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Generation of genre-based dance sequences using

Deep Neural Networks

Anjoe Anand Jacob, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Rachel McDonnell

This research project designs and implements a deep neural network that can generate
dance movements based on the genre of input music. The model is given as input,
STFT (Short-time Fourier Transform) of the audio signal and generates dance poses
corresponding to it. The network uses a series of fully connected layers to process
the audio and a series of LSTM (Long-short Term Memory) layers to predict dance
poses. We also introduce a custom loss function based on Laban Movement Analysis,
a theory to describe human movements like dance that penalizes the network when the
energy of the generated movement does not match the ground truth. The network is
able to generate long sequences of dance motions for pieces of music it was exposed to
during the training. When using the custom Laban loss function, the network shows a
possibility for improvement in the quality of result.
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Chapter 1

Introduction

Bringing art and technology together garnered much interest in the last century across
the world. It takes the form of art installations, interactive experiences, light-and-
music shows, or creative software. Ever since technology is accessible at our fingertips
through computers and mobile phones, research and innovation in the field has grown
exponentially. With the advent of powerful and cost-effective processors and Graphics
Processing Units (GPU) and availability of enormous amounts of data, Neural Networks
and Deep Learning have gained significant popularity in terms of finding solutions
to seemingly straightforward but complicated problems like image classification and
recognition, text analytics, speech analysis. Although Artificial Intelligence has not
yet reached the sensory capabilities of a human, it certainly surpasses human abilities
in specific skills at a far higher speed and accuracy.

The human brain synthesizes information from past experiences. These experiences
can come from various sensory inputs - vision, sound, touch, hearing, and taste. The
mind combines its various simple historical inputs and comes up with novel conclusions
[7]. A dancer’s mind works no differently when coming up with new dance movements.
A dancer listens to music, processes it in multi-dimensional mind space, and trans-
lates it into movements using his/her entire body. This exercise manifesting as dance,
expresses emotions, and communicates to an audience.

Several researchers have worked on synthesizing dance motions from music in the
past. However, there is comparatively very less work done using Deep Learning based
methods. The traditional methods focus on generating plausible combinations of se-
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quences by mixing and matching from motion databases, while deep learning would
let a neural network learn by itself from the data to generate dance. From the gen-
eral notion that technology doesn’t create arts, humans do [8], this thesis explores the
possibility of how technology can create arts by itself.

1.1 Overview

This research proposes a deep learning architecture to generate dance motion from
an external signal, music. Chapter 2 provides a background of the work done on
synthesizing animations from external signals using traditional and deep learning-based
methods. Chapter 3 discusses the data used by the network, its formats, and the
sources. We explain the design of the proposed architecture in detail with the reasons
for specific design choices in chapter 4. Chapter 5 discusses implementing the discussed
design. The results are visualized, discussed, and analyzed in chapter 6. Finally,
chapter 7 concludes the thesis summarizing the findings before discussing future work.

1.2 Motivation

Traditional animations based on keyframes or motion capture would be static and
mostly for specific use cases. It limits the creative potential for non-specific needs. It
is a time-consuming process to define animation patterns manually. Contemporary ar-
chitectures and technical advances in the field of Deep Learning and Animation could
help us find a way out of this farrago. Neural Networks have outperformed a lot of
traditional best-methods in the recent past. This fact stands as the fundamental moti-
vation behind selecting the Neural Network route to generate dance movements. This
research can throw some light into the possibilities of creating consumer applications
that can generate novel dance animations for various purposes like motion graphics,
TV ads, mobile games, or animated music videos.
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1.3 Objective

In this research study, we aim to design and implement a deep neural network that can
generate dance movements based on music input, and answer the following research
questions:

• Can a deep neural network generate dance sequences according to the genre of
the music given as input?

• Can the network synthesize novel meaningful dance motion?
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Chapter 2

Background and Related Work

This chapter begins with a review of the literature in synthesizing animations from
external signals, mainly music. It is followed by exploring work done on genre-based
music classification and extraction of features from music. The chapter continues with
techniques for animation synthesis in general and moves on to Neural Network based
motion synthesis. Subsequently, Deep Learning is introduced briefly before moving on
to the emotional, physical, and technical side of dance.

2.1 Animation synthesis from external signals

Synthesizing novel human motions based on external input signals like character tra-
jectory [9], obstacles [10], speech [11], motion of other characters [12] is a well-studied
area. Lucas Kover et al. [9] propose Motion Graphs that generate transitions between
motion capture data and synthesize motion based on custom constraints. One of the
main applications of Motion Graphs is interactive control of character locomotion along
a defined path. It enables the animation of characters to be more realistic in digital
environments, especially video games. In [13], a system is introduced to make robots
dance to music. Using FFT (Fast Fourier Transform) and peak to peak time interval
of low-frequency sounds that stands for beats or rhythm in an audio signal is used to
select appropriate motion sequences.

Minhi Lee et al. [14] proposed an approach to generate dance sequence based on
music similarity. The method involves creating a key-value pair dictionary of segmented
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music and motion. The music is stored as handcrafted acoustic features. On receiving
a new musical input, it segments the audio signal and match the segments with the
appropriate rows in the database. It works on the idea that similar musical pieces can
have similar dance moves. Extraction of acoustic features and extraction of motion
features like velocity, acceleration and directional change of motion help the system to
create clusters of similar motions.

In [15], Shiratori T. et al. propose a system to generate dance synchronized to
music. The system extracts motion and music features based on motion keyframes,
motion intensity, music beats, chord progressions, and music intensity. It is followed by
the construction of a motion graph to find out analogous poses from dance sequences
to create transitions between matching motion. The system synthesizes dance steps
by traversing the motion graph based on the correlation between motion and music
features.

In an interesting work done by F Bevilacqua et al. [16], motion capture data is
used to generate music. The proposed work creates a virtual 3D environment where
the recorded motion is played back along with generated music. The authors broadly
classify the parameters from the movement as Position/Angle/Distance, and Veloc-
ity/Acceleration. While the former can be used to deconstruct footsteps and arm
movements, the latter can be used to find out movement qualities like "sustained" or
"percussive". The motion information is transformed into MIDI parameters or signal
processing control parameters. These parameters correspond to musical notes.

C Panagiotakis st al. [17] propose an approach to generate dance sequences syn-
chronized to music in a three-step process. Firstly, the dance motion data is segmented
temporally into spans of dance. Next, the audio signals are segmented based on the
tempo. Lastly, it generates beat-synchronous motion by realigning motion spans from
step one with the tempo of the music.

In general, the approaches mentioned above extract when the idea is to match
specific musical features to motion features. We discuss more about this in section 4.8.

