
A Solid-powered decentralised social network for

academics: An evaluation of key considerations for

developing practical Solid-powered applications

Akashdeep Singh Lamba, B.Tech.

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: Prof. Declan O’Sullivan

Co-Supervisor: Dr. Jeremy Debattista

August 2019



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Akashdeep Singh Lamba

August 12, 2019



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Akashdeep Singh Lamba

August 12, 2019



This work is dedicated to Professor Seamus Lawless



Acknowledgments

I’d like to take this opportunity to acknowledge Prof. Declan O’Sullivan and Dr.

Jeremy Debattista for continued support and guidance throughout the process. Prof.

Siobhán Clarke for valuable insights on Software Engineering and pointing me to ICSE

which ultimately led me to some critical resources for my literature review. I also

appreciate the efforts of the entire staff of Trinity for making sure the students have a

pleasant learning experience.

I’d also like to extend my sincere appreciation to the entire Solid Community,

especially Ruben Verborgh, Sir Tim Berners-Lee, Mitzi László, James Martin, Mark

Hughes and all other individuals who took the time to answer my questions on various

platforms, and for keeping Solid going.

Finally, I’d like to express my gratitude towards my family and friends for their

constant encouragement and for helping me edit. I wouldn’t have been able to complete

this journey if it weren’t for all the motivation from everyone.

Akashdeep Singh Lamba

University of Dublin, Trinity College

August 2019

iv



A Solid-powered decentralised social network for

academics: An evaluation of key considerations for

developing practical Solid-powered applications

Akashdeep Singh Lamba, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Prof. Declan O’Sullivan

Co-Supervisor: Dr. Jeremy Debattista

Contemporary Social Networking applications are centralised, provide limited access
control capabilities which are driven by dense privacy policies subject to change due
to business considerations. Additionally, data ownership is impossible, interoperability
between applications is in-feasible, and privacy of user data is not guaranteed.

Decentralisation is a potential solution to some of these problems, and Solid is a
project that intends to make a fully decentralised read/write Semantic Web a reality.
Solid is a set of standards and tools whose core tenets are decentralisation, complete
and customisable access control, full data ownership, and reusable code.

With this study, we aimed to learn about Solid and to evaluate the developer ex-
perience. The objective was to produce a proof-of-concept Solid application, arrive at
a set of guidelines for Solid development, and recommend improvements to Solid. A
critical analysis of the developer experience revealed that Solid, though promising and
important, is not yet ready for general uptake as the specification is not frozen. Solid
development requires considerable prior knowledge of Linked Data and additional con-
cepts such as Web Access Control, and the existing learning resources are inadequate.
Thus, the developer experience is not mature enough to be scalable.



Contents

Acknowledgments iv

Abstract v

I Thesis x

List of Tables xi

List of Figures xii

List of Abbreviations xiv

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Non-goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Organisation of this document . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Related Work 9

2.1 Literature review strategy . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 State of privacy in centralised social networks . . . . . . . . . . . . . . 11

2.3 Bootstrapping a developer in a new technology . . . . . . . . . . . . . . 17

2.3.1 On-boarding and Developer Experience . . . . . . . . . . . . . . 17

vi



2.3.2 Documentation and Learning resources . . . . . . . . . . . . . . 20

2.4 Decentralisation efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 State of the art of Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Building blocks of Solid . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Solid applications . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Summary and Next Chapter . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Research Methods 37

3.1 Participant profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Summary and Next Chapter . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4 Application Design and Implementation 40

4.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Use-case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Technical Implementation Details . . . . . . . . . . . . . . . . . . . . . 50

4.8 Summary and Next Chapter . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Evaluation 53

5.1 Development Experience Evaluation . . . . . . . . . . . . . . . . . . . . 53

5.1.1 DX1: Quality of learning resources . . . . . . . . . . . . . . . . 53

5.1.2 DX2: Activity in the community . . . . . . . . . . . . . . . . . 55

5.1.3 DX3: Quality and quantity of tooling . . . . . . . . . . . . . . . 57

5.1.4 DX4: Stability of the platform . . . . . . . . . . . . . . . . . . . 60

5.1.5 DX5: Technical capabilities and features of the project . . . . . 60

5.2 Application Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Privacy by design . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 DOSN classification . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



5.3 Summary and Next Chapter . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 6 Discussion and Conclusions 65

6.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 7 Future work 68

Bibliography 71

Appendix A Development Journal 95

A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1.1 20-12-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 First Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.2.1 20-12-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Initial hurdles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3.1 23-12-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3.2 27-12-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3.3 18-01-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Read data from and Write data to Pod . . . . . . . . . . . . . . . . . . 99

A.4.1 2-02-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.4.2 2-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.4.3 11-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.4.4 12-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.4.5 12-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.4.6 13-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.4.7 16-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.4.8 17-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.4.9 17-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.5 Migration of Pods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.5.1 21-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.6 Implementation: A very long post . . . . . . . . . . . . . . . . . . . . . 105

A.6.1 25-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.6.2 30-05-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.6.3 1-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



A.6.4 3-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.6.5 5-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.6.6 7-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.6.7 7-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.6.8 8-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.6.9 16-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.6.10 17-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.6.11 17-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.6.12 22-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.6.13 25-06-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.6.14 8-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.6.15 10-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.6.16 10-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.6.17 12-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.7 Final session: almost finishing touches . . . . . . . . . . . . . . . . . . 115

A.7.1 14-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.7.2 17-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.7.3 18-07-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix B Application Screenshots 117

II Getting Started with Solid 125

ix



Part I

Thesis

x



List of Tables

2.1 Literature review search terms . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Framework for Developer Experience (DX) [1] . . . . . . . . . . . . . . 17

2.3 Developer joining model [2] . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Comparison of decentralised online social networks . . . . . . . . . . . 26

4.1 Functionality implementation mapping with Solid features . . . . . . . 52

5.1 Evaluation of Solid tutorials . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Gitter messages on Solid and Deno rooms, as on 06-08-2019 . . . . . . 57

xi



List of Figures

1.1 Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 A typical social network [3] . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A classification of common DOSN privacy models [4] . . . . . . . . . . 24

2.3 The federation of DOSNs [5] . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4a Example RDF encoded as Turtle . . . . . . . . . . . . . . . . . . . . . 31

2.4b Graphical representation of example RDF . . . . . . . . . . . . . . . . 31

4.1 Follow request life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 High-level overview of Feed aggregation . . . . . . . . . . . . . . . . . . 46

4.3 System architecture of Albus . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 User Interface of the homepage of Albus . . . . . . . . . . . . . . . . . 51

B.1 Homepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Homepage with Logout button revealed . . . . . . . . . . . . . . . . . . 118

B.3 Homepage with Notifications expanded . . . . . . . . . . . . . . . . . . 118

B.4 Login with WebID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.5 Pod Provider selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.6 WebID-OIDC authentication: enter credentials . . . . . . . . . . . . . . 120

B.7 Add application to trusted applications . . . . . . . . . . . . . . . . . . 120

B.8 Consent to store and publish WebID . . . . . . . . . . . . . . . . . . . 121

B.9 Write post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.10 View and edit your own profile . . . . . . . . . . . . . . . . . . . . . . 122

B.11 View another user’s profile (Read-only) . . . . . . . . . . . . . . . . . . 122

B.12 View your followers and followees . . . . . . . . . . . . . . . . . . . . . 123

xii



B.13 List all users on the network who have opted-in to be discovered . . . . 123

B.14 Alert message upon sending a follow request to another user . . . . . . 124

B.15 Homepage from the point of view of Jon Snow . . . . . . . . . . . . . . 124

xiii



List of Abbreviations

OSN Online Social Network
SNS Social Networking Site
DOSN Decentralised Online Social Network
OSS Open-source software
FOSS Free and Open source software
PII Personally identifiable information
FIP Fair Information Practice
UX User Experience
DX Developer Experience
TAM Technology acceptance model
DHT Distributed Hash Table
P2P Peer-to-peer
IBBE IdentityBased Broadcast Encryption
UOT User Online Table
URI Uniform Resource Identifier
OWL Web Ontology Language
REST Representational State Transfer
WebID Web Identity and Discovery
OIDC Open ID Connect
NSS Node Solid Server
WAC Web Access Control
LDP Linked Data Platform
LDN Linked Data Notifications
PR Pull Request
TTL Terse Triple Language
ACL Access Control Lists
GUI Graphical User Interface
UI User Interface
SDK Software Development Toolkit
API Application Programming Interface
HOC Higher-order component
FAQ Frequently Asked Questions

xiv



Chapter 1

Introduction

In today’s hyper-connected world, Internet has become a necessity and applications are

increasingly relying on large-scale data collection, data mining, and machine learning

to provide rich, personalised experiences to customers. Internet users, as a result, have

become dependent on technologies such as personal assistants for repetitive tasks, and

on social networking applications for staying in touch and accessing online content.

A side-effect of this symbiotic relationship is increasing data privacy and security

concerns [3, 6, 7]. Data privacy, especially on applications relying on advertising for

revenue, is an even bigger issue because of the incentive to mine more and more data [8].

Malpractices such as selling data to third-parties without consent notwithstanding, the

appetite for mining private user data of contemporary web applications is a cause of

concern simply because users themselves end up giving up rights of ownership to data

about them without knowing the full extent of the data collection and its implications

[9]. Since user data is stored on servers of applications that use it, users have little

control over its movement, storage, safety, security, manipulation, and destruction

[3, 10].

A major category of data-driven applications that have spurred data privacy con-

cerns are Online Social Networks (OSNs). Most popular online social networks have

a centralised architecture, i.e., they store large amounts of user information on their

central databases, with users having little to no control over how that data is stored

and whom it is shared with. The lack of transparency, coupled with tediously worded

privacy statements leads to widespread data leakages and privacy violations leaving

1



1.1. BACKGROUND

users frustrated and helpless [8,9,11]. The repercussions can range from the relatively

harmless such as email or phone spam to truly horrific criminal incidents like stalking.

Attempts have been made to address the centralised aspect of data storage and

access control. One such effort is Solid [12], an open-source project born at MIT. Solid

is aimed at enabling decentralised applications [13] with the help of Linked Data and

Semantic Web [14], using a set of standardised technologies and conventions.

1.1 Background

The name Solid [12] is an acronym derived from SOcially LInked Data. It aims to

transform the way we think of the design and use of Web-based applications. In

technical terms, Solid is the specification of set of standards and tools that espouses a

decentralised design philosophy for Web applications using Linked Data as the means

to represent data and connections between data.

It was conceived in 2015 at MIT’s CSAIL [15] as an academic project under the

leadership of Sir Tim Berners-Lee [16]. It’s widely believed that the current trend of

applications that is characterised by a lack of control over data by users [9], and fosters

data silos [17] is the wrong direction for the Web [18,19].

Solid can be considered a natural evolution of the read/write Web [20–24] and the

read/write Semantic Web [20, 23]. The idea that the Web is a readable and writable

space where data is machine-readable [23, 25, 26] and is accompanied by meta-data

for source tracing [27] and access control [28, 29] is indeed central to realising the

vision of Solid, and Solid specifies the infrastructure and the best practices for the

implementation of decentralised web applications that also follow the principles of

Linked Data and constitute the read/write Semantic Web.

1.2 Motivation

The nature of this research is exploratory. There are primarily 3 factors motivating

this work.

Firstly, we arrive at a set of guidelines and key considerations for new software

developers being introduced to Solid. These guidelines are to be based on time-tested

2



1.3. GOALS AND CONTRIBUTIONS

best practices in software development [30–33]. Solid introduces a paradigm shift in

how most developers think about web application development. Some questions such

as “how do we deal with customer data if they have the responsibility of making it

available?” and “how do we build applications that do not store any user data on the

server?” are worthy of being answered, and through this work, we will answer them.

We also lay out explicitly the challenges inherent in this new approach to designing

customer-facing applications and this work enables future work to address them.

The second motivation is to produce a privacy-preserving decentralised social net-

working application for academics. A social network or online social network (OSN)

is an example of user-data-driven application. Over the years, social networks have

evolved from computer-based education tools to friendship, dating, job-seeking net-

works with a plethora of private information and interactions attracting viral growth

and commoditisation [34]. Through this study, we built a decentralised OSN that com-

plies with the philosophy of Solid, thereby providing data access control and ownership

to its users.

Finally, the study enables a more nuanced understanding of the challenges inherent

to decentralised application design and deployment, with a focus on Solid’s contribution

to addressing these issues.

1.3 Goals and Contributions

By the end of this study, we expect to have:

a. An evaluation of the extent to which Solid can be used to build practical appli-

cations from the perspective of an application developer.

b. A non-exhaustive list of challenges in application development using Solid, and

potential approaches to overcome them.

c. A proof-of-concept decentralised social network for academics to act as an exam-

ple Solid application for new developers as well as to further Open Science initiatives.

d. A tutorial-style guide for beginning application development in Solid focusing

on real-world use-cases.

The study contributes to the Solid community, the web development community,

the free and open source software (FOSS) community, and the Semantic Web/Linked

Data communities. Translating our goals to the contributions, we have:

3



1.4. RESEARCH QUESTION

C1 Solid developer guidelines and best practices

By carrying out a study of Solid development experience, we obtain actionable

knowledge that can be applied to attract and train developers to use Solid, and to

make the learning process smoother through a set of guidelines for development.

C2 A Solid Application

The chief benefit of conducting this research is a significant contribution to the

Solid community, by way of demonstrating implementation of a practical use-case.

The proposed application will use the state of the art development techniques and

tools available in the Solid community, and will demonstrate some of the salient

capabilities of Solid.

C3 Improvements to Solid

We discover a list of flaws and bottlenecks in addition to under-explored use-cases

of Solid that will facilitate improvements to the documentation and developer

resources.

C4 An Open-science portal

The product of the research itself will be a contribution to the academic commu-

nity as an Open-science focused decentralised social network.

This study therefore, has three artefacts:

Artefact 1: The application, called Albus, which will be available as open-source

software (OSS) online.

Artefact 2: A Beginner’s Guide to Solid, included in this document as Part II.

Artefact 3: The development journal, included in this document as Appendix A.

1.4 Research Question

The research question this study aims to answer is formulated as follows:

“What are the key considerations while building practical applications powered by

Solid?”

4



1.5. NON-GOALS

1.5 Non-goals

This section is intended to clarify the non-goals of this study.

This study is not intended to produce a white-paper or a comprehensive reference to

Solid. While we look at Solid from several perspectives in order to answer our research

question, the study is by no means exhaustive, and an in-depth analysis of Solid is out

of its scope. We only study the technical details of Solid to the extent required to build

the application.

Finally, while we observe high standards of coding practices, maintainability and

performance are not the focus of the application development track. The application

developed is to serve as a proof-of-concept system for demonstrating capabilities, rather

than a production-ready system.

1.6 Research Areas

This project deals with an interaction of four different research areas, as shown in Fig.

1.1.

1. Privacy in Online Social Networks

Solid is focused on building privacy-enhancing web applications through decen-

tralisation, and this reflects in the goals of out study as well. We study the

concept of privacy as well as the state of privacy in current OSNs. The under-

standing of privacy evolved through this study is used to design the application.

2. Developer experience

This study assesses the developer experience (DX) [35] of the current Solid ecosys-

tem from the point of view of a software developer through exercise and makes

observations as to how it can be improved.

The learning curve as a result of available developer on-boarding tools and docu-

mentation and its evolution is explored, and is used to build a “Getting Started”

guide for building privacy-preserving Web applications using Solid.

3. Decentralised application design

5



1.6. RESEARCH AREAS

Figure 1.1: Research Areas

Since it’s based on Solid, decentralisation is a core characteristic of this project.

This has strong implications on both the privacy-preserving aspect and the tech-

nical capability aspect of the proposed system, and we will be studying these

implications in detail, both in theory and by practice. We evaluate our proposed

application against these findings.

4. Linked Data and the Semantic Web

Solid is built on the foundations of Linked Data and Semantic Web and as a result,

the technical implementation details involve key Linked Data and Semantic Web

concepts as part of the specification [36]. The application we build will use these

concepts, and we study how it affects the design and implementation.

Fig. 1.1 is a Venn diagram representation of the logical relationship between these

research areas viz-a-viz this project. It’s helpful to think of this study partly as an

6



1.7. ORGANISATION OF THIS DOCUMENT

evaluation of Solid’s development experience. If you consider that Solid is the intersec-

tion of privacy in OSNs, decentralised application design, and Linked Data, then this

study becomes an intersection of these 3 areas with development experience. Note that

this project lies in the centre of the diagram, i.e., the intersection of the four research

areas.

1.7 Organisation of this document

Throughout this document, the words this study, this research, this project, and this

work are used interchangeably to refer to the work done towards the completion of this

thesis, unless specified otherwise.

The words the system, the application, and Albus are used interchangeably to refer

to the decentralised social networking application developed as a part of this study.

This document is organised into two parts. Part I is the primary thesis which

represents the research work carried out and the findings. Part I is organised as follows:

Chapter 2 analyses the research areas and establishes the foundation of this work

through a study of the state of the art in each research area and links it to this work.

Chapter 3 focuses on the approach used for this study.

Chapter 4 acts as a description of the design and lays out the technical implemen-

tation details of the application. A set of features and their corresponding technical

approaches will be discussed.

Chapter 5 lists the observations from the development experience portion of this

study, and critically analyses it with respect to the findings from related work. This

chapter also presents an privacy and performance evaluation of the proposed applica-

tion.

Chapter 6 presents the conclusions drawn from the findings from Chapter 5, and

puts them in context of the goals laid down earlier in this chapter. We conclude with

the answer to the research question and ends with the limitations of this research.

Chapter 7 briefly discusses the future work for the improvement of the platform, as

well as for making the application more feature-complete.

Appendix A is a verbatim re-formatted reproduction of the development journal,

which represents Artefact 3 of this research and is used to base the assessments

presented in Chapter 5 upon.

7



1.7. ORGANISATION OF THIS DOCUMENT

Appendix B shows screenshots of the graphical user interface (GUI) of the applica-

tion that is built as a result of this study (Artefact 1).

Part II of this study is the a tutorial-style beginner’s guide (Artefact 2) for building

decentralised web applications using the Solid platform. This artefact is intended to

serve as a model for producing more effective learning resources and documentation

around Solid.

8



Chapter 2

Related Work

This chapter presents an in-depth review of the literature surrounding the research

areas mentioned in Fig. 1.1. The first section sheds light on the method used for this

literature review. The second section delves deep into the conceptualisation of privacy

grounded in the context of OSNs. The third section explores existing research on soft-

ware development pedagogy and developer experience with special focus on OSS. The

fourth section presents a survey of decentralisation efforts and the challenges involved,

especially those concerned with social networking. It also tabulates a comparison of

the previously proposed or existing systems against commonly used techniques. The

fifth section of this chapter begins with a brief overview of Linked Data, and then

explores the state of the art of Solid, concentrating on the fundamental concepts and

closing with an outline of existing Solid applications. The sixth section summarises

this section.

2.1 Literature review strategy

The literature review for this chapter used the strategy of Snowballing [37]. A starting

set of articles was obtained by searching a selected list of sources for a list of terms

(Table 2.1), and then manually examining the results for relevant references. Neither

list is exhaustive and other sources or terms were added on an ad-hoc basis as needed.

Solid is a rather new development, hence, the literature review also involved a

considerable number of articles and blogs from the web. The list of initial sources is

9



2.1. LITERATURE REVIEW STRATEGY

as follows:

1. IEEE Xplore1

2. Stella Search - The Library of Trinity College Dublin: Stella Search2

3. ResearchGate3

4. Science Direct4

5. Google Scholar5

6. Solid.mit.edu web site6

7. Inrupt Inc. web site7,8

8. Ruben Verborgh’s Publications9

9. Web articles and blogs

The search terms were constructed by examining the key concepts and keywords

associated with Sold and the four research areas (Fig. 1.1). One of the challenges we

faced while constructing the initial list for search terms was that Solid is an ambiguous

search term, being famous for being associated with object-oriented design [38] and

for a programming language used for the blockchain Ethereum [39]. We needed to

maintain the specificity while not inadvertently rejecting relevant literature that did

not include the exact words. This is where Snowballing [37] was very effective as we

were able to find relevant literature by association.

1https://ieeexplore.ieee.org/Xplore/home.jsp [Accessed: 07-08-2019]
2https://stella.catalogue.tcd.ie/iii/encore/?lang=eng [Requires authentication] [Ac-

cessed: 07-08-2019]
3https://www.researchgate.net/ [Accessed: 07-08-2019]
4https://www.sciencedirect.com/ [Accessed: 07-08-2019]
5https://scholar.google.com/ [Accessed: 07-08-2019]
6https://solid.mit.edu/ [Accessed: 07-08-2019]
7https://solid.inrupt.com/ [Accessed: 07-08-2019]
8https://inrupt.com/ [Accessed: 07-08-2019]
9https://ruben.verborgh.org/blog/ [Accessed: 07-08-2019]

10

https://ieeexplore.ieee.org/Xplore/home.jsp
https://stella.catalogue.tcd.ie/iii/encore/?lang=eng
https://www.researchgate.net/
https://www.sciencedirect.com/
https://scholar.google.com/
https://solid.mit.edu/
https://solid.inrupt.com/
https://inrupt.com/
https://ruben.verborgh.org/blog/


2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

privacy social networks

privacy concerns social networks

privacy violations social networks

solid

solid linked data

solid applications

learning software development

learning new software development frameworks

getting started with new software technology

software development tutorials for new developers

challenges learning new software framework

software developer pedagogy

read write web

solid tim berners-lee

social networking privacy

social networking privacy laws

factors adoption new technology

developer experience

Table 2.1: Literature review search terms

2.2 State of privacy in centralised social networks

This section will present the current practices in centralised social networks focusing

on the privacy aspect, with the goal of arriving at a better understanding of privacy

itself, how current OSNs interpret and implement it, and how a more evolved level of

privacy can be delivered to users of OSNs.

