a deeper network) results
in a better embedding, and found that it does not.

When using the learned embedding as a classifier, we must randomly select a num-
ber S of prototypes per class, as representatives of that class. Here we use S = 10
and S = 25. When evaluated on the test set of the seen 40 characters, the embedding
classifier reaches 92.1% accuracy, somewhat lower than the pure classifier, and slightly
higher (by 3%) than the default convolutional neural network benchmark reported in
[35].

Focussing on the unseen characters, in Figures 3.12 and 3.13, we see that already 10
prototypes per class sufficiently cover the intra-class variability. Using 10 prototypes
results in mean accuracy of 87.7%, which is 2% than the vanilla CNN benchmark
trained on the full dataset. Furthermore, owing the slightly larger neural network,
using 25 prototypes appears to be sufficient to cover most of the intra-class variability,
giving 90.1% accuracy.

When using the embedding classifier on all the characters, seen and unseen, we
get the confusion matrix presented in Figure 3.14. Two of the unseen character get
misclassified often, with only 58 and 59% accuracy, but the other unseen characters

are at a level comparable with the seen characters, around 80-90%.

How many dimensions

When we presented the method above, the dimensionality of the embedding was in

fact a free parameter, which we set at 10. We believe that the correct range for this
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Mean accuracy: 87.7%

Figure 3.12: Confusion matrix for the learned embedding on the 9 unseen characters.
Using 10 prototypes per class.

92 2 1 2 4
95 5
1 89 8
95 1 1
3 1 85 9 1
2 4 92
1 89 7
1 3 1 4 9 79
1 2 1 95

Mean accuracy: 90.1%

Figure 3.13: Confusion matrix for the learned embedding on the 9 unseen characters.
Using 25 prototypes per class.

number is within a small integer factor of log, |C| = log,49, based on the heuristic
grounds that each coordinate may provide one bit of information in its sign as the
primary signal for classifying a sample. This estimate results in 5.6 coordinates, so we
chose 10 as the number of features.

It is interesting, however, that using 12 features, results in higher classification
accuracy on the unseen characters, 92.7%, see Figure 3.15, but in lower all-character
mean accuracy, at 86.6%, as in Figure 3.16. We further investigate the impact of the
number of embedding features in Section 3.3.

We believe that this result is due to overfitting. A heuristic explanation of this

effect is that the input 1 x 28 x 28 image is “compressed” by the network into a 10-
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Mean accuracy (all classes): 91.3%

Figure 3.14: Confusion matrix for the learned embedding on all the seen and unseen
characters together. Using 25 prototypes per class.

dimensional vector. Being essentially a compression method, there is pressure on it to
preserve as much internal structure of the image as possible using only the available
features. It follows, then, that increasing the number of available features allows it
to overfit to the unnecessary details. Since the cosine similarity function we use to
model the probability of two images belonging to the same class is unable to discard
the unneeded extra dimensions, the new dimensions we add effectively add a source of

white noise into the probability estimate

pr2 = o(f + a’¢(x1) - P(2)), (3.27)
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Mean accuracy: 92.7%

Figure 3.15: Confusion matrix for the learned embedding on the 9 unseen characters.
Using 25 prototypes per class.

the noise being of magnitude a? ~ 4.
This finding for this particular dataset conflicts to some extent with the success of
using siamese networks for one-shot learning on the Omniglot dataset [36]. Recall that

in that work, although the model was slightly different, using

P12 =0 (Z 04@'|¢i(931) - ¢z($2)|) ) (3-28)

it is similar enough to the cosine similarity model we use. The Omniglot dataset con-
tains thousands of characters, and [36] used 4096 features in the embedding vector,
much greater than log, |C|. We believe that the primary difference in behaviour be-
tween our choice of a small number of embedding features and their choice of a large
number of embedding features is caused by the number of training classes. With a
small number of training classes, the model must be explicitly stopped from overfit-
ting, and choosing 2log, |C| features acts as a regularization method for the model.
With a large number of classes, as in [30], or in the work on face recognition with
siamese networks [57], the number of classes provides this regularization effect, and
manual intervention in selecting the number of features is not needed.

In our experiments we found conventional regularization methods, specifically batch
normalization [37], layer normalization [39], and dropout on the fully-connected layers
[90] do not have this regularizing effect, and selecting a larger number of features leads

to worse generalization errors.
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Figure 3.16: Confusion matrix for the learned embedding on all the seen and unseen
characters together. Using 25 prototypes per class.

Kernel Principal Component Analysis for the Cosine Similarity Embedding

We next investigate whether we have successfully imposed the cosine similarity metric
on the learned embedding. This is important because ¢(z) maps samples x to the
unit sphere R/, and, if successful, it evenly distributes the samples on that sphere with
angles between two vectors measuring how likely they are to belong to the same class.

We test whether the embedding vectors actually come with the cosine similarity
Recall that kernel

PCA takes a number of unlabelled samples x;, and uses the kernel trick as follows. Let

distance function using kernel principal component analysis [91].
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®(x) maps the samples to an abstract high-dimensional feature space, and let
k’([L‘l,ZEQ) = (I)(l‘l) . (I)(IL'Q), (329)

be the dot product in that space. Kernel PCA is specified using the kernel function
k only, with ® only defined implicitly through the definition of k. Kernel PCA, then,
is equivalent to regular principal component analysis on the transformed matrix K =
(® () - @(xj))m., finding the most important linear features for the dataset in feature
space through an eigendecomposition of K.