2.2 Music feature extraction

Typically, music analysis is done by extracting feature vectors from audio signals. It
takes its inspiration majorly from speech recognition. [18] uses a Hidden Markov Model
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and cepstral coefficients to classify audio signals as "music", "laughter" and "speech".
Wold et al. [19] use statistical features like mean, variance, and autocorrelation from
the short time features of an audio signal. [20] introduces beat-IDs comprising of two
components: average beat period length and the signal’s energy distribution during the
beat period. [21] analyzes tempo and extracts beats using bandpass filters and parallel-
comb filters. This analysis can also predict the occurrence of beats in the future. [22]
proposes a real-time beat tracking system that analyzes music with or without drums
and extracts the beat structure using onset, chord progressions, and drum loops.

Dance driven by music needs several units to work together. Many researchers
have worked on the various sub-fields related to this. Antonio Jose HomsiGoulart et
al. [23] propose various approaches to classify music genre consisting of a pipeline that
has a feature extraction stage connected to a classifier architecture. G. Tzanetakis et
al. [24] propose statistical pattern recognition classifiers that use three feature sets
for timbral texture, rhythmic content, and pitch content. Concerning structural music
analysis, Yongwei Zhu et al. [25] use Short-time Fourier Transform (STFT) to extract
the beats and other features from the audio which is followed by a conversion into 9-
octave frequency bands. They calculate the musical energy of each band by summing
up STFT’s spectral coefficients. These extracted features are then used to identify
motion sequences and synchronize motion with music. Gao and Lee [26] extract musical
information like tempo using MAP estimation (Maximum a posteriori).

Since music belonging to the same genre possess similarities in rhythm, time sig-
natures, structure and pitch distribution, audio signals belonging to the same genre
share similar characteristics [27]. Tao Li et al. [28] conducted a study on music genre
classification and proposed a system for automatic classification - Daubechies Wavelet
Coefficient Histograms (DWCH). While traditional content-based feature extraction
focused on Timbral Textural Features, Rhythmic Content Features, and Pitch Con-
tent Features, DWCHs compute histograms on the music signal’s Daubechies wavelet
coefficients.

In the comparison study [29], STFT spectrograms performed the best in extracting
information to classify environmental sounds when used in the context of deep neural
networks. Omid Alemi et al. [30] extract handpicked audio signal information manually
and use them as inputs to their networks. While this looks like a precise process to
extract information from a sound signal, this gives the network less information for
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audio analysis when compared to a larger feature set like STFT. This factor contributes
to designing the audio feature set in the implementation of this thesis (section4.8).

2.3 Motion Capture

Motion Capture is the technique of recording movements with a real actor and mapping
them to a 3-dimensional space. The recorded joint angles and position can then be
mapped to any arbitrary 3D character and can be digitally animated. It is used heavily
in the Film and Video Game industries. Typically, multiple cameras facing the center
acting area are fit all around the room in a motion capture room. Human actors wear
a black jumpsuit with special reflective markers attached to every bone joint. The
information from the cameras placed around the actor is then combined to triangulate
the position or angles of each joint in 3-dimensional space.

Nearly 100 years ago, in 1915, cartoonist Max Fleischer invented the rotoscope
device [31] to aid the production of cartoon films. The device projects live-action
films onto a light table one frame at a time. The cartoonist then traces the projected
image onto paper. It is then stitched together to make animated cartoon films. Several
decades later, in the early 1960s, Lee Harrison III created the first motion capture
bodysuit [32] fitted with potentiometers and animated 3D characters on a CRT monitor
in real-time. Several short films were made during the period using this technology.
Eventually, Harrison won an Emmy award for his technical contributions.

In the 1980s, Ginsberg and Maxwell created an animation capture system [32] that
uses flashing LEDs attached to an actor surrounded by a set of cameras. The cameras
triangulate the 3-D position of the LEDs in real-time. Through the 90s and early
2000s, the technology matured into a full-fledged production-ready system for use in
the entertainment industry.

2.4 Neural Network Motion Synthesis

2.4.1 A brief history of Deep Neural Networks

With the advent of advanced and powerful CPUs and GPUs, Neural Networks based
learning has come a long way from the time McCulloch and Pitts proposed creating
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a Turing machine by combining neurons [33]. In 1958, Rosenblatt F. introduced the
perceptron [34], a hypothetical nervous system that created a probabilistic model of in-
formation management in the brain. Nearly 30 years later in 1985, the backpropagation
algorithm was proposed by Geoffrey Hinton et al. [35]. Neocognitron for visual pattern
recognition [36] and Convolutional Neural Networks with backpropagation were intro-
duced in the next 13 years by Geoffrey Hinton and Yann LeCun respectively. When
the number of layers increases or goes deep in a Neural Network, we call it a Deep
Neural Network. In 2006, GE Hinton et al. [37] introduced a fast algorithm using
complementary priors that can teach Deep Belief Network layers, and also reduced the
data dimensionality in Neural Networks [38] thereby solving the Deep Neural Networks
learning problem.

For the generation of dance motion, we use a type of Neural Network called Recur-
rent Neural Network, which is explained in detail in section 4.1.

2.4.2 The state of Deep Learning Motion Synthesis

The current wave of Deep Learning started when Alex Krizhevesky et al. proposed
AlexNet [39] that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012. It boosted the interest of researchers around the world to solve problems using
Deep Learning based methods.

Daniel Holden et al. [40] proposed a Deep Learning framework for synthesizing
character motion from high-level parameters. The model trains on a large consolidated
dataset from CMU, HDM05 (Muller et al. 2007 [41]), and Berkeley MHAD (Ofli et
al. 2013 [42]) using an autoencoder. A feedforward neural network is stacked on
top of the trained autoencoder to learn the mapping between user input and motion
data. The network applies constraints to the generated motion in the form of custom
loss functions. The network is penalized using, position, bone length, and trajectory
constraints. The total cost is calculated by summing the individual costs over the
temporal domain. It is followed by gradient descent to minimize the cost function.
Zimo Li et al. in [4], generate long sequences of motion data using a newly introduced
training methodology, auto-conditioned LSTM (ac-LSTM). Vanilla RNN based motion
generation suffer from noise accumulation over a period of time, and the generated
motion comes to a standstill after a few seconds. ac-LSTM uses the network’s output
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at periodic intervals and feeds it back to the network during training. The model can
generate 18000 frames without getting frozen. Some of the problems are occasional
jerky motion, self-collision of the skeletal bones and foot sliding. We discuss this in
detail in the design section 4.2.