Social Networking Sites (SNS) or Online Social Networks (OSN) are web-based ap-

plications that allow users to create public profiles [40], share them with other users

within the bounds of the application [9, 41], and facilitate communication among the

connected users [42]. OSNs may be designed specific to domains such as business-

focused, common interests-based, or for purposes such as online dating [9, 43]. Exam-

ples of OSNs include LinkedIn10 for professional networking, Instagram11 for picture

10https://linkedin.com/ [Accessed: 04-07-2019]
11https://instagram.com/ [Accessed: 04-07-2019]

11

https://linkedin.com/
https://instagram.com/


2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

and video sharing, Flickr12 for Photography, Goodreads13 and Vivilo14 for books, Face-

book15 for general purpose networking, Twitter16 for micro-blogging, and so on. In [6],

Heravi et al. state that the main reasons people use OSNs are maintaining relation-

ships, entertainment, building connections and networking, and looking up information.

What all of the popular social networks have in common is that they are centralised.

In other words, they rely on a central data server [3] that stores the profiles and related

data of all users, and all users have to access this central server via network links in

order to use the application.

As per Statista17, Facebook – the most popular OSN by far – has 2.32 Billion

Monthly Active Users worldwide as of April 2019. This steady increase in the num-

ber of people using OSNs has been accompanied by an increase in exposure of users

to concerns of data security and privacy. Facebook and Google, which are also the

largest digital advertising platforms by revenue18, have been hit by major data privacy

incidents in the past decade and a half, some of which scrutinised by Rubinstein and

Good [11].

Last year, it was discovered that loopholes in Facebook’s privacy policies and the

Apps tools had led to exposure of personally identifiable information (PII) of over 87

million Facebook users through a company Cambridge Analytica [44], which allegedly

used the data for selling micro-targeted advertisements to political parties in order to

influence voters in elections [10,45]. The revelation sparked widespread public outrage,

led to Facebook’s CEO being summoned by the US Senate for a hearing, and caused

material loss to the company’s stock [45]. It is well known that the free-of-cost nature

12https://flickr.com/ [Accessed: 04-07-2019]
13https://goodreads.com/ [Accessed: 04-07-2019]
14https://web.archive.org/web/20160220134002/https://www.vivilio.com/ [Accessed: 04-

07-2019]
15https://facebook.com/ [Accessed: 04-07-2019]
16https://twitter.com/ [Accessed: 20-07-2019]
17See: Most famous social network sites 2019, by active users, https://web.archive.org/we

b/20190704162437/https://www.statista.com/statistics/272014/global-social-networks-

ranked-by-number-of-users/ [Accessed: 04-07-2019]
18See: Google and Facebook devour the ad and data pie. Scraps for everyone else,

http://web.archive.org/web/20190804135401/https://digitalcontentnext.org/blog/2016/

06/16/google-and-facebook-devour-the-ad-and-data-pie-scraps-for-everyone-else/

[Accessed: 04-07-2019]

12

https://flickr.com/
https://goodreads.com/
https://web.archive.org/web/20160220134002/https://www.vivilio.com/
https://facebook.com/
https://twitter.com/
https://web.archive.org/web/20190704162437/https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://web.archive.org/web/20190704162437/https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://web.archive.org/web/20190704162437/https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://web.archive.org/web/20190804135401/https://digitalcontentnext.org/blog/2016/06/16/google-and-facebook-devour-the-ad-and-data-pie-scraps-for-everyone-else/
http://web.archive.org/web/20190804135401/https://digitalcontentnext.org/blog/2016/06/16/google-and-facebook-devour-the-ad-and-data-pie-scraps-for-everyone-else/


2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

of OSNs is fuelled by advertising [46], which increasingly involves large-scale data

collection [47].

Privacy has been a complex and subjective [48] concept to characterise formally.

It has been defined as “the right to control access to one’s personal information”

[42, 49, 50], or “the right to be in control of how the information flows” [42, 51, 52].

Although the need and right to privacy has been undisputed, Fuchs, in his work [49,53],

argued that absolute privacy may not be pragmatic as it may lead to non-transparency

and can be exploited by criminals and anti-social elements, urging a discussion of

privacy from the point of view of protection against “capitalist exploitation by powerful

organisations or individuals” at the expense of others. As per Renaud and Gálvez-

Cruz [54], privacy allows individuals to set and maintain boundaries of interaction

with the society and prevents intrusion.

Several studies have been conducted concerning various aspects of data privacy in

centralised OSNs analysing causes, implications and possible solutions.

[7] discusses the information security and privacy challenges faced by businesses

due to the collaboration and interactions with respect to social networking sites. The

authors suggest that businesses that attempt to take advantage of the collaborative

nature of OSNs by exploiting shared information and the connections between users

are unable to exercise control over the sites or platforms as they are mostly 3rd party.

The utility of OSNs lies in the presence of other people to connect and interact with

owing to what the authors call “transient peer pressure”, so attempts to create internal

silos are not successful due to the lack of network effect. Another challenge revealed

by [7] is that enforcing corporate security practices becomes more complicated due to

the various jurisdictions in which the data is hosted.

Pham et al. in their survey of privacy issues in OSNs [3] characterise a social

network as one having 4 primary roles: User, Social Network Provider, Analyst, and

Adversary. As can be seen in Fig. 2.1, the authors argue that privacy breaches can

occur due to the activities of users, at the data storage servers, or even at the data

opened up for analysis. The authors propose a classification of the privacy issues in four

categories, namely, social graph publishing, OSN activities, sharing of media, cyber-

physical systems, mobile systems, and other OSN applications such as dating. The au-

thors review privacy preserving techniques like differential privacy [55,56], pseudonym

exchange [57,58], negative survey [59–61], dummy-based method [62–64], and cryptog-

13



2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

raphy [65–68]. However, the authors find that most of these techniques have caveats or

assumptions and so do not generalise well in the real world. While the use of cryptog-

raphy has been widespread and increasingly prevalent, cryptographic techniques have

shown to be susceptible to collisions [69,70], and the complex nature of cryptographic

models makes it infeasible for certain applications [71]. The authors find that there

exist unresolved challenges as follows:

1. Side information attack [3], which refers to an adversary having access to addi-

tional information apart from an anonymised graph.

2. Dynamic social graphs [3] and an adversary having access to the changes to a

dynamic graph over time.

3. Trade-off between privacy and utility [3], which refers to the notion that pri-

vacy preserving techniques implemented to the extreme run the risk of rendering

the OSN application stunted in functionality and thereby deplete its economic

viability for the service provider.

Pham et al. [3] note that a decentralised architecture [13,72–74] may be a promising

solution to the privacy issues in OSN.

Chen and Michael [9] model privacy breaches as “information gathering”, and de-

scribe the two methods involved: breaches due to “privacy disclosure”, and breaches

due to “attack techniques”. The first refers to willingly provided information such as

email addresses and date of birth, and the latter refers to deployment of attacks such

as Sybil [75] and malware. In order to protect against privacy disclosure breaches,

regulation both market and government driven, apart from self-regulation [76] has

been suggested. Attack based breaches are harder to protect against, and architectural

changes in OSNs such as peer-to-peer design [77] can help drastically reduce the impact

of such techniques.

Chen et al. [78] also look at the attitude of users towards privacy and security

and find that many users compromise their security credentials by reusing publicly

available information in their passwords and security questions [79]. Lack of human-

centric design [9] and complicated privacy policies lead to under-utilisation of privacy

protection tools by users who fall back on their own judgement [80, 81]. The theory

of weak ties [82–84] has been used to explain the need felt by OSN users to part with

14



2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

Figure 2.1: A typical social network [3]

private information due to the perceived benefit of disclosing information being higher

than the risk [6,85,86], while also often “systematically underestimating the risks” [87].

Weak ties are said to include people whom a user is not directly close to, such as friends

of friends and family of colleagues.

A collaborative OSN has been proposed by Blosser et al. [88] with the intention of

preserving privacy of users of various disparate social networks by joining them using

a federated client-server architecture. Yang [89] proposed a “sub-graph generalisation”

approach to protecting privacy while sharing information across social networks based

on general properties of the graph.

In [11], Rubinstein and Good examine five privacy mishaps each at Facebook and

Google, and look at those through the lens of “privacy by design”. The authors cite

Cavoukian’s “foundational privacy by design principles” [90]:

P1 Proactive not Reactive; Preventative not Remedial

P2 Privacy as the Default Setting

P3 Privacy Embedded into Design

15



2.2. STATE OF PRIVACY IN CENTRALISED SOCIAL NETWORKS

P4 Full Functionality-Positive-Sum, not Zero-Sum

P5 End-to-End Security-Full Lifecycle Protection

P6 Visibility and Transparency – Keep it Open

P7 Respect for User Privacy – Keep it User-Centric

Through an analysis of the past privacy breach incidents of Facebook and Google,

it is established that the firms overlooked all of these principles at some point. Gmail

showed ads without consent, Google Street View photographed public places without

notice, Buzz added Gmail contacts as friends without consent. Facebook News Feed

exposed users’ posts and activities as broadcasts with no or little control initially

with privacy controls latched on later, Beacon showed targeted ads based on online

purchases and posted the information in the users’ News Feeds, Facebook’s Apps gave

applications liberal access with little control or explanation to users, automatic tag

suggestion in Photos without consent with only opt-out. All of these situations arose

because the firms preferred business demands over privacy concerns. In more than one

case, transparency was compromised as users were not made aware of sudden changes

to how their data was used, how much of it was collected, and controls were grossly

inadequate, and at times, absent.

Rubinstein and Good argue that companies should endeavour to proactively include

Fair Information Practice (FIPs) principles [11] as privacy concerns into their engineer-

ing process from the conceptualisation phase [91]. Microsoft, for instance, published an

exhaustive set of guidelines for the purpose of “creating notice and consent experiences,

providing sufficient data security, maintaining data integrity, offering customers access

(to their data), and supplying [other privacy] controls” [11,92] in 2006.

OSNs are increasingly influencing the lives of users and even non-users [8]: from

being used by law enforcement, intelligence agencies, and detectives [93], to political

revolution movements [94], to swaying democratic process [95]. There is no doubt that

the use of OSNs will only increase and new avenues of exploiting data of the users of

such systems will be devised. There is a need to change the design thinking around

how private user data is dealt with, and relying on external regulation [96] alone is

not sufficient. It has also been made abundantly clear that current iteration of privacy

16



2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

tools and policies are immature [11, 78], perhaps because companies that build them

prioritise business interests and undermine the usefulness of privacy controls.

Later in Section 5.2.2 on page 62, we will examine to what extent does the proposed

application follow the principles of “privacy by design” using Cavoukian’s principles

[90,97].

2.3 Bootstrapping a developer in a new technology

This section briefly reviews research that talks of the pedagogical aspect of starting

with new technologies for developers and developer experience.

2.3.1 On-boarding and Developer Experience

Fagerholm and Münch in [1] have attempted to define developer experience (DX).

They characterise DX as a way to understand the feelings and thoughts of developers

with respect to their interaction with their working environments. It is similar to user

experience [98], customer experience [99] and brand experience [100]. DX includes

experiences of a developer with all systems they interact with and all activities they

partake during software development [1]. The authors develop a framework for DX

consisting of 3 dimensions (Table 2.2):

Thoughts on development infrastructure
(cognitive)

Tools, languages, libraries, platforms, frame-
works, processes, and methods

Feelings about work (affective) Respect, attachment, belonging

The value of one’s own contribution (cona-
tive)

Goal alignment, plans, intentions, and com-
mitment

Table 2.2: Framework for Developer Experience (DX) [1]

In [101], Fontão, Dias-Neto, and Viana try to capture the “expectations, percep-

tions and feelings” of developers with respect to on-boarding on a new platform and

participation, specifically for mobile application platforms from the point of view of

platform maintaining organisations (Apple, Google, Microsoft). They note that devel-

opers need incentives for entering the ecosystem as well as staying in it. They find that

developers are motivated to participate in a mobile software platform for 1) improving

17



2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

technical knowledge, 2) obtaining new knowledge, 3) building successful applications,

and 4) project visibility.

[102] posits that adoption of a technology by individuals can be explained by the

“Technology acceptance model (TAM)” [30], which establishes a connection between

how the ease-of-use and usefulness of a technology is perceived, in addition to social

influences. If the technology is supported by an organisation, then it is more likely

to be seen as useful as well as credible to an extent. The study finds that, at least

in case of enterprises, people are more likely to successfully adopt a technology if

the management provides enough supporting resources to reduce the friction while

transitioning to a new system. While this finding is not directly applicable to the case

of web developers learning new technologies as they are more likely to be accustomed

to frequent relearning, it is reasonable to expect supporting developer resources that

make learning easier.

A “developer joining model” [2] (Table 2.3) has been proposed to help understand

the forces involved in a developer coming in to an OSS project and staying.

Motivation Internal: Self-marketing, Recognition, Enjoyment, Challenges,
Improving programming skills, Identification with a community
External: Scholarship, Course assignment, Better jobs, Career
Advancement, Building human capital, Personal needs for a
software solution [2, 103–105]

Attractiveness Project age, License type, Intended audience, Type of project,
Development status, Number of Hits, Number of Downloads,
Number of Members, Number of Open tasks, Time for task
completion, Software size, Structural simplicity [2, 106–108]

Hindering Forces Learning curve, Lack of support from the community, Difficul-
ties finding how to start, Excessive Time to reply to messages,
Lack of courtesy in messages, Number of answers, Experience
of respondents, Cognitive complexity [2, 109–111]

Retention Supporting newcomers, i.e., mentorship, Supporting existent
contributors to contribute more, i.e., incentives [2]

Table 2.3: Developer joining model [2]

Another detailed study into participation in OSS that looks at sustained partici-

pation [112] observes that OSS projects fail due to insufficient participation. This is

often because individual developers in OSS are volunteers rather than paid employees.

18



2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

The authors also mention the motives that lead developers to initiate participation

in OSS, namely, “software use value, status and recognition, learning, personal enjoy-

ment, reciprocity, getting paid, sense of ownership and control, career advancement,

free software ideology, and social identity” [112]. The overlap between these findings

and those in Table 2.3 indicates an agreement among the academic community as to

why developers choose to participate in OSS.

Based on the work by [1, 2, 112], we summarise the factors that affect developer

experience and the reasons developers come and stay into OSS projects as follows:

Reasons for coming:

1. Technology shows promise

2. Visibility or popularity

3. Job opportunities

4. Interesting

5. Ideology

6. Recognition and identity

Reasons for staying:

1. Good developer experience

2. Job opportunities

3. Good developer community

4. Growth in platform

5. Incentives

Factors affecting developer experience:

DX1 Quality of learning resources

DX2 Activity in the community

DX3 Quality and Quantity of tooling

19



2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

DX4 Stability of platform

DX5 Technical capabilities and features of the project

2.3.2 Documentation and Learning resources

Developers learn new technologies constantly as a necessity of the occupation, but the

decision to learn a new technology depends on the quality of the available developer

resources. Documentation in the form of tutorials and guides, and supporting tools

also serve the purpose of selling the development platform to new developers [31]. The

quality of technical documentation has been the subject of many studies like [113]

and [114] that look into what developers seek in documentation. [113] found that doc-

umentation and other learning resources were the “most severe obstacles in learning

new APIs” [33]. [33] believes that reading documentation should reduce the time taken

to learn with respect to learning without reading documentation. Quality of documen-

tation is inversely proportional to “interruptions” and thereby directly proportional to

productivity [115–117].

[32] identified the following 4 core principles for their analysis of tutorials of a set of

30 tutorials of various types (open-ended creative platforms, lecture-style courses such

as MOOCs, evidence-based programming games, reference guides with code examples,

and social forums):

1. Connecting to learners’ prior knowledge [32,118,119]

2. Organising declarative knowledge [32,120]

3. Practice and feedback [32,121,122]

4. Encouraging meta-cognitive learning [32,123,124]

Developers regularly forage the web for learning resources: components, libraries

[125], code examples [126], advice [127] and answers [128]. Most developers use question

and answer sites and forums for getting help, and Stackoverflow19 is the most popular

question and answer site for programmers [129, 130]. Stackoverflow helps developers

not only resolve errors they face, but also get advice about the best practices, and

19https://stackoverflow.com/ [Accessed: 20-07-2019]

20

https://stackoverflow.com/


2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

undocumented features [125, 131], with answers often used as a substitute for official

documentation [130]. In fact, Stackoverflow is so integral to a developer’s workflow

that deeper integration of Stackoverflow with Integrated Development Environments

has been proposed [125,132,133].

Apart from Stackoverflow, GitHub20 is one of the largest resources for codebase

and documentation for developers [125, 134, 135]. The social coding platform is home

to millions of open source projects which get contributions in the form of code, issues,

and pull requests. Developers also use the documentation in the form of READMEs

and issue lists as resources for learning.

[125] associates Stackoverflow activity in the form of asking and answering questions

with GitHub commits, while showing that users who tend to answer more questions

rather than ask tend to have higher commits. The finding is interesting as it pro-

vides insight into engagement in social programming communities, and underlines the

importance of Stackoverflow in catalysing development on GitHub.

Stiller and LeBlanc’s study in the effectiveness of “software engineering pedagogy”

[31] is helpful in formulating some guidelines for producing developer learning resources

that result in more successful transfer of knowledge. Those ideas, along with findings

from the study of code examples on Stackoverflow by Nasehi et al. [126] and the 4 core

principles [32] can be adapted to a set of requirements for tutorial writing as follows:

T1 A tutorial should make pre-conditions explicit

Tutorials should be clear about prerequisites, so they can take into account the

prior knowledge of the learners and use that to build new knowledge [32,118,119,

136–140].

T2 A tutorial should be fun

The tutorial should not be dry and overly abstract. Learning requires motivation

and tutorials should be engaging. One way of improving engagement is to use real

life examples as the objective of development. For example, many engineering

tutorials use the To-Do application example. It helps developers understand the

capabilities of the platform while mapping them to familiar functionality.

20https://github.com/ [Accessed: 20-07-2019]

21

https://github.com/


2.3. BOOTSTRAPPING A DEVELOPER IN A NEW TECHNOLOGY

T3 A tutorial must include relevant code samples

Coding tutorials must include code examples as mere textual descriptions are

insufficient. Programmers must be able to study solved problems [126] and guided

how they can be adapted for real-world use-cases. Since it’s impossible to predict

all issues users might face, tutorial writers should try and anticipate common

pitfalls and include them as examples in the documentation.

T4 A tutorial should be useful

Tutorials should lead to actual learning, not merely theoretical or conceptual. A

good software technology tutorial has an actual application as an objective. The

application may be simple, but it should have non-trivial functionality, or should

be connected to higher-order tutorials that produce such an application.

T5 A tutorial should be accessible

A tutorial should be well-scoped, and not excessively prolix. The steps to meet

the objectives should be clear, the amount of abstract thinking required limited,

and specific notation use minimal or simplified [31].

T6 A tutorial should be complete

While short tutorials meet the criteria T1 and T3, they should nevertheless be

complete. An open ended tutorial can leave readers confused. Even if a tutorial

is scoped to one concept, it should be linked to the next in a meaningful way,

or conclude learning by meeting the objectives. The tutorial should also provide

links to additional materials and further reading supporting subsequent learning

[32].

T7 A tutorial should have a clear, consistent voice

The tutorial must be well-written and should be focussed on characterising [31]

the technology being taught, instead of getting into discussions about software

paradigms, or comments on competing technologies unless it is to illustrate func-

tional differences.

22



2.4. DECENTRALISATION EFFORTS

2.4 Decentralisation efforts

This section presents the existing decentralisation efforts by drawing on the research

and implemented technology.

Decentralisation is not a new concept. Owning to the abundant data aggregation

opportunities and resulting data privacy concerns [13, 47], several decentralised OSN

or DOSN designs have been proposed and implemented. Most notably, Safebook [141],

PeerSoN [142], LotusNet [143], SuperNova [144], LifeSocial.KOM [145], Cachet [146],

Persona [147], Vegas [148], Prometheus [149], Gemstone [150], Contrail [73], Soup [151],

ProofBook [152], DECENT [153], SocialGate [154], Diaspora [155], Vis-à-Vis [156],

My3 [157], eXO [158], DiDuSoNet [159], Friendica [160,161], and RetroShare [162,163]

have been extensively studied in relevant literature [4].

[4] presents a comprehensive survey of DOSNs published in 2018, in which Salve et

al. also present a classification system for various DOSN architectures. Most remark-

ably, they characterise DOSNs by topology as unstructured and structured. Structured

DOSNs treat all peers as similarly capable and typically provide load balancing and

dynamic addition and removal of peers out-of-the-box. Usually such solutions rely on

some kind of Distributed Hash Table or DHT, and can be described as peer-to-peer or

P2P systems [13]. Unstructured DOSNs, on the other hand, expect that some peers

are more powerful and provide various services to other peers. This type of topology

has been described as federation [13].

Another classification of DOSNs is based on the approach to data storage [4]. Data

storage can either be decentralised, semi-decentralised, or hybrid. Decentralised storage

imposes no restrictions and data is stored on random nodes; semi-decentralised storage

selects a subset of nodes responsible for storage and management of data of all the

users of the system; the hybrid approach relies on third-party storage such as public

cloud providers.

Crucially, DOSNs differ in the privacy models and the methods used for implement-

ing privacy policies. [4] classifies the privacy models as relationship-based, group-based,

profile-based, and content-based. Relationship based privacy models exploit the con-

nections formed between users of the DOSN to build the privacy policies; group-based

privacy simply lets users create contact groups that they can then assign permissions

to; profile-based privacy works by using the profile information of contacts; content-

23



2.4. DECENTRALISATION EFFORTS

based privacy models allow users to arrange their content into logical groupings and

then access to these groupings can be defined. These privacy models are shown in Fig.

2.2.

Figure 2.2: A classification of common DOSN privacy models [4]

Table 2.4 summarises the classification of DOSNs obtained from the studies [4]

and [13].