Note that in this procedure we already know that our embedding allows us to
compute the similarity as k(zq, x2) = ¢(21) - ¢(x2), which is equivalent to kernel PCA
with the cosine similarity kernel. In particular, given a set of unlabelled samples x
from either the 40-character training set or the 9-characters test set, we can use kernel
PCA with nearest neighbours as an unsupervised clustering method. Taking the two
most important PCA components we arrive at a two-dimensional visualization of the

10-dimensional feature space, the coordinates for sample x being given by

(peay (), peay(x)), (3.30)

where pca; are the computed principal components for the matrix K.

Since the number of characters is quite high at 40, and the number of feature di-
mensions is much greater than the top two components that can be visualized, we select
10 characters at random and check that kernel PCA is able to successfully cluster them
into regions of the 2D space. Because of the steep reduction in the number of dimen-
sions, and limitations of kernel PCA as a dimensionality reduction method, using more
than 10 characters results in an uninterpretable plot with too many classes, and using
more than 10,000 samples results in unreasonable computation times because kernel
PCA has time complexity O(N?) due to being based on singular value decomposition
of the matrix K.

The result is shown in Figure 3.17. The primary conclusion we make is that kernel
PCA is able to correctly use the same embedding with cosine similarity distance func-
tion. The reduction in the number of dimensions and the limitations of kernel PCA

result in much worse inter-class decision boundaries than what we get when using our
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Figure 3.17: Kernel PCA applied to the cosine similarity embedding on 10 characters
from the 40-character training set. Best seen in colour pdf.

siamese classifier directly. It would not make sense to learn the embedding, and then
use a weak unsupervised clustering method like kernel PCA with nearest neighbours on
the output, given that we already have trained a siamese classifier capable of low-shot
classification. The primary purpose of kernel PCA, therefore, is to demonstrate that
learning such an embedding may be useful as a transfer learning technique for using
other unsupervised or semi-supervised methods that require nothing more than inputs

with meaningful cosine similarity.
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Adversarial example generation

The second approach we take to investigate the behaviour of this method is based on
adversarial example generation. Adversarial example generation is a technique widely
studied with respect to ImageNet [92]. We begin by first presenting the standard
technique, then showing how it is applied to learn more about what features the siamese
classifier learns.

In a conventional convolutional neural network with n layers, the network represents

a sequence of non-linear functions, layers, ¢ (),

2, 1(2), @2 = d2(01(2)), -, dn = Pn(dna(- -~ 01(2))). (3.31)

When looking at the I-th channel in the k-th layer, ¢y ;(x), we may ask what images
cause the highest possible activation of this filter. If the filter were linear, this would
be, straightforwardly, the gradient of the filter with respect to the input image,

O (x)

Ti = —F—, 3.32
where z; ; is the (7, j)-th pixel of the image, and we follow the standard convention in
the automatic differentiation literature using Z; ; for the derivative of the scalar output
with respect to the input variable z; ;. The output image that visualizes the channel

¢r, can then be chosen to be

o(Zi;), (3.33)
or alternatively
clamp(‘”xﬁ’,(),l), (3.34)

assuming the gradient is properly normalized.

The former illustrates which pixels cause the filter to activate the most, while the
latter illustrates which pixels are the most salient to the filter. There is an important
limitation to this approach discussed below.

Since the filter is not linear, due to the rectified linear unit non-linearities in the
convolutional layers, it would not be meaningful to use ;; directly to find out what

images activate the filter. In terms of heuristic dimensionality analysis, this is because
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an image x that the filter responds to has units of pixel — intensity, whereas z;; has

f activation—intensity
pixel—intensity

units o
An iterative procedure then is to start with an empty image zy, and define a
sequence of images

Tyl = Ty + Ny (3.35)

or

Tl = Ty + nsign(zy,), (3.36)

where Z,, is the input-wise gradient described above.

The converse of this approach is adversarial example generation, which is to take
a particular starting image xo with a known class y, and ask for the smallest possible
perturbation that will cause the model to misclassify the image as a different class
y'. This again is an iterative process, resulting in a sequence of one or more images,
commonly one,

Tma1 = T + 18igN (T, ). (3.37)

This time the gradient Z,,;; = Op,/0%y,;; is taken of the output probability p,, the
probability the model assigns for the input image belonging to class 3. This results in
images such as those seen in [93].

For the siamese classifier we can adapt this approach as follows. Given a small
number of images, n = 8, we compute the embedding ¢(z,) for each image, and the
pairwise similarities sq, = ¢(x4) - d(xp).

In order to ask which features of the image the model relies on to make its deter-

mination of similarity in the abstract embedding space, we can compute the gradient

), = (3.38)

This results in an (a, b)-sized array of images given by o(z,), where each image is the
input-wise gradient of the similarity between images a and b with respect to the image
a.

This is shown in Figure 3.18. In this figure, the rows are the input images, the
columns are the target images, taken to be the same set of images. Red pixels are the

pixels highlighted by O'(ft(lb)) as described above.
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Figure 3.18: Pairwise similarity gradients for 10 randomly-selected characters. Best
seen in colour pdf.

Looking at which pixels the pairwise similarity depends on the most, we can con-
clude that it appears to learn a number of orthogonal edge and corner detection filters.
We may conclude that the filters are orthogonal based on the fact that imposed a co-
sine distance function on the embedding, not based on this image. For some characters
(columns 3 and 4, in particular), it appears to learn the general shape of a character,
matching it to the input image. For others (row 5), it focuses primarily on the character

edges.
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This implies that the siamese embedding learns, on the one hand, a set of orthogonal
feature detectors that respond to edges and corners, and on the other hand, some
feature detectors appear to match the shape of the target characters.