Omid Alemi et al. [30] captured synchronized music and motion sequences for
training Factored Conditional Restricted Boltzmann Machines and LSTM-based Arti-
ficial Neural Networks. The audio features are extracted into an 84-dimensional vector,
whereas the raw motion capture’s Euler angle representation is converted to exponen-
tial maps. Subsequently, they replace the root joint’s global position with its velocity
along the axis perpendicular to the floor. The resulting vector is 52-dimensional. The
system learned to perform well with training data with infrequent jerkiness. However,
when untrained music is used to generate dance, the model doesn’t generalize well, it
creates extremely unstable sequences and unrealistic poses.

In [43], Tang T et al. use an LSTM-autoencoder model to learn the mapping be-
tween music and motion. A custom dataset comprising of 4 genres of dance along with
the matching music is used to train the model. Acoustic features like MFCC, Constant-
Q chromagram, etc. are extracted by hand and converted to a 16-dimensional vector.
Tempo or beat information is extracted separately and given directly as input the net-
work. The motion features are down-sampled from 41 joints to 21 joints. The loss
function used to backpropagate is Euclidean distance loss, which is deemed insufficient
to calculate the correctness of motion.

D Pavllo et al. [44] propose QuaterNet that uses quaternions instead of Euler angles
to train the network. Using joint angles or joint positions can result in the accumulation
of error in the generated motion and can also result in bone stretching. This approach
overcomes both limitations. The loss function also calculates the absolute position
error after performing forward kinematics on the skeleton with predicted and ground
truth data.

Nelson Yalta et al. [45] propose a weakly supervised RNN to generate dance steps.
The authors pre-process the audio signals to extract the power spectrum (STFT).
They pass it through an Encoder-Decoder configuration, in which the encoder contains
convolutional layers that process the STFT of the audio signal. We discuss more about
this approach later in section 4.8, The dimensionality-reduced output from the encoder
is concatenated with motion frame quaternions and fed into the decoder network.
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Finally, a contrastive loss function [46] is used to align motion with music beat.

2.5 The art and science of dance

Dance is a performing art form where performers express themselves using body move-
ments. It’s a form of non-verbal communication [47][48]. Typically, the dancer syn-
chronizes their body movements with music during the performance. In some cases,
music acts as a cue to perform the movement with a particular level strength, speed or
flow whereas in other cases, it acts as a window of time wherein a sequence of similar
movements takes place. Dance forms around the world are different and characterized
by specific styles or genres. The treatment of space, time, and kinetic elements is an
integral part of a dance performance [48][49].

While dance is a multi-dimensional thought process manifesting as body move-
ments, science often deals with exploring reasons for invisible or unknown phenomena.
Technical analysis of dance is best possible when these two dimensions of human ac-
tivity overlap [50]. It helps to formalize movements and define parameters for studying
dance better.

2.5.1 Laban Movement Analysis

Rudolph Laban, in the 1920s, came up with a dance notation system for analyzing
movements. It is a method for describing, visualizing, interpreting, and documenting
human movement [51]. Laban’s belief that the body is an instrument for expression
lead to its development. LMA draws its inspiration mainly from anatomy, kinesiology,
and psychology. This was further expanded by his student Irmgard Bartneiff [52] by
broadly classifying it into four categories [53] [54].

• Body: This describes the structural characteristics of the body in motion like
simultaneous, successive, sequential movement, etc. of the body parts.

• Effort: This describes the overall quality of the movement and the energy used
by the dancer. It further categorizes the energy of the dancer in four subsections,
namely Flow, Time, Weight, and Space.
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• Shape: This looks at how the human body changes its shape and the elements
that drive the change.

• Space: This describes the interaction of the performer with the surroundings.
It throws light into the personal performance sphere within which most of the
movements take place.

This is discussed in detail in section 4.6.
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Chapter 3

Data Collection

This chapter starts with a detailed explanation of the motion file format used for the
implementation. It is followed by details about the sources of mocap and audio data.
The chapter also discusses the absence of rhythmic synchronicity between motion and
music due to the non-complimentary nature of the data sources. Lastly, we discuss
techniques for extracting motion and music data from video files and its usability.

3.1 BioVision Hierarchy (BVH)

This thesis uses BVH (Bio Vision Hierarchy) file format to represent motion.

Figure 3.1: Skeleton structure of a sample BVH file. Image from [1]
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The motion capture company called Bio Vision originally developed the BVH file
format and its specifications. We chose this format because of its simplicity and
straightforwardness to read the skeleton and joint angle information. A BVH file con-
sists of two sections [1] [55]. The header section contains the skeleton joint hierarchy
and the initial pose. The keyword HIERARCHY marks the beginning of the section. It
is followed by the root joint keyword ROOT, which is generally the hip joint in case of
a human skeleton. The hip/root is then cascaded with hierarchical joints with keyword

Figure 3.2: Header section of a BVH file

JOINT. Each joint, including the root joint, has an offset which is the translation of the
bone’s origin corresponding to its parent’s origin. The keyword OFFSET represents
this. The next line contains CHANNELS that represents the Degree of Freedom. The
order of the axes is important because the motion data for a particular joint follows
this structure. Different joints may have different orders. It should be accounted for
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while parsing the Euler angle data from the motion section. The keyword "End Site"
marks the end-effectors in a joint chain.

The second section of the BVH file defines the actual motion data for each of
the joint described above in the header section. The keyword MOTION marks the
beginning of this section, which is followed by "Frames", defining the total number
of frames in the BVH. The next line specifies the duration of each frame using the
keyword "Frame Time", followed by a floating-point value.

Figure 3.3: Motion section of a BVH file

The rest of the file defines the root position and rotation information for each bone
concatenated in the order defined in the header. Each line corresponds to a single
frame in the chronological order. The first three space-separated values correspond to
the root joint’s position in the order mentioned in the header section. The rest of the
line contains space-separated Euler angles for each joint as described in the header.

Using the data available, we can construct the rotation matrix, R by multiplying
the rotation matrices for each axis. For a channel definition like below,

The rotation matrix, R is calculated as

R = RzRxRy (3.1)

Rz, Rx, Ry are the rotation matrices of Z, X, and Y axes respectively.
Once the rotation matrix is calculated, using a homogeneous coordinate system,

the transformation matrix can be calculated by aligning the translation values along
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the 4th column as below,

M =



R R R Tx

R R R Ty

R R R Tz

0 0 0 1



(3.2)

Tx, Ty, Tz are the bone’s base position added to the frame translation data. All
BVH files used in this implementation contain 43 skeletal joints.

3.2 CMU Mocap database

The Carnegie Mellon University Graphics Lab (CMU Graphics Lab) Motion Capture
database is an exhaustive collection of human motion data [56]. The database contains
five types of motion - Human Interaction, Interaction with Environment, Locomotion,
Physical Activities and Sports, Situations, and Scenarios. The subcategory called
Dance under Physical Activities and Sports contains the dance BVH files. Two genres
of dances used for the thesis are Indian classical dance and Latin dance.