DOSN Topology Data storage

approach

Privacy models Privacy policy

enforcement

approach

Safebook Hybrid Semi Decen-

tralised

Group-based,

Relationship-

based, Content-

based

Cryptography

PeerSoN Structured Decentralised Group-based,

Relationship-based

Cryptography

LotusNet Structured Decentralised Relationship-

based, Content-

based

Cryptography

SuperNova Unstructured Semi Decen-

tralised

Relationship-based Cryptography

LifeSocial.KOM Structured Decentralised Group-based,

Relationship-based

Cryptography

Cachet Structured Decentralised Relationship-based Cryptography

24



2.4. DECENTRALISATION EFFORTS

Persona Unstructured Hybrid Group-based,

Relationship-based

Cryptography

Vegas Unstructured Hybrid Relationship-based Cryptography

Prometheus Hybrid Semi Decen-

tralised

Relationship-

based, Profile-

based, Content-

based

Cryptography

Gemstone Hybrid Semi Decen-

tralised

Profile-based,

Content-based

Cryptography

Contrail Structured Hybrid Group-based,

Profile-based,

Content-based

Cryptography

Soup Hybrid Semi Decen-

tralised

Group-based,

Relationship-

based, Profile-

based

Cryptography

ProofBook Structured Semi Decen-

tralised

Group-based,

Relationship-based

Cryptography

DECENT Structured Decentralised Relationship-based Cryptography

SocialGate Structured Hybrid Relationship-based Cryptography

Diaspora Unstructured Semi Decen-

tralised

Group-based Trusted peers

Vis-a-Vis Unstructured Hybrid Group-based,

Relationship-based

Trusted peers

My3 Hybrid Semi Decen-

tralised

- Trusted peers

eXO Structured Decentralised Relationship-based Trusted peers

DiDuSoNet Hybrid Semi Decen-

tralised

Relationship-based Trusted peers

Friendica Unstructured Semi Decen-

tralised

Group-based,

Relationship-

based, Profile-

based

Trusted peers

25



2.4. DECENTRALISATION EFFORTS

RetroShare Hybrid Decentralised Group-based,

Relationship-based

Trusted peers

Table 2.4: Comparison of decentralised online social networks

A key finding highlighted in [146] was that structured DOSNs suffer from a high

latency while accessing logically linked relational data as it is disseminated across

various nodes. For this reason, many DOSNs like Safebook and Prometheus choose a

hybrid topology with overlay networks which make retrieval of data faster.

Unstructured DOSNs, while avoiding dynamism due to addition or deletion of

nodes, have trouble ensuring availability if they chose semi-decentralised storage like

Diaspora and Frendica. For ensuring availability, Contrail and Vegas rely on third

party storage.

To overcome the availability hurdle, some systems like Safebook and Prometheus

store encrypted data on random nodes, while others allow storing encrypted data on

systems of trusted peers. This selection may be manual, or automated using trust

models. The use of cryptography for dealing with curious or malicious [13] storage

providing nodes creates its own challenges. Access control without encryption can

easily be enforced by the servers, but encryption makes it the responsibility of the end

host. The use of asymmetric-key cryptography on each outgoing message makes it

in-feasible, so researchers have suggested using hybrid encryption [13], attribute-based

encryption [147], and “IdentityBased Broadcast Encryption (IBBE)” [164].

As per [13], even encrypted DOSNs can leak private data in the form of social

graphs by making metadata [165] openly-readable. For example, PeerSON [142] has

to make the IP addresses and the online status of its users publicly available to ensure

the DHT can be dynamically rebuilt and the data can be accessed. Persona solves

this problem by not making any type of listing possible at all [147]. Another way in

which DOSNs leak social graphs is due to access patterns, data size, creation times,

and the amount of data [47]. SoNet [166] uses aliasing to remedy this problem, thereby

disguising user identities. This approach fails for servers with lopsided distributions of

users. For instance, 70% of the total users of Diaspora [13] use the same server. With

servers having too few users, aliasing is not enough to hide identities.

26



2.4. DECENTRALISATION EFFORTS

Unbalanced servers also present the problem of large-scale aggregation. While the

system is theoretically decentralised, having most of the users on a single server is as

good as centralised [13].

Safebook [141] builds on the ideas discussed in [77] to propose a system that utilises

real-life trust of users by modelling a user’s contacts into concentric circles known

as “matryoshkas”. Safebook uses a DHT for routing. As per Schwittmann et al.,

the designn of Safebook may be vulnerable to attacks on the DHT [13], apart from

unreliability of data deletion [77] due to the possible unavailability of peers.

PESCA [72] is another DOSN that tackles the fundamental complication of avail-

ability by using a replica placement scheme which relies on two peer types: online

friends both direct and indirect, and data audiences. It achieves this by constructing

a structure called the “user online table (UOT)”, which is then used to determine the

schedule and placement of replicas. Since the UOT is manual, it is possible for users to

not participate in replication. PESCA also provides a high degree of privacy protection

to users by using the broadcast encryption scheme [167] and shielding a user’s contact

list from others using aliases. The authors note, though, that it’s still prone to “traffic

analysis” [72] to infer social graph.

UNLYNX [168] is a recent DOSN design that decentralises both storage and com-

pute by using the concept of collective authority of servers. The authors demonstrate

that the protocols they’ve proposed are capable of fetching data from multiple sources,

computing on independent servers, providing proof of correctness, and preserving pri-

vacy using a novel approach for obfuscation. The end result is a robust system, albeit

slow when maximising security and privacy (a response time of 24m on 400,000 records).

Finally, the most popular operational DOSN is Mastodon [169], a micro-blogging

service launched in 2016 with over a million users and over 2500 nodes worldwide.

Mastodon uses the ActivityPub [170] protocol, and the architecture is similar to that

of Diaspora. Users create accounts on a server which is connected to all other servers in

a P2P topology, or host their own server. Like Diaspora, Mastodon is vulnerable to the

the possibility of leakage of the social graph. In fact, Mastodon and Diaspora are part of

a federation21 of inter-operable servers known as the fediverse [5, 171, 172]. The other

most notable services that constitute the fediverse are PeerTube [173] and Frendica

[160]. Both Mastadon and PeerTube are based on the ActivityPub, while Diaspora and

21https://the-federation.info/ [Accessed: 20-07-2019]

27

https://the-federation.info/


2.4. DECENTRALISATION EFFORTS

Frendica are based on the diaspora* [174] protocol. Frendica also supports ActivityPub,

hence Frendica servers are able to communicate with all of these services, as is shown

in Fig. 2.3.

Figure 2.3: The federation of DOSNs [5]

Apart from these efforts, some blockchain-based DOSNs are being tested such as

Steemit22 and Blockstack23. Zeronet24 is based on the popular bittorrent protocol.

HELIOS25 is a DOSN project currently underway which is funded by the European

Union and aims to “design, implement and validate a state-of-the-art, decentralised

P2P social media platform”.

22https://steemit.com/ [Accessed: 20-07-2019]
23https://blockstack.org/ [Accessed: 20-07-2019]
24https://zeronet.io/ [Accessed: 20-07-2019]
25http://helios-social.eu/blog/index.php/project/about-2/ [Accessed: 20-07-2019]

28

https://steemit.com/
https://blockstack.org/
https://zeronet.io/
http://helios-social.eu/blog/index.php/project/about-2/


2.4. DECENTRALISATION EFFORTS

While a number of papers point to the potential privacy issues that arise due to the

possibility of learning patterns of access to disseminated and encrypted data in P2P

systems, these concerns are widely overstated. Learning such patterns and inferring any

valuable knowledge from this kind of access would require considerably elaborate and

expensive mining and automated analysis and can only be carried out on a relatively

smaller scale, whereas such mining and analysis on centrally controlled OSNs is much

more feasible and comparatively easy [175] since the providers can build support for

such techniques into the platform from the beginning and have a much larger corpus

of data at their disposal.

In any case, DOSNs still face major usability challenges. In particular, there exist

features of OSNs only feasible in central scenarios:

1. Searching

Searching through all the users of the network [175] is considered an important

functionality provided by all major and popular centralised OSNs. For some like

LinkedIn, it is an important business tool to be able to look for candidates. Such

a feature has not been demonstrated so far, especially in an environment where

availability of data is not guaranteed.

2. Recommendations

Recommendation or discovery of people with common interests [175] is another

area that relies on central indexing and aggregation but is not practical in DOSN

scenarios. ARMOR [176] tries to address this, but has not been shown to be

scalable.

3. Fake profile/content detection

Classifying fake profiles and content [47] is an application anomaly detection in

OSNs [177] with centralised architecture is a well-researched field. However, in a

decentralised setting, it becomes much more difficult because data is distributed

which makes detecting patterns and anomalies complicated.

29



2.5. STATE OF THE ART OF SOLID

2.5 State of the art of Solid

2.5.1 Linked Data

Linked Data is essential to Solid [12, 178]. Linked Data is nothing but a set of best

practices prescribed for how data is published. The idea is to develop and use standards

for connecting published structured data that newly created data should be able to

discover and link to [17]. Discovery of new data sources is a critical aspect of the

movement. Not all data is created at the same place, but web standards can help

build a Web of Data or the Semantic Web [14,17,19]. Using standards is another vital

requirement for the Semantic Web to succeed.

Presently, Linked Data is based on two central pieces: RDF26, and HTTP27. RDF

(Resource Description Framework) [179] is a W3C Recommendation that allows ex-

pressing facts using triples. An RDF triple contains a subject, a predicate, and an

object. In the example (Fig. 2.4a), RDF is represented using the Terse RDF Triple Lan-

guage28. The first line contains the subject, which is a WebID29 of a Solid user, the third

line contains the object, which is a WebID for another user, and the second line con-

tains the predicate knows defined by FOAF Vocabulary Specification30 which connects

the subject to the object. This triple is equivalent to the English sentence “The per-

son with WebID https://theakashdeepsingh.solid.community/profile/card#me

knows the person with the WebID https://www.w3.org/People/Berners-Lee/card#i.”

Note that the semantics of the predicate knows can be inferred from its definition in

the vocabulary, just as the fact that the WebID’s belong to individuals of the class

Person can be inferred by following the URI31 and crawling the statements in the re-

sultant document. This is where HTTP comes in. By representing things or concepts

using HTTP URIs in the RDF documents, we obtain data that is linked to other useful

data that describes it or is linked to it. By using standardised vocabularies [17,83], we

26https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/ [Accessed: 20-07-2019]
27https://tools.ietf.org/html/rfc7230 [Accessed: 20-07-2019]
28https://www.w3.org/TR/2014/REC-turtle-20140225/ [Accessed: 20-07-2019]
29https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html [Accessed: 20-

07-2019]
30See: Friend of a Friend Vocabulary Specification 0.99, http://xmlns.com/foaf/spec/

20140114.html [Accessed: 20-07-2019]
31https://tools.ietf.org/html/rfc3986 [Accessed: 20-07-2019]

30

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://tools.ietf.org/html/rfc7230
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html
https://tools.ietf.org/html/rfc3986


2.5. STATE OF THE ART OF SOLID

are able to develop and refer to a shared understanding of those links. In this sense,

it makes data self-describing, and follows the open world assumption of the Semantic

Web.

Other standards in the space of Linked Data include SPAQRL32 – a query language

for interacting with RDF triple stores [17], the Web Ontology Language or OWL 33,

and the Linked Data Platform or LDP34. LDP defines standards for HTTP based

interactions with resources on the web to enable reading and writing Linked Data.

These resources are often expressed as RDF using one of the serialisation formats, the

most popular formats being Turtle, RDF/XML35, and JSON-LD36,37.

Figure 2.4a: Example RDF encoded as Turtle

Figure 2.4b: Graphical representation of example RDF

2.5.2 Building blocks of Solid

Solid is composed of six major concepts that address a different part of the Solid

Platform development stack. These are 1) Pods and Pod Providers, 2) WebID, 3)

RDF, 4) HTTPS RESTful API, 5) Web Access Control, 6) Linked Data Notifications.

The Solid specification [36] is currently described as a draft, and is “expected to change

often”.

32https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ [Accessed: 20-07-2019]
33https://www.w3.org/OWL/ [Accessed: 20-07-2019]
34https://www.w3.org/TR/2015/REC-ldp-20150226/ [Accessed: 20-07-2019]
35https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/ [Accessed: 20-07-2019]
36https://www.w3.org/TR/2014/REC-json-ld-20140116/ [Accessed: 20-07-2019]
37https://json-ld.org/ [Accessed: 20-07-2019]

31

https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/OWL/
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://json-ld.org/


2.5. STATE OF THE ART OF SOLID

Pods and Pod Providers

A Solid Pod or POD is a user’s “personal data storage” space [180]. A Pod represents a

user on the Solid network, where the user can store data and grant applications access

to parts of the Pod. In order to get a Pod, a user has two options:

1. Host their own Pod Server

2. Sign up with a Pod Provider38

Hosting one’s own Pod Server currently entails downloading and installing node-

solid-server39, which is presently the only active implementation of the Solid Speci-

fication40. The users who can not host their own Pods can sign up with a Pod Provider.

A Pod Provider is a multi-tenant installation of the node-solid-server, which allows

users to create an account and issues a WebID for their new Pod. The concept of Pod

Providers enables a federated topology in the Solid ecosystem. However, users on the

same Pod Provider are logically isolated. Every Pod has the same capabilities as de-

scribed by the Solid Specification (depending on the version of node-solid-server).

Note that this is in contrast with Mastodon and Diaspora in which users on the same

server can search for and discover other users on the same server. Hence, while a

Pod Provider is similar in the sense that it allows multiple user accounts on the same

physical system, it is not a central hub for those users.

WebID

Solid depends on the WebID (Web Identity and Discovery) specification to describe

Identity and Authentication. WebID’s are HTTP URI’s that are used to identify users.

Every Solid Pod has a WebID that is protected by two schemes of authentication:

38https://web.archive.org/web/20190729213840/https://solid.inrupt.com/get-a-

solid-pod [Accessed: 29-07-2019]
39https://web.archive.org/web/20190729213729/https://solid.inrupt.com/docs/instal

ling-running-nss [Accessed: 29-07-2019]
40https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881d

f39 [Accessed: 29-07-2019]

32

https://web.archive.org/web/20190729213840/https://solid.inrupt.com/get-a-solid-pod
https://web.archive.org/web/20190729213840/https://solid.inrupt.com/get-a-solid-pod
https://web.archive.org/web/20190729213729/https://solid.inrupt.com/docs/installing-running-nss
https://web.archive.org/web/20190729213729/https://solid.inrupt.com/docs/installing-running-nss
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39


2.5. STATE OF THE ART OF SOLID

WebID-OIDC41 and WebID-TLS42.

The WebID-OIDC protocol is a decentralised authentication mechanism that ex-

tends the “Open ID Connect (OIDC)”43 protocol. Essentially, a username and a pass-

word are used to authenticate a user and the Identity Provider issues an ID token,

which is used for authenticated access to the Pod.

The alternative to WebID-OIDC is WebID-TLS which uses a TLS certificate to

establish authenticity.

Usage of WebID entails that each Pod must have an RDF representation of WebID

Profile accessible by dereferencing the WebID URI. This Profile document may contain

other information about the user such as name, avatar, e-mail address, and is a public

document. If the user does not want to share their personal information publicly, they

need not include that data in the WebID Profile document, but a foaf:name predicate

is strictly required.

RDF

As mentioned before, RDF is the representation format for Linked Data. Within

Solid, RDF is the ubiquitous content representation format. All data is expected to

be modelled in the form of RDF Triples, and stored as one of the many serialisation

formats such as Turtle, JSON-LD, N344, RDF/XML, RDFa in HTML45 and others.

The other form of content on a Solid Pod while can not be parsed as valid RDF46 is

Binary files such as photos and other non-structured files [181].

LDP, which Solid is based on top of, describes a logical hierarchy for data. The

Linked Data stored in a Pod describes Resources, which are grouped into Containers47.

A helpful analogy (which is used in practise by node-solid-server) is to think of

Resources as files, and Containers as directories. It is possible to create Containers

41https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c

3d80b6f [Accessed: 29-07-2019]
42https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html [Accessed: 29-07-

2019]
43https://openid.net/specs/openid-connect-core-1_0.html [Accessed: 29-07-2019]
44https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/ [Accessed: 29-07-2019]
45https://www.w3.org/TR/2015/REC-html-rdfa-20150317/ [Accessed: 29-07-2019]
46https://www.w3.org/RDF/Validator/ [Accessed: 29-07-2019]
47https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpbc [Accessed: 29-07-2019]

33

https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c3d80b6f
https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c3d80b6f
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TR/2015/REC-html-rdfa-20150317/
https://www.w3.org/RDF/Validator/
https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpbc


2.5. STATE OF THE ART OF SOLID

inside Containers, just like directories can be created inside directories.

HTTPS RESTful API

While LDP prescribes a framework for HTTP-based interaction with Linked Data Re-

sources48, Solid specifies a RESTful API49, extending the guidelines of LDP. Any Solid

application that interacts with the Pod can use this API to perform CRUD operations

on Resources and Containers, depending on access permissions. Apart from this REST

API, a WebSockets API50 is also available for publish/subscribe applications.

Web Access Control

The “Web Access Control or WAC”51 protocol is essential to Solid’s core principles. It

describes a decentralised authorisation mechanism using .acl files. Access information

is represented as Linked Data and uses the ACL ontology52 for its terms [182]. Using

WAC, it is possible to given a particular user identified by a WebID, a group of users,

or everyone the access to a Resource or a Container [182]. It’s not mandatory to

have an explicit ACL document for each Resource as Resources inherit the access level

of their parent containers. The access control for the root container of the Pod is

defined by default. The access modes available are Read, Write, Append (which means

the ability to create new resources but not to update or delete existing resources),

and Control (which means the ability to modify the access level) [182]. If an agent

requests a Resource it does not have access permissions to, an HTTP Status 403 error

is returned.

48https://www.w3.org/TR/2015/REC-ldp-20150226/#specs-http [Accessed: 29-07-2019]
49https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881d

f39/api-rest.md#solid-https-rest-api-spec [Accessed: 29-07-2019]
50https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881d

f39/api-websockets.md#solid-websockets-api-spec [Accessed: 29-07-2019]
51https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a

90432e488e96260 [Accessed: 29-07-2019]
52http://www.w3.org/ns/auth/acl [Accessed: 29-07-2019]

34

https://www.w3.org/TR/2015/REC-ldp-20150226/#specs-http
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-rest.md#solid-https-rest-api-spec
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-rest.md#solid-https-rest-api-spec
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-websockets.md#solid-websockets-api-spec
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-websockets.md#solid-websockets-api-spec
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
http://www.w3.org/ns/auth/acl


2.5. STATE OF THE ART OF SOLID

Linked Data Notifications

“Linked Data Notifications or LDN”53 is a protocol for push message communication

at the most basic level. It is also a W3C Recommendation. This is the only specified

way for Pods to communicate, thereby making it the only way users can interact over

Solid. The sender and receiver agree on a shared space on the receiver’s Pod where the

sender can only create resources (messages), and the receiver can act on those messages

at a later time. It’s like a simple postbox, where the sender only has Append access,

while the receiver – the owner of the Pod – has complete access. As per the LDN

Specification [183], the receiver’s endpoint is called an inbox.

2.5.3 Solid applications

Since 2016, a number of applications have been built on Solid that demonstrate its

capabilities. As per [184], there are 73 applications out of which 14 are considered

historical due to inactivity. Most of these applications are simple tools that implement

a particular feature of Solid.

The oldest Solid application, dokiele [185], actually precedes the term Solid and

originally targeted the read/write web54. dokiele is a “decentralised authoring tool”

which implements the Web Annotations55 specification, and LDN.

Another noteworthy Solid application is solid-chess56 that uses the modern tool

query-ldflex57 apart from LDN and SQARQL to enable users to play a game of chess

without a central server. Communication happens directly between users’ browsers

and Pods.

53https://www.w3.org/TR/2017/REC-ldn-20170502/ [Accessed: 29-07-2019]
54http://web.archive.org/web/20190730015911/https://csarven.ca/dokieli [Accessed:

30-07-2019]
55https://www.w3.org/TR/2017/REC-annotation-model-20170223/ [Accessed: 29-07-2019]
56https://github.com/pheyvaer/solid-chess/tree/dd45668da6ab59cf24e0580546bf39882b

e3f99d [Accessed: 29-07-2019]
57https://github.com/solid/query-ldflex

35

https://www.w3.org/TR/2017/REC-ldn-20170502/
http://web.archive.org/web/20190730015911/https://csarven.ca/dokieli
https://www.w3.org/TR/2017/REC-annotation-model-20170223/
https://github.com/pheyvaer/solid-chess/tree/dd45668da6ab59cf24e0580546bf39882be3f99d
https://github.com/pheyvaer/solid-chess/tree/dd45668da6ab59cf24e0580546bf39882be3f99d
https://github.com/solid/query-ldflex


2.6. SUMMARY AND NEXT CHAPTER

2.6 Summary and Next Chapter

This chapter establishes the key elements we will be using in the evaluation of Solid’s

developer experience and the proposed application. We will examine whether the

proposed application adheres to the principles of “privacy by design” (Section 2.2) [90].

We will use the “requirements for tutorial writing” (Section 2.3) to determine whether

Solid’s existing learning resources meet those criterion. Lastly, we will show how the

proposed application fits in the classification laid out in Table 2.4 (Section 2.4). These

analyses will help us better understand the major themes involved in designing and

deploying a decentralised OSN. They will also constitute much needed evidence-backed

contributions to the Solid community.

36



Chapter 3

Research Methods

This chapter will focus on elucidating the methods used for this study.

This is an applied research, in the sense that the purpose is to find a practical

solution to the problem of privacy invasion and data leakage in the large domain of

web applications [186]. The research philosophy is phenomenology [187, 188] which is

considered a variant of interpretivist [189] philosophy. This follows from the fact that

we will be using a data collection method that is qualitative [190,191] instead of purely

quantitative. Specifically, the study involves maintaining the record of development

activity, and obtaining insights from an analysis of the development journey of the

participant.