The primary limitation of this technique for elucidating what the embedding ac-
tually learns is that we are trying to do two things at once. On the one hand, we
are trying to use the input-wise gradient z; ; to learn which pixels a nonlinear feature
detector responds to. On the other hand, this is the same technique that adversarial
example generation uses to determine how to mislead the network into misclassifying
the input image. This means there is tension, whether the highlighted pixels are really
the ones that the feature detector genuinely responds to, or whether they are the ones
that the feature detector is not robust to.

Furthermore, the information contained in the input-wise gradient is extremely
noisy, easily seen in Figure 3.18. This is in line with what existing literature reports
for the convolutional feature layers for ImageNet, for example, as seen in [93]. In line
with existing literature, we therefore believe that the simpler visible features learned
by our network represent, specifically edges, corners, and character-shaped filters, are
the real filter responses, whereas the noisier gradients represent adversarial examples
that merely mislead the network into misclassyfing the images.

Fundamentally, this represents a limitation of artificial neural networks, as, for
example, discussed in [94]. The features they learn are not directly interpretable.
Using the siamese network architecture imposes additional structure (in our case, a
distance function), causing them to become slightly more penetrable using even simple
techniques like kernel PCA. However the individual filters remain uninterpretable, and
the technique based on adversarial example generation is clearly insufficient to show

what the filters actually learn beyond obvious low-level features.

3.3 Cross-Signer Fingerspelling Recognition

We now combine the two building blocks of Sections 3.1 and 3.2. We begin by reusing
the features learned by the hand pose network of Section 3.1, Figure 3.1, and training a
dual-path network to convert the features extracted by the convolutional block into an
embedding. The embedding itself is computed using the same procedure as described

in Section 3.2.1, where the place of the classifier network is taken by the convolutional
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Name | Channels Size / stride

(input) 3 64 x 64
(extracted features, Figure 3.1) 128 4x4
AveragePool 128 1x1

LinearDpLayer 128
LinearDpLayer 144
LinearDpLayer 160
LinearDpLayer 176
LinearDpLayer 192
LinearDpLayer 208
LinearDpLayer 224
LinearDpLayer 256
Dropout(0.25) 32
FullyConnectedLinear f

Figure 3.19: Siamese embedding network architecture for fingerspelling, using f fea-
tures in the embedding.

block of the hand pose network. The resulting architecture is shown in Figure 3.19.

The two key hyperparameters in the embedding network are the number of output
features, as well as the number of features extracted by the hand pose network. One
particular finding is that using 256 hand pose features instead of 128 causes the model
to overfit on the fingerspelling dataset, which we believe is caused by the discrepancy
in the sizes of the datasets, as the original dataset contains 140k images of extremely
diverse hand poses, shown in Figure 3.3, whereas the fingerspelling dataset contains
50k images, which, as we describe below, contain too little variability to meaning-
fully capture all the hand poses possible in fingerspelling. As discussed in Section 2.1,
there are significant limitations on the quality and quantity of datasets available for
fingerspelling. The primary constraints for our work are that the datasets be varied
and labelled, which is different from non-deep-learning-based work on fingerspelling, in
which the condition is merely that they should be labelled. We selected two datasets,
one an ASL fingerspelling dataset due to Pugeault [7], and the RWTH German finger-
spelling database [0].
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Figure 3.20: Samples from the RWTH dataset [(]

3.3.1 The RWTH Fingerspelling Dataset

A random selection of images from RWTH dataset is shown in Figure 3.20. This
dataset consists of approximately 24 signers, each performing 35 gestures recorded
with 2 cameras. The dataset requires further preprocessing to extract the hands from
the images. For the purpose of preprocessing we used the hand detection work of [2],
and several images on which this network failed to detect the hand can be seen in the
figure (individual fingers, empty space).

The fundamental limitation of this dataset is the number of images. The subjects
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hold the same fingerspelling gesture for approximately 10 seconds, and this is what is
recorded on camera. Following the same procedure as [2], we make sure to not include
exactly the same gestures in the train and test set, and extract the middle frame of
each video, ultimately using one frame per video.

The primary issue with using multiple frames per video is how close the hand
gestures are in the RWTH dataset. Comparing Figure 3.20 with Figure 3.22, we see
much less variability. This is because the subjects were familiar with sign language and
instructed by the lab to hold the correct gesture [6]. This results in an exceptionally
clean dataset, but also misses much variability that both (a) is present in in-the-wild
fingerspelling gestures, and (b) prevents rich models like deep neural networks from
overfitting.

As a result of this limitation, taking one frame per video results in approximately
1.3k images, which we split into training and test data in a ratio of 4:1. The pro-
gression of the training loss is shown in Figure 3.21. The number of input images
was significantly increased, as shown on the x-axis, using standard data augmentation

techniques:
o Random cropping
» Random shearing
o Random rotations
o Color augmentation, brightness, contrast, hue, and saturation jitter
o Gaussian blur
o Small-magnitude white noice

We further regularized the network by implementing high-probability dropout at every
layer, as this was shown to generate more robust “ensembles” of networks in [95].
These techniques were insufficient, and the network failed to learn a meaningful
embedding, as shown in Figure 3.21. We further tested the same architecture by
training a straightforward classifier, and this failed also, the test loss failed to decrease

meaningfully below the level expected from random guessing.
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Figure 3.21: Non-convergence of the siamese embedding on the RWTH dataset, test
loss shown.

