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Measuring associations in motor neurons through electrophysiological monitoring
methods like electromyography is integral to neuroscience as it helps in understanding
the underlying synchrony between the muscles and the brain. This can be useful in
the diagnosis of several neuromuscular and genetic disorders like the ALS and the
Duchene’s muscular dystrophy.

Information theory provides tools to estimate these interdependencies, of which
non-linear measures like the mutual information can provide the best results, given
to that it is the independent of the structure of data along with it’s average being
meaningful. Calculation of mutual information using the newly established density-
based approach is performed in this study to understand the interactivity between
two hand muscles. The results of these are validated against the traditional bin-based
approach which requires much larger quantities of data to arrive at precise estimations.
Finally, a comparison with the linear methods - the Power Spectrum and the Coherence
are made to determine the overall performance of the used method.

The results of this dissertation can be used to conduct detailed studies in a wide
range of neuroscientific experiments as much lesser quantities of data is required for
studying the neural interactions than that of conventionally used. Moreover, these can
also be employed to design advanced prosthetics.
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Chapter 1

Introduction

The brain is a complex network of densely interconnected neural circuits that con-

trol our behavior. Understanding how these neural structures integrate and perform

computation is integral for comprehending brain functions[5]

Since neural communications are governed by electrical signals, it is essential to

record this data for research purposes. Electrodiagnostic and neuroimaging techniques

capture such neuroelectric signals, of which, electromyography examines the interactiv-

ity between motor neurons that control the muscles in our body. Muscles contractions

cause the nerve cells to transmit electrical signals which are translated by the EMG

electrodes into interpretable formats like sounds, graphs or numerical values[4]. Results

from this electrodiagnostic technique are then interpreted by specialists to understand

the activation levels and detect complications in neuromuscular signal transmissions

and dysfunctions in nerves and muscles. However, such neuroscientific experiments

deal with data that are multivariate in nature and have nonlinearity in the variable

interactions[8].

Information theory plays an essential role in this case and is highly equipped to

contend to such data. It encompasses tools for multivariate analysis which can be

asserted to various kinds of data. Moreover, it does not rely upon presumptions on the

underlying structure of the data and can capture non-linearity in the interactions.[5]

This study makes use of one such tool: mutual information to understand the in-

terdependency between muscular regions. Findings from this can be used to finely

examine the muscular synchrony which can aid in the diagnosis of neuromuscular dis-
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order, for conducting research in kinesiology, and for designing advanced prosthesis

devices[4][prosthetic paper].

1.1 Motivation

Several information theory quantities can be used to measure the relationship between

two EMG channels. However, simply using linear measures like coherence does not

provide an accurate estimation of the relationship of the intermuscular activities. This

happens so because such measures rely on phase relationships and power and a variation

of any of these entities directly impacts their values. Moreover, other metrics for

statistical dependence like Spearmans rho, or the coefficient relations by Pearson need

an assumption of the marginal distribution. Therefore, non-linear measures like mutual

information are considered as part of this study to measure the relationship between

2 muscles. Also, mutual information is a measure that can be summed up and thus,

taking a mean of this quantity is meaningful.

Many approaches have been used to estimate the mutual information between two

spike channels, like converting the spike trains into bins and calculating the mutual

information based on the summed data points with respect to the bins. However, an

enormous amount of data is required to calculate MI using such conventional methods.

Additionally, precise evaluations from such methods require quantities of data that is

practically infeasible to record. Therefore, instead of using estimation methods that

rely on the dimensions of the data, an approach is chosen such that no coordinates are

required for the calculation of mutual information. This ensures that a comparatively

minimal amount of data is required to obtain an accurate estimation.

Apart from this, electrophysiological data like the EMG typically either have values

that lie in an integrable manifold or is discrete. Though such problems in the estima-

tion of mutual information have already been addressed [5, 9, 10], there havent been

methods that address this difficulty in line with the above problem requiring enormous

quantities of data. Therefore, the KozachenkoLeonenko estimator was used in this

dissertation.

Thus, this study can be used to validate the newly established methods against

the traditional approaches which can be further used to efficiently study motor control

as well as used for the diagnosis of disrupted brain functioning and neuromuscular

2



disorders.

1.2 Research Question

How can estimations of mutual information between EMG channels using the density-

based approach be used to quantify intermuscular relationship?

1.3 Research Objective

To address the research question of the dissertation, the following objectives are con-

sidered:

1. Using the innovative density-based method to estimate the mutual information

between 2 EMG channels

2. Calculating the mutual information using the bin-based approach and cross-

comparing the KL approach (or density-based approach) using simulated and

experimental data

3. Using simulated data to understand the effect of parameters in the two approaches

by employing variations in the count of bins and the smoothing parameter, h

4. Choosing an appropriate value of the smoothing parameter for the experimental

data

5. Comparing the results of auto-mutual information of two EMG channels to their

respective Power Spectrums

6. Analyzing mutual information between two EMG channels against the intermus-

cular coherence.

1.4 Research Challenge

1. Experimenting with the different values of the smoothing parameter with each

test taking an enormous amount of time.

3



2. Choosing an optimal count of bins for the bin-based approach

3. Selecting the optimal value of the smoothing parameter, h

4. Difficulty in visually comparing a large number of MI estimates from the bin-

based and density-based approach

5. Analyzing estimations of mutual information using different values of the smooth-

ing parameter with some results coinciding each other.

6. Since the correlation between spike trains vary at a particular point in time varies,

providing an overall estimate of mutual information between the 2 channels is

difficult.

1.5 Thesis Overview

The density-based approach is a newly established procedure for the calculation of

mutual information between electromyograph channels. This approach gives a precise

estimation of the behavioral relationship of the muscular regions and accounts for the

large quantities of data used in the earlier methods

The data for the study is granted by the Trinity Biomedical Sciences Institute.

EMG data was taken for 8 subjects using a noninvasive method for the two-hand

muscles - APB and FDI. With a sampling rate of 2048Hz, the data for each individual

for 4 seconds and several such trials was present for each patient to account for any

disruptions in recordings. Apart from this, simulated data is also used as part of this

study which is created with the help of MATLAB. Furthermore, downsampling by a

factor of 8 is performed on both the numerical and experimental data.

Hereafter, a comparison of the new approach is made to the conventional bin-based

approaches that require the spike train to take values on metric space. Simulated Data

is used to showcase how the performance of the chosen approaches gets effected with

the variation of their respective parameters.

Finally, the two methods are compared to other measures: Coherence and Power

Spectral Density using the experimental data. The decimation of the simulated and

experimental data, as well as the implementation, is performed with the help of MAT-

LAB.
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1.6 Thesis Structure

Section 1 provides a brief introduction to the research and highlights the research

question. Moreover, it includes a small discussion on the research objective, motivation,

and the challenges faced during the project.

Followed by a literature review on several measures that quantify the relation be-

tween Neuroelectric signals, section 2 aims to provide background on EMG and their

applications

The focus of Section 3 is on the two methods employed in this study. This section

also includes a brief discussion of other information theory approaches.

Section 4 describes the data used in this study: Simulated and Experimental and

provides an outline of how downsampling was performed.

Section 5 shows how the two methods were implemented and showcase the results

of the various experiments that were carried out in the dissertation.

The conclusion of the dissertation is discussed in Section 6. Further, the results of

the study are reviewed, limitations are discussed and a brief remark on the future work

of this analysis is made.
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Chapter 2

Related Work and Background

Study

2.1 Estimations of interdependency between Spike

trains using non-Frequency based paradigms

Several studies have been conducted that examine the spectral pattern in the spike

trains of neurons. Many such approaches making use of the continuous electrophysio-

logical data can be broadly classified into frequency-domain and time-domain methods.

This section briefly discusses the temporal methods along with several others like the

PSTH, JPSTH, Classification models and likelihood models.

Unnormalized shuffle-correlated cross-correlogram is a time-domain approach to de-

tect the synchronization of the timing of the neuronal spiking [11]. Here, spike trains

are first binned for a specified bin length. Thereafter, correlogram for several sequences

of lags is calculated for the pair of spike data by using covariance between the binned

pairs. An illustration of the covariance is given by the timing of the spiking activity,

excitatory covariations or latency. Here, the cross-correlogram peaks simply demon-

strate that the two spike signals are not independent and, therefore, do not correctly

quantify the associations between the neurons. Moreover, this method presumes that

the naturally varying properties of neurons are time-independent. Justification of such

an assumption that makes the spike signals unvarying with respect to time is difficult

since a time-altering stimulus is used to evoke the response from neurons which tend to

6



regularly adjust to this given stimulus. Although an attempt has been made to address

the variation in the spike signals by estimating the covariance with the help moving

windows, it would again require enormous quantities of data.

[12] measures association in nerve cells using two distinct data. The first involves

the use of sound-based stimulus on cats to record data from 8 neurons and the second

involves data taken from the nerve cells of sea hares. Cross-intensity is used to define the

dependence between two discrete spike events (point processes) which is a quantification

based on histograms. An advantage of this approach is the simplicity in the calculation

of the function measuring the association between the spike trains in pairs. However,

even though the Cross-intensity provides an estimate of the confidence interval between

the spiking activities, the approach has received minimal attention in the neuronal

analysis[12].

The peri-stimulus time histogram or simply PSTH and raster plots depict the num-

ber of spikes at all points of time. Preference towards the PSTH arises from the ability

of our eyes to better articulate the plot showing the rate of firing of neurons. An

extension to this concept is the joint-PSTH (See Fig ?? c) which jointly displays the

number of spikes for a pair of neurons, the diagonal of which shows the simultaneously

observed firing rate varies as per the specified width of the bins. [13] provisions meth-

ods for filtering the data from neurons using Bayesian adaptive regression that results

in smoother plots and further gives a better estimate of the instantaneous degree of

spiking.