The research is designed to be exploratory as we focus on developing a more nuanced

understanding of the process [192] of building a privacy-preserving web application by

studying the current solutions and building one. The research is not intended to be

conclusive, rather it enables further research [193] into decentralised web application

design and semantic web application development.

Our approach towards research is inductive since we formulate our research question

at the outset, and plan to answer it by interpreting our observations [194,195].

The method chosen for the qualitative analysis is a variant of participant observation

[196, 197], whereby a single participant (the lead researcher) will observe their own

software development process while programming an application and will record the

programming sessions in a journal (See Appendix A). The journal will then act as the

source-of-truth for the analysis (See Section 5.1) of the experience, which will in turn

37



3.1. PARTICIPANT PROFILE

lead to uncovering challenges and proposing improvements.

The following section details the attributes of the participant, and Section 3.2 ex-

plains the process followed by the participant.

3.1 Participant profile

The participant is an English-speaking Computer Science graduate student with about

36 months of professional software development experience. The skills relevant to

this study that the participant possesses are: Node.Js1 programming, front-end web

development2, Linked Data [25], and reading/writing technical documentation. Apart

from this, the participant has built a social-networking application professionally. The

participant is also an active contributor to OSS projects.

3.2 Study design

The study is executed in two phases: 1. Application Development and 2. Experience

Analysis. In the first phase, we will develop an application using the Solid platform and

record the development process through a journal. The development life-cycle is not

formal, and uses the “build-and-fix model” [198] paired with “continuous integration”

[199] since a single developer is involved in the lifecycle and the focus is not on code

maintainability. The second phase involves an evaluation of the chosen platform, i.e.,

Solid, and the application built, i.e., Albus. This evaluation involves an assessment of

Albus against the principles of “privacy by design” [11] as discussed in Section 2.2 on

page 15, an assessment of the Solid developer on-boarding documentation against the

“requirements for tutorial writing” as established in Section 2.3 on page 21, and looks

at Albus through the classification of DOSNs as summarised in Table 2.4. In addition,

we also look at some raw metrics to capture the size of the Solid community and

compare them with those of projects with comparable age to determine the direction

in which Solid is growing.

1https://nodejs.org/en/
2https://web.archive.org/web/20190804182140/https://en.wikipedia.org/wiki/Front-

end_web_development [Accessed: 04-08-2019]

38

https://nodejs.org/en/
https://web.archive.org/web/20190804182140/https://en.wikipedia.org/wiki/Front-end_web_development
https://web.archive.org/web/20190804182140/https://en.wikipedia.org/wiki/Front-end_web_development


3.3. SUMMARY AND NEXT CHAPTER

3.3 Summary and Next Chapter

This chapter covered the research methods employed for this study. In the next chapter,

we detail the design and implementation phase of the application development.

39



Chapter 4

Application Design and

Implementation

This chapter will act as a description of the design process and implementation details

of the application. We start with an overview of the development environment (Section

4.1). Then, a set of planned features (Sections 4.2 and 4.3) and their corresponding

design philosophy (Sections 4.4 and 4.5) will be discussed. Finally, we present the

data models (Section 4.6) and technical details of the implementation (Section 4.7),

including a brief discussion of the available state-of-the-art development tools.

4.1 Development Environment

1. Operating System: Ubuntu 18.04 LTS on WSL 1 (Windows 10)

2. IDE: Visual Studio Code1

3. Node.Js version: v10.15.1

4. Web Browser: Firefox Quantum 68.0.1 (64-bit)

5. Node Solid Server version: v5.1.12,3

1https://code.visualstudio.com/ [Accessed: 05-08-2019]
2https://github.com/solid/node-solid-server/tree/v5.1.1 [Accessed: 05-08-2019]
3https://github.com/solid/node-solid-server/commit/bdc5acba326f215c3d32eb2b234e

c73d0f5cc9ce [Accessed: 05-08-2019]

40

https://code.visualstudio.com/
https://github.com/solid/node-solid-server/tree/v5.1.1
https://github.com/solid/node-solid-server/commit/bdc5acba326f215c3d32eb2b234ec73d0f5cc9ce
https://github.com/solid/node-solid-server/commit/bdc5acba326f215c3d32eb2b234ec73d0f5cc9ce


4.2. USE-CASE ANALYSIS

4.2 Use-case Analysis

We propose to build an OSN since social networking is one of the most popular use-cases

for the web, and involves a cross-section of data-driven functions like social interactions

and user-generated content. The proposed system is to be specialised for academics and

researchers because this is one of the use cases where a federated Pod hosting model

can be practically implemented. As Solid depends on users having their own Pods,

the users have to choose between hosting their own Pod which involves hosting a web-

server and ensuring availability [77], and selecting a public Pod provider which involves

establishment of trust with the Pod provider. Hence, we propose an inter-network of

academics who have Pods at their university’s servers. We believe establishing trust

between users and the university or institution they are affiliated to is much easier.

This also theoretically ensures a more uniform distribution of users [13] at a global

level, given the system is adopted at scale.

4.3 Functional Requirements

FR1 Log In with a Pod Provider

The application should allow a user to select a Pod Provider and log-in us-

ing WebID authentication. At the minimum, the application should support

WebID-OIDC, but also attempt to provide WebID-TLS mode authentication.

The application should make no assumptions about the user’s Pod Provider.

The application should also provide a list of well-known public Pod Providers.

FR2 Creating and Editing one’s Profile

The user should be able to create their profile by adding optional information

such as email, phone, country, and company. None of this information should be

mandatory, and the user should be allowed to edit this information through the

application’s Web-based graphical interface.

FR3 Setting a Profile Picture

The user should have the option of uploading a profile picture, which acts as their

avatar.

41



4.3. FUNCTIONAL REQUIREMENTS

FR4 Discover/find Users

The user should be able to discover users on the network or search for another

user. It is critical for a social network to support interaction between users, and

being able to find the other users is a basic requirement for interaction.

FR5 Following a User

It should be possible for a user to create connections with other users. In this

case, we prescribe following as a one-way connection, whereby if a user Bob that

follows another user Alice, then Bob becomes the follower and Alice becomes the

followee.

FR6 Viewing Profile of a User

A user should be able to view the public profile information of another user, to

be able to identify them.

FR7 Feed: Getting List of Posts of Followees

The follower-followee relationship should enable the follower to list the public

posts of the followees. The follower should also be able to list posts they have

been given explicit access to, through visibility levels defined below.

FR8 Creating Posts

An important part of most popular OSNs is the user-driven creation of content.

The proposed application should allow users to create posts with text, and hy-

perlinks. Advanced features such as organisation tools like tags and keywords,

file attachments, and hyperlinks should also be supported.

FR9 Assigning Visibility Permissions to Posts

We are of the view that the users should have full control over who is able to

view their posts as being able to decide the access level of one’s data is central

to privacy protection. The application should support access control from the

ground up, and the privacy tools should be flexible yet easy to use. At the

minimum, the following visibility levels should be available for configuration:

• Private: Only the user sees their posts.

42



4.4. DESIGN DECISIONS

• Public: Everyone can see the posts theoretically if they visit the user’s

profile, but only followers (both approved and unapproved) see the user’s

posts in their feed.

• ApprovedFollowers: Only those followers, whose follow requests have

been approved by the followee can see the followee’s posts. If the followee

explicitly disapproves the follow request of a user, then that user can not

see the posts marked for ApprovedFollowers.

• Specific users: Allows specification of user(s) by WebID.

• Custom groups: Advanced; allows users to create custom named friend

groups, and select the groups while creating a post.

FR10 Pod migration

The application should allow users to migrate across Pod Providers, without

having to rebuild their profiles and without losing any data.

FR11 Comments and Likes on Posts

The ability to interact with posts is another important social element seen in

most modern OSNs. A similar functionality should be provided by the proposed

system.

FR12 Collaboration

The application should allow users to give editing permissions to other users,

thereby allowing multiple users to author content collaboratively.

4.4 Design Decisions

In this section, we discuss the design decisions and their rationale especially those

arising from Solid’s peculiarities.

1. React SDK4

4http://web.archive.org/web/20190805202814/https://inrupt.com/sdk [Accessed: 05-08-

2019]

43

http://web.archive.org/web/20190805202814/https://inrupt.com/sdk


4.4. DESIGN DECISIONS

We will be using the tools provided by the React SDK to build the application.

For features that the React SDK does not fully support at the time of develop-

ment, we will fall back on the lower-level tools such as query-ldflex5 and rdflib.js6.

The reason for using the React SDK is the latest attempt at creating a modern

and “fun developer experience (DX)” [200]. The SDK consists of two parts: the

scaffolding generator7, and react components for Solid8.

2. UI template

We will be using the UI template tools provided by “Shards Dashboard Lite

React”9 to develop the look-and-feel of the application in the interest of speeding

up development.

3. Application data

Since Solid does not prescribe any hierarchy for storing data within the Pod, it is

up to the application to manage the data. Our application will take inspiration

from Noel De Martin’s blog10 in which he recorded his thoughts while developing a

“Todo list” application using Solid. The application data is stored in a container

created directly in the root (/) of the Pod, and this container will be named

albus. Inside the container, the application will create a resource named user

which contains user’s data specific to Albus such as the followees and the group

of approved followers, and a container named posts which stores posts created

by the user. Any other metadata required by the application will also be stored

inside the albus container. This container hierarchy will be created on the user’s

5http://web.archive.org/web/20190805203631/https://solid.github.io/query-ldflex/

[Accessed: 05-08-2019]
6http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js

/doc/ [Accessed: 05-08-2019]
7https://github.com/inrupt/generator-solid-react/tree/6f8dec65ba04a9c28549e4e00a

11f4a0ab864809 [Accessed: 05-08-2019]
8https://github.com/inrupt/solid-react-components/tree/61fc46e92eb398f7c5c759c8b

1a482fff9bb314d
9https://designrevision.com/downloads/shards-dashboard-lite-react/ [Accessed: 05-08-

2019]
10http://web.archive.org/web/20190805214150/https://noeldemartin.com/tasks/imple

menting-a-task-manager-using-solid

44

http://web.archive.org/web/20190805203631/https://solid.github.io/query-ldflex/
http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js/doc/
http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js/doc/
https://github.com/inrupt/generator-solid-react/tree/6f8dec65ba04a9c28549e4e00a11f4a0ab864809
https://github.com/inrupt/generator-solid-react/tree/6f8dec65ba04a9c28549e4e00a11f4a0ab864809
https://github.com/inrupt/solid-react-components/tree/61fc46e92eb398f7c5c759c8b1a482fff9bb314d
https://github.com/inrupt/solid-react-components/tree/61fc46e92eb398f7c5c759c8b1a482fff9bb314d
https://designrevision.com/downloads/shards-dashboard-lite-react/
http://web.archive.org/web/20190805214150/https://noeldemartin.com/tasks/implementing-a-task-manager-using-solid
http://web.archive.org/web/20190805214150/https://noeldemartin.com/tasks/implementing-a-task-manager-using-solid


4.4. DESIGN DECISIONS

first log-in to the application; at every subsequent log-in, the application just

checks if the container albus exists and proceeds to the home page if it does.

4. Follow request life-cycle

Fig. 4.1 depicts the life-cycle of a typical Follow Request. This process makes

use of the Linked Data Notifications protocol (Section 2.5.2 on page 35). Bob

clicks on the Follow button corresponding to Alice’s profile and that initiates

the follow request. The request is sent to Alice’s inbox as a message using

terms from the ActivityStreams11 vocabulary. When Alice logs on to the ap-

plication next time, she pulls the notifications from her inbox and is shown

options to either approve or ignore the request. The approval action adds Bob

to Alice’s ApprovedFollowers group, while the ignore action adds Bob to Al-

ice’s UnapprovedFollowers. In both cases, the notification is removed from the

inbox. Note that even if the follow request is ignored, Bob is able to read public

posts by Alice – the ignore action is not equivalent to block. In order to main-

tain a list of users who are following Alice, but are not ApprovedFollowers, we

maintain the UnapprovedFollowers. Another advantage is that Alice can move

Bob to ApprovedFollowers in the future if she so wishes.

5. Feed aggregation

Aggregation is a centralised task. In a decentralised set-up, there are essentially

two ways of building a feed of followees:

(a) Pull

While pulling, we have to build the feed – on the fly – when a user logs in.

This entails crawling through all of the followees, and their posts, and ag-

gregating them. This is a time-consuming task. Moreover, sorting becomes

harder. Marking posts as seen so as to not repeat them across sessions is also

harder as you’d have to incur storage cost for storing such data. Discovering

all your followees’ posts is time consuming enough, and when done on the

client-side it makes the presentation harder and brittle. If you want to sort

11https://www.w3.org/TR/2017/REC-activitystreams-vocabulary-20170523/ [Accessed: 05-

08-2019]

45

https://www.w3.org/TR/2017/REC-activitystreams-vocabulary-20170523/


4.4. DESIGN DECISIONS

Figure 4.1: Follow request life-cycle

Figure 4.2: High-level overview of Feed aggregation

before presenting, as you should, that’s increased latency. Over time, as

the the number of posts increases, we’d also want to limit the posts fetched

based on recency, and whether the post has been seen. Since we lack global

knowledge beforehand, this is exceptionally hard.

(b) Push

46



4.4. DESIGN DECISIONS

In this approach, we expect that every time a user publishes a new post, it

gets sent to the followers’ inboxes as a notification. The rest of the process

remains the same. The feed is still created on the fly, but the network cost

of getting posts from followees’ Pods can be avoided. The problem is that

it requires followers’ Pods and inboxes to be perpetually available. Another

issue with this approach is that it requires a multi-cast to all of the targets

of a post. If a post has a large number of target followers, this will get time

consuming as the post creator’s browser will have to make network requests

to all the followers’ inboxes.

To keep the implementation simple, we will use the first approach, as listing from

multiple sources is easier than writing to multiple destinations.

6. Discovering users

As established in Section 2.4 on page 29, searching for other users or discovering

other users on the network is an unsolved problem for DOSNs. Such functionality

depends on a central server maintaining a directory of all users. We consider two

solutions to the discovery problem:

(a) Centralised

This approach involved using a central registry that all users are registered

to. While this solution relies on additional mechanism, outside of Solid, it is

possible to make the feature optional such that it’s only enabled upon user’s

explicit consent, thereby maintaining the privacy-preserving nature of the

application.

(b) Decentralised

This approach involves crawling friends, and friends of friends, and eventu-

ally building a graph. This method is not feasible as it is time-consuming

and requires a mesh of network calls. Moreover, there exist cold start prob-

lems: i) a user having no friends will not be able to find anyone; and ii) no

one will be able to find a user with no friends.

We will be using the centralised discovery mechanism for this application.

47



4.5. SYSTEM DESIGN

4.5 System design

Figure 4.3: System architecture of Albus

Albus, the system built as a result of this work, is a front-end web application

written in the Javascript12 programming language using the React.Js13 framework.

To support discovery of users, a central backbone exists, which exposes two RESTful

12http://web.archive.org/web/20190805213715/https://developer.mozilla.org/en-

US/docs/Web/JavaScript [Accessed: 05-08-2019]
13https://reactjs.org/ [Accessed: 05-08-2019]

48

http://web.archive.org/web/20190805213715/https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://web.archive.org/web/20190805213715/https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://reactjs.org/


4.6. DATA MODELS

APIs: GET /users, and POST /users. Fig. 4.3 shows a high-level overview of the

architecture and interaction protocols of various physical components of the system.

4.6 Data models

There are primarily 3 data models used by Albus. For the user resource, we use

vcard14 and sioc15 vocabularies for describing its predicates. We also define a hasORCID

predicate16 to model a user’s ORCID17. An example of the user model in RDF/TTL

is given below:

@prefix : <#>.

@prefix owl: <http :// www.w3.org /2002/07/ owl#>.

@prefix n: <http :// www.w3.org /2006/ vcard/ns#>.

@prefix ns0: <http :// rdfs.org/sioc/ns#>.

@prefix cont: <http :// www.w3.org /2000/10/ swap/pim/contact#>.

@prefix ldp: <http :// www.w3.org/ns/ldp#>.

@prefix inbox: <inbox/>.

@prefix n0: <https :// akashdeep -singh.github.io/

ontologies/albus/albus.ttl#>.

<#ApprovedFollowers/>

n:hasMember "https :// localhost :8553/ profile/card#me".

:user

a owl:NamedIndividual;

ns0:follows "https :// localhost :8553/ profile/card#me";

ns0:follows "https :// localhost :8663/ profile/card#me";

ns0:follows "https :// localhost :8773/ profile/card#me";

cont:preferredURI "https :// localhost :8443/ profile/card#me";

ldp:inbox inbox:;

n0:hasORCID "1234 -5678 -91011 -121212".

14https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/ [Accessed: 05-08-2019]
15http://rdfs.org/sioc/spec/ [Accessed: 05-08-2019]
16https://akashdeep-singh.github.io/ontologies/albus/albus.ttl [Accessed: 05-08-2019]
17https://orcid.org/ [Accessed: 05-08-2019]

49

https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
http://rdfs.org/sioc/spec/
https://akashdeep-singh.github.io/ontologies/albus/albus.ttl
https://orcid.org/


4.7. TECHNICAL IMPLEMENTATION DETAILS

The post resource is modelled primarily using the “DCMI Metadata Terms”18 and

sioc vocabularies. A sample post in RDF/TTL is shown below:

@prefix : <#>.

@prefix posts: <./>.

@prefix terms: <http :// purl.org/dc/terms/>.

@prefix XML: <http :// www.w3.org /2001/ XMLSchema#>.

@prefix n: <http :// rdfs.org/sioc/ns#>.

posts :884 f9d0cd892ca6f70d42663099efe122663da33_1563538137312_3iss1m

terms:created "2019 -07 -19 T12 :08:57Z"^^XML:dateTime;

terms:title "Friday post";

n:content "Lorem ipsum doler sum. ".

The third data model Albus uses is the LDN message for follow requests. This is

modelled using the ActivityStreams vocabulary and is represented using JSON-LD as

mandated by the LDN protocol specification [183]. A sample is reproduced below:

{

"@context ": "https ://www.w3.org/ns/activitystreams #",

"@id": "",

"type": "Follow",

"actor ": "https :// localhost :8553/ profile/card#me",

"object ": "https :// localhost :8443/ profile/card#me",

"updated ": "7/5/2019 , 6:29:17 PM"

}

4.7 Technical Implementation Details

Apart from the RESTful API, the Solid community has built two higher-level libraries

for interacting with Pods, which allow reading and writing data: rdflib.js and query-

ldflex. These libraries take different approaches to data access, and are currently at

different levels of maturity. rdflib.js covers more features of the Solid specification, like

creation of containers and resources, which query-ldflex does not. However, query-ldflex

can be used for retrieval and update operations on resources due to its simplicity.

18https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/

[Accessed: 05-08-2019]

50

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/


4.8. SUMMARY AND NEXT CHAPTER

Figure 4.4: User Interface of the homepage of Albus

Fig. 4.4 shows a screenshot of the homepage of Albus with the key UI elements

labelled. More screenshots are included in Appendix B.

Table 4.1 summarises the implementation of the functional requirements with re-

spect to the aspect of Solid used, the data access mechanism used, and whether the

React SDK was used for that particular feature or not. Due to time constraints, FR11

and FR12 were not implemented. However, implementing FR11 is straightforward as

it would involve similar concepts as the implementation of FR8 (post creation) along

with LDN. Similarly, FR12 may be implemented using the Write mode permissions

in WAC. FR10 was attempted but tests were unsuccessful for reasons detailed later in

Section 5.1.5 on page 61. The detailed implementation process can be followed in the

development journal included in Appendix A.

4.8 Summary and Next Chapter

This chapter dealt with the design process and internal workings of Albus. We discussed

the planned functionality, implemented functionality, and mapped the implemented

51



4.8. SUMMARY AND NEXT CHAPTER

Functional
Require-
ment

Screenshot Solid feature
used

Data access in-
terface used

Implemented us-
ing React SDK
Components?

FR1 Fig. B.4,
B.5, B.6,
and B.7

WebID-OIDC solid-auth-client Yes

FR2 Fig. B.10 RESTful API query-ldflex Yes

FR3 Fig. B.10 RESTful API RESTful API Yes

FR4 Fig. B.13
and B.8

(not provided by
Solid)

– No

FR5 Fig. B.14
and B.12

RESTful API,
Linked Data
Notifications

rdflib.js No

FR6 Fig. B.11 RESTful API query-ldflex No

FR7 Fig. B.15 RESTful API query-ldflex No

FR8 Fig. B.9 RESTful API rdflib.js No

FR9 Fig. B.9 RESTful API,
Web Access
Control Lists

rdflib.js No

FR10 – (test unsuccessful) – –

FR11 – (not implemented) – –

FR12 – (not implemented) – –

Table 4.1: Functionality implementation mapping with Solid features

features with Solid concepts and the tools used to build them. In the next chapter, we

will evaluate the developer experience and Albus.

52



Chapter 5

Evaluation

This chapter will describe the findings from the study. Section 5.1 deals with the

evaluation of the developer experience driven by the journal (Appendix A) and classified

using the “factors affecting developer experience” established earlier in Section 2.3.1

on page 19. Section 5.2 evaluates the application built, i.e., Albus, for its performance,

examines it against the principles of “privacy by design”, and determines the key

attributes of DOSNs it employs.

5.1 Development Experience Evaluation

5.1.1 DX1: Quality of learning resources

The present set of learning resources were found to be outdated as well as ineffective.