3.3.2 The ASL Fingerspelling Dataset

In contrast to the RWTH dataset, the ASL dataset [7], was collected under differ-
ent conditions. Random samples from it are shown in Figure 3.22. This dataset was
collected under different conditions, and we first examine the main differences to un-
derstand the consequences for this work.

The dataset contains 6 signers, who were not proficient in sign language, and who
were asked to perform the fingerspelling gestures in front of a webcam. Looking at
the videos, it is clear that the subjects are deliberately varying their gestures, rotating
and moving both the hands and the fingers. Compared with the RWTH dataset, this
results in much noisier images.

For our purposes, however, the primary difference is the number of independent
images available in the dataset. The RWTH contained gestures that were very similar
frame-to-frame, and therefore the videos had to be aggressively pruned. The ASL
dataset contains one video per signer per letter, for a total of 60k frames, but the
frames are much more independent from each other. Using the same data augmentation
techniques as in Section 3.3.1, this results in much more variability, and therefore
less overfitting. The same network architecture, based on the same frozen hand pose
network with a dual-path embedding block, converges as shown in Figures 3.23 and
3.24.

To correctly split the data into training and test sets, we must still split by signer,
in order to meaningfully estimate the model’s cross-signer classification accuracy [18].
This means splitting the 6-signer dataset into a 5-signer training set and a 1-signer

test set. The accuracy on the 6th signer is then reported as test accuracy. Note that
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Figure 3.22: Samples from the ASL dataset [7]

despite the variability in the available frames, it is still not possible to split the dataset
into training and test sets by picking the frames randomly because the frames while

being variable will also be consecutive, leading to incorrect estimates of accuracy.

Comparison of results with benchmarks

As seen in Figure 3.25, the embedding classifier converges to 44.1% accuracy on the
unseen signer. By varying the number of embedding features, we find that the model

appears to reach at most 46% accuracy, as shown in Figure 3.26. The dependence
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Figure 3.23: Training loss convergence for the siamese embedding ASL dataset.
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Figure 3.24: Test accuracy convergence for the siamese embedding ASL dataset.

Cross-signer | Ours  [7] [18] Same signers | Ours  [7]
Test accuracy ‘ 441% 35% 42.8%* Test accuracy ‘ 72.4% 5%

Figure 3.25: Accuracies for cross-signer and non-cross-signer classification. Figures
marked with an asterisk were collected on different dataset, and are included for general
comparison, as there are too few direct benchmark comparisons available otherwise.

on the number of learned embedding features is similar to what we found in for the
KMNIST dataset in Section 3.2, which is that there is an optimal number around
approximately 2log, |C|, and in the case of the ASL dataset we found the optimal
number around 10 features. Once again, this is substantially lower than what is used
in previous work such as [30].

To compare the model directly against [7], we also compute the same model’s
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Number of features | Test accuracy (top) Test accuracy (top-2)
6 32.3% 51.4%
8 43.2% 59.2%
10 46.6% 60.3%
12 45.8% 61.0%

Figure 3.26: Effect of varying the number of embedding features on the classification
accuracy.

accuracy on the training set in Figure 3.25. The corresponding confusion matrix is
shown in Figure 3.27. The main confused pairs are a-t, c-e, e-0-s, g-h, k-v, m-n-s-t,
p-q. Because the train-test split of the dataset was along signers (signer E was the
test signer), this is the confusion matrix on the training set, not a separately trained
model on a purely random split of the dataset. Splitting the dataset random into
training and test set would not in fact help estimate same-signer generalization error
because the images in the data come from consecutive frames in videos and a classifier
may overfit to recognize very similar frames. Since our model learns a 12-dimensional
embedding, and therefore compresses the input data to a much greater extent than a
typical deep neural network classifier, and since the model only sees S = 10 prototypes
per letter (in this case, 10 prototypes per letter including all four available signers), the
model is guarded against overfitting to this particular split. It is clear that the learned
embedding does overfit to the particular signers in the signer-wise split of the dataset.

We would also like to note that the top-2 accuracy, is substantially higher, and is
not consistent with random guessing for the fingerspelling gestures that the model gets
wrong. While top-1 accuracy is the proper measure, the magnitude of top-2 accuracy
suggests the embedding learns more general features of the input images.

As can be seen in the confusion matrix in Figure 3.28, the model struggles to learn
to correctly classify the ambiguous shapes from Figure 2.1. The top confused pairs
are shown in Figure 3.29. We can further compare the most ambiguous pairs with the
hand pose PCA components represented in the MANO model [30], and it can easily be
seen that the MANO model is not rich enough to fully distinguish between the harder
pairs of shapes.

We further investigated whether the model trained on the ASL dataset would per-
form well on the RWTH dataset. We found, however, that the results on that particular

test are no better than random chance. Furthermore, selecting S = 10 prototypes per
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a b c d e f gh ik 1l mnop qoTr s t u v w x ¥y
a 67 1 2 4 3 21
b 94 1 2 1
C 66 26 4
d 88 2 2 4
e 1 62 1 15 15
f 4 91
g 58 37 2
h 25 70 4
i 96
k 5 78 3 111
1 99
m 2 2 38 34 2 10 12
n 2 1 12 34 2 3 41
o 1 2 27 2 439 3 13 5
p 3 7 68 16 3
q 3 26 68
r 3 5 75 10 6
s 17 5 3 9 58 4
t 6 12 30 3 2 T 37
u 1 1 17 76 4
v 5 384 5
W 7 92
X 1 95
y 2 98
Mean accuracy: 72.4J

Figure 3.27: Confusion matrix for the same-signer split of [7].

character class results in S|C| = 10 x 30 prototypes for the entire dataset, which con-
sists of only 1.3k images. Given that the proportion of the dataset necessary to extract
prototypes is quite large at 23%, we must conclude our approach does not work at all
on cross-dataset fingerspelling recognition.