CMU Mocap lab uses 12 Vicon MX-40 cameras with a maximum recording capa-
bility of 120 Hz at 4 Megapixels. The database contains 16 motion capture clips of
Indian classical dance and 30 clips of Salsa dance. All the BVH files used are recorded
at 120 fps. The total number of frames in the dataset is 52654.

We investigated other Mocap databases like HDM05 and Simon Fraser University
Mocap database. The former contains limited dance motions while the latter has
various dance genres, but the quantity is insufficient to train neural networks. We
chose CMU Mocap database because of the quantity and quality of the data available.

All BVH files downloaded from CMU Mocap DB use ZXY rotation order.

3.3 Audio acquisition

Since there is no direct music to motion mapping for the CMU dance motion data, we
downloaded music corresponding to the genres of the motion from YouTube. The genres
chosen for the experiments have a distinctly different type of music. Indian classical
music for dance typically generally contains Hindustani percussion instruments like
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Tabla, melody instruments like Sitar or Santoor, Carnatic instruments like Mrudangam,
violin, and classical vocals [57] [58]. The rhythm can get extremely tricky and technical
with non-typical time signatures. Some examples are farodast (14 beats), tala chautal
(12 beats), sulfak (10 beats), etc. [59]. Latin music used for Salsa dance, on the other
hand, is very different, uses another set of instruments with percussion playing on
Congas and Bongo drums, melody on the piano, trumpet or trombone [60].

3.4 Pipeline to generate motion from video

Since online video sharing platforms are a good source of dance videos, we present a
workflow to generate BVH files from videos here. Z Cao et al. proposed [2] techniques
which culminated as the open-source library OpenPose. It can be used to extract
human poses from images.

Figure 3.4: Estimated 3D pose using OpenPose [2] and HMR [3]. Video by Bruno
Mars, downloaded from YouTube

A video downloaded from YouTube is processed with open source library FFmpeg to
generate frame images. We feed these images into OpenPose, which generates CSV files
with pose keypoints for each frame. It is then passed into a Human Mesh Recovery
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(HMR) [3] pretrained model to generate another set of CSV files that contain the
estimated 3D joint positions. Open source 3D creator software Blender [61] is used to
read the joint information from the CSV file to export BVH files. A sample blender
project is pre-created with a sample BVH file with ten frames loaded. We load the
positions from the CSV files and create new frames in the scene, and insert keyframes.
Finally, a BVH file is generated using the inbuilt BVH export functionality of Blender
[62].

We run this entire pipeline on a Google Colaboratory environment. For a video of
35 seconds with frame size 426x240, it takes 7 hours to generate the BVH file on Google
Colab. A square cropped, smaller image size around 150px works best and would reduce
the processing time [3]. Although the generated motion is quite impressive, occasional
jerkiness makes it necessary to do a manual cleanup of the data.

Since the whole workflow of generating BVH from video and its manual cleaning is
a laborious and time-consuming process, we use the CMU dataset to train the Neural
Network.
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Chapter 4

Design

This chapter details the design choices and the intuition behind each component used.
It starts with an overview of Recurrent Neural Networks (RNN) and discusses why it
is the right choice for motion generation. Various techniques and configurations used
in training to improve the stability, speed, and accuracy of predictions are discussed
next. The chapter closes with an overview of the network architecture, making use of
all the techniques discussed until then.

4.1 Recurrent Neural Network

Recurrent Neural Network (RNN) is a time-proven Neural Network architecture that
works best with sequential data [5]. Typical feedforward neural networks do not have
temporal context-specific information. RNNs can process a sequence of inputs on a
temporal domain. At every time step in an RNN, the network takes in some information
from the previous time step. This way, information from the previous layers gets passed
on to future layers. It makes sure that the decision making process at every layer is
dependent on its previous layers to some extent. RNNs thrive on the idea of parameter
sharing where each input at every time step is a function of the output from the previous
timestep.

The motivation behind choosing a Recurrent Neural Network architecture is that
animation and music data are sequential and temporally related. When the sequence
gets long, vanilla RNNs have the issue of forgetting what it learned prior in the se-
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quence. It has the vanishing gradient problem where the gradient of the loss function
decays gradually with time [63] and the earlier layers stop learning. It is not the ideal
architecture to generate animation because the sequences can get very lengthy. We use
LSTMs which implement a gating mechanism to avoid this problem.

4.1.1 Long Short Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network that uses a set of gates
to regulate the information coming in, going out, getting stored and deleted. These
gates are logistic functions of weighted sums. Backpropagation updates the weights in
the network during training. A comparison of a basic RNN cell and an LSTM cell is
displayed below. The images below are from [64].

Consider a standard RNN that has a tanh function where Xt is the input at time
step t and ht is the hidden state at time t.

Figure 4.1: A standard RNN with a tanh layer

Instead of the tanh layer, LSTM has a different structure.

Figure 4.2: An LSTM with four interacting layers
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The three gates involved in letting information in and out are forget gate, input
gate, and output gate.

• Forget Gate : This gate outputs a number between 0 and 1 (sigmoid layer) which
stands for "forget completely" and "keep completely" respectively.

Figure 4.3: A forget gate in an LSTM

ft = σ(Wf .[ht−1, xt] + bf ) (4.1)

• Input Gate : This gate decides what should be stored in the cell state. It consists
of two parts which are combined to create the cell state. Firstly, a sigmoid layer
to decide which values to update. Secondly, a tanh layer to create a vector, C̃t

of values to be added to the state.

it = σ(Wf .[ht−1, xt] + bi) (4.2)

C̃t = tanh(WC .[ht−1, xt] + bC) (4.3)

Now that we have both parts ready, the next step is to update the previous cell
state, Ct−1. We multiply ft with the previous cell state to forget, and multiply
it with C̃t to add the new values.
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Figure 4.4: The input gate configuration in an LSTM

Figure 4.5: Forgetting and adding values in an LSTM
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Ct = ft ∗ Ct−1 + it ∗ C̃t (4.4)

• Output Gate : This gate decides the output of the cell. Similar to the input gate,
this is also a two-step process. First, we filter the values to be output. Then, we
limit the cell state values to be in the range of -1 to 1 by passing it through a
tanh gate.

Figure 4.6: The output gate configuration in an LSTM

ot = σ(Wo.[ht−1, xt] + bo) (4.5)

h̃t = ot ∗ tanh(Ct) (4.6)

The gates described above make LSTMs remember relevant details from the training
sequences and deliver better predictions. Hence, to train on frame sequences like dance
motion data, LSTMs are better than Vanilla Recurrent Neural Networks.