This is primarily because documentation is sparse and disconnected. The only official

source of documentation is the website1. This website is divided into mostly uncon-

nected pages, the first of which is a “Getting Started” page which links to other pages

for “Learning the Basics”. There are three tutorial pages, none of them connected to

each other, and none of them pointing to the basics as prerequisites. The lunch break

tutorial2 is the simplest, yet confusing and inadequate. The other tutorials simply

1http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/gettin

g-started [Accessed: 07-08-2019]
2http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-

your-lunch-break [Accessed: 07-08-2019]

53

http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/getting-started
http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/getting-started
http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-your-lunch-break
http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-your-lunch-break


5.1. DEVELOPMENT EXPERIENCE EVALUATION

show how to install a scaffolding generator for generating a sample application with

Angular3,4 and React.Js5. These tutorials do not attempt to connect the knowledge to

the basics of Solid, nor do they indicate further reading for building real applications.

Table 5.1 tabulates the evaluation based on tutorial requirements framed in Section

2.3.2 on page 21.

lunch break tutorial angular tutorial react tutorial
T1 No No No
T2 Yes No No
T3 Yes No No
T4 No No No
T5 Yes Yes Yes
T6 No No No
T7 Yes Yes Yes

Table 5.1: Evaluation of Solid tutorials

All other documentation regarding Solid is scattered across various Github repos-

itories, the “official community forum”6. In Part II of this study(Getting Started with

Solid), we have provided a model for creating a more effective tutorial for beginning

Solid development. This beginner’s guide is inspired from the VueJs guide7 and focused

on filling the gaps we found in the official documentation. Specifically, we begin with

FAQ-style questions and answers to address what we feel are important concerns, and

then gently introduce Solid and some functionality. While this guide is by no means

exhaustive, we link to other resources so that readers can continue learning. These

links are given context so that readers don’t feel lost.

3http://web.archive.org/web/20190807004510/https://solid.inrupt.com/docs/writin

g-solid-apps-with-angular [Accessed: 07-08-2019]
4https://angular.io/ [Accessed: 07-08-2019]
5http://web.archive.org/web/20190807004502/https://solid.inrupt.com/docs/writin

g-solid-apps-with-react [Accessed: 07-08-2019]
6https://forum.solidproject.org/ [Accessed: 07-08-2019]
7https://vuejs.org/v2/guide/ [Accessed: 07-08-2019]

54

http://web.archive.org/web/20190807004510/https://solid.inrupt.com/docs/writing-solid-apps-with-angular
http://web.archive.org/web/20190807004510/https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://angular.io/
http://web.archive.org/web/20190807004502/https://solid.inrupt.com/docs/writing-solid-apps-with-react
http://web.archive.org/web/20190807004502/https://solid.inrupt.com/docs/writing-solid-apps-with-react
https://forum.solidproject.org/
https://vuejs.org/v2/guide/


5.1. DEVELOPMENT EXPERIENCE EVALUATION

5.1.2 DX2: Activity in the community

Analysis of Solid community

• Stackoverflow

On Stackoverflow (as of 22-07-2019), 50% out of the 108 questions tagged solid

asked went unanswered, while 30% had only one answer, and the rest had 2

answers. This is much worse than the average for Stackoverflow: an estimated

14.19% questions were unanswered, while over 50% questions had more than one

answers [130]. For comparison, consider the project deno9 which was launched

in June 2018, still is in heavy development, is not recommended for production,

and has 13 tagged questions10. While there is no real baseline for comparing

Solid with, we will take deno as an indicator of what an average project in the

developer community with can look like. Deno is not exactly comparable as it

is simply a Typescript-based11 back-end web development platform much more

comparable to Node.Js, but the interest in it is clearly higher as is the community

engagement, despite being younger, more of a niche, and having started as an

experiment. Given the age of these projects, Solid is clearly lacking in generation

of interest among users of Stackoverflow. As discussed in Section 2.3.2 on page

20, Stackoverflow is an important community site for developers, and can play a

crucial role in providing help to developers. We believe that the lack of Solid-

related activity on Stackoverflow needs to be addressed.

• Github

An analysis of the GitHub repositories (as of 22-08-2019) confirms the suspicion

that Solid might be suffering from a lack of interest from the general web devel-

opment community. Deno has a single core repository12, while Solid has several.

8https://web.archive.org/web/20190722191907/https://stackoverflow.com/questions/

tagged/solid
9https://deno.land/manual.html#introduction [Accessed: 22-07-2019]

10https://web.archive.org/web/20190722192305/https://stackoverflow.com/questions/

tagged/deno [22-07-2019]
11https://www.typescriptlang.org/ [Accessed: 07-08-2019]
12https://web.archive.org/web/20190722193152/https://github.com/denoland/deno [Ac-

cessed: 22-07-2019]

55

https://web.archive.org/web/20190722191907/https://stackoverflow.com/questions/tagged/solid
https://web.archive.org/web/20190722191907/https://stackoverflow.com/questions/tagged/solid
https://deno.land/manual.html#introduction
https://web.archive.org/web/20190722192305/https://stackoverflow.com/questions/tagged/deno
https://web.archive.org/web/20190722192305/https://stackoverflow.com/questions/tagged/deno
https://www.typescriptlang.org/
https://web.archive.org/web/20190722193152/https://github.com/denoland/deno


5.1. DEVELOPMENT EXPERIENCE EVALUATION

However, the NSS repository13 is the most popular and most contributed to as

well as the single official reference implementation of the Solid specification.

Deno (first commit: June 2018) has 1,747 commits in the master branch, while

NSS (first commit: October 2014) being almost 4 years older has 2,489. The

number of open issues is higher in deno at 211 to NSS’s 152, as is the number

of open PRs - deno has 29 and NSS has 9. Deno also has more stars, which are

considered an indicator for attention [201] on Github, with 37,078 users having

starred deno’s repository compared to NSS’s much lower 1,308. The number of

watchers can also be considered as a proxy for interest in the community; deno

has 1446, whereas NSS has 88. In terms of indicators of contributions, deno has

1712 forks and 144 contributors so far, while NSS lags again with 222 forks and a

much smaller group of 57 contributors. While it is out of the scope of this study

to look into the reasons of this seemingly low interest relative to an experimental

project like deno, we believe it is worth finding out so that steps can be taken to

improve adoption by the larger web development community.

• Gitter

A look at the number of messages on the Gitter rooms (Table 5.2) shows a slightly

different picture. Indeed, Solid being about 3-4 years older than deno causes it to

have a much larger number of messages if we just compare the solid/chat room

to deno’s only denolife/Lobby room. The number of users who have participated

in solid/chat is also much higher.

Interactions with the Solid community

Our interactions with the Solid community happened through 4 channels: Github,

Gitter, the forum, and twitter. All of these channels serve different purposes.

The interactions over Github were limited to raising issues and pull requests (PRs)

or commenting on them. Notably, one PR created by us has since been approved14

and is pending merge into the master branch of the rdflib.js library. The turnaround

time for Github activity was between 2 to 7 days.

13http://web.archive.org/web/20190722193200/https://github.com/solid/node-solid-

server [Accessed: 22-07-2019]
14https://github.com/linkeddata/rdflib.js/pull/325

56

http://web.archive.org/web/20190722193200/https://github.com/solid/node-solid-server
http://web.archive.org/web/20190722193200/https://github.com/solid/node-solid-server
https://github.com/linkeddata/rdflib.js/pull/325


5.1. DEVELOPMENT EXPERIENCE EVALUATION

room message
count

first message 5000th mes-
sage

user count

solid/app-
development

5461 05-09-2018 30-06-2019 130

solid/chatapp 135 18-02-2019
solid/chat 46726 15-01-2016 10-03-2016 795
solid/data-browser 272 30-05-2019
solid/node-solid-
server

26121 07-02-2015 16-09-2016 171

solid/solid-spec 1918 10-04-2015
denolife/Lobby 9882 28-06-2018 04-03-2019 310

Table 5.2: Gitter messages on Solid and Deno rooms, as on 06-08-2019

On Gitter, the interaction was in the form of messages to chat-rooms as well as pri-

vate messages to members of the community. On chat-rooms, we found that questions

were answered within minutes by helpful members who happened to be online, while

private messages were responded to within a day or two. This was the fastest way of

getting help. Similar interactions took place over twitter via tweets, but these were

few.

The forum was the richest source of information in the form of questions and an-

swers. We created topics as well as follow-up posts to existing topics to ask questions

and to ask for clarifications. These queries were usually addressed within 24 hours.

The interactions with the community showed that getting help from the members

is fairly easy on Gitter and the forum, and the community is welcoming.

5.1.3 DX3: Quality and quantity of tooling

React SDK

The React SDK consists of 2 parts: the components and the generator.

We found that the components did not support much of Solid’s built-in features

when we began development (February 2019), especially creation of resources. The

components lacked in documentation, so it was unclear how to use them, especially in

a more generalised manner apart from the example use-cases shown in the documen-

57



5.1. DEVELOPMENT EXPERIENCE EVALUATION

tation. However, the withWebId and useWebId “higher-order components (HOCs)”15

were indeed useful in making the WebID available as well as in checking for authenti-

cation status.

The generator has taken the shape of a sample application instead of just scaffolding.

It’s necessary to point out that generated scaffolding would not actually have any

features and would not be a functioning Solid app at all. Rather it would be a generated

react app with Solid dependencies included. The next logical step would be to have

a tutorial that builds our sample app piece by piece using the components and lets

developers learn the component SDK. We believe that the SDK should focus more on

the components rather than the generator.

Data access interfaces

Solid has 3 popular ways of interacting with data programmatically:

1. RESTful API

It would seem that this is the basic and the canonical approach also laid out in

the specification. All other interfaces seem to be built on top of the REST inter-

face, which is documented well enough and is quite comprehensive. It requires

knowledge of HTTP, LDP, and RDF.

2. rdflib.js

This is perhaps the second most mature interface (apart from the Data Browser).

The problem is it assumes a knowledge of RDF and LDP. That would be fine if

the documentation was better, but it’s fragmented, incomplete, and inconsistent.

3. query-ldflex

This is the newest, and by far the easiest to get started with. Unfortunately, this

too suffers from the incompleteness of documentation apart from the fact that

it does not have all the features to be able to provide all of Solid’s capabilities.

While it’s being actively worked on, it will take some time for it to be mature.

The bottom line is that no one solution fits all of the needs for a practical application

like an OSN. At the very least, a document covering all the common CRUD scenarios

15https://reactjs.org/docs/higher-order-components.html [Accessed: 05-08-2019]

58

https://reactjs.org/docs/higher-order-components.html


5.1. DEVELOPMENT EXPERIENCE EVALUATION

for containers, resources, and triples should exist for the 3 interfaces from a view of

helping new developers started. This is not the case yet. None of the documents that

exist contain this information.

Some use cases such as filtered listing do not even seem to be possible yet, due to

the way data is stored and serialised on Pods.

Given that the primary data access interface for Solid apps is RESTful, this creates

a gap for meaningful querying. Most applications are backed by a database, RDBMS

or NoSQL, which provides a sophisticated query interface that lets developers per-

form selection and projection operations at the very least, apart from more complex

aggregation. Solid stores data mainly as Turtle representation of RDF. While this se-

rialisation may not be the most efficient, it is expressive enough for designing versatile

data models. However, querying Turtle has traditionally been done using SPARQL,

which is highly expressive, albeit complex.

While the Solid specification prescribes it16, NSS lacks a SPARQL endpoint17 for

querying over the data in the Pod, making it necessary to perform operations such as

selection, projection, and aggregation over Pod data inside the client application. This

makes modelling data difficult especially when designing with privacy in mind. Since

permissions using .acl files within the Pod are assigned at the level of resources (files on

disk in case of NSS), different access levels need to be isolated at the resource/container

level rather than predicate/property level.

This means that if a user Alice wants to create a post visible only to a specific

follower Bob, then a separate resource needs to be created specifically for Bob with the

.acl file associated with that resource having the WebID of Bob. Since the listing of

resources in a container is done at the container level without any filters, a listing by

every follower of Alice will show that resource but a request to get the content of that

resource will fail with a 403.

To fill this gap, libraries such as rdflib.js and sparql-fiddle18 have implemented

workarounds that allow executing SPARQL over loaded RDF documents but the ex-

16https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa

9283/api-rest.md#alternative-using-sparql [Accessed: 05-08-2019]
17https://github.com/solid/node-solid-server/issues/962#issue-383649959 [Accessed:

05-08-2019]
18https://github.com/jeff-zucker/sparql-fiddle/tree/6dc2a464d0b637466a23f3027c7e

3ad308746791 [Accessed: 05-08-2019]

59

https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#alternative-using-sparql
https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#alternative-using-sparql
https://github.com/solid/node-solid-server/issues/962#issue-383649959
https://github.com/jeff-zucker/sparql-fiddle/tree/6dc2a464d0b637466a23f3027c7e3ad308746791
https://github.com/jeff-zucker/sparql-fiddle/tree/6dc2a464d0b637466a23f3027c7e3ad308746791


5.1. DEVELOPMENT EXPERIENCE EVALUATION

perience is not smooth.

5.1.4 DX4: Stability of the platform

The platform currently comprises of only NSS. The user interface of the default data

browser19 that ships with NSS was found to be lacking in user-friendliness. In partic-

ular, the sharing feature was found unusable and made it necessary to edit .acl files

manually.

Another problem was the frequency of bugs in NSS and other libraries. This was not

entirely unexpected as both the Solid specification and NSS are evolving rapidly. There

are open issues20,21 and threads22 that deal with the compliance differences between

NSS and the specification. As a result of these, developing on top of NSS is hard

because even minor version updates introduce breaking changes and regressions. Most

libraries don’t have adequate or any tests which in turn leads to bugs slipping into

releases.

5.1.5 DX5: Technical capabilities and features of the project

Usability issues

Apart from the challenges in developing functionality mentioned in Section 2.4 on page

29, we noticed a number of other issues that arose as a result of Solid’s approach to

decentralisation. In particular we found that the Sign-up process was longer now, as

it requires at least an extra step for selecting Pod provider. In addition, loading the

feed on the client application is slow, as it requires multiple steps and several network

calls. Since we modelled each post as a resource, getting the post details requires one

HTTP GET for each post. Even before getting the individual posts, it is necessary to

discover their URI’s by listing the posts of each followee. As discussed in Section 4.4

19https://github.com/solid/userguide/tree/c9f7e62e184fafb0c66e5a15a16562b7d90197f

5 [Accessed: 05-08-2019]
20https://github.com/solid/node-solid-server/issues/1190 [Accessed: 05-08-2019]
21https://github.com/solid/solid-spec/issues/174 [Accessed: 05-08-2019]
22https://lists.w3.org/Archives/Public/public-solid/2019May/0015.html [Accessed: 05-

08-2019]

60

https://github.com/solid/userguide/tree/c9f7e62e184fafb0c66e5a15a16562b7d90197f5
https://github.com/solid/userguide/tree/c9f7e62e184fafb0c66e5a15a16562b7d90197f5
https://github.com/solid/node-solid-server/issues/1190
https://github.com/solid/solid-spec/issues/174
https://lists.w3.org/Archives/Public/public-solid/2019May/0015.html


5.1. DEVELOPMENT EXPERIENCE EVALUATION

on page 45, this is likely to perform poorly in a real world scenario and is not scalable

beyond a handful of followees.

Pod migration

Pod migration is not officially supported, and hard to accomplish because the WebID

is essential to the Pod, and the WebID URI is strongly coupled with the Pod data.

The implication of this dependence on URIs is that moving to a different Pod provider

involves getting a new WebID URI. Not only do all external references to one’s WebID

URI need to change, but also the ones inside the Pod.

Our tests involved executing NSS inside a docker container23 and mounting the

data directory on an external volume. In order to simulate a migration, we started

NSS in another container. Now, we had two containers with different domain names

(localhost:8443 and localhost:8553). Detaching the volume from one container and re-

attaching it to the other did not work. It was observed that the OIDC provider was

configured using the server’s domain name, so the user account was tied to the domain

name as well.

The considered workaround for these problems was automatically recreating the

user’s account24 on the new server using solid-cli25, reconstructing all of the data by

copying, and replacing the old WebID URI with the new one. This method is not only

unreliable, but also invasive as it requires white-box access to the Pod.

These issues exist due to the inherently centralised nature of DNS. These issues

have been discussed extensively in the Solid community26,27,28, but a robust solution

is yet to be implemented.

23https://www.docker.com/ [Accessed: 05-08-2019]
24https://github.com/solid/solid-spec/blob/bea2322d2ada2a9402599176e4b04f

c50970348b/recommendations-client.md#creating-new-accounts [Accessed: 05-08-2019]
25https://github.com/solid/solid-cli/tree/26bb238f511487a50ee878b8313caaa7ea109d

28 [Accessed: 05-08-2019]
26https://forum.solidproject.org/t/transfering-a-solid-pod/1902 [Accessed: 05-08-

2019]
27https://forum.solidproject.org/t/move-it-at-any-time-without-interruption-of-

service/565 [Accessed: 05-08-2019]
28https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-

in/756 [Accessed: 05-08-2019]

61

https://www.docker.com/
https://github.com/solid/solid-spec/blob/bea2322d2ada2a9402599176e4b04fc50970348b/recommendations-client.md#creating-new-accounts
https://github.com/solid/solid-spec/blob/bea2322d2ada2a9402599176e4b04fc50970348b/recommendations-client.md#creating-new-accounts
https://github.com/solid/solid-cli/tree/26bb238f511487a50ee878b8313caaa7ea109d28
https://github.com/solid/solid-cli/tree/26bb238f511487a50ee878b8313caaa7ea109d28
https://forum.solidproject.org/t/transfering-a-solid-pod/1902
https://forum.solidproject.org/t/move-it-at-any-time-without-interruption-of-service/565
https://forum.solidproject.org/t/move-it-at-any-time-without-interruption-of-service/565
https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in/756
https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in/756


5.2. APPLICATION EVALUATION

Access Control

Listing contents (using blobbing or ldp:contains) of a container can lead to a breach

of privacy, because a user may not have access rights to all of the contents. The user

will then be able to learn which of those they do not have access rights to by making

GET requests to each of the resources as the requests will either succeed or fail with

a 403 error. Thus, they will be able to learn which resources have been withheld from

them.

5.2 Application Evaluation

5.2.1 Performance

To evaluate the performance, we consider the News Feed functionality as it is the most

commonly used feature in OSNs. As already mentioned, decentralised feed aggregation

can be slow. A comparison with Facebook’s News Feed performance showed that

loading the first 7 posts by visiting the homepage takes 48 ms on an average. On the

other hand, Albus takes 1873 ms to fetch the list of one followee’s posts, and then about

1639 ms for each post containing just three predicates (title, created, and content) with

the content being 90 characters long. Clearly, Albus loads the News Feed considerably

slower than a centralised OSN, even when the data is being served from a Pod hosted

on the same machine.

5.2.2 Privacy by design

We refer to the “privacy by design” principles we discussed in Section 2.2 of page 15

and hold Albus against these principles using the following two cases:

Case 1: Albus does not collect any user data without consent. The only user data

Albus stores on a central server is the WebID. The feature is designed in such

a way that users explicitly opt-in. The buttons have been given neutral colours

so that users are not misguided into giving consent. The application still works

correctly for a user if they do not opt-in to register for the discovery listing.

62



5.2. APPLICATION EVALUATION

Case 2: Albus provides easy-to-use and flexible privacy tools to configure the visibility

of posts. The default visibility level is private so that users do not accidentally

expose data. Even if a user keeps all their posts private they can continue to use

all features of the application.

P1 Albus is proactive in its approach to privacy. Both Case 1 and Case 2 illustrate

this.

P2 As mentioned in Case 2, the default setting for post visibility is private. Care

has been taken to make sure that users have to give explicit permissions before

exposing any data.

P3 Every design decision has been taken keeping the privacy of user data in mind.

Moreover, Albus is built using Solid, which puts privacy at the centre of its core

values.

P4 As mentioned in Case 1 as well as Case 2, the application works fully and correctly

for all users regardless of their privacy preferences. The only exception is their

name, which can be edited, but it’s public and anyone having access to their

WebID can see it.

P5 Albus does nothing to encrypt connections or user data. That is the responsibility

of the underlying infrastructure. While Solid mandates the use of HTTPS, en-

crypting Pod data is not yet possible. The implication of this is that a malicious

Pod provider can gain unauthorised access to a user’s private Pod data.

P6 Albus is built on Solid which itself is composed of open standards. Additionally,

the code for Albus will be released under the Open-source MIT license29.

P7 Albus is built with the user’s needs at the centre. Albus makes no decisions for the

benefit of application developers, service providers, Pod providers or any other

parties other than its end users. The user’s privacy is considered sacrosanct, and

features that compromise it are not developed.

29https://opensource.org/licenses/MIT [Accessed: 07-08-2019]

63

https://opensource.org/licenses/MIT


5.3. SUMMARY AND NEXT CHAPTER

In summary, as per our evaluation, Albus fully complies with 6 out of the 7 “privacy

by design” principles. We find that P5 is outside the scope of Albus and needs to be

addressed by the platform, i.e., Solid, in this case.

5.2.3 DOSN classification

The classification of Albus based on the comparison features laid down in Table 2.4 on

page 26 is given below:

1. Topology: Unstructured

2. Data storage approach: Semi Decentralised

3. Privacy models: Group based, Relationship based

4. Privacy policy enforcement approach: Trusted peers

5.3 Summary and Next Chapter

This chapter detailed the evaluation of Solid and Albus through previously established

concepts. We found the weaknesses of the application, Albus, as well as those of the

platform, Solid, and discussed the correlations between their weaknesses. The next

chapter discusses these findings against the motivations of goals discussed in Chapter

1, and concludes this study.

64



Chapter 6

Discussion and Conclusions

This work looked into the privacy challenges posed by modern centralised OSNs and

potential decentralised solutions. We also built a decentralised OSN using the Solid

platform, and evaluated the developer experience as well as the application.

A review of literature indicated that not enough people care about privacy or most

people do not care about privacy enough [6,85–87]. This is primarily because a trade-

off exists between usability-enhancing and privacy-preserving designs. Additionally,

privacy and security are seen as non-functional software requirements [202] and hence,

treated as an afterthought.