We hypothesize this is because of the different image styles in Figures 3.22 and
3.20.

images significantly improves hand pose recognition performance. Therefore comparing

As pointed out in [3], generating hand pose images that mimick real-world
Figures 3.22 and 3.20, we believe the primary reason why fingerspelling recognition

learned on the ASL dataset would not transfer to the RWTH dataset is that it overfits
to the particular image style in the ASL dataset.
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a b c d e f gh ik 1l mnop qoTr s t u v w x ¥y
a 37 3 5 11220 5 1 1 4 4 1 1
b 74 6 3 1 3 4 1 2
C 2 56 9 1 4 14 3 4 1
d 1 28 4 10 8 4 1 8 4 23
e 221 1 11 6 15 3 11 7 1 2 2
f 8 79 1 2 5 1
g 2 9 1 44 15 1 3 3 5 1 6 2 1 3
h 11 78 1 1
i 70 1 3 1 2 1 1 15
k 1 3 2 1 31143 6 4 2 18 3
1 1 4 1 81 2 2
m 11 13 10 17 8 5 11 11 1 1
n 12 10 11018 9 4 2 18 9
o 2 7 10 3 1 7 526 5 9 10 7 1 2 2
p 3 6 2 2 6 10 5 15 24 6 9 3 4
q 3 3 3 6 7 15 10 31 4 5 4 2
r 2 129 1 7T 2 35 11 2 6
s 2 2 5 913 3 2 37 12 2 1
t 10 2 3 11 21212 9 5 2 12 12 2 2
u 1 4 3 6 2 5 2 4 5 14 1 44 4 2
v 1 3 18 2 3 69 2
W 1 3 9 86
X 6 2 8 6 2 7T 2 2 2 4 2 2 3 5 2 6 1 37 3
y 4 2 8 2 10 69
Mean accuracy: 45.8}

Figure 3.28: Confusion matrix for the learned embedding on the left-out signer from
the ASL dataset.

To compare the results on the ASL fingerspelling dataset with the results on the
KMNIST dataset more directly, we implemented the same two tests based on kernel
PCA, and on adversarial example generation. Unfortunately, due to the limited accu-
racy of the siamese embedding classifier on the ASL dataset, we found the output of
cosine-distance kernel uninterpretable, and therefore did not include it. This is due to
the accuracy being substantially lower than for KMNIST, at 44% compared to ~ 90%.

Furthermore, unlike for KMNIST, where the model learns moderately interpretable
filters in its convolutional layers, the layers the model learns for both 2D hand pose

estimation and for converting the outputs of those features to an embedding equipped
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Figure 3.29: Top confused pairs (above 10% error rate) by the siamese embedding
classifier. Symbols reproduced from [%] (public domain).

with a cosine similarity distance are too abstract. This is due to the model being
required by the training process to perform substantially more work. While the KM-
NIST model can reach sufficient accuracy by learning the shapes of characters, the
hand pose model is required to reconstruct the positions of the hand’s 2D keypoints.
This means the model not only has to learn the typical image filters required to locate
salient points for detecting keypoint, it also has to distinguish the types of keypoints,
such as producing the right heatmaps that distinguish the 4th finger from the 5th fin-
ger. This is a substantially more abstract task, and we did not find the visualization
of input-wise gradients of the embedding, similar to Figure 3.18, to be interpretable,

meaningful, or visually distinguishable from noise, and so do not include it here. As
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discussed previously in the context of KMNIST, on which the gradient-based visual-
ization of features is already unconvincing, this is fundamentally a problem with using
convolutional neural networks to learn specifically interpretable features. The features
are ultimately judged based on the loss function, the cross entropy loss or the heatmap
regression loss, and it can be expected that the model may overfit to that particular
loss from the point of view of the user who may want the model to be more directly
interpretable. The current state of the art in the field of deep learning is not sufficiently
advanced to produce even moderately interpretable learned CNN features [94].
Overall, the accuracy of the classifier is quite low. Training a classifier on this
dataset, [7] report non-cross-signer accuracy of 75%, and while 45% accuracy is com-
parable to reported cross-signer accuracies in the literature, as noted in Section 2.1,
it does not improve on the accuracy, and this particular low-shot learning approach
that requires learning a metric embedding with siamese networks is quite complicated
compared to the standard classifiers reported in the literature. We explained our mo-
tivation for picking this approach in 1, and found that the results are modest and do

not compensate for the complexity of the method.
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Chapter 4
Conclusions and Future Work

We have considered the problem of signer-independent fingerspelling recognition on
static images. As discussed in Chapter 2, although the ability of neural networks to
learn to recognize hand poses specifically is limited in specific cases, we found that this
is not the limiting factor for fignerspelling recognition. Better, more accurate hand
pose recognition would likely not result in better fingerspelling recognition. Rather,
the limiting factor is the amount of labelled data that is available for training finger-
spelling recognition models. We have discussed the limitations of available datasets in
Section 2.1, and the dataset we trained our model on suffered from the same limitations.