In [14], a procedure to quantify the time-dependent neuronal spiking rate is in-

troduced which explains a distinction between indirect and direct effect of the stimu-

lus. The former is explained using the normalized Joint peri-stimulus time histogram

(JSPTH) while the latter is depicted using a JSPTH predictor performing cross-product

of the PSTHs. These depict that there is no significant difference between the 2 neu-

ronal spiking activities. The normalized JSPTH is moderation to the JSPTH and its

calculation is performed by subtracting the bias (caused when the neuronal activities

are independent) from the joint rate of spiking. And a ratio of this result is taken

over the multiplication of deviation of the 2 spiking activities. Such a correction is

conducted keeping in the account for the elevation in the spiking rates (a sign of better

associativity) when the spike trains are independent of each other. Pearson correlation

is used to compute the normalized JPSTH for a different number of trials. [14] also

7



Figure 2.1: Measuring interactivity between neural signals using JSPTH and maximum
likelihood based approaches.[1]

compares the normalized JSPTH with different normalization method and demonstrate

that their approach outperforms them. The normalization is naturally independent of

the model chosen and has symmetricity with correspondence to the spike train of neu-

rons. Importantly, taking a sum of the diagonals of this measure creates a normalized

covariogram. Furthermore, a study on the quantification of interdependence using

JSPTH without involving the rate of spiking is conducted in [15]. Here, simulation of

spike train data was used to describe that normalization of JPSTH wrongly explained

the time-based structure in the strength disparities of the interaction parameter. The

simulated data was produced using a model based on the probability of the Interaction

8



of discrete temporal events. Therefore [11] demonstrates that even though normalizing

covariogram and JSPTH is beneficial, each of them has its shortcomings. This demon-

strated that firing rate modulations cannot be corrected for in a model-independent

manner. [1] highlights the limitations by primarily suggesting that the precision of

measures relies upon the process generating joint firing activity and is one among the

many measure that can be used for association. Besides, based on the presumptions

and the underlying approaches, the methods of testing the statistical significance can

vary. Also, the normalization of the covariogram and JSPTH are based on an assump-

tion that the corresponding trials of spike trains cannot be distinguished statistically.

Hence, if there is a change observed in the spiking patterns of the corresponding trials,

then this change occurs as synchrony. Lastly and importantly, all analysis of interde-

pendency of spike trains is conducted based on a prior sorting of the spikes, precision

of which is crucial. However, most of the algorithms used for conducting spike sorting

generate ingenuine correlations among the neuron pairs.

Moreover, several classification algorithms are used to find accurate patterns in the

temporal spiking activity which in turn measure the associativity between the neural

signals [16]. These approaches provision for measuring the interactivity between 2 or

more neural interactions further allowing research related to behavioral happenings [1].

However, a challenge in using these methods is to contemplate the statistical test and

the no-difference (null) hypothesis as well as decide on the pattern complexity, which

is why findings in some studies based on these analyses have often received criticism.

Apart from this, statistical modeling tools like likelihood (See Fig ?? d) have also

been employed to study the interactions between neural point processes [17]. These

approaches can be used for performing data analysis in the neural apparatus, given to

the availability of a large variety of well-built statistical methods that assess how well

a model fits, build confidence intervals and test hypothesis [1]. However, it is difficult

to define multivariate discrete time-based models that precisely mu. Moreover, it is

also challenging to define effective algorithms for fitting models.

2.2 Coherence and Synchrony

This section briefs on literature that makes use of linear measures like coherence and

autospectrum to estimate the interdependency between spike train.

9



2.2.1 Coherence

Coherence is a frequency-domain measure that determines the relationship between

two temporal events (as in the case of neural signals). By conducting a Fourier trans-

formation on the neural spike data, an analysis based on the frequency of the combined

firing activity of the neurons can be performed, which is further employed to calculate

the spectrum of single spike signals or to compute the coherence of the pairs of spike

trains [1]. This approach of measuring the associativity comes with 2 benefits the

primary one being that normalization is independent of the width of the bins and pairs

of spike trains can be combined offering pooling across the data. The second is that

the different measures are not required to quantify the dependence of the process with

discrete temporal events, or processes taking continuous values, or hybrid processes.

Furthermore, [18] also describes that an estimation of the confidence intervals and error

rates for cross-spectrum is valid only if the count of peaks is high.

[19] demonstrates that non-variation in the spike trains concerning the given stim-

ulus is crucial to showcase the relationship between neurons and suggests making use

estimations of coherence based on moving windows to analyze such non-stationarity.

Furthermore, the principle of uncertainty on the coherence evaluations in a frequency-

time domain is described for the estimations based on the windows that lay a lower

limit on the spread of the point spread functions. Compared to the time-dependent

estimations A lower bias is observed in the evaluations based on the moving window.

This also suggests that by performing inverse Fourier transformation on the frequency-

dependent method, optimal estimation of the time-based functions can be achieved.

Furthermore, [20] describes the use of multitaper scheme for the quantification

of frequency-based measures. Such a principled method can also be utilized for the

calculation of coherence between the neuronal spike data as well as for the estimation

of potential in the local field. Moreover, with the help of bootstrap techniques, the

method also proves useful in deriving the error rate of the estimations. explains this by

studying the activities of spike train elevations within cortical regions while a memory

task is performed. The repetitions in the spiking are investigated by analyzing area

LIP and the time-based activity of potential in the local field. Important revelations in

the study include the following: activities in the local field potential show that memory

fields with dynamic nature have a spatial tuning in the gamma region which are not
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present at lower-ranged frequencies. Instead of being fixed, spiking Activities of the

neurons have a time-based structure while the memory task is performed. Decoding of

potentials in the lower fields on individual trials was conducted and it was deduced that

the activities in parietal cortex distinguished the chosen and the not-chosen direction

with almost equal precisions as the rate of firing. This helped in producing a closer

prediction of the planned movement. Moreover, for the same phase, coherency is

observed between the lower field potential and firing activities of neurons in the gamma

region.

An approach independent of the parameters and of the time scale called the ISI

distance is described in [21], which is a complementary method that estimates the

interdependence of the spike trains by calculating the ratio of the instantaneous spiking

activity. This is demonstrated by using the method to recorded cortical neurons which

makes the easies visualization of the firing pattern. The ISI distance is compared with

other approaches and it is concluded that is more beneficial as none of the parameters

dont need to be optimized. Indeed, the approach automatically adapts and spots the

right time scale and also holds for the variations in the spiking patterns consistent

firings and bursts which are incorrectly estimated by another measure whose behavior

varies as per the selected parameter. However, the ISI-distance can be defrauded by

the lags in the phase, not depending on whether the cause is latency loops in a single

spike channel or if the same driver enforces varied delays on the two point-processes.

2.2.2 Power Spectral Density

A Power Spectral Density (PSD) determines how the power of a signal is distributed

with respect to the frequency components. [2] performs power spectral analysis on two

patients suffering from brain injuries with minimum consciousness and self-awareness.

Such patients can evoke from their state of coma and therefore it is necessary is distinct

the 2 states to provide for the treatment. EEG power spectrum was studied when

the patients were sleeping and while they were to understand the behavior of the

subconscious state. The frequency related part of the time-dependent EEG signals are

summarized and a measure of the relative power of contributing frequencies against the

signal composition is indexed. Multitaper approaches were employed to estimate the

power on data taken for 3 seconds (see Fig ??) and 5-second interval being sampled at
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200Hz. These approaches apply numerous data tapers for the bias optimization and

for stabilizing the variance of the spectral estimations. After performing tapering. an

average over each spectral estimate is taken to calculate the power spectrum. This is

given by

sk(f) =
N∑
i=1

vt(k)st exp(−2πift) (2.1)

With st represents the signals and vt is the respective weights of the sequential

tapers. The power spectrum is calculated by taking an average of the tapered estimates.

SMT (f) =
1

K

K∑
k=1

∣∣sk(f)2
∣∣ (2.2)

Observing the power spectrum peaks shows dynamic disturbances in the β fre-

quency when the first patient is awake. The EEG based discoveries suggest a possible

base for the dissociative lower metabolism which provides the suggestion of utilizing

stimulus-based mechanisms to assess EEG spectra potentials that change with the

state.

Figure 2.2: Power spectral desnity of Patient 1 and 2 during the states - awake and
asleep for a swatch of 3 seconds [2]
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[22] aims to showcase a pattern in the power spectral density of magnetoencephalog-

raphy signals which reduces with aging. This allows answering how the resistance of

skull decreases with development. By performing the Fourier transform of the method

that autocorrelations every epoch of MEG, an estimation of the power spectral density

were performed. Thereafter, an average of the power spectral density of every trial was

taken into different frequency bands. This helped in determining whether the changes

based on age in the higher and lower frequency ranges are genuine or are rather being

created due to the statistical reasons (based on age-based shift). To lower the count

of parameters in the analysis, mean power spectral density values within the different

bands were divided into five groups based on the sensor location. [22] illustrates that

power spectral density reduces with aging which can be due to the intensity decrease

of the sources of neural signals being related to the pruning of synapse. Moreover, an-

alyzing the correlations demonstrated that a late maturity in the rhythmic movements

in the brain is seen in the frontal regions in comparison to the other regions.

2.3 Entropy and Mutual Information

Non-linear information theory measure like the entropy and mutual information are also

used to measure the dependencies between neural spike signals. These measures have

close correspondence to the neurological studies as given to electric signals recorded

from nerve cells having an underlying non-linear structure. This section provides a

review of the literature of these measures.

[23] used entropy to measure the synchrony between spike signals collected from

neurons. The information generated of the time of spiking activity is quantified in

bits which is independent of the presuppositions on the importance of features of spike

signal. The data is recorded from neurons of the visual system of a fly. The study

aims to provide estimations of entropy in neural signals that do not depend on the

chosen model. Primarily, the dependency on the quantity of data is studied, thereafter,

regularities in the behavior of the estimates are explored. This study is one of the

pioneering studies that demonstrate the usage of non-linear information theory measure

on the neural spike trains

[24] introduces two upper bounding mechanisms for the estimation of mutual infor-

mation between neural spike trains. It is considered for some time T, neural response
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R is measured with respect to the given stimulus S that takes continuous values. The

primary approach, simple bounds calculates the stimulus from the response R. The

method makes use of data processing inequality which a measure that holds if accu-

rate upper bound is known or the mutual information between R and S is known.

The secondary method applied is the Gaussian bounds that assume that if the stimu-

lus takes Gaussian values, then a Gaussian response is observed with the noise being

independent of the stimulus. The Gaussian bound Is more applicable to the neural

spike trains that contain discrete values. Although mutual information evaluates the

interdependency between S and R, a direct calculation of this measure is challenging

since the precise estimation of the conditional probability, p(R—S) is required. This

holds when responses contain values that are dependent on other neurons. The findings

suggest that the estimation of mutual information using these methods depends on the

estimator and can generate trivial estimates with bounds of 0. Also, these techniques

make strong suppositions on the neural code suggesting that the estimates of mutual

information are not reliable.