Moving from old style app development to Solid also involves completely reforming

how we model and interact with data from protocols like SQL to RDF and SPARQL.

The bigger challenge here is to reorient developers of traditional db-backed systems to

this way of working with data.

There are also infrastructure-related and usability concerns which remain largely

unsolved. Hosting Pods is in-feasible for regular people, while trusting providers is

similar to trusting central servers of application providers. We explored a federated

model in the academic domain, but it remains to be seen if such a model is scalable

generally.

Apart from the availability challenge of Pod-hosting, Solid needs to overcome cer-

tain barriers in order to evolve a mature developer experience. The instability of the

specification, buggy and inadequate tooling, and the lack of proper documentation are

the top 3 concerns that deserve attention.

65



Finally, we would like to point out that there is some confusion in the web develop-

ment community about the taxonomy to use for Solid, and a discussion1 on the forum

best represents the current status of the dialogue surrounding this issue. The question

is, “what is Solid?” Or rather, where does it fit in our current – perhaps limited –

vocabulary of classifying concepts in the software development and engineering field.

First let’s just get the obvious out of the way: Solid is not a programming language.

The other classifications that we consider are framework [203], paradigm [204], and

platform [205].

Solid, is described by the official website2 as “a proposed set of conventions and

tools” [206]. As per the definitions on Wikipedia, we argue that Solid is a paradigm

in the sense that it invokes “distinct concepts and thought patterns” [204] concerning

web development, and also attempts to induce a “paradigm shift” [207] in how web

applications design is approached. We also believe that while Solid itself does not

constitute a platform, it specifies one, and NSS as an implementation of that specifica-

tion is a platform, that provides services such as data management, access control and

authentication through APIs. Finally, we submit that Solid in its present form does

not constitute a framework, nor does a framework exist for enabling Solid application

development. However, the React SDK for Solid represents an attempt at creating one

out of lower level libraries3.

The above discussion is a summary of our answer to our research question we put

forth in Section 1.4 on page 4. We conclude by summarising our contributions. By

means of this work, we have produced a Solid application that is a social networking

application for academics (C2) and also serves as an Open Science portal (C4). We

have written a beginner’s guide to Solid for new developers (C1; See Part II). We have

also discussed in detail the weaknesses to Solid, contributed to its development and

stability by interacting with the community, raising issues, and fixing bugs (C3). In the

next chapter, we also briefly consider the future developments in the Solid community.

In summary, we posit that the Solid platform, which is the result of over a decade of

1https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framework-vs-

web-standards-effort/844/4 [Accessed: 07-08-2019]
2https://solid.mit.edu/ [Accessed: 07-08-2019]
3http://web.archive.org/web/20190807202549/https://pragprog.com/magazines/2010-

04/tangled-up-in-tools [Accessed: 07-08-2019]

66

https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framework-vs-web-standards-effort/844/4
https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framework-vs-web-standards-effort/844/4
https://solid.mit.edu/
http://web.archive.org/web/20190807202549/https://pragprog.com/magazines/2010-04/tangled-up-in-tools
http://web.archive.org/web/20190807202549/https://pragprog.com/magazines/2010-04/tangled-up-in-tools


6.1. THREATS TO VALIDITY

progress in the field of Semantic Web development, is a promising technology paradigm

for decentralised web development. We have shed light on various aspects of Solid and

highlighted the weaknesses that need to be worked upon in order to create a successful

web development movement.

6.1 Threats to Validity

The qualitative evaluation portion of this study is, by necessity, subjective, and is con-

tingent on the ability of one person (the lead researcher) to gather sufficient evidence

and information accurately, and the reasoning applied. While every care was taken

to perform the evaluation with sound logic and without bias, it was not possible un-

der prevailing restrictions to construct a more robust evaluation framework to obtain

more empirical results. However, as a report of experience-based evidence, this study

addresses a large number of aspects of Solid and development with it.

67



Chapter 7

Future work

A number of efforts towards the improvement of Solid and the development experience

are underway. Some of these began after we completed the development and evaluation

of this study.

The endeavour to use Solid in conjunction with efforts such as SAFE1 is worth-

while and promising. This attempts to address the availability issue by providing an

alternative network topology and data storage.

While some might argue that DOSNs are opposed to all forms of data mining, we

believe that personalisation/adaptation without invading privacy or exposing user data

can be achieved using the power of Linked data combined with decentralised machine

learning [208–212]. As noted in Section 4.4 on page 44, Solid does not prescribe any

hierarchy for storing containers and resources. This poses a challenge for application

developers as application design heavily depends on where and how data is stored. Since

application developers are left to define their own hierarchies, this can lead to data silos

and redundancies within the Pod. There are currently no well-defined best practices for

ensuring interoperability between applications. Verborgh’s recent blog [213] attempts

to lay down the way forward for realising the promise of “the separation of data and

apps” [213]. In the blog, Verborgh states that applications should not assume anything

about the layout of data in the Pods. Current apps either make such assumptions or

create their own layout in workspaces/namespaces corresponding to directories (called

folders on Windows systems) on disk. Shape-aware applications would instead use

1https://safenetforum.org/t/solid-on-safe-updates/29318 [Accessed: 05-08-2019]

68

https://safenetforum.org/t/solid-on-safe-updates/29318


declarative shapes to build data-driven interfaces that would rely on technologies such

as ShEx2 and SHACL3 [213].

It also came to our attention that another open-source implementation4 of the

Solid specification under the ambit of Inrupt5 is being built. This is an important

development, as having multiple implementations can facilitate better compliance and

better innovation.

There’s an imminent need to produce more learning resources. But these resources

must acknowledge the gap in the capabilities of developers of traditional applications

who do not know Linked Data. It’s also important to understand the different classes of

application developers the learning resources are targeted at. Some developers will have

no knowledge of Linked Data, while some will have basic understanding of Linked Data

while yet other may know the fundamentals of Solid. Using the same set of resources to

teach such a diverse group of developers is not effective. Instead, we suggest production

of learning resources for Solid application development at least 3 levels: Beginner,

Intermediate, and Advanced. The first level should guide a developer through creation

of a basic CRUD application using Solid using the very basic resources while not

mentioning the more complicated tools such as Shapes at all. The guide should start

with an introduction to the basic of Linked Data, and NSS. The Intermediate level

should on-board the developer with some of the higher level tooling available such

as ldflex and rdflib.js and should apply the newly introduced tools and practices to

the application developed in Level 1. The concept of ACL should also be introduced

and applied at this level. Finally, at the Advanced level, the developer is expected to

understand Solid and Linked Data and the commonly used tools. At this point, the

guide should introduce the best practices related to Shapes and any other advanced

concepts deemed unnecessary at earlier levels. We recommend modelling tutorials in a

similar manner to the C# tutorials on Microsoft’s .NET website6, which are interactive

and connected. The VueJs guide 7 is also a good example for introducing new concepts

2http://shex.io/shex-semantics/ [Accessed: 07-08-2019]
3https://www.w3.org/TR/2017/REC-shacl-20170720/ [Accessed: 07-08-2019]
4https://github.com/inrupt/pod-server [Accessed: 07-08-2019
5http://web.archive.org/web/20190807204241/https://inrupt.com/vision [Accessed: 07-

08-2019]
6https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/ [Accessed: 07-08-2019]
7https://vuejs.org/v2/guide/ [Accessed: 07-08-2019]

69

http://shex.io/shex-semantics/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://github.com/inrupt/pod-server
http://web.archive.org/web/20190807204241/https://inrupt.com/vision
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/
https://vuejs.org/v2/guide/


explicitly and gently before diving into code examples.

Security has been cited as an important requirement in DOSNs as we discussed in

Section 2.4. We also noted that Solid currently, does not support encryption of Pods,

and so complete end-to-end encryption is not possible. While early discussions on this

topic8 have been held in the community, there is no proposal in the specification to

address this concern; NSS doesn’t provide Pod encryption tools either. In the future,

we would like to see the aspect of data security addressed in a more meaningful way.

Finally, future work on the application we built, Albus, should focus on improving

usability by adding social features such as comments, likes, and collaboration tools.

An optimisation of common case functions should also be carried out to improve data

loading performance. We also recommend A/B testing [214] to test and improve the

usability of the application.

8https://forum.solidproject.org/t/encrypted-pod-is-solid-designed-with-this-in-

mind-if-not-would-it-be-possible-to-add/399/16 [Accessed: 07-08-2019]

70

https://forum.solidproject.org/t/encrypted-pod-is-solid-designed-with-this-in-mind-if-not-would-it-be-possible-to-add/399/16
https://forum.solidproject.org/t/encrypted-pod-is-solid-designed-with-this-in-mind-if-not-would-it-be-possible-to-add/399/16


Bibliography

[1] F. Fagerholm and J. Münch, “Developer experience: Concept and definition,” in

2012 International Conference on Software and System Process (ICSSP), pp. 73–

77, June 2012. Accessed: 27-06-2019.

[2] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding, and re-

taining newcomer developers in open source software projects,” 2 2014. Accessed:

18-07-2019.

[3] V. V. H. Pham, S. Yu, K. Sood, and L. Cui, “Privacy issues in social networks

and analysis: a comprehensive survey,” IET networks, vol. 7, no. 2, pp. 74–84,

2017. Accessed: 27-06-2019.

[4] A. D. Salve, P. Mori, and L. Ricci, “A survey on privacy in decentralized online

social networks,” Computer Science Review, vol. 27, pp. 154–176, 2018. Accessed:

23-07-2019.

[5] Wikipedia, “Fediverse.” https://en.wikipedia.org/wiki/Fediverse. Ac-

cessed: 27-07-2019.

[6] A. Heravi, S. Mubarak, and K.-K. R. Choo, “Information privacy in online social

networks: Uses and gratification perspective,” Computers in Human Behavior,

vol. 84, pp. 441–459, 2018. Accessed: 7-07-2019.

[7] “Social networks - problems of security and data privacy background paper.”

http://www.cepis.org/files/cepis/20090901104125_CEPISsocialnetwork

Backgroun.pdf, Mar. 2008. Accessed: 27-06-2019.

71

https://en.wikipedia.org/wiki/Fediverse
http://www.cepis.org/files/cepis/20090901104125_CEPIS social network Backgroun.pdf
http://www.cepis.org/files/cepis/20090901104125_CEPIS social network Backgroun.pdf


BIBLIOGRAPHY

[8] I. Kayes and A. Iamnitchi, “Privacy and security in online social networks: A

survey,” Online Social Networks and Media, vol. 3-4, pp. 1–21, 2017. Accessed:

4-07-2019.

[9] X. Chen and K. Michael, “Privacy issues and solutions in social network sites,”

IEEE Technology and Society Magazine, vol. 31, no. 4, pp. 43–53, 2012. Accessed:

4-07-2019.

[10] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cambridge analytica,

and privacy protection,” Computer, vol. 51, no. 8, pp. 56–59, 2018. Accessed:

4-07-2019.

[11] I. S. Rubinstein and N. Good, “Privacy by design: A counterfactual analysis of

google and facebook privacy incidents,” Berkeley Tech. LJ, vol. 28, p. 1333, 2013.

Accessed: 4-07-2019.

[12] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,

A. Aboulnaga, and T. Berners-Lee, “A demonstration of the solid platform for

social web applications,” in Proceedings of the 25th International Conference

Companion on World Wide Web, pp. 223–226, International World Wide Web

Conferences Steering Committee, 2016. Accessed: 4-07-2019.

[13] L. Schwittmann, M. Wander, C. Boelmann, and T. Weis, “Privacy preservation in

decentralized online social networks,” IEEE Internet Computing, vol. 18, pp. 16–

23, Mar. 2014. Accessed: 4-07-2019.

[14] O. L. Tim Berners-Lee, James Hendler, “The semantic web,” Scientific American,

vol. 284, no. 5, pp. 34–43, 2001. Accessed: 26-07-2019.

[15] M. C. S. . A. I. Lab, “Web inventor tim berners-lee’s next project: a plat-

form that gives users control of their data.” https://web.archive.org/we

b/20190625202235/https://www.csail.mit.edu/news/web-inventor-tim-

berners-lees-next-project-platform-gives-users-control-their-data,

2015. Accessed: 2019-06-25.

[16] Solid, “A definition of the culture around how decisions are made about solid

and a record of how this has changed over time.” https://github.com/solid/c

72

https://web.archive.org/web/20190625202235/https://www.csail.mit.edu/news/web-inventor-tim-berners-lees-next-project-platform-gives-users-control-their-data
https://web.archive.org/web/20190625202235/https://www.csail.mit.edu/news/web-inventor-tim-berners-lees-next-project-platform-gives-users-control-their-data
https://web.archive.org/web/20190625202235/https://www.csail.mit.edu/news/web-inventor-tim-berners-lees-next-project-platform-gives-users-control-their-data
https://github.com/solid/culture/tree/00b1d130209775e4aff4e0da51715b1103e6c03e
https://github.com/solid/culture/tree/00b1d130209775e4aff4e0da51715b1103e6c03e


BIBLIOGRAPHY

ulture/tree/00b1d130209775e4aff4e0da51715b1103e6c03e, 2019. Accessed:

2019-06-25.

[17] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,” In-

ternational Journal on Semantic Web and Information Systems, vol. 5, no. 3,

pp. 1–22, 2009. Accessed: 4-07-2019.

[18] T. Berners-Lee, “The world wide web: A very short personal his-

tory.” https://web.archive.org/web/20190625202157/https://www.w3.or

g/People/Berners-Lee/ShortHistory.html, 1998. Accessed: 2019-06-25.

[19] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revisited,” IEEE

Intelligent Systems, vol. 21, pp. 96–101, Jan. 2006. Accessed: 26-07-2019.

[20] S. Aghaei, M. A. Nematbakhsh, and H. K. Farsani, “Evolution of the world

wide web: From web 1.0 to web 4.0,” International Journal of Web & Semantic

Technology, vol. 3, no. 1, p. 1, 2012. Accessed: 4-07-2019.

[21] S. Murugesan, “Understanding web 2.0,” IT Professional Magazine, vol. 9, no. 4,

p. 34, 2007. Accessed: 4-07-2019.

[22] P. Miller, “Web 2.0: building the new library,” Ariadne, no. 45, 2005. Accessed:

4-07-2019.

[23] S. Coppens, R. Verborgh, M. Vander Sande, D. Van Deursen, E. Mannens, and

R. Van de Walle, “A truly read-write web for machines as the next-generation

web?,” in Proceedings of the SW2012 workshop: What will the Semantic Web

look like, vol. 10, 2012. Accessed: 4-07-2019.

[24] R. Macmanus, “The read/write web.” https://web.archive.org/web/

20190627010533/https://readwrite.com/2003/04/19/the_readwrite_w/,

2003. Accessed: 27-06-2019.

[25] T. Berners-Lee, “Linked data.” https://www.w3.org/DesignIssues/LinkedD

ata.html, 2006. Accessed: 27-06-2019.

[26] T. Berners-Lee, “Read-write linked data.” https://www.w3.org/DesignIssues

/ReadWriteLinkedData.html, 2009. Accessed: 27-06-2019.

73

https://github.com/solid/culture/tree/00b1d130209775e4aff4e0da51715b1103e6c03e
https://github.com/solid/culture/tree/00b1d130209775e4aff4e0da51715b1103e6c03e
https://web.archive.org/web/20190625202157/https://www.w3.org/People/Berners-Lee/ShortHistory.html
https://web.archive.org/web/20190625202157/https://www.w3.org/People/Berners-Lee/ShortHistory.html
https://web.archive.org/web/20190627010533/https://readwrite.com/2003/04/19/the_readwrite_w/
https://web.archive.org/web/20190627010533/https://readwrite.com/2003/04/19/the_readwrite_w/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/ReadWriteLinkedData.html
https://www.w3.org/DesignIssues/ReadWriteLinkedData.html


BIBLIOGRAPHY

[27] I. Herman, “Provenance interchange working group charter.” https://www.w3.

org/2011/01/prov-wg-charter, 2011. Accessed: 27-06-2019.

[28] J. Hollenbach, J. Presbrey, and T. Berners-Lee, “Using rdf metadata to enable

access control on the social semantic web,” in Proceedings of the Workshop on

Collaborative Construction, Management and Linking of Structured Knowledge

(CK2009), vol. 514, p. 167, 2009. Accessed: 4-07-2019.

[29] W3C, “Webaccesscontrol.” https://www.w3.org/wiki/index.php?title=Web

AccessControl&oldid=109272, 2009. Accessed: 27-06-2019.

[30] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance of computer

technology: A comparison of two theoretical models,” Management Science,

vol. 35, no. 8, pp. 982–1003, 1989.

[31] E. Stiller and C. LeBlanc, “Effective software engineering pedagogy,” J. Comput.

Sci. Coll., vol. 17, pp. 124–134, May 2002. Accessed: 18-07-2019.

[32] A. S. Kim and A. J. Ko, “A pedagogical analysis of online coding tutorials,”

in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’17, (New York, NY, USA), pp. 321–326, ACM,

2017. Accessed: 18-07-2019.

[33] R. Watson, “Developing best practices for api reference documentation: Creating

a platform to study how programmers learn new apis,” in 2012 IEEE Interna-

tional Professional Communication Conference, pp. 1–9, Oct. 2012. Accessed:

22-07-2019.

[34] A. Azimi and A. A. Ghomi, “Social networks privacy issues that affect young

societies,” Planetary Scientific Research Center Proceeding, pp. 35–39, 2011. Ac-

cessed: 27-06-2019.

[35] F. Fagerholm and J. Münch, “Developer experience: Concept and definition,”

in Proceedings of the International Conference on Software and System Process,

ICSSP ’12, (Piscataway, NJ, USA), pp. 73–77, IEEE Press, 2012. Accessed:

7-07-2019.

74

https://www.w3.org/2011/01/prov-wg-charter
https://www.w3.org/2011/01/prov-wg-charter
https://www.w3.org/wiki/index.php?title=WebAccessControl&oldid=109272
https://www.w3.org/wiki/index.php?title=WebAccessControl&oldid=109272


BIBLIOGRAPHY

[36] Solid, “The solid spec and architecture.” https://github.com/solid/solid-sp

ec/tree/103b1e027356bd525e4cad0138e8288f4881df39, 2015. Accessed: 29-

06-2019.

[37] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a

replication in software engineering,” in Proceedings of the 18th international con-

ference on evaluation and assessment in software engineering, p. 38, Citeseer,

2014. Accessed: 18-07-2019.

[38] R. C. Martin, “Getting a solid start,” Robert C. Martin-objectmentor. com, 2013.

Accessed: 7-08-2019.

[39] C. Dannen, Introducing Ethereum and Solidity. Springer. Accessed: 7-08-2019.

[40] C. Pérez-Sola, “Towards understanding privacy risks in online social networks,”

2016. Accessed: 7-07-2019.

[41] D. M. Boyd and N. B. Ellison, “Social network sites: Definition, history, and

scholarship,” Journal of computer-mediated Communication, vol. 13, no. 1,

pp. 210–230, 2007. Accessed: 27-06-2019.

[42] M. Haumann, “Social media & privacy: A facebook case study,” 10 2015. Ac-

cessed: 4-07-2019.

[43] R. Gross and A. Acquisti, “Information revelation and privacy in online social

networks,” in Proceedings of the 2005 ACM workshop on Privacy in the electronic

society, pp. 71–80, ACM, 2005. Accessed: 27-06-2019.

[44] H. Davies, “Ted cruz using firm that harvested data on millions of unwitting

facebook users.” http://web.archive.org/web/20190704174014/https:

//www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-

president-campaign-facebook-user-data, 2015. Accessed: 4-07-2019.

[45] E. D. Craig Timberg, Tony Romm, “Zuckerberg apologizes, promises reform

as senators grill him over facebook’s failings.” https://www.washington

post.com/business/technology/2018/04/10/b72c09e8-3d03-11e8-974f-

aacd97698cef_story.html, 2018. Accessed: 4-07-2019.

75

https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39
http://web.archive.org/web/20190704174014/https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
http://web.archive.org/web/20190704174014/https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
http://web.archive.org/web/20190704174014/https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.washingtonpost.com/business/technology/2018/04/10/b72c09e8-3d03-11e8-974f-aacd97698cef_story.html
https://www.washingtonpost.com/business/technology/2018/04/10/b72c09e8-3d03-11e8-974f-aacd97698cef_story.html
https://www.washingtonpost.com/business/technology/2018/04/10/b72c09e8-3d03-11e8-974f-aacd97698cef_story.html


BIBLIOGRAPHY

[46] D. M. Scott, The New Rules of Marketing and PR.: How to Use Social Media,

Online Video, Mobile Applications, Blogs, News Releases, and Viral Marketing

to Reach Buyers Directly. John Wiley & Sons, 2015. Accessed: 23-07-2019.

[47] L. Bahri, B. Carminati, and E. Ferrari, “Decentralized privacy preserving services

for online social networks,” Online Social Networks and Media, vol. 6, pp. 18–25,

2018. Accessed: 23-07-2019.

[48] S. Yu, “Big privacy: Challenges and opportunities of privacy study in the age of

big data,” IEEE Access, vol. 4, pp. 2751–2763, 2016. Accessed: 4-07-2019.

[49] C. Fuchs, “An alternative view of privacy on facebook,” Information, vol. 2,

no. 1, pp. 140–165, 2011. Accessed: 4-07-2019.

[50] Y. Y. Guo, “The privacy issue on social network sites: Facebook,” Journal of

Digital Research & Publishing, vol. 2, pp. 83–90, 2010. Accessed: 4-07-2019.

[51] H. Nissenbaum, Privacy in context: Technology, policy, and the integrity of social

life. Stanford University Press, 2009. Accessed: 4-07-2019.

[52] A. F. Westin, “Privacy and freedom,” 1970. Accessed: 7-07-2019.

[53] C. Fuchs, “The political economy of privacy on facebook,” Television & New

Media, vol. 13, no. 2, pp. 139–159, 2012. Accessed: 4-07-2019.