Furthermore, our model based on learning an embedding with an imposed cosine
similarity measure did not perform much better than similar models reported elsewhere
in the literature. Our ability to effectively compare the model’s performance against
suitable benchmarks is hampered by the fact that no such standard benchmarks are
available in the fingerspelling literature, specifically for cross-signer recognition. For
cross-signer recognition we reach error rates that are within several percent of similar
cross-signer results reported elsewhere on other datasets. We have explained our mo-
tivation for using this particular low-shot learning-based approach in Section 1.2, but
we must conclude that it does not offer much benefit above existing work.

Looking for the reasons of this poor performance, we have presented a study of
the method’s performance on a separate KMNIST dataset, which is large and clean
compared to the available datasets. We showed that the model correctly learns a cosine

similarity embedding, and is capable of correctly classifying images new, previously
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unseen, classes. The actual embedding learned by the model is much less interpretable
on further analysis, and the question of what the model actually learns cannot be
answered convincingly.

We have also established that the limiting factor of fingerspelling model accuracy
is not the accuracy of the underlying hand pose estimation model. We found that it
is possible to train smaller, faster neural networks for 2D hand pose estimation than
reported in the literature with judicious application of known techniques for choosing
the architecture and the training procedures.

As we have discussed in Section 2.3, one the primary methods by which progress was
made on the problem of 3D hand pose estimation was by generating new, larger, and
higher-quality synthetic rendered datasets, which was driven by the lack of manually
labelled datasets of real hand images. Generating a realistic 3D model of human hands
that can covers the relatively wide range of human hand shapes is a hard task, as can
be seen from the development of the MANO model. One of its primary limitations
for the purposes of this work is that its representation of the range of hand pose is
insufficient to cover the entire range of the fingerspelling alphabet.

As a direction for future work, it would be fruitful to examine whether a realistic
model can be constructed with enough range to cover the gestures in sign language.
Specifically, each hand pose would be annotated with ground truth 3D keypoint loca-
tions as in the currently available synthetic datasets, but the range of hand poses in
the datasets can be much greater if the datasets were to include common fingerspelling
poses. Currently they include random hand poses sampled uniformly at random from
the space of anatomically permitted poses, of which fingerspelling poses form only a
small subset. Such a dataset, without further improvements in model architecture may
improve its performance on cross-signer fingerspelling recognition. In particular, this
approach would avoid the much harder problem of weakly supervised or unsupervised

learning on the abundance of in-the-wild fingerspelling data.

66



Bibliography

1]

2]

“American manual alphabet.” https://en.wikipedia.org/wiki/American_

manual_alphabet. ix, 10

C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from single rgb
images,” in IEEFE International Conference on Computer Vision (ICCV), 2017.
https://arxiv.org/abs/1705.01389. ix, 12, 21, 22, 25, 33, 55, 56

F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S. Sridhar, D. Casas, and
C. Theobalt, “Ganerated hands for real-time 3d hand tracking from monocular
rgh,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 49-59, 2018. ix, 3, 5, 12, 19, 21, 22, 25, 30, 33, 61

A. Boukhayma, R. d. Bem, and P. H. Torr, “3d hand shape and pose from images
in the wild,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 10843-10852, 2019. ix, 20, 22, 23, 25, 30, 33

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018. ix, 25, 36, 37,
38

P. Dreuw, T. Deselaers, D. Keysers, and H. Ney, “Modeling image variability in
appearance-based gesture recognition,” in ECCV workshop on statistical methods

in multi-image and video processing, pp. 7-18, 2006. x, 9, 21, 54, 55, 56

N. Pugeault and R. Bowden, “Spelling it out: Real-time asl fingerspelling recog-
nition,” in 2011 IEEFE International conference on computer vision workshops
(ICCV workshops), pp. 1114-1119, IEEE, 2011. x, 9, 54, 57, 58, 59, 61, 64

67


https://en.wikipedia.org/wiki/American_manual_alphabet
https://en.wikipedia.org/wiki/American_manual_alphabet

8]

[17]

[18]

“Asl clip art.” https://wpclipart.com/sign_language/American_ABCs/index.
html. x, 63

T. Pfister, J. Charles, M. Everingham, and A. Zisserman, “Automatic and efficient
long term arm and hand tracking for continuous sign language tv broadcasts,” in
Procedings of the British Machine Vision Conference 2012, p. 4, - 2012. 1

H. Cooper, B. Holt, and R. Bowden, “Sign language recognition,” in Visual Anal-
ysts of Humans, pp. 539562, Springer, 2011. 1

R. E. Mitchell, T. A. Young, B. BACHELDA, and M. A. Karchmer, “How many
people use asl in the united states? why estimates need updating,” Sign Language
Studies, vol. 6, no. 3, pp. 306-335, 2006. 1, 8

R. Poppe, “A survey on vision-based human action recognition,” Image and vision
computing, vol. 28, no. 6, pp. 976-990, 2010. 1

D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods for
action representation, segmentation and recognition,” Computer vision and image
understanding, vol. 115, no. 2, pp. 224-241, 2011. 1

S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A
survey,” Image and vision computing, vol. 60, pp. 4-21, 2017. 1

G. Guo and A. Lai, “A survey on still image based human action recognition,”
Pattern Recognition, vol. 47, no. 10, pp. 3343-3361, 2014. 1

S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human
computer interaction: a survey,” Artificial intelligence review, vol. 43, no. 1, pp. 1—
54, 2015. 1

S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37,
no. 3, pp- 311-324, 2007. 1, 3

B. Shi, A. M. Del Rio, J. Keane, J. Michaux, D. Brentari, G. Shakhnarovich,

and K. Livescu, “American sign language fingerspelling recognition in the wild,”