[25] performs a study on the two motor-output layers L2/3 and L5a to examine

their neuronal activities in L2/3 and L5a while a task in learning. Calcium-imaging is

performed on a mouse for a lever-pulling task. Lever movement is predicted utilizing

support vector regression. Post this mutual information is calculated between the

recorded and predicted lever trajectories with the help of bin-based method. It is

observed that the accuracy of the predictions for L2/3 remained constant throughout

the 14 trails, and some neurons depicted greater accuracy during data training. On

the other hand, L5a showed a steady improvement in accuracy with 33 percent of its

neurons significantly contributing to the overall prediction.

[26] showcases the use of measures for the estimation of mutual information that

does not rely upon the presence of a coordinate system. This was defined as the density-

based approach which is the method employed in this study. The author begins by

providing measures for the estimation of entropy for 2 random vectors that represent

neuronal spike trains. Thereafter an estimation of the volume is given, which was

to be used for calculation of mutual information. Thereafter mutual information was

defined for the vectors when either of them takes values in a coordinate system and

when both take values in a coordinate system. Finally, an estimate of the bias using

the Kullback-Leibler divergence is given for the two random spike-train representing
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vectors.

[6] performs the calculation of mutual information using the density-based approach

on fictitious spike train data. Values with closer proximity are found for each paired

data value. The counts of these are used to perform the overall estimation of mutual

information.[8] also provides a method to calculate the bias in the estimations. Further,

a comparison of MI results using the two distance metrics - the Victor Purpura and

the von Rossum is shown.

2.4 Neuro-electric signals

Several electrodiagnostic studies that record electrical activities from nerve cells such

as the nerve conduction studies, blink reflexes, electromyography (EMG), electroen-

cephalography (EEG) and others are conducted on patients suffering from neurode-

generative diseases. Among these researches, EMG forms the core of those related to

neuromuscular disorders [4].

2.4.1 Electromyography

Electromyography(EMG) is a neurophysiological tool used to examine the electrical

activity generated by the skeletal muscles(see Fig. ??). An electromyograph is used

to collect the EMG which detects the electric potential from the electrically or neu-

rologically activated muscle cells [27]. The signals captured by the EMG are useful

in detecting a medical abnormality, levels of activation, and are used to analyze the

biomechanics of human or even animal movement.

The typical operating procedure for EMG makes use of electrodes which are placed

on the skin above the muscle(see Fig. 2.4). These electrodes detect the electrical

activity in a muscle which gets displayed on the monitor screen. The EMG also consists

of preamplifiers and amplifiers which are placed in close proximity to the patients to

avoid capture of any electrical interference and are used for achieving with correct gain.

Post amplification, the signals are calibrated, after which it can be visualized on display

screen, Other equipment consists of integrators that comprise the data obtained and a

recording medium which is a fiber-optic photographic system.

The muscles are isolated leading to each electrode giving only an average knowledge
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Figure 2.3: A typical EMG recording [3]

Figure 2.4: working of EMG [4]

of the activity of the muscle selected. Thus, there is a need for several electrodes to

be placed at various specific locations to obtain accurate activity of the muscle. After

the placement of the electrodes, the patient is asked to contract the muscle under the

study. The presence of the waveform, the size of the waveform and the shape of the

waveform gives specific knowledge about the muscles ability to respond to stimulation

from the nerve. When the muscle is at rest no action potential is generated but when

the muscle is externally stimulated there is a generation of the action potential which

is observed at the display screen [28]
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Types of EMG

EMG devices record the electrophysiological activity of the muscle which is innervated

by the axonal branches of the motor neuron. Two types of electrodes are used to

recording one is needle electrode and other is a non-invasive surface electrode.

• Needle EMG

Needle EMG allows the recording of deep muscles with the help of insertion of a

needle electrode into the muscle tissue. Location of the point of needle insertion

is determined through the identification of anatomic landmarks that are further

confirmed through contraction of the selected muscle to be measured. It has been

observed that with needle EMG, more sensitive and accurate data is generated.

Also, with its different types of muscles can be recorded at the same time [29].

However, needle EMG has several drawbacks, firstly it pertains to the activity

of only a small number of muscles that have their fibers close to the position of

electrode [30]. Secondly, needle EMG is a painful procedure and so prolonged

recording with needle EMG is not convenient. Rarely, there have been changes in

local trauma that have happened while examining delicate regions. Needle EMG

is sensitive to time and temperature. The signal detected in the needle EMG

will vary with respect to the time elapsed from the onset of the nerve injury.

Temperature can affect data transmission within the muscles and nerves which

in turn affects the action potential being carried through the muscle [31].

• Surface EMG

Surface EMG (see Fig. 2.4)is a technique that is used to measure the activity of

the muscle noninvasively with the help of surface electrodes. Surface electrodes

are placed on the skin and over the muscle for which electrical activity needs

to be detected. This has several benefits, primarily, this technique is painless,

especially when used without the stimulation of peripheral nerve stimulation.

Second, the electrode of surface EMG records from a wide muscle area giving

global data of the functioning of the muscle. And finally, with surface EMG

prolonged recording from multiple sites is possible. However, surface EMG has

a low resolution of the signal, is also susceptible to movement artifacts and the

temperature of the body. Also, with surface EMG it is possible to measure the
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superficial activity of the muscles and so, the deeper muscles are not recorded.

Conditions like obesity and edema cause an increase in the skin thickness leading

to a disturbance in the recordings [32].

2.4.2 Application of EMG in neuroscience and neurological

diagnosis

The muscle membrane potential is the source of the signal that arises in the EMG. EMG

enables good quality temporal resolution and has an advantage in diagnosing central

nervous system (CNS) that provide signals to muscles. The lagging in the signaling

back from the CNS to the muscle is detected thus, aiding diagnosis of movement

disorders like tremors and dystonia. complex movements recorded by the EMG helps

in detection of gait disorders. Disorders like orthostatic tremor are also possible to

diagnose with EMG but difficulties can arise because the frequency of shaking is 16

high hertz, and doctors cannot differentiate the tremor as the output generated is

in a fused form. Therefore, EMG is clubbed with accelerometer leading to a clear

presentation of tremor [33].

Advancements were required in the electrodes that were utilized to measure the

defects related to the peripheral nervous systems signal to the muscle. This lead

to the involvement of mono-bipolar EMG to detect the contractions in the muscle

through choice rather than being involuntary. Carpal tunnel syndrome, ALS, Myas-

thenia gravis, dermatomyositis, Duchenne’s muscular dystrophy, Guillain-Barre syn-

drome, peripheral neuropathy, Shy-Drager syndrome are among other disorders that

can be detected through EMG in an asymptomatic stage [34].

2.4.3 Utility of Spectral frequency-dependent measures with

EMG

EMG signals are often used to study the motor control of patients suffering from a

genetic muscular disorder and other dystrophies like stroke. This section provides a

brief discussion on such a use of the frequency domain measures - Coherence and Power

Spectral Density of EMG signals.

In [35], a study on the EMG data of 2 regions of index fingers was conducted
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while the muscles were contracted under fatiguing conditions. Coherence among the

finger flexor muscles and the flexor digitorum superficialis EMGs were examined for

all subjects in the respective gamma, beta, and tremor frequency regions. No im-

portant differences in the coherence were observed in the tremor regions and post

contraction, a rise incoherence in gamma and beta frequency regions had been seen.

An increase in Force-EMG cross-covariance in the tremor regions during and after the

contractions were observed which proposed that corticomotoneuronal drive held the

responsibility to the rise in the coherence in the other two regions. Moreover, an in-

crease cross-covariance suggested that surrounding afferents contributed more to the

fatiguing muscle coupling.

[36] aims to compare the EMG power spectrum to the physical measurements taken

from several features of muscle potential in 18 healthy subjects and 32 patients, those

suffering from Duchenne muscular dystrophy (which is a genetic muscular disease).

This would enable the assessment of the diagnostic output from both the approaches.

Needle EMG was used to collect data from the tibialis and biceps at weak contraction.

Power spectral analysis using EMG signals was performed using a Haning window of

1400 Hz, while simultaneously, a visual analysis of twenty potentials by muscle units

was recorded. In contrast to the healthy subjects, the EMG from the patients demon-

strated lesser averaged amplitude of signal while in the case of physical measurements,

higher potential having smaller duration could be seen. About three-quarters of the pa-

tients were correctly classified as myopathic using the physical-measurement approach.

Power spectral analysis displayed a significant fall in total power while a significant rise

could be seen in the relative and average power frequently, which classified a higher

percentage 95% of patients as myopathic. Thus, power spectra of EMG yielded higher

diagnostic output than by physically measuring the muscular potentials frequency.

Furthermore, with respect to the control signal, the power spectra of EMG moved to

greater frequencies in the patients.

By performing a power spectral analysis on the surface EMGs of stroke-induced

patients, [37] aims to study the complexity in muscular and neural variations. The

research was performed on fourteen subjects and EMG data were recorded from first

dorsal interosseous and paretic muscle on voluntary contraction. To identify charac-

teristic traits, power spectral analysis was conducted on the EMGs of FDI and paretic

muscles. A distinction in the distribution patterns of the spectrum could be visualized
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between the 2 muscles. While no significant spectral evidence could be found in some

subjects, nine of them demonstrated a rise in the average power frequency in FDI

muscle. Summing up the results showed a decrease in the average power frequency in

paretic muscle compare to the FDI muscle. [37] suggests that patients affected by a

stroke demonstrated neural and muscular processes produced an impact on the power

spectrum. Also, at the same levels of contraction, almost all the subjects showcased

more average power frequency in the FDI muscle than paretic muscle, which can be due

to various reasons like degeneration of the muscle fibers, impairment of bigger units,

disruption in the muscle control features and, higher synchronization between the mus-

cle units. Such results depict EMG as a convenient tool to demonstrate stroke-related

variations in the muscles and neural regions.