[54] K. Renaud and D. Gálvez-Cruz, “Privacy: Aspects, definitions and a multi-

faceted privacy preservation approach,” in 2010 Information Security for South

Africa, pp. 1–8, Aug. 2010. Accessed: 4-07-2019.

[55] C. Task and C. Clifton, “A guide to differential privacy theory in social network

analysis,” in 2012 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, pp. 411–417, Aug. 2012. Accessed: 4-07-2019.

[56] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially private data publishing and

analysis: A survey,” IEEE Transactions on Knowledge and Data Engineering,

vol. 29, pp. 1619–1638, Aug. 2017. Accessed: 4-07-2019.

76



BIBLIOGRAPHY

[57] R. Yu, J. Kang, X. Huang, S. Xie, Y. Zhang, and S. Gjessing, “Mixgroup: Ac-

cumulative pseudonym exchanging for location privacy enhancement in vehicu-

lar social networks,” IEEE Transactions on Dependable and Secure Computing,

vol. 13, pp. 93–105, Jan. 2016. Accessed: 4-07-2019.

[58] K. Mano, K. Minami, and H. Maruyama, “Pseudonym exchange for privacy-

preserving publishing of trajectory data set,” in 2014 IEEE 3rd Global Conference

on Consumer Electronics (GCCE), pp. 691–695, Oct. 2014. Accessed: 4-07-2019.

[59] Yihui Lu, Wenjian Luo, and Dongdong Zhao, “Fast searching optimal negative

surveys,” in ICINS 2014 - 2014 International Conference on Information and

Network Security, pp. 82–90, Nov. 2014. Accessed: 4-07-2019.

[60] R. Liu and S. Tang, “Multiple-negative survey method for enhancing the accuracy

of negative survey-based cloud data privacy,” in 2015 International Workshop on

Artificial Immune Systems (AIS), pp. 1–6, July 2015. Accessed: 4-07-2019.

[61] W. Luo, Y. Lu, D. Zhao, and H. Jiang, “On location and trace privacy of the mov-

ing object using the negative survey,” IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 1, pp. 125–134, Apr. 2017. Accessed: 4-07-2019.

[62] A. Diyanat, A. Khonsari, and S. P. Shariatpanahi, “A dummy-based approach

for preserving source rate privacy,” IEEE Transactions on Information Forensics

and Security, vol. 11, pp. 1321–1332, June 2016. Accessed: 4-07-2019.

[63] Y. H. Gustav, X. Wu, Y. Ren, Y. Wang, and F. Zhang, “Dummy based privacy

preservation in continuous querying road network services,” in 2014 International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,

pp. 94–101, Oct. 2014. Accessed: 4-07-2019.

[64] X. Wu and G. Sun, “A novel dummy-based mechanism to protect privacy on

trajectories,” in 2014 IEEE International Conference on Data Mining Workshop,

pp. 1120–1125, Dec. 2014. Accessed: 4-07-2019.

[65] A. Saxena, K. Saxena, and K. Chouhan, “Visual cryptography and concurrent

slice-tracking with privacy preserving in data mining,” in 2016 International

77



BIBLIOGRAPHY

Conference on ICT in Business Industry Government (ICTBIG), pp. 1–6, Nov.

2016. Accessed: 4-07-2019.

[66] J. Han, Y. Liu, X. Sun, and L. Song, “Enhancing data and privacy security

in mobile cloud computing through quantum cryptography,” in 2016 7th IEEE

International Conference on Software Engineering and Service Science (ICSESS),

pp. 398–401, Aug. 2016. Accessed: 4-07-2019.

[67] M. N. Sakib and C. Huang, “Privacy preserving proximity testing using elliptic

curves,” in 2016 26th International Telecommunication Networks and Applica-

tions Conference (ITNAC), pp. 121–126, Dec. 2016. Accessed: 4-07-2019.

[68] A. K. Agrawal and S. Mehrotra, “Application of elliptic curve cryptography in

pretty good privacy (pgp),” in 2016 International Conference on Computing,

Communication and Automation (ICCCA), pp. 924–929, Apr. 2016. Accessed:

4-07-2019.

[69] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5,

haval-128 and ripemd.,” IACR Cryptology ePrint Archive, vol. 2004, p. 199, 2004.

Accessed: 4-07-2019.

[70] A. Sotirov, M. Stevens, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik,

and B. de Weger, “Md5 considered harmful today, creating a rogue ca certificate,”

in 25th Annual Chaos Communication Congress, no. CONF, 2008. Accessed: 4-

07-2019.

[71] W. Liu, R. Luo, and H. Yang, “Cryptography overhead evaluation and analysis

for wireless sensor networks,” in 2009 WRI International Conference on Com-

munications and Mobile Computing, vol. 3, pp. 496–501, IEEE, 2009. Accessed:

4-07-2019.

[72] F. Raji, M. Davarpanah Jazi, and A. Miri, “Pesca: a peer-to-peer social network

architecture with privacy-enabled social communication and data availability,”

IET Information Security, vol. 9, no. 1, pp. 73–80, 2015. Accessed: 4-07-2019.

[73] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ramasubramanian,

D. Terry, and T. Wobber, “Contrail: Decentralized and privacy-preserving social

78



BIBLIOGRAPHY

networks on smartphones,” IEEE Internet Computing, vol. 18, pp. 44–51, Sept.

2014. Accessed: 4-07-2019.

[74] Yongquan Fu and Yijie Wang, “Bce: A privacy-preserving common-friend es-

timation method for distributed online social networks without cryptography,”

in 7th International Conference on Communications and Networking in China,

pp. 212–217, Aug. 2012. Accessed: 4-07-2019.

[75] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems (P. Druschel,

F. Kaashoek, and A. Rowstron, eds.), (Berlin, Heidelberg), pp. 251–260, Springer

Berlin Heidelberg, 2002. Accessed: 4-07-2019.

[76] P. P. Swire, R. E. Litan, and R. E. Litan, None of your business: world data flows,

electronic commerce, and the European privacy directive. Brookings Institution

Press, 1998. Accessed: 4-07-2019.

[77] L. A. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social networking

through decentralization,” in 2009 Sixth International Conference on Wireless

On-Demand Network Systems and Services, pp. 145–152, Feb. 2009. Accessed:

27-06-2019.

[78] L. Cheng, F. Liu, and D. D. Yao, “Enterprise data breach: causes, challenges,

prevention, and future directions,” Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, vol. 7, no. 5, 2017. Accessed: 4-07-2019.

[79] S. Mansfield-Devine, “Anti-social networking: exploiting the trusting environ-

ment of web 2.0,” Network Security, vol. 2008, no. 11, pp. 4–7, 2008. Accessed:

4-07-2019.

[80] H. Ko, S. Kim, and S. Jin, “Usability enhanced privacy protection system based

on users’ responses,” in 2007 IEEE International Symposium on Consumer Elec-

tronics, pp. 1–6, June 2007. Accessed: 4-07-2019.

[81] J. T. Lehikoinen, T. Olsson, and H. Toivola, “Privacy regulation in online social

interaction,” Proceedings of IADIS, pp. 25–32, 2008. Accessed: 4-07-2019.

[82] M. S. Granovetter, “The strength of weak ties,” in Social networks, pp. 347–367,

Elsevier, 1977. Accessed: 4-07-2019.

79



BIBLIOGRAPHY

[83] M. Granovetter, “The strength of weak ties: A network theory revisited,” 1983.

Accessed: 4-07-2019.

[84] R. S. Burt, Structural holes: The social structure of competition. Harvard uni-

versity press, 2009. Accessed: 4-07-2019.

[85] G. Homans, “Social behaviour as exchange-the american journal of sociology,”

1958. Accessed: 4-07-2019.

[86] J. Johanson and L.-G. Mattsson, “Interorganizational relations in industrial sys-

tems: a network approach compared with the transaction-cost approach,” Inter-

national Studies of Management & Organization, vol. 17, no. 1, pp. 34–48, 1987.

Accessed: 4-07-2019.

[87] J. Grimmelmann, “Saving facebook,” Iowa L. Rev., vol. 94, p. 1137, 2008. Ac-

cessed: 7-07-2019.

[88] G. Blosser and J. Zhan, “Privacy preserving collaborative social network,” in 2008

International Conference on Information Security and Assurance (isa 2008),

pp. 543–548, Apr. 2008. Accessed: 4-07-2019.

[89] C. C. Yang, “Information sharing and privacy protection of terrorist or criminal

social networks,” in 2008 IEEE International Conference on Intelligence and

Security Informatics, pp. 40–45, June 2008. Accessed: 4-07-2019.

[90] A. Cavoukian, “Privacy by design-the 7 foundational principles (2011).”

https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalp

rinciples.pdf, 2011. Accessed: 7-07-2019.

[91] M. Keeling, “Reflections on software engineering,” 2010. Accessed: 7-07-2019.

[92] “Privacy guidelines for developing software products and services,” 2008. Ac-

cessed: 7-07-2019.

[93] H. Kelly, “Police embrace social media as crime-fighting tool,” CNN. com, vol. 30,

2012. Accessed: 7-07-2019.

80

https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf


BIBLIOGRAPHY

[94] G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce, and danah boyd, “The

arab spring - the revolutions were tweeted: Information flows during the 2011

tunisian and egyptian revolutions,” International Journal of Communication,

vol. 5, no. 0, p. 31, 2011. Accessed: 7-07-2019.

[95] P. Jha, “Facebook users could swing the results in 160 lok sabha constituencies,”

The Hindu, 2013. Accessed: 7-07-2019.

[96] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european parliament and

of the council of 27 april 2016 on the protection of natural persons with regard

to the processing of personal data and on the free movement of such data, and

repealing directive 95/46,” Official Journal of the European Union (OJ), vol. 59,

no. 1-88, p. 294, 2016. Accessed: 7-07-2019.

[97] A. Romanou, “The necessity of the implementation of privacy by design in sectors

where data protection concerns arise,” Computer Law & Security Review, vol. 34,

no. 1, pp. 99 – 110, 2018. Accessed: 7-07-2019.

[98] I. O. for Standardization, Ergonomics of human-system interaction: Part 210:

Human-centred design for interactive systems. ISO, 2010. Accessed: 23-07-2019.

[99] A. Palmer, “Customer experience management: a critical review of an emerging

idea,” Journal of Services marketing, vol. 24, no. 3, pp. 196–208, 2010. Accessed:

23-07-2019.

[100] “American marketing association dictionary.” http://www.marketingpower.c

om/_layouts/Dictionary.aspx?dLetter=B. Accessed: 23-07-2019.

[101] A. Fontão, A. Dias-Neto, and D. Viana, “Investigating factors that influence

developers’ experience in mobile software ecosystems,” in 2017 IEEE/ACM Joint

5th International Workshop on Software Engineering for Systems-of-Systems and

11th Workshop on Distributed Software Development, Software Ecosystems and

Systems-of-Systems (JSOS), pp. 55–58, May 2017. Accessed: 23-07-2019.

[102] C. Suebsin and N. Gerdsri, “Key factors driving the success of technology adop-

tion: Case examples of erp adoption,” in PICMET ’09 - 2009 Portland Inter-

81

http://www.marketingpower.com/_layouts/Dictionary.aspx?dLetter=B 
http://www.marketingpower.com/_layouts/Dictionary.aspx?dLetter=B 


BIBLIOGRAPHY

national Conference on Management of Engineering Technology, pp. 2638–2643,

Aug. 2009. Accessed: 27-06-2019.

[103] K. Lakhani and R. G. Wolf, “Why hackers do what they do: Understanding

motivation and effort in free/open source software projects,” Perspectives on

Free and Open Source Software, 9 2003. Accessed: 23-07-2019.

[104] A. Hars and S. Ou, “Working for free? motivations for participating in open-

source projects,” International Journal of Electronic Commerce, vol. 6, pp. 25–39,

3 2002. Accessed: 23-07-2019.

[105] S. Shah, “Motivation, governance, and the viability of hybrid forms in open

source software development,” Management Science, vol. 52, pp. 1000–1014, 7

2006. Accessed: 23-07-2019.

[106] C. Santos Jr, g. kuk, F. Kon, and J. Pearson, “The attraction of contributors in

free and open source software,” The Journal of Strategic Information Systems,

vol. 22, p. 26–45, 3 2013. Accessed: 23-07-2019.

[107] P. Meirelles, C. Santos Jr, J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A

study of the relationships between source code metrics and attractiveness in free

software projects,” pp. 11–20, 11 2010. Accessed: 23-07-2019.

[108] I. Chengalur-Smith, A. Sidorova, and S. Daniel, “Sustainability of free/libre open

source projects: A longitudinal study,” Journal of the Association for Informa-

tion Systems, vol. 11, 11 2010. Accessed: 23-07-2019.

[109] C. Jensen, S. King, and V. Kuechler, “Joining free/open source software com-

munities: An analysis of newbies’ first interactions on project mailing lists,”

pp. 1–10, 2 2011. Accessed: 23-07-2019.

[110] I. Steinmacher, I. Wiese, A. P. Chaves Steinmacher, and M. A. Gerosa, “Why

do newcomers abandon open source software projects?,” 5 2013. Accessed: 23-

07-2019.

[111] V. Midha, P. Palvia, R. Singh, and N. Kshetri, “Improving open source software

maintenance,” Journal of Computer Information Systems, vol. 50, pp. 81–90, 3

2010. Accessed: 23-07-2019.

82



BIBLIOGRAPHY

[112] Y. Fang and D. Neufeld, “Understanding sustained participation in open source

software projects,” Journal of Management Information Systems, vol. 25, no. 4,

pp. 9–50, 2009. Accessed: 18-07-2019.

[113] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,” Empiri-

cal Software Engineering, vol. 16, pp. 703–732, Dec. 2011. Accessed: 22-07-2019.

[114] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and M. Gordon,

“What programmers really want: Results of a needs assessment for sdk documen-

tation,” in Proceedings of the 20th Annual International Conference on Computer

Documentation, SIGDOC ’02, (New York, NY, USA), pp. 133–141, ACM, 2002.

Accessed: 22-07-2019.

[115] T. R. Lister and T. DeMarco, Peopleware: Productive projects and teams. Dorset

House New York, 1987. Accessed: 22-07-2019.

[116] J. Spolsky, Joel on Software: And on Diverse and Occasionally Related Matters

That Will Prove of Interest to Software Developers, Designers, and Managers,

and to Those Who, Whether by Good Fortune or Ill Luck, Work with Them in

Some Capacity. Apress, Berkeley, CA, 2004. Accessed: 22-07-2019.

[117] T. DeMarco and T. Lister, “Programmer performance and the effects of the

workplace,” in Proceedings of the 8th International Conference on Software En-

gineering, ICSE ’85, (Los Alamitos, CA, USA), pp. 268–272, IEEE Computer

Society Press, 1985. Accessed: 22-07-2019.

[118] J. Piaget, Success and understanding. 1 1978. Accessed: 23-07-2019.

[119] J. Piaget, The Origins of Intelligence In Children. 1 1952. Accessed: 23-07-2019.

[120] J. D. Bransford, A. Brown, and R. R. Cocking, How People Learn: Mind, Brain,

Experience and School. 1 1999. Accessed: 23-07-2019.

[121] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K. Norman,

How learning works: Seven research-based principles for smart teaching. John

Wiley & Sons, 2010. Accessed: 23-07-2019.

83



BIBLIOGRAPHY

[122] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of deliberate

practice in the acquisition of expert performance.,” Psychological review, vol. 100,

no. 3, p. 363, 1993. Accessed: 23-07-2019.

[123] J. Flavell, “Metacognitive aspects of problem solving,” Nat. Intell, vol. 12,

pp. 231–235, 1 1976. Accessed: 23-07-2019.

[124] A. S. Palincsar and A. L. Brown, “Reciprocal teaching of comprehension-

monitoring activities,” Center for the Study of Reading Technical Report; no.

269, 1983. Accessed: 23-07-2019.

[125] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github: Asso-

ciations between software development and crowdsourced knowledge,” in 2013

International Conference on Social Computing, pp. 188–195, Sept. 2013. Ac-

cessed: 18-07-2019.

[126] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code

example?: A study of programming q a in stackoverflow,” in 2012 28th IEEE

International Conference on Software Maintenance (ICSM), pp. 25–34, Sept.

2012. Accessed: 18-07-2019.

[127] C. B. Seaman, “The information gathering strategies of software maintainers,” in

International Conference on Software Maintenance, 2002. Proceedings., pp. 141–

149, Oct. 2002. Accessed: 22-07-2019.

[128] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer, “Two

studies of opportunistic programming: interleaving web foraging, learning, and

writing code,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pp. 1589–1598, ACM, 2009. Accessed: 22-07-2019.

[129] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design

lessons from the fastest q&a site in the west,” in Proceedings of the SIGCHI

conference on Human factors in computing systems, pp. 2857–2866, ACM, 2011.

Accessed: 22-07-2019.

84



BIBLIOGRAPHY

[130] C. Treude, O. Barzilay, and M. Storey, “How do programmers ask and answer

questions on the web?: Nier track,” in 2011 33rd International Conference on

Software Engineering (ICSE), pp. 804–807, May 2011. Accessed: 18-07-2019.

[131] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documentation:

Exploring the coverage and the dynamics of api discussions on stack overflow,”

Georgia Institute of Technology, Tech. Rep, vol. 11, 2012. Accessed: 18-07-2019.

[132] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing stack overflow for the

ide,” in Proceedings of the Third International Workshop on Recommendation

Systems for Software Engineering, RSSE ’12, (Piscataway, NJ, USA), pp. 26–30,

IEEE Press, 2012. Accessed: 22-07-2019.

[133] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based search to overcome learn-

ing barriers in software development,” in Proceedings of the First International

Workshop on Realizing AI Synergies in Software Engineering, RAISE ’12, (Pis-

cataway, NJ, USA), pp. 47–51, IEEE Press, 2012. Accessed: 22-07-2019.

[134] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network structure of social

coding in github,” in 2013 17th European Conference on Software Maintenance

and Reengineering, pp. 323–326, Mar. 2013. Accessed: 22-07-2019.

[135] A. Lima, L. Rossi, and M. Musolesi, “Coding together at scale: Github as a col-

laborative social network,” in Eighth International AAAI Conference on Weblogs

and Social Media, 2014. Accessed: 22-07-2019.

[136] P. Cobb, “Theories of mathematical learning and constructivism: A personal

view,” in Symposium on Trends and Perspectives in Mathematics Education,

Institute for Mathematics, University of Klagenfurt, Austria, 1994. Accessed:

23-07-2019.

[137] P. Cobb, E. Yackel, and T. Wood, “A constructivist alternative to the repre-

sentational view of mind in mathematics education,” Journal for Research in

Mathematics Education, vol. 23, 1 1992. Accessed: 23-07-2019.

[138] L. S. Vygotsky, Mind in society: The development of higher psychological pro-

cesses. Harvard university press, 1980. Accessed: 23-07-2019.

85



BIBLIOGRAPHY

[139] L. S. Vygotsky, “Thought and language,” Bulletin of the Orton Society, vol. 14,

pp. 97–98, Dec. 1964. Accessed: 23-07-2019.

[140] C. Johnson, M. McGill, D. Bouchard, M. K. Bradshaw, V. A. Bucheli, L. D.

Merkle, M. J. Scott, Z. Sweedyk, J. A. Velázquez-Iturbide, Z. Xiao, and

M. Zhang, “Game development for computer science education,” in Proceedings

of the 2016 ITiCSE Working Group Reports, ITiCSE ’16, (New York, NY, USA),

pp. 23–44, ACM, 2016. Accessed: 7-07-2019.

[141] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving online

social network leveraging on real-life trust,” IEEE Communications Magazine,

vol. 47, pp. 94–101, Dec. 2009. Accessed: 23-07-2019.

[142] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p social net-

working: Early experiences and insights,” in Proceedings of the Second ACM

EuroSys Workshop on Social Network Systems, SNS ’09, (New York, NY, USA),

pp. 46–52, ACM, 2009. Accessed: 26-07-2019.

[143] L. M. Aiello and G. Ruffo, “Lotusnet: Tunable privacy for distributed online

social network services,” Computer Communications, vol. 35, no. 1, pp. 75–88,

2012. Accessed: 26-07-2019.

[144] R. Sharma and A. Datta, “Supernova: Super-peers based architecture for de-

centralized online social networks,” in 2012 Fourth International Conference on

Communication Systems and Networks (COMSNETS 2012), pp. 1–10, Jan. 2012.

Accessed: 26-07-2019.

[145] K. Graffi, C. Gross, D. Stingl, D. Hartung, A. Kovacevic, and R. Steinmetz,

“Lifesocial.kom: A secure and p2p-based solution for online social networks,”

in 2011 IEEE Consumer Communications and Networking Conference (CCNC),

pp. 554–558, Jan. 2011. Accessed: 26-07-2019.

[146] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet: A de-

centralized architecture for privacy preserving social networking with caching,”

in Proceedings of the 8th International Conference on Emerging Networking Ex-

periments and Technologies, CoNEXT ’12, (New York, NY, USA), pp. 337–348,

ACM, 2012. Accessed: 26-07-2019.

86



BIBLIOGRAPHY

[147] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona:

An online social network with user-defined privacy,” in Proceedings of the ACM

SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, (New

York, NY, USA), pp. 135–146, ACM, 2009. Accessed: 26-07-2019.

[148] M. Dürr, M. Maier, and F. Dorfmeister, “Vegas – a secure and privacy-preserving

peer-to-peer online social network,” in 2012 International Conference on Privacy,

Security, Risk and Trust and 2012 International Confernece on Social Comput-

ing, pp. 868–874, Sept. 2012. Accessed: 26-07-2019.

[149] N. Kourtellis, J. Finnis, P. Anderson, J. Blackburn, C. Borcea, and A. Iamnitchi,

“Prometheus: User-controlled p2p social data management for socially-aware

applications,” in Middleware 2010 (I. Gupta and C. Mascolo, eds.), (Berlin, Hei-

delberg), pp. 212–231, Springer Berlin Heidelberg, 2010. Accessed: 26-07-2019.