68


https://wpclipart.com/sign_language/American_ABCs/index.html
https://wpclipart.com/sign_language/American_ABCs/index.html

[21]

[22]

[25]

[20]

[27]

in 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 145-152, IEEE,
2018. 2, 11, 12, 20, 57, 59

D. I. Newble and R. A. Cannon, A handbook for medical teachers. Springer Science
& Business Media, 2001. 2, 3

M. Tytherleigh, T. Bhatti, R. Watkins, and D. Wilkins, “The assessment of sur-
gical skills and a simple knot-tying exercise.,” Annals of the Royal College of
Surgeons of England, vol. 83, no. 1, p. 69, 2001. 3

J. D. Birkmeyer, J. F. Finks, A. O’reilly, M. Oerline, A. M. Carlin, A. R. Nunn,
J. Dimick, M. Banerjee, and N. J. Birkmeyer, “Surgical skill and complication
rates after bariatric surgery,” New England Journal of Medicine, vol. 369, no. 15,
pp. 1434-1442, 2013. 3

J. Causer, A. Harvey, R. Snelgrove, G. Arsenault, and J. N. Vickers, “Quiet eye
training improves surgical knot tying more than traditional technical training: a
randomized controlled study,” The American Journal of Surgery, vol. 208, no. 2,
pp. 171-177, 2014. 3

P. Panteleris and A. Argyros, “Back to rgb: 3d tracking of hands and hand-
object interactions based on short-baseline stereo,” in 2017 IFEE International
Conference on Computer Vision Workshops (ICCVW), p. nil, 10 2017. 3

S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Yong Chang, K. Mu Lee,
P. Molchanov, J. Kautz, S. Honari, L. Ge, et al., “Depth-based 3d hand pose
estimation: From current achievements to future goals,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018. 3

R. Y. Wang and J. Popovi¢, “Real-time hand-tracking with a color glove,” ACM
Transactions on Graphics, vol. 28, no. 3, p. 1, 2009. 3

B. Myanganbayar, C. Mata, G. Dekel, B. Katz, G. Ben-Yosef, and A. Barbu,
“Partially occluded hands,” in Asian Conference on Computer Vision, pp. 85-98,
Springer, 2018. 3, 20

A. Mittal, A. Zisserman, and P. Torr, “Hand detection using multiple proposals,”
in Procedings of the British Machine Vision Conference 2011, p. 75, - 2011. 3

69



[28]

[31]

[32]

[33]

J. H. Martin and D. Jurafsky, Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.
Pearson/Prentice Hall Upper Saddle River, 2009. 3, 4

M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated

corpus of english: The penn treebank,” 1993. 4

J. Romero, D. Tzionas, and M. J. Black, “Embodied hands: Modeling and captur-
ing hands and bodies together,” ACM Transactions on Graphics (TOG), vol. 36,
no. 6, p. 245, 2017. 5, 22, 23, 60

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks
for one shot learning,” in Advances in neural information processing systems,
pp- 3630-3638, 2016. 6, 8, 42

[. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016. 6,
14, 16, 28, 29

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,”
2009. 6

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effec-

)

tiveness of data in deep learning era,” in Proceedings of the IEEFE international

conference on computer vision, pp. 843-852, 2017. 6

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha,
“Deep learning for classical japanese literature,” 2018. 7, 24, 33, 35, 43

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot
image recognition,” in ICML deep learning workshop, vol. 2, 2015. 8, 17, 18, 46,
59

C. Valli and C. Lucas, Linguistics of American sign language: an introduction.
Gallaudet University Press, 2000. 8

C. A. Padden and D. C. Gunsauls, “How the alphabet came to be used in a sign
language,” Sign Language Studies, pp. 10-33, 2003. 9

70



[39]

[40]

[41]

[42]

[43]

[44]

[46]

[47]

N. Gkigkelos and C. Goumopoulos, “Greek sign language vocabulary recognition
using kinect,” in Proceedings of the 21st Pan-Hellenic Conference on Informatics,
p. 51, ACM, 2017. 9

M. Oliveira, H. Chatbri, Y. Ferstl, M. Farouk, S. Little, N. E. O’Connor, and
A. Sutherland, “A dataset for irish sign language recognition,” 2017. 9

O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition: To-
wards large vocabulary statistical recognition systems handling multiple signers,”
Computer Vision and Image Understanding, vol. 141, pp. 108-125, 2015. 10

C. Neidle, S. Sclaroff, and V. Athitsos, “Signstream: A tool for linguistic and
computer vision research on visual-gestural language data,” Behavior Research
Methods, Instruments, € Computers, vol. 33, no. 3, pp. 311-320, 2001. 11

U. Von Agris and K.-F. Kraiss, “Towards a video corpus for signer-independent
continuous sign language recognition,” Gesture in Human-Computer Interaction
and Simulation, Lisbon, Portugal, May, 2007. 11

V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, A. Thangali, H. Wang, and

Q. Yuan, “Large lexicon project: American sign language video corpus and sign

)

language indexing/retrieval algorithms,” in Workshop on the Representation and
Processing of Sign Languages: Corpora and Sign Language Technologies (CSLT),

pp. 11-14, 2010. 11

J. Zieren and K.-F. Kraiss, “Robust person-independent visual sign language

)

in Iberian Conference on Pattern Recognition and Image Analysis,
pp- 520-528, Springer, 2005. 11

recognition,’

T. Kadir, R. Bowden, E.-J. Ong, and A. Zisserman, “Minimal training, large
lexicon, unconstrained sign language recognition.,” in BMVC, pp. 1-10, 2004. 11