4.2 Auto-conditioned configuration

Typical RNN based motion prediction has the issue of error accumulation when pre-
dicting long sequences. When a network is recursively trained with a sequence, it
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learns to predict sequences which are compared with the ground truth to calculate the
loss. The backpropagation algorithm updates the model parameters with respect to
the input sequences. The network parameters get familiarized with the ground truth,
which it does not have access during the inference time.

When solving the problem of motion prediction, the skeleton can likely reach a
mean pose and freeze if this is not taken into consideration as mentioned in [4].

An auto-conditioned configuration, as explained in section 2.4.2 makes use of the
network’s output from the previous timestep in addition to the cell state memory.
Because the network is conditioned on its output, it learns to deal with the input
better during inference when the ground truth data is not available.

Figure 4.7: An auto-conditioned network. Image from [4]

In Fig 4.7, the network is conditioned with its own output for 4 timesteps (condition
length = 4) after time t + 3. After the condition length, at 8th timestep, the LSTM
inputs shift back to the original input.

4.3 Dropout

Nitish Srivastava et al. [65] proposed an inexpensive technique called Dropout to
train neural networks for preventing the model from overfitting. The idea is to set the
outputs of some neurons randomly in the network to zero during training. The thinned
network learns to perform well even with missing information or in other words, the
dropped neurons.

Consider a standard Neural Network, as shown in fig 4.8.
After applying dropout to random neurons for all three layers, it would look like

fig 4.9:
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Figure 4.8: A standard Neural Net

Figure 4.9: After applying dropout
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Dropout helps neural networks to generalize better when operating on unseen data.
Fig 4.8 and 4.9 are taken from the original paper [65] that introduced Dropout.

4.4 Teacher Forcing

Teacher forcing is a technique used to train RNNs that have connections from their
outputs to their hidden states [5]. It injects the ground truth data into the layers at
certain timesteps instead of the normal input. This approach reduces the amount of
error fed back into the network [66] and speeds up the learning process.

Figure 4.10: Teacher Forcing illustrated [5]

In Fig 4.10, where y stands for ground truth and o stands for network output,
during training, the ground truth yt−1 from the training set is given as input to the
hidden state of the next timestep. During the inference or test time, since there is no
access to ground truth, the connection switches back to the output from the previous
state, ot−1.

If teacher forcing is used for all of the input sequences, the network is less likely
to learn from information in the past because it relies on the ground-truth instead of
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its hidden-to-hidden state connections. Hence, the design in this thesis uses Teacher
Forcing for 30 % of the training time.

4.5 Representing rotations as Quaternions

Irish Mathematician, William Rowan Hamilton first conceived the idea of quaternions,
in 1843 [67] as a number system extending complex numbers. Quaternions are repre-
sented generally as :

a+ b i + c j + d k (4.7)

a, b, c and d are real numbers and i, j, k are the fundamental quaternion units.
A quaternion can be used to represent any orientation in a 3-dimensional coordinate

system [68].
In the context of generating motion using a neural network, using Euler angles can

cause gradient explosion and can get tricky to train the model because of its discontinu-
ities and singularities. Hence, taking inspiration from the work of D Pavllo et al. [44],
as described in section 2.4.2, we preprocess all skeletal joints in the mocap dataset by
converting the Euler angle representation to quaternions. Furthermore, Edward Per-
vin et al. [69] show that quaternions can streamline derivations in robotics related to
rotations over Euler angle representations. A custom loss function as explained in 4.6
should be differentiable inorder to backpropagate. Interested readers are referred to
the paper by Diebel J, [70] for information about conversion to and from Euler angles
and quaternions respectively.

4.6 Custom loss function based on Laban Effort

A loss function in the context of a Neural Network is a function that evaluates the
model’s prediction with respect to the input. The general idea is to minimize the cost
function and update the weights of the network. The network continues to get trained
until the cost reaches a low value that is satisfactory enough for the type of problem
it is trying to solve.

Typically, we do a mean squared error difference between the ground truth and
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the predicted joint angles to calculate the loss. It works well when the network is
only expected to perform well within the training set. When a model handles com-
plex multi-dimensional motion data like dance, which has more artistic meaning than
mathematical meaning, a loss function that can represent the artistic value in a math-
ematical form is necessary. This section proposes the design of a custom loss function
towards meeting that goal.

As discussed in section 2.5.1, Laban Movement Analysis (LMA) is a technique used
to technically observe, describe, and evaluate a physical performance like dance. Out
of the four categories that constitute LMA, Laban Effort describes the quality of the
movement. Effort is further classified into four - Space, Weight, Time, Flow.

Nakata T et al. in their study conducted in 2001 [71], validated the importance
of Laban Movement Analysis using a small robot. The study found out that the
excitement of the motion is strongly related to Laban "weight effort". Laban, in his
theory, described weight effort as the energy in the movement. Mathematically, it is the
linear sum of angular velocities of each skeletal joint. Subsequently, Takaaki Shiratori
et al [72] used this concept in the paper "Dancing-to-Music Character Animation" to
select motion sequences based on motion intensity which is essentially matching Laban
weight effort to the energy of the music.

For an object that has rotated θ degrees in a given time t, the Angular velocity is
calculated as:

ω = θ/t (4.8)

When representing rotation as Euler angles, this is straightforward to calculate
because we have the angle values for x, y, and z-axis directly. Here, since we are using
quaternions instead of Euler angles, it should be dealt slightly differently.

According to the differentiation theorem of quaternions [73] [74], for a unit quater-
nion function q(t), and angular velocity ω(t), the derivative of q(t) is determined by:

q̇ =
1

2
ωq (4.9)

This can be rewritten as

ω = 2q̇q−1 (4.10)
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For a unit quaternion, the inverse of the quaternion is its conjugate [75] [76]. Hence,
the angular velocity can be written as

ω = 2q̇q̄ (4.11)

The derivative of the quaternion here is the change in rotation over a small time
period. In the case of a skeletal joint, it is the change in rotation from frame n to frame
n + 1. Given 2 quaternions q1 and q2, the rotation that rotates q1 to q2 is given by

∆q = q2q
−1
1 (4.12)

From equations 4.10 and 4.11,

∆q = q2q̄1 (4.13)

Finally, angular velocity can be rewritten as

ω = 2∆qq̄ (4.14)

This is essentially the crux of Laban Effort parameter. A loss function that penalizes
the network based on the energy of the dance would be a bridge between the artistic
and mathematical side of dance.