2.4.4 Application of Non-linear Information Theoretic mea-

sures with EMG

Among several other applications, EMG signals have also been widely used in the study

of prosthetic devices for limbs, hands, and arms. This section briefly discusses studies

on the use of information theory metrics like entropy and mutual information in med-

ical diagnosis and prosthesis research work. Examining the activities of muscles in the

respiratory system help to effectively research lung-related diseases like Obstructive

sleep apnea syndrome (OSAS). Given the complex nature of the respiratory system,

dysfunctions concerning OSAS are insufficiently assessed by linear approaches. Hence,

[38] aims to detect complex respiratory processes with nonlinear characteristics having

relevance to diagnosis. While performing an increased respiratory action, EMG signals

of 8 healthy subjects and patients were recorded from 3 muscles of the respiratory ap-

paratus. The objective is achieved by first, assessing the coordination of contractions

in muscles within the respiratory region through nonlinear examination by estimating

the cross mutual information and second, by differentiating the working of muscles

in healthy subjects from the patients suffering from OSAS. The study involved sev-

eral parameters and estimated the cross mutual information to define the dependency

between EMG signals. Findings depict various nonlinear couplings in both the cate-

gories of subjects which become more visible when the respiratory effort is even further

increased.
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With EMG signals being widely used a control signal in prosthesis performing

multiple functions, a challenge lies in them being able to precisely handle single and

combined movements of the fingers, that too in a computationally optimal way. To

address this challenge, an algorithm called Mutual Component Analysis is introduced

in [39] that performs both parameter selection and result projection and is an exten-

sion to the approach Principal Component Analysis. EMG data were collected from

the forearm of 8 patients was used to analyze the significance and efficiency of the

algorithm. Redundant and less important parameters along with the noisy data were

pruned, post prediction was performed. Mutual information was used for estimating

the information gain, a quantity which was further used in the selection of parameter.

[39] concludes that the strength of the algorithm could be witnessed in it achieving less

than 5% error rate on 15 types of finger movements for all the 8 subjects.
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Chapter 3

Methods

The section primarily provides measures for the estimation of baselines - Correlation,

Power Spectral Density, and Coherence. This is followed by a discussion on the two

approaches used in this study: the bin-based method using the Akaike Information

Criteria and the Density-based approach using Kozachencko-Leonenko Estimators.

3.1 Baseline Estimation

Information theory provides several measures to estimate the interdependency between

EMG channels. This section briefly explores them as follows

3.1.1 Correlation

Correlation defines a measure to estimate the linear relationship between 2 random

entities. In the context of neuroscience, this metric measures the functional dependency

between electrophysiological data like electroencephalogram and electromyography [40].

The EMG is a representation of continuous values of voltage per unit time and is

treated as multivariate time series as well as it belongs to random processes which can

be better described by probability distributions rather than deterministic mathematics.

EMG enables for the estimation of correlation as well as coherence allowing successive

points to be independent in time and this time-dependent random process can also be

extended to the spatial domain.
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To estimate the correlation between spike trains (at a particular frequency), the

signal needs to be filtered by specifying the count of frequency bins or bands, either

by performing digital filtering or by using analog devices. If analog devices are used

either of the two requirements needs to be satisfied: first, every frequency should have

its distinct analog filters or based on the required bands, second, the signals must be

repeated multiple times.

For a specified frequency s, the function for correlation is defined as:

g(s) =
CPQ(s)

(CPP ) (CQQ)
(3.1)

where CPP refers to the auto-covariance of the spike channel Q ; CQQ refers to the

auto-covariance of the spike channel Q, and CPQ refers to the cross-covariance of the

spike channels P and Q

The autocovariance (which gives the joint variability of a signal with itself) for the

respective spike trains P with mean µP(e) with time moments e1, e2 being the time

moments is given by [41] as

cov [Pe1Pe2 ] = E [Pe1Pe2 ]− µP (e1)µP (e2) (3.2)

where E is the expectation operator. Similarly, the autocovariance for Q with mean

µQ(e) is

cov [Qe1Qe2 ] = E [Qe1Qe2 ]− µQ (e1)µQ (e2) (3.3)

The cross-covariance provides temporal variation of one signal against the other

[41]. The cross-covariance between spike trains P and Q is given by

cov [Pe1Qe2 ] = E [Pe1Qe2 ]− µP (e1)µQ (e2) (3.4)

Correlation is independent of the measure of amplitude and varies with respect to

both polarity and phase. With a reduction in polarity information, the estimation of

correlation produces values ranging from -1 to 1.
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3.1.2 Power Spectral Density

The power spectrum or commonly known as the auto spectrum determines how the

power of a signal is distributed with respect to the frequency components [42]. As per

Fourier analysis, a continuous signal can be fragmented into a spectrum of frequencies.

The spectral resolution is used to normalize the amplitude of power spectral density

and is used to distinguish random signals.

PSD is applied over a signal over its entire period measurement (which is usually

large), which then accounts for the distribution of spectral energy per unit time, an

integral or sum of this provides cumulative power [43]

For Lt point processes, PSD Xtt for EMG spike train at frequency s [43] is given by

Xtt(s) =
G1

2π
+

1

2π

∫ i=∞

i=−∞
rtt(v)e−isv (3.5)

where G1 represents the mean intensity while rtt(v) represents the autovariance of

a given spike channel.

3.1.3 Coherence

Another linear measure that defines the dependency between 2 spike trains is the co-

herence. With the advent of faster computational algorithms like the Fast Fourier

transform, methods like correlation were succeeded by an alternate statistical method

Coherence [40]. The advantage of the method lies in it depicting the covariation be-

tween 2 spike trains in a shorter period producing results similar to those produced by

correlation. Its several applications lie in the area of clinical diagnosis, in understanding

disorders in psychiatric patients, studying cognitive function, and for understanding

intermuscular relationships (between EMG channels)

For a specified frequency s, the function for coherence ( h ) is defined as:

h(s) =
|XPQ(s)|2

(XPP ) (XQQ)
(3.6)

where XPP is the auto spectral density of the spike channels P ; XQQ is the auto

spectral density of the spike channels Q and XPQ is the cross-spectral density of the

spike channels P and Q
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XPQ(s) =
1

2π

∫ i=∞

i=−∞
rPQ(v)e−isv (3.7)

where rPQ(v) is the cross-covariance of the spike channels P and Q

Coherence produces results that closely correspond to correlation. However, coher-

ence is dependent on phase relationships and variation in power since it is estimated

by the ratio of the square of the cross-spectral density to that of the two auto spectral

densities [40]. This suggests that the value of coherence is sensitive either to phase

or power variation, a sudden asymmetry in which is not anticipated under regular

physiological conditions. Apart from this, for a particular epoch, the coherence always

remains one. Although being dependent upon phase and power of paired spike signals

in consecutive epochs, if no change is recorded over time, the value of coherence does

not vary and remains one. This suggests that coherence lacks in providing exact infor-

mation on the direct relation between two spike trains, only ensuring the stability of

the relationship concerning the phase and power metrics.

3.1.4 Mutual Information

Information theory suggests that mutual information between 2 random variables mea-

sures the relationship between them. This holds relevance to neuroscience as mutual

information provides can be useful to examine electrophysiological data such as spike

trains from neurons (which can either be from a single one or from multiple). Although

many statistical metrics define the dependence between the spike trains like the rho

by Spearman, the correlation coefficient by Pearson, and Kendalls tau, mutual infor-

mation is more practical since it doesnt require any presumption based on marginal

distributions [44, 25]. Also, being an additive metric, the average of this measure makes

more sense.

Using the joint density function p(a,b) along with the marginal density function

d(a), q(b), the mutual information between a and b is defined as

I(a, b) =

∫ ∞
−∞

∫ ∞
−∞

p(a, b) log
p(a, b)

d(a)q(b)
(3.8)

Fig. ?? shows a comparison of the linear versus non-linear information theory

measures: mutual information and correlation. Model 1 shows that when the two
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random variables have a linear relationship, the correlation and the mutual information

show sufficiently finer and coherent results. However, when the interactions between

the data become non-linear (as seen in models 2 and 3), the linear measure tends to

show inaccurate results despite the presence of underlying relationships in the data.

On the contrary mutual information captures these variations and is, therefore, a more

reliable measure for the estimation of interdependency.

Figure 3.1: Linear versus Non-Linear information theory measures [5]

3.2 Bin-based Approach (using Akaike Information

Criteria) for calculating mutual information

For the calculation of mutual information, the bin-based method performs discretiza-

tion on the sample. Spike trains are converted into small bins of time, t over windows

of length T, hence transforming the entire neural response into words [45]. The count

of spikes concerning each bin is calculated and an estimate of mutual information is

determined using the probability of how often a word reoccurs in data. This Bin-based

approach uses a confusion matrix that keeps the counts of binned spike train data

against the discrete stimulus entities.

In Bin-based methods, calculation of mutual information heavily depends on the

discretization of the data distributions. However, within a small spike train interval,

the discretized distribution of EMG data has dense values which suggest that bias

in calculating the mutual information would be high. Hence, to discretize the con-

tinuous EMG data such that it does depend on the marginal distribution shape, the

copula method is used. Eventually, to provision for discretization, the size of bins is
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determined. Subsequently, the calculation of mutual information is performed.

3.2.1 Copula Estimate

Copula C was proposed to show the relationship between two random variables and are

simply marginal distributions with multiple variables that have uniform one-dimensional

margins bounded between (0,1)[46]. Copulas are extremely useful in applications (sta-

tistical) dealing with higher dimensions wherein by calculating marginals, these can be

used for estimation of the distribution of random vectors.

Consider two random variables A and B with respective marginal distribution func-

tions G(a) = P (A ≤ a) = r and Γ(a) = P (B ≤ b) = s and, and joint distribution

function D(a, b) = P (A ≤ a,B ≤ b). Here, every pair (a, b) corresponds to the three

functions G(a), Γ(b), and D(a, b) whose values lie between 0 and 1. With respect to

D(a, b), for every pair (a, b), there lies a point (G(a),Γ(b)) in a square of unit area with

dimensions [0, 1]X[0, 1]. These joint distribution functions and marginals distribution

functions are coupled by the copula method [25] as follows:

D(a, b) = K(r, s) = K(G(a),Γ(b)) (3.9)

Moreover, copula density K(r, s) = ∂2k(r,s)
∂r∂s

links marginal density functions to the

joint density function as follows,

p(a, b) = k(r, s)g(a)γ(b) (3.10)

With the help of copula method, the mutual information [25] is given by

I(a, b) =

∫ ∞
−∞

∫ ∞
−∞

k(r, s)g(a)h(b) log k(r, s)dadb

=

∫ 1

0

∫ 1

0

k(r, s) log k(r, s)drds

= −H(k)

(3.11)

where H(k) = −
∫ 1

0

∫ 1

0
k(r, s) log k(r, s) defines the copula entropy. Therefore, by

calculating the copula entropy, one can estimate the dependency between 2 continuous
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variables using mutual information.