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, pp. 1097-1105, 2012. 12, 14

71



[48]

[50]

[51]

[52]

[57]

G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato, “Phrase-based &
neural unsupervised machine translation,” arXiv preprint arXiv:1804.07755, 2018.
13

M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by

Y

solving jigsaw puzzles,” in European Conference on Computer Vision, pp. 69-84,

Springer, 2016. 14

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features

in deep neural networks?,” in Advances in neural information processing systems,
pp. 3320-3328, 2014. 14

M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsu-
pervised learning of visual features,” in Proceedings of the European Conference

on Computer Vision (ECCV), pp. 132-149, 2018. 14

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of statistical
learning: data mining, inference and prediction,” The Mathematical Intelligencer,
vol. 27, no. 2, pp. 83-85, 2005. 15

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.
16, 33

M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014. 16

Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot learning from
imaginary data,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7278-7286, 2018. 16

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised
learning with deep generative models,” in Advances in neural information pro-
cessing systems, pp. 3581-3589, 2014. 16

M. Amodio and S. Krishnaswamy, “Travelgan: Image-to-image translation by
transformation vector learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8983-8992, 2019. 16, 46

72



[58]

[59]

[61]

[62]

[63]

J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah, “Signature verification
using a” siamese” time delay neural network,” in Advances in neural information

processing systems, pp. 737-744, 1994. 17

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept
learning through probabilistic program induction,” Science, vol. 350, no. 6266,
pp. 1332-1338, 2015. 17

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “The omniglot challenge: A
3-year progress report,” Current Opinion in Behavioral Sciences, vol. 29, pp. 97—
104, 2019. 17

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose esti-
mation: New benchmark and state of the art analysis,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2014. 19, 22

L. Sigal, A. O. Balan, and M. J. Black, “Humaneva: Synchronized video and
motion capture dataset and baseline algorithm for evaluation of articulated human

motion,” International journal of computer vision, vol. 87, no. 1-2, p. 4, 2010. 19

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments,”
IEFEFE transactions on pattern analysis and machine intelligence, vol. 36, no. 7,

pp. 1325-1339, 2013. 19

J. Zhang, J. Jiao, M. Chen, L. Qu, X. Xu, and Q. Yang, “3d hand pose tracking
and estimation using stereo matching,” arXiv preprint arXiv:1610.07214, 2016. 20

S. Sridhar, F. Mueller, M. Zollhofer, D. Casas, A. Oulasvirta, and C. Theobalt,
“Real-time joint tracking of a hand manipulating an object from rgbh-d input,” in

European Conference on Computer Vision, pp. 294-310, Springer, 2016. 20

J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time continuous pose re-
covery of human hands using convolutional networks,” ACM Transactions on

Graphics (ToG), vol. 33, no. 5, p. 169, 2014. 21

73



[67]

[71]

[72]

[73]

[76]

T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in single
images using multiview bootstrapping,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 1145-1153, 2017. 22

J. P. Lewis and K.-i. Anjyo, “Direct manipulation blendshapes,” IEEFE Computer
Graphics and Applications, vol. 30, no. 4, pp. 42-50, 2010. 23

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
23

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. 25

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778, 2016. 25, 30

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848-6856, 2018. 25

Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,” in
Advances in Neural Information Processing Systems, pp. 4467—4475, 2017. 25, 30,
37, 40

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 26

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEFEE transactions on pat-
tern analysis and machine intelligence, vol. 39, no. 12, pp. 2481-2495, 2017. 26,
27

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image
classification with convolutional neural networks,” in Proceedings of the IEEFE

Conference on Computer Vision and Pattern Recognition, pp. 558567, 2019. 28,
29

74



[77]

[78]

[79]

[30]

[31]

[82]

[83]

[84]

[85]

T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural
networks with cutout,” arXiv preprint arXiv:1708.04552, 2017. 29

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

7

ward neural networks,” in Proceedings of the thirteenth international conference

on artificial intelligence and statistics, pp. 249-256, 2010. 29

Y. Nesterov, “Gradient methods for minimizing composite functions,” Mathemat-
ical Programming, vol. 140, no. 1, pp. 125-161, 2013. 29

[. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016. 29, 36

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014. 29

L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dynamic
bound of learning rate,” arXiv preprint arXiv:1902.09843, 2019. 30

A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny

images,” tech. rep., Citeseer, 2009. 30

L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACYV), pp. 464-472,
[EEE, 2017. 30

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized
neural networks: Training neural networks with low precision weights and activa-
tions,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6869—6898,
2017. 30

“Nvidia/apex, a pytorch extension: Tools for easy mixed precision and distributed
training in pytorch.” https://github.com/NVIDIA/apex. 30

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015. 40,
46

75


https://github.com/NVIDIA/apex

[38]

[89]

[91]

[92]

[93]

[94]

[95]

M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for transfer
learning?,” arXiv preprint arXiv:1608.08614, 2016. 42

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016. 46

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014. 46

B. Schoélkopf, A. Smola, and K.-R. Miiller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299-1319,
1998. 47

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiw:1412.6572, 2014. 50

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial
examples,” arXiv preprint arXiv:1707.07397, 2017. 51, 53

Y. LeCun, “Deep learning: Alchemy or science?,” Institute for Advanced Studies,
2019. 53, 64

D. Warde-Farley, 1. J. Goodfellow, A. Courville, and Y. Bengio, “An empirical
analysis of dropout in piecewise linear networks,” arXiv preprint arXiv:1312.6197,

2013. 56

76