4.7 Variable learning rate and storing model param-

eters

The parameters of a model can be saved to the file system for inference later. We
make use of this feature to continue training from a past epoch by storing the model
parameters every 10 epochs. It like having a time machine of training because we can
stop and start the training again if the model is diverging after some point. The saved
model from a time point before it started diverging can be loaded again and retrained
with a different learning rate. This approach saves training time because if the model
diverges after for eg. 10 hours, and there is no way to start training from that point,
the entire model needs to be retrained from scratch with different hyperparameters.
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4.8 Audio features

Inspired from the traditional work done on synthesizing animations from music, We
considered two approaches to extract audio information. The first method is to extract
a set of handcrafted acoustic features. The second method is to use the audio signal’s
STFT. In traditional methods, when the user can manually match music and motion
features, acoustic features would be of great help. For eg, if the user has to match
music intensity with motion intensity, it makes the implementation logical by com-
paring an extracted acoustic feature "music intensity" with another extracted feature
"motion intensity". However, in a neural network, more input parameters mean more
representations of the data. However, this is an exception in the case of huge networks
like GoogleNet and NIN [77]. Extracting a representation like STFT gives the network
more representations to learn.

While CNNs are good to extract the local properties of spectrograms, a series of
fully connected layers work best in representing high-dimensional data [78]. It means
CNNs are useful when extracting features like onset of beats or chord changes that are
spatially not too far apart in a spectrogram. Since the idea is not to focus on local
features like beats and more on the global features like genre, we go ahead with the
traditional dimensionality-reduction approach using a series of fully connected layers.
An additional reason lie in the fact that CNNs are computationally expensive [79].

Because of the distinct difference in the fundamental nature of the genres chosen,
the neural network is expected to focus more on the styles of the motions produced
and less on the timing of the steps. In the case where the generated dance is expected
to match the beats, custom motion data should be recorded synchronized with music,
and timing specific labels should be added to the data.

4.9 Training Infrastructure

PyTorch, the deep learning framework from Facebook is used to implement the network.
In addition to the simplicity in design, PyTorch is selected over other frameworks like
TensorFlow and Keras is that it uses dynamic computation graphs. The computation
graph is created on-the-fly during an epoch (one forward pass and one backward pass)
and freed up after finishing the epoch. It means that the overall memory usage would
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be less.
To train the network, one compute machine on Google Cloud with Intel(R) Xeon(R)

CPU @ 2.30GHz (4 CPUs) with one Nvidia Tesla T4 GPU is used. Additionally, a
Google Colaboratory environment is used to train the model. However, Google Cloud
was used mostly because a Google Colaboratory session lasts only for 12 hours, and
the environment gets reset.

4.10 Network Design

The design proposed here (Fig 4.11) is divided into 3 parts. Firstly, the audio and
dance motion data are pre-processed before passing into the network. The audio files
are loaded, resampled to 16 kHz, and the Short-Time Fourier Transform is calculated.
Motion files are parsed and joint angles are converted to quaternions. The data is
resampled to 30 fps to improve robustness of the model predictions [80]. This process
is explained in detail in section 5.1

The proposed network design has fully connected layers before and after the LSTM
layers. The fully connected layers before the LSTMs reduce the dimensionality of the
audio data(section 4.10), and the one after LSTMs assembles the data corresponding
to the 43 skeletal joints and it 4 quaternion values. As mentioned in section 4.3,
a dropout is applied to the hidden layer of the first LSTM with a value of 0.3. This
means 30 percent of the neurons will be dropped when training and the model learns to
predict data with missing information. As discussed in 4.4, Teacher forcing is applied
to the second LSTM layer by replacing the hidden state with ground truth motion
data.

The predictions after each epoch are passed into the loss functions to calculate the
loss values. Subsequently, this is used by the optimizer to backpropagate to update the
weights so that the cost is minimized. Mean Squared Error (MSE) and a custom Laban
Effort based loss function discussed in section 4.6 are used to optimize the network.

Once the model is trained, the output from the network is then converted from
quaternions to Euler angles representation. This is then passed through a Butterworth
filter followed by exporting a BVH file.
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Figure 4.11: Network Design
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Chapter 5

Implementation

This chapter starts with the implementation details of the pre-processing applied to
audio and dance motion data. It is followed by the implementation of the network and
its training. Once the network is trained, the output is fed through a post-processing
filter. Lastly, a method to monitor the performance of the model is detailed.

5.1 Data preprocessing

5.1.1 Audio

Matching music for the two genres of motion is selected (refer section 3.3) according
to the length of BVH motion files. Each audio file is split into lengths according
to the selected frame rate. Since the frame rate is 30, each frame duration is 33.33
milliseconds. This would translate to splitting the audio every 33.33 milliseconds to
setup the input dataset. As mentioned in section 3.3, since there is no direct mapping
for the CMU dataset with audio, we resorted to selecting publicly available music from
youtube. The files are first read as a time series of floating-point values. Since the
sampling rate of the original audio is 44KHz, we resample it to 16KHz to make the
data concise and efficient enough to be passed through multi-layer neural networks.
This resampling process retains as much information as possible while greatly reducing
the size of data. Python library librosa is used to process the audio files here.

After the audio is split based on the frame rate of the motion capture files, we
calculate the STFT (Short Time Fourier Transform) of each of the audio chunk. For
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Figure 5.1: Code to resample audio and conversion to STFT

an audio chunk of 33.33 ms, converted to STFT, the size of the array is 1025x6. This
is then converted to a 1-D vector of size 6150 before feeding into the Neural Network.

5.1.2 Motion

The Indian classical and Salsa dance BVH files are read from their corresponding
directories. The joint angles are extracted using BVH python libraries used by Holden
et al. [81] [82]. As discussed in section 4.5, the next step is to convert Euler’s angles to
quaternions. The helper libraries from the same dataset are reused to do the conversion.

For a BVH file with 5000 frames, 43 joints and Euler’s angles, the size of the
array would be (5000, 43, 3). This gets changed to (5000, 43, 4) after converting to
quaternions where the 3rd dimension represents the four quaternion values.

As discussed in section 4.10, the every 4th frame is extracted from the dataset to
down-sample from 120 to 30 fps.

5.2 Training

The music STFT tensor is unrolled from 1025x6 to 1x6150 to pass through the first
fully connected layer. The output which is a tensor of size 1x1200 is then passed
through the second layer. The output of size 1x600 from the second layer is connected
to the third layer. The third layer outputs a tensor of size 1x172. At this point, we
have a low dimensional representation of the music segment for which we are trying to
generate dance. It is then connected to a 2-layer LSTM with an input size of 172 and
an output size of 500. We apply a dropout of 25% to the hidden state of this LSTM.
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The output of size 1x500 is then passed into a 2-layer LSTM where we apply Teacher
Forcing to the hidden layer 4.4 by taking the ground truth and replacing the hidden
state based on a probability of 30%. Whenever we are not forcing ground truth data,
we feed the outputs back into the hidden states in the next iteration as mentioned in
section 4.2.