Given a w sized sample represented by {(al, bl)}wl=1 be taken from a continuous

bivariate distribution, the empirical copula frequency, kw is

kw

(
e

w
,
f

w

)
=

{
1
w
, if (ae, bf ) belongs to sample 0

0, otherwise
(3.12)

where a(e) and b(f) , and 1 ≤ e, f ≤ w, represent sample based order statistics.

To calculate copula density, primarily, binning of the empirical copula frequency is

performed, which divides copula frequency into a histogram. Therefore, if the count

of bins bounded by the interval [0, 1] is m, then, The cumulative bins within the space

[0, 1]×[0, 1] ism2 and the area corresponding to each bin is 1/m2, thereby the estimation

of the copula density [25], km(r, s) is given by

km(r, s) = m2

bwx
m∑

e=|w(x−1)
m |

bwy
m
|∑

f=|w(y−1)
m |

kw

(
e

w
,
f

w

)
(3.13)

Where the respective ceil and floor function for some t are represented by dte and

btc. Also here, x = dmre and y = dmse

Figure 3.2: Cartoon explaining the working of Bin-based method
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The above cartoon describes the bin-based method when the number of bins is

4. It can be visualized from the figure that each data point in EMG spike trains is

associated with either of the 4 bins. Calculation of Copula density closely associates

the data values to their respective bins. Summing up the data points with respect to

the bins provides an estimate for the Akaike Information Criteria which is further used

the estimation of mutual information.

3.2.2 Akaike Information Criteria

To obtain a fine estimate of the copula density, it is important to determine a fitting

value of m, which relies on the selection of the model. Therefore, an estimation of

the Akaike information criterion (AIC) for km is performed. Information is lost when

models are used to express the data generation process. Hence, AIC provides an

estimate of the model quality by providing the relative quantity of information lost by

keeping a balance between how simple a model (underfitting) is, versus how better the

model fits (overfitting) [47].

Although an estimate of AIC can be calculated with the help of some unknown

variables by using the summation of the log-likelihood (negative), it is well established

if the count of non-empty bins accounts for the unknown variables. The count of data

points corresponding to a bin(e, f) is given by

w

m2
km

(
e

m
,
f

m

)
(3.14)

Hence, the likelihood of km is

L (km) =
m∏
θ=1

m∏
f=1

(
km

(
e

m
,
f

m

)) w
m2 km( e

m
f
m)

(3.15)

Therefore, AIC is represented [25] as

AIC(m) = −2
n

m2

m∑
e=1

m∑
f=1

km

(
e

m
,
f

m

)
log km

(
e

m
,
f

m

)
+ 2J (3.16)

Lastly, taking a negative of the calculated copula entropy, H(km) provides an esti-

mate of mutual information [25], I given by,
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I(a, b) = −H (km) =
1

m2

m∑
e=1

m∑
f=1

km

(
e

m
,
f

m

)
log km

(
e

m
,
f

m

)
(3.17)

3.3 Density Based Method

EMG data collected from a neuron or group of neurons holds values that lie in a

metric space. As already discussed, for the calculation of mutual information, the

conventional bin-based method performs discretization on the sample by converting

spike trains into bins and transforming the neural response into words[45]. As the

bin width, vanishes (with infinite data), the MI reaches its true value. Although such

measures have been proved useful, estimating mutual information with such methods

is difficult as enormous of data is required to estimate them. For instance, with 4s

of EMG spike train data having a bin-span of 10 ms, there are between 2400 words

and 2800 sets of words corresponding to the two spike-train interval pairs. With such

a large no of words produced, projecting the probabilities of the entities would require

amounts of data that would be practically infeasible to record.

Apart from this, information theory is mostly associated with problems where the

data is mostly discrete. To address this difficulty, Kozachenko and Leonenko estimator

is put to use which is a non-parametric differential entropy estimator that relies on n

nearest neighbors (or commonly known as K Nearest Neighbour). Although the diffi-

culty of estimating mutual information with discrete point processes has already been

addressed [26], this approach provisions an estimator for an effective local dimension in

line with the difficulty of requiring larger amounts of data. The efficacy of Kozachenko

and Leonenko reflects in the fact that, for a metric space, this approach exploits the

proximity structure, hence, considering the data points in pairs. This would allow for

the calculation of mutual information of data like EMG that lie in metric space with a

notion of similarity measure suggesting that the data would not have any coordinates

but the distance between 2 data points could still be measured. Also, this approach

produces results that are equivalent to the conventional bin-based method and takes a

considerably lesser amount of data.

The density-based approach takes into consideration simple formulas[26] for the

estimation of mutual information between
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1. Two stochastic entities with one taking values in metric space and the other on

discrete space.

2. And, where both the entities take values in metric space

To arrive at these formulas, primarily, a volume-dependent estimation of probabil-

ities is defined using the Kozachenko and Leonenko method.

3.3.1 Calculation of Entropy using quantities with no coordi-

nates

Consider a random variable A with a set of S outcomes, a1, a2, , aS having values in

space A. If the probability mass density of this variable is given by pA(a), then the

entropy can be estimated by

H(A) ≈ − 1

S

S∑
i=1

log2 pA (ai) (3.18)

Since pA(ai) is a quantity that remains unknown, the approach for the calculation

of entropy is modified such that it is coordinate independent. A region R(ai, V ol) is

taken in a manner such that such a region exists around every data point. Hence, the

probability that this region[26] contains g data points is

Pg (ri) =

(
s

g

)
Eg
i (1− Ei)s−g (3.19)

where R(ai, V ol) contains the probability mass, Ei.

This suggests that 〈g〉 = SEi, which can be calculated from the data as

〈g〉 ≈ #R (ai, V ol) (3.20)

where #R (ai, V ol) defines the count of data points in R(ai, V ol)

By assuming that the region (ball) has a constant probability mass function, Ei =

pA(a)V ol, upon further simplification, an estimate of the entropy [26] can be defined

as
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H(A) ≈ log2 S + log2(V ol)−
1

S

S∑
i=1

log2 # (ai, V ol) (3.21)

The simplicity in the entropy estimation lies in the fact that instead of using the

size of the region (containing a specified number of data points), the number of points

in the regions is considered.

3.3.2 Calculation of Volume

The estimation of the volume of a region is determined with the help of probability

distribution. This comes from the infeasibility in using the coordinate-based method

since spike trains lack good coordinates. Thus, the volume of a region is given by the

probability mass contained in that region,

volR = P (a ∈ R) (3.22)

which can be calculated from the data as

volR =
#R

S
(3.23)

If vol = h/s for some h ≤ S, then an incidental estimate of entropy [26] can be

determined as,

H(A) ≈ log2 S + log2

h

S
− 1

S

S∑
i=1

log2 h = 0 (3.24)

Since entropy is a quantity that relies on the measure, its value differs if the measure

is changed. On the contrary, using probabilities for calculating information measure

quantities is more practical if mutual information is used since its values dont depend

on the measure used.
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3.3.3 Calculating mutual information between 2 random vari-

ables where one takes values in a discrete space

EMG is essentially collected by either using an external stimulus on the hand or by

recording a voluntary muscle contraction. In the former case, a discrete random variable

can be used to represent the stimuli, while on the other hand, the response can hold

values in a metric space. Hence, consider the recorded spike trains (either from a single

neuron or from multiple neurons) have stimuli be depicted using a discrete set C and

the responses using a set D. Also, let C have it’s every unit represented the same

number of times, nt and let the count of stimuli be nc. This accounts for the equivalent

data points to be S = nt ∗ nc.
The regions around the data points are defined in the response set, D. Thus, an

open ball [26] is defined for a point d in D, which is given by

Rε(d) = {t ∈ R : dist(d, t) < ε} (3.25)

Also, consider that with a selected ε,Rε(d) has a volume V ol equivalent to the

region R(d, V ol). Using cumulative probability pD(d) as measure and fixing V ol as

Vol = h/s for some h ≤ s. This suggests that h points lie in the ball R
(
d, h

s

)
and

with this, H(D) = 0.

Hence, the calculation of H(C|D = d) is given by,

H(C|D = d) ≈ − log2 nc + log2 h−
1

nt

S∑
i=1

log2 #

[
R

(
di,

h

S

)]
(3.26)

Averaging over c ∈ C, the mutual information [26] between C and D is

I(C;D) ≈ log2 nc − log2 h+
1

S

S∑
i=1

log2 #

[
R

(
di,

h

S

)]
≈ 1

S

S∑
i=1

log2

nc# [R (di, h/S)]

h

(3.27)

The calculation is straightforward and can be easily put forth in the case where

both the random variables hold values in metric spaces.
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3.3.4 Calculating mutual information between 2 random vari-

ables both taking values in a metric space

The volume measures are given by the marginal probability mass function pC(c) and

pD(d) such with which H(D) = H(C) = 0. This also implies a measure on the space

C × D, where the values (c, d) lie. Thus regions around (ci, di) are defined using a

square to determine pC ,D(ci, di) and the volume of the regions is estimated using pC(c)

pD(d) which are taken from the marginal space of C and D. Hence,

C

(
ci, di,

h1
S
,
h2
S

)
=

{
(c, d) ∈ C ×D : c ∈ Rc

(
ci,
h1
S
,

)
, d ∈ RD

(
di,

h2
S
,

)}
(3.28)

Where h1/S and h2/S are the selected volumes for C and D. So, with the implied

measure,

volume C

(
ci, di,

h1
S
,
h2
S

)
= volume RC

(
ci,
h1
S
,

)
volume RD

(
di,

h2
S
,

)
≈ h1h2

S
(3.29)

Therefore,

I(C;D) ≈ 1

S

S∑
i=1

log2

S#
[
C
(
ci, di,

h1
S
, h2
S

)]
h1h2

(3.30)

This suggests that the mutual information between C andD relies on S#
[
C
(
ci, di,,

h1
s
, h2
s

)]
,

which is the count of response-stimulus pairs (c, d), where c and d are one among the

h1 points nearest to ci and h2 points nearest to di respectively [26]. The values of the

h1 and h2 should be chosen carefully as taking either small or large value results in the

reduction of the accuracy of mutual information.

3.3.5 Kullback-Leibler Divergence

The KL divergence provides a measure of the difference between 2 probability distri-

butions. The KL divergence for 2 random variables C and D on the same metric space

that take values c1, c2, . . . , cU and d1, d2, . . . , dS is defined [26] by
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d(C|D) ≈ 1

U

U∑
i=1

log2

pC (ci)

pD (di)
(3.31)

Since,

UV olpD (di) ≈ # [B (di, V ol)] (3.32)

However, in the situation, the other distribution is used for calculating the volume.

If h/s is taken as the volume, then the ball R [B (di, h/s)] around the data point di is

sufficient to include the h points from c1, c2, . . . , cU and R [B (di, hS]) is the count of

datapoints in the open ball [26]. Thus,

d(C|D) ≈ 1

U

U∑
i=1

log2

S#R [B (di, h/S)]

Uh
(3.33)

3.3.6 Estimation of Mutual Information between paired-spike

channels

Let P = {(m1, n1) , (m2, n2) , . . . . (mn, nn)} denote the experimentally recorded pair of

data points from spike trains from 2 random variables M and N which are modelled as

being taken from joint probability distribution p(M,N)(m,n). The density estimation

approach revolves around the idea that for every point, probability mass function is

estimated using a ball of defined volume around that point, which is given by the

smoothing parameter h. Thus higher the measure of volume, the more precise is the

estimation of count of points in ball, however the presumption that probability mass

function p(M,N)(m,n) is approximately constant on ball, R becomes lesser precise.

For a point (mi, ni), the closest M spike train intervals to mi and the nearest N

spike train intervals to vi is given by [6]

CM (mi, ni) = {(mj, nj) ; d (mj,mi) is one of the smallest M − distances )}

CN (mi, ni) = {(mj, nj) : d (nj, ni) is one of the smallest N − distances )}
(3.34)

where the distance between spike trains, d is calculated using either of the following
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methods:

• Euclidean Distance: The distance between points m and n in the Euclidean metric

space is defined by

d(m,n) =
√

(n1 −m1)
2 + (n2 −m2)

2 + · · ·+ (nn −mn)2

=
√∑n

i=1 (ni −mi)
2

(3.35)

• von-Rossum metric Primarily, the spike train data in the discrete form is con-

verted into continuous functions using an exponential kernel [48]. The waveform

that results from this is then used for the calculation of von-Rossum distance

which is defined by

d(m,n) =
∑
i,j

e−|mi−mj |/r +
∑
i,j

e−|ni−nj |/r − 2
∑
i,j

e−|mi−ni|/r (3.36)

where the accuracy of spike times is determined by the time scale τ . Often,

τ = 15ms is used for the calculation of distance. Though the proximity of

the data points for the calculation of mutual information would use this metric,

no matter what choice value of τ is chosen, the estimation mutual information

remains insensitive to this parameter.

• Victor-Purpura distance: The distance between spike trains by Victor and Pur-

pura determines the separation between 2 spike trains in a way such that minimal

cost is incurred during the transformation of one spike train to other. This in-

volves 3 basic operations spike insertion, deletion, and shift by an interval ∆t

[49].

Furthermore, the ball corresponding to the point (mi, ni) is given by:

C (mi, ni) = CM (mi, ni) ∪ CN (mi, ni) (3.37)

If, C (mi, ni) be the count of points in C(ui, vi), then #C (mi, ni) is given by [6]

#C (mi, ni) = # [CM (mi, ni) ∩ CN (mi, ni)] (3.38)
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Figure 3.3: Cartoon to explain the working of KL-based method [6]

Figure ?? demonstrates how #C (mi, ni) is calculated. This is a dummy figure and

does not comply that the spaces have a single dimension, as the dimension of the spaces

is undefined. The M space correspond to the closest M data points for a single pair

(depicted by a square) of spike train interval. Similarly, the N space corresponds to

the N closest data points, while, the other data points do not belong to either of the

spaces. The darkly shaded region corresponds to the points that belong to both the

spaces and the count of which contributes to the calculation of mutual information.

This can be simply thought of as the K-nearest neighbors (KNN).

Thus, for each point (mi, ni), the set CM (mi, ni) contains the point (mi, ni) itself

and along with this it contains the other h − 1 points that are closest when mi is

compared to mj. Similarly, the set CN(mi, ni) contains closest h− 1 points when ni is

compared to nj and the #C(mi, ni) is the no of points that form the intersection. Thus,

we can further easily estimate the mutual information with the Kozachenko-Leonenko

approximation [6] given by :

I(M ;N) ≈ IKL(P ;h) =
1

n

n∑
i=1

log2 n
# [C (mi, ni)]

h2
(3.39)
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When the distributions are independent, for varying values of r, the probability

that #C (mi, ni) = r can be calculated. Selecting h1 points in CM (mini) and not (m,

n) itself randomly chooses h1 points out of n1 and calculating r determines the number

of data points in CN (mini); this gives

prob (#C (m,ni) = r) =

(
h− 1

r − 1

)(
n− h
h− r

)
(
n− 1

h− 1

) (3.40)

Hence,

I0(n, h) =
h∑
r=1

prob (#C (mi, ni) = r) log2

nr

h2
(3.41)

Thus, an estimation of mutual information [6] is provided when the distributions

are independent.

This produces an upward bias since the ball R will not necessarily contain absolutely

#B points. Additionally, I0 provides a straightforward formula for this bias depending

only on the number of pairs, n and the smoothing parameter h. As h approached n,

this bias gets removed but if not so, then this bias can be removed from the estimation

of mutual information [6]:

I(M ;N) ≈ I(P ;h) = IKL(P ;h)− I0(n, h) (3.42)

This provides a final estimation of the mutual information between two EMG chan-

nels.

38



Chapter 4

Data

4.1 Simulated Data

Fictitious data was created with the help of MATLAB to have simulation similar to

that of the experimental data. Two arrays, A and B of size 7 X 8192 were created

using the MATLABs randn() function, which generates normally distributed random

numbers with 0 mean and 1 standard deviation for a given input size, n. Such array

sizes were taken so that they correspond to the 7 trials and 8192 data points of the

experimental data which was recorded for 4s (at 2000 Hz).

To verify that the estimation of mutual information using either of the methods is

correct, the two arrays, A and B, needed to be correlated such that incrementing the

correlation would increase the mutual information of the 2 entities. Hence, to do so, a

third array was generated using the 2 arrays using the following [50],

C = θA+ (1− θ)B (4.1)

where θ corresponds to the correlation coefficient. The value of θ is varied between

0 and 1.

4.2 Experimental Data

Collection and maintenance of the EMG were performed by the Trinity Biomedical

Science Institute and is solely provided for this research. The anonymity in identities
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of the subject within the given data resolves the privacy concerns that relate to this

study. Surface EMG from 8 muscles was recorded while the subjects were asked to

perform a motor task to sit in front of a display screen. Sensors were employed to

capture the force of the grip (on the chair arm) and the eye movements performed by

the healthy subjects. This EMG was filtered from 0 Hz to 50 Hz and thereafter, was

digitized at 2048 Hz.

EMG was taken from 8 subjects with the help of electrodes that capture the elec-

trical signals in nerve conduction. This data is captured for 4 seconds with a sampling

frequency of 2048Hz, thus generating a data of 8192 temporal values for each trial.

Seven such trials are recorded for each patient.

The experimental data were recorded from the right hand of the on the 2 muscular

regions First dorsal interosseous(FDI) and Abductor Pollicis Brevis(APB) (see Fig. 4.1

). The FDI muscles are present at the back-side of the hand (between the thumb and the

index finger), while the APB muscles reside on the palm under the thumbs. The EMG

channel C5 corresponds to the neural signals recording for the FDI muscle, whereas

the channel C6 corresponds to channel APB muscle. The overall dimensionality of the

data used in the study is 2× 7× 8192.

Figure 4.1: APB and FDI muscles of hand [7]
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4.3 Decimation

Decimation is used to decrease the sample rate of the input sequence, thus, producing

an approximation of the signal [51]. Both the fictitious and the experimental data are

downsampled by the rate - 8.

Decimation is performed using the following MATLAB function:

y = decimate(x,r)

where x Is the input signal and r is the rate at which downsampling need to be

performed [52]

Conducting decimation on each EMG channel for all the 7 trials involves the usage

of IIR filter which reduces the sampling frequency to 256Hz. After downsampling

the samples from the experimental and fictitious data, these are employed for the

estimation of mutual information using the Kullback-Leibler and bin-based approach.
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Chapter 5

Results

This section provides a discussion on the estimations of MI using the conventional bin-

based approach and the innovative density based method with the help of simulated

and experimental data. Furthermore, the effect of parameters: h and bins respective

to the 2 approaches are studied. Lastly, the estimated mutual information is compared

to information-theoretic linear measures - Power Spectral Density and Coherence.

5.1 Evaluation of MI using Simulated Data

Mutual Information is calculated for simulated data having a dimensionality of 2×7×
8192 data values. This corresponds to 4 seconds of data recorded per trial for two spike

channels at a sampling frequency of 2048Hz. Seven such trials are considered here.

Primarily, we estimate MI using the density based approach, post which, we com-

pare it to the bin-based approach and understand the effect of parameters

5.1.1 MI Calculation using Density(or KL)-based KNN ap-

proach

As already discussed, the Kullback Leibler-based approach evaluates mutual informa-

tion by considering a region (typically a ball) around each data value. Hence, number

of data values that fall within the region of each particular point contribute to the final

estimate of mutual information . The size of this region depends on the quantity h

(usually the radius) which determines the span of the point values. If the expanse of
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this span is large, then more data points fall within the region, which can eventually

lead to biased estimates, and similarly, smaller spans also generates inaccurate results.

Hence, it is important to find an optimal value of h.

In order to estimate mutual information using fictitious data, 2 random vectors

(generated from a normal distribution with mean 0 and variance 1) were considered.

From this, a third vector was generated by varying the correlation from 0 to 1, with 0

depicting the least interdependecy while 1 showing highly dependence. Calculation of

mutual information between the first and the third vectors was performed by varying

values of correlation. Numerous such experiments were conducted to determine an

optimal value of h. It was observed that the lower estimations of the MI are more

closer to 0. As the value of h is increased, the estimations seem to rise to provide the

optimal measurements (highlighted in blue in Fig 5.1) of the experiment.