Figure 5.2: Teacher Forcing applied inside the forward pass

The differentiable custom loss function velocity_loss_tensor is implemented as in
fig 5.3

Figure 5.3: Custom Laban Effort loss function
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5.3 Data postprocessing

The network output could be shaky at times. Hence, we need to post-process the
generated dance motion to smooth out jerks and jitters. As commonly used by re-
searchers, an n-order Butterworth Filter can be used to smooth the unwanted jerks
from the motion sequence.

5.3.1 Butterworth Filter

Butterworth filters are a specific type of low pass filter. The magnitude of the frequency
response is defined as:

|H(jω)| = 1√
1 + ( ω

ωc
)2n

(5.1)

ωc is the cutoff frequency of the filter and n is the order of the filter.

Figure 5.4: Butterworth filter - Gain plotted for order 1 to 5 [6]

At low frequencies, the gain is closer to 1 and at high frequencies, the gain of the
filter goes down. In Fig 5.4, When the order is one or two, the gain rolls off smoothly
whereas for higher order, the change is quicker and sharper.

This module applies a filter that smooths out the frequencies. The below explana-
tion assumes a use case of 2000 frames with 43 joints and 3 angle (x, y, z)
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The generated quaternions are converted to Euler angles and are stored in an array
of size (2000,43,3). Now, for every joint’s Euler angle component, we extract the values
in degrees and add to an array of size 2000. The joint-wise array now has a shape of
(43,2000,3). The next step is to convert the values to fourier domain by calculating
the FFT (Fast Fourier Transform). Butterworth filter is then applied to every joint as
in fig 5.5.

Figure 5.5: Butterworth filter implementation

5.4 Monitoring training performance in real-time

We use Tensorboard from Tensorflow to monitor the training in real-time. The training
loop logs the loss values into a file in the local directory which is then picked up by
the locally running tensorboard server. The plots can be visualized on the browser as
in fig!5.7

Figure 5.6: Tensorboard interface
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We export BVHs from training and validation set during the training after every
10 epochs. Subsequently, this is read by Blender using the code in fig. A manual
qualitative analysis of the training can be performed with Blender using this method.
This can be run automatically every few minutes to import the BVH skeleton into
Blender GUI.

Figure 5.7: Code to import BVHs to Blender
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Chapter 6

Results and Analysis

This chapter discusses the outcome of implementing the neural network discussed in
chapters 4 and 5 to generate dance sequences and poses matching to the genre of
the input music. The output generated by the model is compared with ground truth
wherever relevant.

We assess the model’s ability to generate dance steps by analyzing the rotation,
angular velocity, acceleration, and jerks of selected skeletal joints. Firstly, we feed into
the model song sequences that it already heard during the training as input. Next, the
model is given unheard songs from the validation set. The general process of evaluation
in this chapter follows the sequence mentioned above.

The average training time for the model is 11 hours with MSE loss and 15 hours
with custom Laban Loss. The model generates frames at speeds well past the real-
time requirement. The speed of frame generation averaged at 1175 frames per second.
Hence, the design supports real-time applications.

6.1 Mean Squared Error (MSE)

In this configuration, we train the model with an MSE Loss function that calculates the
mean squared error between the generated quaternions and the ground truth quater-
nions. For an Indian classical music piece from the training set, the network generated
data with matching joint angles, velocity, and acceleration. In fig 6.2, the velocity,
acceleration, and jerk of the left forearm joint are plotted. We chose only one skele-
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tal joint for the ease of representation. We pass the output produced by the network
through the post-processing filter (section 5.3.1) and export the BVH file.

Figure 6.1: Legend for all motion comparisons in this chapter

Figure 6.2: Angular velocity, acceleration and jerk of the predicted dance and ground
truth (every 5th frame is plotted) of left forearm joint

Comparing the joint velocities, the corresponding intensities of the frames are higher
in the ground truth than the prediction as visualized in fig 6.2. The acceleration and
deceleration of the joint are comparable to each other. It follows a similar trend as that
of velocity in terms of the intensity. The degree of sudden movements or jerks in the
motion also similarly corresponds to each other. It means that the generated dance is
a ’lazy’ or a less intense version of the ground truth.
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Interestingly, a slight noise in the ground truth (In fig 6.2, frame 8 from the left,
and frame 5 to 7 from the right) is fixed in the predicted motion because the network
learned to link and fill in between adjacent frames.

For an unheard piece of Salsa music, the network generated a sequence of very
jittery poses. It is interesting to note that the jitters of the hip joint affect the overall
aesthetics of the movement the most. Since the hip is the root joint of the skeleton, its
instability affects the entire skeleton much more than any other joint.

6.2 Laban Effort loss function

After MSE loss, we train the network with the custom loss function as designed in
section 4.6. The network converged faster in 500 epochs as opposed to 2500 epochs
as compared to MSE loss. Nevertheless, the generated poses oscillate within a short
range of movements with high-intensity jerks for both training set as well as validation
set inputs.

For an unheard salsa music from the validation set visualized in fig 6.3, the predicted
dance’s hip joint is found to be highly unstable. Sometimes, it flips the skeleton’s
facing direction due to a sudden 180 degree rotation of the hip in adjacent frames with
no continuity. It is because the network learned to match the overall energy of the
movement and cares less about the ground truth’s joint orientations.

Figure 6.3: Angular velocity, acceleration and jerk of the predicted dance and ground
truth (every 5th frame is plotted) of the abdomen joint

Fig 6.3 shows the front view of the sequence of frames predicted using Laban loss
function. The acceleration and jerk frequently reach their extremes every few frames.
It can be inferred that changes of this scale to any of the skeletal joints directly con-
nected to the hip mean extreme instability. The stick figures in the visualization look
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unchanged because the flips happen exactly opposite to the viewing angle. This is
visualized from a different angle in fig 6.4

Figure 6.4: Consequent frames with 180 degree hip rotations and extreme angles

6.3 MSE + Laban Effort Loss

The following experiments use different combinations of the loss functions. From the
previous section, we found out that, using only Laban loss function disregards the
ground truth poses. Here, we consider the following two cases:

• Sum of MSE and Laban Loss: We add both losses together and backpropagate
to minimize the new loss. In multiple trials, we found that the network stopped
learning once it reached 50 epochs. It could not optimize for either MSE or Laban
loss.