Figure 5.1: Mutual information using KL-based approach for varying values of h

5.1.2 Cross-validation with the bin-based method and the ef-

fect of h/bins

To validate the results from the KL approach, the conventional Bin-based approach

was employed on the simulated vectors. As already discussed, this method takes into

account the count of bins that correspond to a unit square in two dimensions. By
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summing up data points lying in the bins, an estimate for the Akaike Information

Criteria is obtained, which is used for the MI calculations. For conducting experiments,

varying counts of bins were taken between the range (0,50).

With rising in the correlation between the two chosen vectors, results from the

bin-based approach showed that when an increasing number of bins are used, there

is a gradual increase in the MI estimates. If the bin count reaches a sufficiently large

value, optimal estimates for the mutual information can be expected. However, further

incrementing the count leads to deviation from the estimates and results in a condition

commonly known as overfitting. On the contrary, lowering bin counts poorly estimate

the mutual information (underfitting). Although precise estimations using this ap-

proach requires larger quantities of data, this study takes into account only the same

amount of data as used in the KL(or density) method.

A comparison between the two approaches can be observed in 5.2. Lower values

of h correspond to estimates of mutual information that are almost horizontal to the

x-axis. On the other hand, on taking smaller number of bins, the Bin-based approach

provides a fairly better estimate. Further incrementing the value of h and bins shows a

rise in the mutual information which is higher in comparison to their respective initial

results. Optimal values for MI are observed when the h-value is 50, which is seen in

the bin-based approach when the bin-count is 40. It must be noted that the scales for

the y-axis of the two plots vary. Increasing the values of parameter deviate the results

from the optimal ones (in blue) in both the approaches. Moreover, the estimates from

the density-based method show a quick rise in comparison to the ones from the bin-

based method, which experience a gradual increase. This clearly suggests that the

density-based method requires lesser amounts of data.

To firmly establish the findings of the KL-based approach (Table 5.1), mean cross-

difference is calculated between the results of the KL-based approach and the optimal

estimates from the bin-based method. This is given by the Eq. 5.1

mean

(
RKL −OB

RKL +OB

)
(5.1)

where RKL show the MI estimations from the KL approach and OB denotes the

optimal MI results from the bin-based method. Again here, it is evident that the lower

values of the smoothing parameter show extreme values. For the simulated vectors,
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Value of Smoothing
parameter, h

Mean cross-difference between
KL results and optimal

Bin-based estimate (bins=40)
1 0.9595
10 0.8350
50 0.2692

100 0.3451

Table 5.1: Cross difference to compare Bin-based and KL-based based estimates from
Simulated data

the value 50 shows the least difference between the two approaches and therefore is

chosen as the optimal value of h for the density-based approach.

Figure 5.2: Comparing Bin-based method to the KL-based approach for different values
of the parameters h/k

5.2 The effect of parameters

To understand the effect of parameters on electromyography, MI calculations were

performed on the experimental data. Thus, this section provides discussions on the

effect of smoothing parameter(h) on EMG, on optimal estimations using the KL based

method, and on cross-validation of these results against the bin-based approach.
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5.2.1 Experimenting with h and finding the optimum value

The experimental data consists of 2 channels that correspond to the APB and FDI

muscles in our body. EMG Data for 8 healthy subjects is recorded for a period of 4

seconds with a sampling frequency of 2048Hz. Seven such trials are conducted on these

subjects, thereby providing a dimensionality of 2X7X8192.

The density-based method is used to estimate the mutual information on this data.

Primarily, auto-mutual information is calculated for the respective APB (C5) and FDI

(C6) channels. Thereafter, cross-mutual information or simply the mutual information

is estimated between the APB and FDI channels.

Auto-mutual information for the FDI and APB Channels

Auto-mutual information estimates the dependency of a point process (discrete-time

event) with itself. It is a non-linear measure in correspondence to the linear information-

theoretic measure − autocovariance and is used to understand the self-relationships in

the muscular spike trains. Self-mutual information for the Channels C5 and C6 is con-

ducted for the subject 103 to understand the effect of parameters. It must be noted

that associations in neural spike trains are independent on the underlying structure

of data. Hence, a different value of the smoothing parameter would be required to

estimate the mutual information for each channel.

Calculation of mutual information in the channels is performed by lagging on the

second signal. Lags of the order of 30 are considered for this study. Estimating mutual

information for higher lags is restricted so that unnecessary complications in assessing

a largely lagged signal could be curbed, as well as is done to lessen the computation

time required to estimate the mutual information.

Fig 5.3 showcases the estimations of mutual information with Density-based method

with the increasing values of h. MI results from these are validated against the bin-

based approach (marked in blue in Fig 5.3). Smaller values of h lie closer to 0, hence

it is difficult to observe them. However, If the value is increased a little, say to that of

100, then more sparse values of mutual information are observed. This is because the

h-value is still lower than the optimal one. Upon further increasing the value to 1200,

it is seen that MI estimates fall closer reside to those from the bin-based approach.

Thus, this is observed as the best value of h for the C6−C6 MI estimate. Further
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increasing h can lead to overfitting and this can be seen for h=4000.

A similar pattern is observed for the MI estimations of the C5 channel. Here

MI is calculated for the h values 1, 100, 600, 1200 and 4000. As seen earlier, lower

values generate estimates that are closer to 0 while significantly larger ones tend to

overfit and fall farther away from the optimal estimates, thus providing poor results.

Coincidentally for this channel, h = 1200 again generates MI results that are closer to

those estimated from the optimal results from the bin-based and therefore, this value

is chosen as the best value of the smoothing parameter for the auto-MI estimates for

Channel C5.

Auto-mutual information results from both the C5 and the C6 channel take very

high values for the initial lags. This is because of the experimental errors that arise

while EMG is recorded. Hence, these initial estimations should be asserted more to-

wards the recording flaws rather than counting them as the representing estimates of

the actual neural synchrony.

(Cross-)mutual information between the 2 EMG channels- FDI and APB

The Cross-mutual information or simply mutual information is used to find the inter-

activity between the 2 EMG channels - C5 and C6 which are the respective spike trains

measured from the FDI and APB muscles. In contrast to the estimates observed for

auto-mutual information, the ones for the cross-MI show more variation along with the

lags. However, the behavior of the cross-mutual information results closely correspond

to those of the auto-mutual information and thus, smaller values of the parameter

provide more sparse and deviating results while the larger one tends to over-fit and

eventually diverge away from the optimal calculations. h = 900 show results that closer

to the estimates from bin-based approach, hence, it is chosen as a befitting value of

the parameter h to perform MI calculations C5 and C6.

5.2.2 Numerical Validation bin-based approach

To numerically validate the results, the mean-cross difference was calculated from the

MI estimations using the experimental data. Table 5.2 shows the outcomes of this

calculation with respect to each channel pair. For the C5-C6 pair, it was observed

that h = 900 shows the lowest cross-difference against the optimal estimates from the
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Figure 5.3: Auto-mutual information for FDI Channel with different values of h vs.
KL-based estimates

bin-based approach. Hence, this value corresponds to the earlier chosen value of h, the

conclusions for which were drawn from the plots. Similar outcomes can be drawn for

the C5-C5 and C6-C6 pairs. Thus lower values underfit the cross-MI (or simply MI)

estimations while the higher values overfit them.

5.2.3 Cross-comparison on the effect of parameters between

the bin-based and KL-based apporaches

Numerous experiments were conducted by varying bin values for the 3 channel-pairs

C5-C5, C6-C6, and C5-C6. Congruency could be observed between the results of these

experiments and those of the simulated data which could help conclude the optimal

count of bins for these channel-pairs. While the same bin count - 12 and h value - 1200
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Channel-pair
Value of smoothing

parameter

Mean cross-difference between
KL results and optimal

Bin-based estimate (bins=40) for
experimental data

C5-C6 1 0.9845
C5-C6 100 0.3199
C5-C6 900 0.0941
C5-C6 1600 0.1194
C5-C6 2000 0.2064
C6-C6 1 0.9850
C6-C6 100 0.2940
C6-C6 1200 0.1071
C6-C6 4000 0.4543
C5-C5 1 0.9929
C5-C5 100 0.3356
C5-C5 800 0.2324
C5-C5 1200 0.1064

C5-C5 4000 0.2046

Table 5.2: Cross difference between Bin-based and KL-based based estimates using the
Simulated data
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Figure 5.4: Auto-mutual information for APB Channel with different values of h vs.
KL-based estimates

were recorded for auto-MI for channels C5 and C6, those for the MI between C5 and

C6 took 14 and 900 respectively

5.3 Rythemic component in one EMG channel

Auto-mutual Information was calculated for the 2 EMG channels - C5 and C6 on 8

subjects. The evaluations were carried out by performing a lag of 256Hz. Rhythmic

components in the MI estimates were discovered using the bin-based and the density-

based approaches. The comparison of these patterns were carried out in the δ-band(0 to

4Hz),θ-band (4 to 8Hz), α-band(8 to 15Hz), β-band(15 to 30Hz) and γ-bands(greater

than 30Hz) respectively . This section first explores the components observed from the

estimates from both the approaches, which is followed by a discussion on the cross-
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Figure 5.5: Mutual information between APB and FDI Channels with different values
of h vs. KL-based estimates

comparison with the linear measure for auto-dependence: autospectrum.

5.3.1 Results from Lagged (Auto-)mutual information

Calculation of (auto-)mutual information using the 2 approaches was primarily con-

ducted for the channel C6, post this, the methods were employed for the EMG channel

corresponding to the APB muscle.

Decimation was performed on the data before the start of the experimentation.

Data with the dimensionality of 7 X 8192 which corresponded to the sampling frequency

of 2048Hz was down-sampled by a factor of 8, thereby, leading to the resultant frequency

of 256Hz. Although data were recorded for a different no of trials for each subject, 7

trails were chosen with respect to each subject. Congruity in the number of trials was

taken because the value of h goes inconsistent for the varying amounts of data. Optimal
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bins for the bin-based approach were chosen as the result of numerous experiments that

were conducted by performing variations in the bin count. Moreover, it must be noted

that for a particular channel, the same value of h was used across all the subjects.

Smoothing by a factor of 5 was performed on the MI estimates using the MATLAB’s

y = smooth(x) function which uses a moving average filter on the data [52]. Larger

estimates of mutual information were sliced out as these were more asserted to the

experimental errors and hindered in the detailed analysis of the signal.

(Auto-)mutual information for Channel C6

Calculations of auto-mutual information are performed for the Channel C6 with itself.

This is done keeping the first version of the channel intact, while a lag is performed on

the second version. Lags of the order of 256Hz are conducted on the second version

which corresponds to 1 second of data out of the 4 seconds that was recorded. The

same value of the smoothing parameter, h = 1200 is used for all the subjects. A

similarity in the rhythmic patterns is observed when the 2 approaches are compared

to each other.

The beta-band is well known to show peaks in coherence plots when a force pro-

duction task is conducted by the APB and FDI muscles. This shows interactivity

between the nerve cells of muscles and motors neurons of the cortex ( part of the brain

responsible for movement) [53] As can be observed in almost all of the subjects (see

Fig. 5.6,5.7,5.8), both the methods commonly show a larger spike in β-band. Such

results are phenomenal to the estimation of mutual information using the density-

based approach and signify the efficiency of this newly developed approach against the

conventional one.

Close similarities can also be observed in the Gamma band, It is seen that results

for some of the patients are lesser distorted in the bin-based approach than that from

the density-based approach. A similar observation is made for the α band. However,

it is difficult to closely examine these estimates given to the high distortions in the MI

estimates in these frequency ranges.

Comparing results for the lower bands becomes difficult as the rhythmic patterns

demonstrate much higher levels of contortions making it difficult to examine them by

the naked eyes.
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Figure 5.6: Cross-comparison of the Rythemic components in Channel 6 using 2 Mutual
Information methods and Power Spectral for the subjects 102, 103, and 104

Figure 5.7: Cross-comparison of the Rythemic components in Channel 6 using 2 Mutual
Information methods and Power Spectral for the subjects 105, 106, and 108
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Figure 5.8: Cross-comparison of the Rythemic components in Channel 6 using 2 Mutual
Information methods and Power Spectral for the subjects 111 and 112

(Auto-)mutual information for Channel C5

The calculation of auto-MI for the channel C5 is performed similarly as the channel C6.

A comparison is made for the density-based approach against the bin-based method.

A value of h=1200 is taken for the smoothing parameter against the bin count of 12.

The behaviour of results (see Fig. 5.9, 5.10, 5.11) in C5 closely correspond to those

are observed in C6. The β band that shows coherence between the activities of the

cortex and the motor neurons again depicts peaks in its frequency range across all the

subjects. Moreover, it is difficult to interpret the results in the smaller frequency ranges

in comparison to γ band (having higher frequency band) which shows some levels of

similarities between the estimates from the KL and the density-based method. But, a

precise comparison in this is difficult as very few estimated of the mutual information

fall within this frequency region.

5.3.2 Comparison to Power Spectral Density

Auto-MI estimations using the bin-based and density-based approach are compared

against the linear measure: auto-spectrum also commonly known as the Power Spectral

Density.

For both the channels C5(see Fig. 5.9, 5.10, 5.11) and C6 (see Fig. 5.6, 5.7, 5.8), it

was observed that within the β-band the MI estimates from the two methods and the

results of auto spectrum showed a similar trend. On the contrary, the results in the
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Figure 5.9: Cross-comparison of the Rythemic components in Channel 5 using 2 Mutual
Information methods and Power Spectral for the subjects 102, 103, and 104

Figure 5.10: Cross-comparison of the Rythemic components in Channel 5 using 2
Mutual Information methods and Power Spectral for the subjects 105, 106, and 108
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Figure 5.11: Cross-comparison of the Rythemic components in Channel 5 using 2
Mutual Information methods and Power Spectral for the subjects 111 and 112

gamma bands showed a dissimilar trend with some subjects. The δ and θ and α bands

in the spectral density showed almost 0 mutual dependencies and hence it becomes

difficult to compare them with the MI estimates. Thus, although the plots show vast

dissimilarities between the two information theory measures, it must be noted that the

auto spectrum is a poor estimator of the self-dependency in neural signals because the

interactions within this type of data are non-linear.

5.4 Synchorny between 2 EMG Channels

Cross-Mutual information is calculated between the 2 EMG channels C5 and C6 to

understand the synchrony between the APB and FDI muscles. This section provides

an overview on how the calculation of the mutual information was performed between

the 2 channels using the density-based and the bin-based methods, on the validation

of these KL estimates to bin-based ones, and finally on the comparison of the MI

estimates against the linear measure interdependency: Coherence.

5.4.1 Lagged (Cross-)Mutual Information for 2 EMG Chan-

nels

The cross mutual information was calculated between the channels C5 and C6 by lag-

ging the samples of the latter channel by 256Hz. The optimal value of the smoothing
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parameter was chosen from the earlier experiments conducted that used different vari-

ations of h (Ref. Chapter 5.2). The h value of 900 was taken for the Density-based

method against the bin count of 14 for the Bin-based approach.

Comparing the estimates of MI with the Kl approach (see Fig. 5.12, 5.13, 5.14)

against the binned one showcases interesting results. The β-band (15-30Hz) estimates

for 2 methods show a similar trend across all of the patients, which shows peaks in the

MI estimate in this interval. As previously discussed, it is known that spike activities

in the β band show interactivity between the motor cortex neurons and nerve cells

in the hand muscles. Such a pattern is easily captured by the conventional bin-based

method. Interestingly, the results of MI using the density-based approach show similar

trends across all the subjects. Similar trends in the γ (30Hz or higher) band can

also be observed for the 2 approaches. While studying the δ (0-4Hz), θ (4-8Hz), and

α (8-15Hz) bands is difficult, it can be fairly established that the results from the 2

approaches are closer to each other in these lower frequencies. Such similarities in the

two approaches is an integral finding and suggest that the two approaches are coherent

with each other.

5.4.2 Comparison to Spectral Coherence between 2 EMG Chan-

nels

The MI information estimates from the 2 approach are compared (see Fig. 5.12, 5.13,

5.14) to those of traditional linear approach: Coherence (or in this case the magnitude

squared coherence). A similar trend in the beta band can be observed between the 3

estimates suggesting the MI estimates lie hand in hand to the coherence-based results.

Such similar patterns are observed for the α, δ, and θ bands for most of the subjects

with a few showing a little difference. However, such similarities in these frequency

ranges cannot be strongly commented upon because of the disparities in the coherence

results for some subjects. It is expected that shifting the signals − 104 to the left and

106 to the right will establish similarities with the 2 subjects. Although at some level

it can be said that results for the Gamma band also increase like those seen in the MI

estimates, these outcomes cannot be firmly established given to the lesser amounts of

estimates that fall in this region.
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Figure 5.12: Cross-comparison of the Mutual Information calculated between Channel
5 and 6 against the coherence estimate for the subjects 102, 103, and 104

Figure 5.13: Cross-comparison of the Mutual Information calculated between Channel
5 and 6 against the coherence estimate for the subjects 105, 106, and 108
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Figure 5.14: Cross-comparison of the Mutual Information calculated between Channel
5 and 6 against the coherence estimate for the subjects 111 and 112

59



Chapter 6

Discussions and conclusions

This section provides a discussion on the conclusions drawn from these results, describes

the limitations and highlights the future work concerning the study.

6.1 Summary of New Contributions

The study involves the calculation of mutual information using the density-based ap-

proach and the bin-based method. Significant conclusions were drawn out from this

work.

Primarily, on cross-comparison of the MI estimations from the bin-based approach

to the density-based method, it was observed that results of the latter showed similar

variation and took values that were in close correspondence to the bin-based approach.

This validates the results from the newly established KL approach using the EMG

data and establishes that the density-based approach is also efficient to measure the

synchrony between neuromuscular signals.

On comparison of the results from the KL approach to that from the information-

theoretic linear measure - Coherence and Autospectrum (or the PSD), it was observed

that estimates from both the density-based and bin-based methods produced results

that are similar to these measures. Although a close similarity was not observed,

it must be noted that the coherence and PSD are traditional measures and poorly

estimate the inter-dependencies between the two muscular regions.
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6.2 Applications in neuroscience and neurological

diagnostics

Intermuscular and neuromuscular dependencies measured with the traditional linear

approach are more sparse and generate inaccurate results as these inherently depend

upon the linearity of the data, which is not the case for the neural signals. Thus, these

measures are less reliable

Moreover, for the estimations of the non-linear measure - the mutual information,

the conventional methods require tremendously large quantities of data. Such huge

quantities are infeasible to measure but are needed for the precise estimations from

these approaches.

The density-based approach (used in this study) requires significantly lesser amounts

of data to achieve precise evaluations. This can be significant in the neuroscience do-

main and can be used for advanced studies of inter-muscular and neuromuscular regions

and thus can better aid in the diagnosis of nerve-muscle and muscle-muscle related dis-

orders like the ALS and for a genetic muscular disorder like the Duchene’s muscular

dystrophy. Apart from this, potential use lies in designing advanced prosthesis.

6.3 Limitations

Though the innovative KL(or density) based approach is advantageous, it comes with

several limitations.

Primarily, estimating MI using this approach is computationally expensive. This

comes from iteratively finding values within closer proximity for each paired-data value

of the input signal. This disadvantage would limit its usage in the studies that require

a computationally efficient environment.

Moreover, it becomes difficult to distinguish between the mutual information esti-

mates if the values of h are closer to each other. The MI values coincide with each

other when such smaller values of h are taken. This hinders in the process of choosing

an optimal value of the smoothing parameter, h.

Apart from this, for the varying amounts of data, the value of smoothing parameter

varies, hence this again makes it challenging to determine the best measure of h. Thus
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it can be established that choosing the value of the smoothing parameter is a major

challenge in this approach.

6.4 Future Work

Although appropriate values of h were taken in this study by performing cross-validation

against the bin-based approach, a strong measure needs to be devised to determine the

optimal value of h. Moreover, advancements that increase the computational efficiency

of the algorithm can also be invented.

Lastly, as used in this dissertation, to study the relationships between two muscular

regions, this approach can also be employed for understanding electrical conductivity in

the intercortical regions which can be used explain neural synchrony within the brain.
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Appendix

Abbreviations

MI Mutual Information

EMG Electromyography

ALS Amyotrophic Lateral Screlosis

FDI First Dorsal Interosseous muscle

APB Abductor pollicis brevis muscle

KL Kozachenko-Leonenko Estimator

PSD Power Spectral Density

OSAS Obstructive sleep apnea syndrome
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