• One Laban loss every 4 epochs: In this configuration, we use MSE loss
for three iterations while every fourth iteration uses a sum of MSE and Laban
loss. For an unheard salsa music from the validation set, the model generated
dance poses with considerably less flickers than section 6.2. Although the hip
flickers at times, the preliminary analysis shows that the poses generated by the
model belong to the distribution of poses in the salsa dataset. Furthermore, the
generated data has comparatively more temporal coherence. Fig 6.7 shows the
left forearm joint’s energy visualizations.

In fig 6.5, the acceleration and jerk are more dynamic and less intense than fig 6.3.
Although there are hip flips, the movement of hands became stabler. Furthermore, the
adjacent frames show continuity. It is interesting to note that, after manually fixing
hip, the movements of the hands and the continuity looks more plausible.
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Figure 6.5: One Laban Loss every 4 epochs (Before Fixing Hip, Before Post processing)

Figure 6.6: One Laban Loss every 4 epochs (After Fixing Hip, Before Post processing)

Figure 6.7: One Laban Loss every 4 epochs (After Fixing Hip, After Post processing)
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6.4 The effect of datasets

To check the effect of the type of dance available to the model, we trained the model
with three different configurations:

• Only Indian dataset

• Only Salsa dataset

• Combined dataset

The training set performed equally well in all the three configurations. However,the
hip joint is found to be comparatively stabler when the combined dataset is used. This
shows that more input data can improve the quality of the generated motion.

6.5 Generation of long sequences

We give the network a long audio sequence to verify the design choice - auto-conditioned
configuration, as discussed in section 4.2. Fig 6.8 analyzes the network output of 13000
continuous frames. It is found that the network can generate long sequences of motion
without getting frozen or attaining a mean pose. The velocity, acceleration, and jerk
remain continuous and dynamic throughout the sequence.
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Figure 6.8: Angular velocity, acceleration and jerk of the predicted dance of left forearm
joint of a 12000-frame long sequence
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6.6 Teacher Forcing

To analyze the effect of Teacher forcing, we trained the network with 0% and 30%
Teacher forcing ratio. We found that the network converged faster when using Teacher
forcing. Nonetheless, the results generated are very similar to each other. This shows
that Teacher forcing can be used as a technique to slightly accelerate the learning, but
it has no visible changes in the performance of the model.

Figure 6.9: Loss plotted with and without Teacher Forcing
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6.7 Network output vs post-processed

This section shows a comparison between the network’s output and post-processed
output. Butterworth filter with order 1 and 2 are applied and visualized in fig 6.10.
From the plot, alternating dark green and purple bands show that the generated dance
is jerky, and hence the corresponding velocities and accelerations are at the highest
end of the scale. After 1-order Butterworth filter is applied, the jerk is smoothed
out. The intensity of the jerk is reduced, and the corresponding colored bands have
become longer. The longest black band in the network output corresponds to very
high velocities whereas after applying 1-order Butterworth, the transition of velocities
between frames is much smoother.

Figure 6.10: Angular velocity, acceleration and jerk of the predicted dance, post-
processed dances with 1 and 2 order Butterworth filters (every 5th frame is plotted) of
left forearm joint
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6.8 Summary of results

From the results described in the previous section, using MSE loss, the model can gen-
erate dance sequences specific to the genre of the music that it already heard during
the training. However, for a new piece of music from the validation set, the model
generated results that are jittery and non-continuous. When using the custom Laban
Loss function, the model generated highly unstable movements, but when used in con-
junction with MSE, it behaved slightly better. Although not totally smooth, the hand
movements seen are realistic and visually closer to salsa. We need more experiments
to fully verify the custom Laban Loss function. The way we achieved clean result is by
manual hip fixing.

The Indian Classical Music data has most of its steps with hands stretched out, at
or above shoulder level while most of the Salsa steps have the hands closer to the chest
and below the shoulder level. Although not the best way, this is a visual metric that
can be used to quickly identify the dance genre in this thesis’ context. Furthermore, the
model is able to generate long sequences without getting the mean-pose issue because
of the auto-conditioned configuration. Surprisingly, it is also learnt that using Teacher
Forcing has no effect on the network output, but it improves the network convergence
time.
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Chapter 7

Conclusion

We have designed, implemented and tested a novel neural network architecture to gen-
erate dance motion corresponding to the input music. To answer the original research
questions, the network can produce dance sequences for the music it heard during the
training, but for unheard music, the network produces results that are not so plausible.
However with the use of custom loss functions based on theories of physical movement,
there is an improvement in the generated dance, but still not realistic. Further experi-
ments need to be conducted with different parameter tuning to evaluate this. However,
this is a challenge with respect to compute resources because one experiment takes 11
to 15 hours. In this research experiment, user studies were not conducted due to the
lack of time, but in the future experiments, it should be taken in consideration.

As compared to traditional methods where the user has much control for engineering
the input feature and its handling, the potential for user input is limited with Deep
Learning-based methods. Instead, they detect correlations in the data by itself and use
that as a feature vector to generate dance poses. Generating dance is a much bigger
and deeper problem than locomotion just because of the nature of the art. Dance is an
expression of emotions, feelings, and sensations. It bears meanings at multiple levels
in addition to synchronizing with music. To evaluate a movement and consider it as
a dance movement, we need to look at the science of the art. Typical mathematical
ways of error calculation using joint angle or positional differences are meaningful only
in verifying movements against a ground truth. For instance, when a dancer performs
a step where the left arm waves over the head, and then another step where the same

48



hand waves across the hips. Let us assume a case where the former is predicted by the
model, and the latter is the ground truth the model is expected to output. Although
both are valid dance steps, when we calculate the mean square error between these two
steps, the resulting value would suggest that one is different from the other by quite
a considerable amount. Typically, a large error value suggested by the mean square
function means there is something significantly wrong with the output. In the context of
dance, due to this reason, mean square error does not provide a meaningful measure of
validating a dance sequence. Hence, movement theories like Laban Movement Analysis
should be incorporated into loss functions while training Deep Neural Networks.

7.1 Future Work

The amount of frames used as dataset is tiny compared to what a recurrent neural
network can handle. A huge dataset of 2 hours of dance would be a good experiment
to do in future. More experiments with different hyperparameters can be conducted
in future to fully validate the Laban loss function. There are more parameters in
Laban Movement Analysis to describe dance movements. It would be worthwhile to
implement more Laban parameters as loss functions. The network architectures of
Encoder-Decoder and sequence2sequence are also possible future extensions. Another
interesting work to build upon this is to implement Adverserial learning. When using
a GAN (Generative Adverserial Network), the generator can be the proposed network
in this thesis while the discriminator can be trained on a larger dataset of motion and
dance so that it can discriminate between valid motion and invalid motion.
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Appendix

Google Drive link for results - https://drive.google.com/open?id=1c20GpTtwxKIQw-
xi-vmQ-EwhcHnuaOq2
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