[150] F. Tegeler, D. Koll, and X. Fu, “Gemstone: Empowering decentralized social

networking with high data availability,” in 2011 IEEE Global Telecommunications

Conference - GLOBECOM 2011, pp. 1–6, Dec. 2011. Accessed: 26-07-2019.

[151] D. Koll, J. Li, and X. Fu, “Soup: An online social network by the people, for

the people,” in Proceedings of the 15th International Middleware Conference,

Middleware ’14, (New York, NY, USA), pp. 193–204, ACM, 2014. Accessed:

26-07-2019.

[152] S. Biedermann, N. P. Karvelas, S. Katzenbeisser, T. Strufe, and A. Peter, “Proof-

book: An online social network based on proof-of-work and friend-propagation,”

in SOFSEM 2014: Theory and Practice of Computer Science (V. Geffert, B. Pre-

neel, B. Rovan, J. Štuller, and A. M. Tjoa, eds.), (Cham), pp. 114–125, Springer

International Publishing, 2014. Accessed: 26-07-2019.

[153] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “Decent: A de-

centralized architecture for enforcing privacy in online social networks,” in 2012

IEEE International Conference on Pervasive Computing and Communications

Workshops, pp. 326–332, Mar. 2012. Accessed: 26-07-2019.

87



BIBLIOGRAPHY

[154] D. Koll, D. Lechler, and X. Fu, “Socialgate: Managing large-scale social data

on home gateways,” in 2017 IEEE 25th International Conference on Network

Protocols (ICNP), pp. 1–6, Oct. 2017. Accessed: 26-07-2019.

[155] I. Z. R.S.D. GRippi, M. Salzberg, “Diaspora*.” https://diasporafoundation

.org/, 2012. Accessed: 26-07-2019.

[156] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A. Varshavsky,

“Vis-à-vis: Privacy-preserving online social networking via virtual individual

servers,” in 2011 Third International Conference on Communication Systems

and Networks (COMSNETS 2011), pp. 1–10, Jan. 2011. Accessed: 26-07-2019.

[157] R. Narendula, T. G. Papaioannou, and K. Aberer, “My3: A highly-available

p2p-based online social network,” in 2011 IEEE International Conference on

Peer-to-Peer Computing, pp. 166–167, Aug. 2011. Accessed: 26-07-2019.

[158] A. Loupasakis, N. Ntarmos, and P. Triantafillou, “exo: Decentralized au-

tonomous scalable social networking.,” pp. 85–95, 1 2011. Accessed: 26-07-2019.

[159] B. Guidi, T. Amft, A. De Salve, K. Graffi, and L. Ricci, “Didusonet: A p2p archi-

tecture for distributed dunbar-based social networks,” Peer-to-Peer Networking

and Applications, vol. 9, pp. 1177–1194, Nov. 2016. Accessed: 26-07-2019.

[160] MrPetovan, “Happy 9th birthday friendica!.” https://friendi.ca/2019/07/

01/happy-9th-birthday-friendica/, 2019. Accessed: 26-07-2019.

[161] E. Revah, “Mistpark - distributed social networking (that works).” https://manu

revah.com/blah/en/blog/Mistpark-Distributed-Social-Networkin, 2010.

Accessed: 26-07-2019.

[162] “Retroshare.” http://retroshare.cc/index.html. Accessed: 26-07-2019.

[163] “Retroshare aims to be a private f2f social network.” https://sourceforge.ne

t/blog/retroshare-aims-to-be-a-private-f2f-social-network, 2010. Ac-

cessed: 26-07-2019.

[164] F. Raji, A. Miri, M. Davarpanah Jazi, and B. Malek, “Online social network with

flexible and dynamic privacy policies,” in 2011 CSI International Symposium on

88

https://diasporafoundation.org/
https://diasporafoundation.org/
https://friendi.ca/2019/07/01/happy-9th-birthday-friendica/
https://friendi.ca/2019/07/01/happy-9th-birthday-friendica/
https://manurevah.com/blah/en/blog/Mistpark-Distributed-Social-Networkin
https://manurevah.com/blah/en/blog/Mistpark-Distributed-Social-Networkin
http://retroshare.cc/index.html
https://sourceforge.net/blog/retroshare-aims-to-be-a-private-f2f-social-network
https://sourceforge.net/blog/retroshare-aims-to-be-a-private-f2f-social-network


BIBLIOGRAPHY

Computer Science and Software Engineering (CSSE), pp. 135–142, June 2011.

Accessed: 26-07-2019.

[165] B. Greschbach, G. Kreitz, and S. Buchegger, “The devil is in the metadata — new

privacy challenges in decentralised online social networks,” in 2012 IEEE Inter-

national Conference on Pervasive Computing and Communications Workshops,

pp. 333–339, Mar. 2012. Accessed: 26-07-2019.

[166] L. Schwittmann, C. Boelmann, M. Wander, and T. Weis, “Sonet – privacy and

replication in federated online social networks,” in 2013 IEEE 33rd International

Conference on Distributed Computing Systems Workshops, pp. 51–57, July 2013.

Accessed: 26-07-2019.

[167] B. Malek and A. Miri, “Adaptively secure broadcast encryption with short ci-

phertexts.,” Accessed: 26-07-2019.

[168] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet,

B. Ford, and J.-P. Hubaux, “Unlynx: a decentralized system for privacy-conscious

data sharing,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4,

pp. 232–250, 2017. Accessed: 23-07-2019.

[169] M. Zignani, S. Gaito, and G. P. Rossi, “Follow the “mastodon”: Structure

and evolution of a decentralized online social network,” in Twelfth International

AAAI Conference on Web and Social Media, 2018. Accessed: 26-07-2019.

[170] E. S. A. G. E. P. Christopher Lemmer Webber, Jessica Tallon, “Activitypub.”

https://www.w3.org/TR/2018/REC-activitypub-20180123/, 2018. Accessed:

27-07-2019.

[171] J. Holloway, “What on earth is the fediverse and why does it mat-

ter?.” http://web.archive.org/web/20190727012123/https://newatlas.c

om/what-is-the-fediverse/56385/, 2018. Accessed: 27-07-2019.

[172] S. Göndör and A. Küpper, “The current state of interoperability in decentralized

online social networking services,” in 2017 International Conference on Compu-

tational Science and Computational Intelligence (CSCI), pp. 852–857, Dec. 2017.

Accessed: 26-07-2019.

89

https://www.w3.org/TR/2018/REC-activitypub-20180123/
http://web.archive.org/web/20190727012123/https://newatlas.com/what-is-the-fediverse/56385/
http://web.archive.org/web/20190727012123/https://newatlas.com/what-is-the-fediverse/56385/


BIBLIOGRAPHY

[173] PeerTube, “Take back control of your videos.” https://joinpeertube.org/en/.

Accessed: 27-07-2019.

[174] diaspora, “diaspora* federation library.” https://github.com/diaspora/dias

pora_federation/tree/59a983b5eb7b07f3bbd8ea5685d842fa29274611. Ac-

cessed: 27-07-2019.

[175] S. Buchegger and A. Datta, “A case for p2p infrastructure for social networks

- opportunities challenges,” in 2009 Sixth International Conference on Wireless

On-Demand Network Systems and Services, pp. 161–168, Feb. 2009. Accessed:

23-07-2019.

[176] X. Ma, J. Ma, H. Li, Q. Jiang, and S. Gao, “Armor: A trust-based privacy-

preserving framework for decentralized friend recommendation in online social

networks,” Future Generation Computer Systems, vol. 79, pp. 82–94, 2018. Ac-

cessed: 23-07-2019.

[177] K. Anand, J. Kumar, and K. Anand, “Anomaly detection in online social net-

work: A survey,” in 2017 International Conference on Inventive Communication

and Computational Technologies (ICICCT), pp. 456–459, Mar. 2017. Accessed:

26-07-2019.

[178] A. Sambra, A. Guy, S. Capadisli, and N. Greco, “Building decentralized appli-

cations for the social web,” in Proceedings of the 25th International Conference

Companion on World Wide Web, WWW ’16 Companion, (Republic and Canton

of Geneva, Switzerland), pp. 1033–1034, International World Wide Web Confer-

ences Steering Committee, 2016. Accessed: 29-07-2019.

[179] G. Klyne, J. J. Carroll, and B. McBride, “Resource description framework (rdf):

Concepts and abstract syntax. w3c recommendation, feb. 2004,” 2004. Accessed:

29-07-2019.

[180] Inrupt, “How it works.” http://web.archive.org/web/20190729212753/http

s://solid.inrupt.com/how-it-works. Accessed: 29-07-2019.

90

https://joinpeertube.org/en/
https://github.com/diaspora/diaspora_federation/tree/59a983b5eb7b07f3bbd8ea5685d842fa29274611
https://github.com/diaspora/diaspora_federation/tree/59a983b5eb7b07f3bbd8ea5685d842fa29274611
http://web.archive.org/web/20190729212753/https://solid.inrupt.com/how-it-works
http://web.archive.org/web/20190729212753/https://solid.inrupt.com/how-it-works


BIBLIOGRAPHY

[181] Solid, “Content representation.” https://github.com/solid/solid-spec/tre

e/103b1e027356bd525e4cad0138e8288f4881df39#content-representation.

Accessed: 30-07-2019.

[182] Solid, “Web access control (wac).” https://github.com/solid/web-access-co

ntrol-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260. Accessed:

30-07-2019.

[183] W3C, “Linked data notifications.” https://www.w3.org/TR/2017/REC-ldn-

20170502/, 2017. Accessed: 30-07-2019.

[184] Solid, “solid-apps.” https://github.com/solid/solid-apps/blob/f1f568a

d1b77ad9f38da8a1b1c0e9255c3390d78/README.md, 2019. Accessed: 30-07-

2019.

[185] S. Capadisli, A. Guy, R. Verborgh, C. Lange, S. Auer, and T. Berners-Lee,

“Decentralised authoring, annotations and notifications for a read-write web with

dokieli,” in Web Engineering (J. Cabot, R. De Virgilio, and R. Torlone, eds.),

(Cham), pp. 469–481, Springer International Publishing, 2017. Accessed: 30-07-

2019.

[186] C. R. Kothari, Research methodology: Methods and techniques. New Age Inter-

national, 2004. Accessed: 18-07-2019.

[187] D. Remenyi, B. Williams, A. Money, and E. Swartz, Doing research in business

and management: an introduction to process and method. Sage, 1998. Accessed:

18-07-2019.

[188] S. W. Littlejohn and K. A. Foss, Encyclopedia of communication theory, vol. 1.

Sage, 2009. Accessed: 30-07-2019.

[189] M. D. Myers, Qualitative research in business and management. Sage, 2013.

Accessed: 30-07-2019.

[190] D. R. Monette, T. J. Sullivan, and C. R. DeJong, Applied social research: A tool

for the human services. Nelson Education, 2013. Accessed: 18-07-2019.

91

https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#content-representation
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#content-representation
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
https://www.w3.org/TR/2017/REC-ldn-20170502/
https://www.w3.org/TR/2017/REC-ldn-20170502/
https://github.com/solid/solid-apps/blob/f1f568ad1b77ad9f38da8a1b1c0e9255c3390d78/README.md
https://github.com/solid/solid-apps/blob/f1f568ad1b77ad9f38da8a1b1c0e9255c3390d78/README.md


BIBLIOGRAPHY

[191] M. J. Polonsky and D. S. Waller, Designing and managing a research project: A

business student’s guide. Sage publications, 2018. Accessed: 18-07-2019.

[192] M. N. Saunders, Research methods for business students, 5/e. Pearson Education

India, 2011. Accessed: 18-07-2019.

[193] K. Singh, Quantitative social research methods. Sage, 2007. Accessed: 18-07-2019.

[194] W. Goddard and S. Melville, Research methodology: An introduction. Juta and

Company Ltd, 2004. Accessed: 18-07-2019.

[195] H. R. Bernard, Research methods in anthropology: Qualitative and quantitative

approaches. Rowman & Littlefield, 2017. Accessed: 18-07-2019.

[196] D. L. Jorgensen, Participant Observation, pp. 1–15. American Cancer Society,

2015. Accessed: 18-07-2019.

[197] B. Kawulich, “Participant observation as a data collection method,” Forum Qual-

itative Sozialforschung / Forum: Qualitative Social Research, vol. 6, no. 2, 2005.

Accessed: 18-07-2019.

[198] J. O. Gilliam, “Improving the open source software model with uml case tools,”

Linux Gazette, vol. 67, 2001. Accessed: 30-07-2019.

[199] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf, vol. 122, p. 14,

2006. Accessed: 30-07-2019.

[200] R. Verborgh, “Designing a linked data developer experience.” http:

//web.archive.org/web/20190805204059/https://ruben.verborgh.org

/blog/2018/12/28/designing-a-linked-data-developer-experience/,

2018. Accessed: 5-08-2019.

[201] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical factors

for evaluating contribution in github,” in Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, (New York, NY, USA), pp. 356–

366, ACM, 2014. Accessed: 6-08-2019.

92

http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/12/28/designing-a-linked-data-developer-experience/
http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/12/28/designing-a-linked-data-developer-experience/
http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/12/28/designing-a-linked-data-developer-experience/


BIBLIOGRAPHY

[202] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements analysis

within a social setting,” in Proceedings. 11th IEEE International Requirements

Engineering Conference, 2003., pp. 151–161, Sept. 2003. Accessed: 7-07-2019.

[203] Wikipedia, “Software framework.” https://en.wikipedia.org/w/index.php

?title=Software_framework&oldid=901960229. Accessed: 7-08-2019.

[204] Wikipedia, “Paradigm.” https://en.wikipedia.org/w/index.php?title=Par

adigm&oldid=908508732. Accessed: 7-08-2019.

[205] Wikipedia, “Computing platform.” https://en.wikipedia.org/w/index.php

?title=Computing_platform&oldid=909644295. Accessed: 7-08-2019.

[206] Solid, “Solid.” http://web.archive.org/web/20190807201013/https://soli

d.mit.edu/. Accessed: 7-08-2019.

[207] T. S. Kuhn, “The structure of scientific revolutions,” Chicago and London, 1962.

Accessed: 7-08-2019.

[208] A. Segal, A. Marcedone, B. Kreuter, D. Ramage, H. B. McMahan, K. Seth,

K. Bonawitz, S. Patel, and V. Ivanov, “Practical secure aggregation for privacy-

preserving machine learning,” in CCS, 2017. Accessed: 26-07-2019.

[209] B. McMahan and R. S. Daniel Ramage, “Federated learning: Collaborative

machine learning without centralized training data.” http://web.archive.or

g/web/20190727012435/https://ai.googleblog.com/2017/04/federated-

learning-collaborative.html, 2017. Accessed: 27-07-2019.

[210] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. M.

Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. V. Overveldt, D. Petrou,

D. Ramage, and J. Roselander, “Towards federated learning at scale: System

design,” in SysML 2019, 2019. Accessed: 26-07-2019.

[211] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

in Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics (AISTATS), 2017. Accessed: 26-07-2019.

93

https://en.wikipedia.org/w/index.php?title=Software_framework&oldid=901960229
https://en.wikipedia.org/w/index.php?title=Software_framework&oldid=901960229
https://en.wikipedia.org/w/index.php?title=Paradigm&oldid=908508732
https://en.wikipedia.org/w/index.php?title=Paradigm&oldid=908508732
https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=909644295
https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=909644295
http://web.archive.org/web/20190807201013/https://solid.mit.edu/
http://web.archive.org/web/20190807201013/https://solid.mit.edu/
http://web.archive.org/web/20190727012435/https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://web.archive.org/web/20190727012435/https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://web.archive.org/web/20190727012435/https://ai.googleblog.com/2017/04/federated-learning-collaborative.html


BIBLIOGRAPHY

[212] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” in NIPS

Workshop on Private Multi-Party Machine Learning, 2016. Accessed: 26-07-

2019.

[213] R. Verborgh, “Shaping linked data apps.” https://web.archive.org/web/

20190703174036/https://ruben.verborgh.org/blog/2019/06/17/shaping-

linked-data-apps/, 2019. Accessed: 3-07-2019.

[214] R. Kohavi and R. Longbotham, Online Controlled Experiments and A/B Testing,

pp. 922–929. Boston, MA: Springer US, 2017. Accessed: 7-08-2019.

94

https://web.archive.org/web/20190703174036/https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://web.archive.org/web/20190703174036/https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://web.archive.org/web/20190703174036/https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/


Appendix A

Development Journal

The development journal I maintained is reproduced below. Note that it does not

adhere to a formal structure or writing style, nor should it be taken to contain accurate

information. The journal represents my leanings and thoughts as I worked on this

project, and is included in the interest of completeness and verifiability.

A.1 Background

A.1.1 20-12-2018

I’ve started working with Solid only recently as a part of my MSc Dissertation project

which is aimed at developing a decentralised social network for academics powered by

Solid. By building a real-world application based on Solid, I intend to test out its

readiness for practical web app development as well as to improve Solid and assess the

developer experience of building a Solid application with a view to evolve best practices

especially for new developers interested in building Solid applications.

The most obvious thing to do as a beginner is to access the official documentation

and complete the hello world tutorial. Having done this kind of thing many times over

through my career, I’m quite well-versed with the process of learning a new technol-

ogy. This time, however, I will be taking a continuous documentation and reflection

approach with a view to evaluate how easy or hard it was for me to bootstrap as a

newcomer to Solid. So, to start, I identified the following initial steps:

95



A.2. FIRST CONTACT

1. Run through the official documentation https://solid.inrupt.com/docs/ge

tting-started.

2. Sign-up for a pod to get a feel of the interface: https://solid.inrupt.com/get-

a-solid-pod

3. Run the “hello world” example: https://solid.inrupt.com/docs/writing-

solid-apps-with-angular

4. Set-up a local Solid server: https://github.com/solid/node-solid-server

I dived into these steps after first reading a little about Solid to get an idea about

what it really is. This article (https://www.inrupt.com/blog/one-small-step-

for-the-web) by TBL helped understand the motivation, but Solid was still an ab-

stract concept. What stood out was decentralisation, data privacy, data ownership,

permission control, and linked data/semantic web. It still wasn’t clear how data own-

ership and decentralisation is achieved. Reading the docs provided some insight and

the concept of a Pod was introduced.

The docs provided some clarity but introduced more doubts. Of course, this is the

nature of learning. Over the next few months I intend to understand the full power

and limits of Solid.

A.2 First Contact

A.2.1 20-12-2018

After reading the docs and articles about Solid, I decided to dive into the code. First,

I read the tutorial (https://solid.inrupt.com/docs/writing-solid-apps-with-

angular) to understand pre-requisites. What was immediately apparent was:

1. The tutorial presumes a lot of knowledge:

• web development

• Node.Js

• Angular

• Linked Data

2. The intro to Linked data may not be enough for a new developer and basically

is a wall

96

https://solid.inrupt.com/docs/getting-started
https://solid.inrupt.com/docs/getting-started
https://solid.inrupt.com/get-a-solid-pod
https://solid.inrupt.com/get-a-solid-pod
https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://github.com/solid/node-solid-server
https://www.inrupt.com/blog/one-small-step-for-the-web
https://www.inrupt.com/blog/one-small-step-for-the-web
https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://solid.inrupt.com/docs/writing-solid-apps-with-angular


A.3. INITIAL HURDLES

3. The intro is overtly simple

Having read the document, it occurred to me that my perspective is unique in many

ways. The tutorial seems uniquely targeted towards someone with my qualifications. I

have worked with Node.Js for nearly 3 years, I know TypeScript, I have used front-end

frameworks such as AngularJs 1.5.x, Vue.Js etc that give me an advantage for learning

Angular, and I just took Prof. Declan O’Sullivan’s Knowledge and Data Engineering

class which taught be the basics of Linked Data and RDF. As a result, the way I look

at Solid even being new to it is very different from how, say - a PHP developer or a

Java developer would look at Solid.

So, I believe, the Solid community should answer the following questions:

1. Is Solid targeted towards developers who have a few years of experience with a

variety of technologies?

2. If the answer to the first question is No, then to what extent can we abstract

away the exposure to more complicated technology?

I think that more work needs to be done to design the tutorial in a way that it

does not presume knowledge, and making Solid lucrative for developers will require

simplifying the learning curve perhaps by abstracting some of the inner working.

A.3 Initial hurdles

A.3.1 23-12-2018

Ran node-solid-server@23d5dad7042546231747dc8e6f23f9f6e9702ffb. Running

server on localhost with self-signed keys. After signing up with the local server and

obtaining a local webId, I proceeded to click on Profile, Inbox etc. None of the pages

showed any information. Instead it seemed like something was broken.

Inspecting network logs showed that I was getting 500 errors on most GET requests

due to self-signed certificate. Some searching for the error threw up slightly unrelated

solutions for npm.

Looking at the README, I found https://github.com/solid/node-solid-serv

er/tree/23d5dad7042546231747dc8e6f23f9f6e9702ffb#running-in-development-

environments.

97

https://github.com/solid/node-solid-server/tree/23d5dad7042546231747dc8e6f23f9f6e9702ffb#running-in-development-environments
https://github.com/solid/node-solid-server/tree/23d5dad7042546231747dc8e6f23f9f6e9702ffb#running-in-development-environments
https://github.com/solid/node-solid-server/tree/23d5dad7042546231747dc8e6f23f9f6e9702ffb#running-in-development-environments


A.3. INITIAL HURDLES

I couldn’t immediately find solid-test but https://github.com/solid/node-soli

d-server/issues/816 showed me the way.

Thoughts:

solid-test binary seems unnecessary. This should be a flag or environment variable

in the solid binary.

A.3.2 27-12-2018

Problem described by https://github.com/solid/node-solid-server/issues/1029

My solid server version: v5.0.0-beta.4

In my specific case, I had set-up my solid-server a few days ago and I was able to

sign-up. I had set it for single user. Then today I tried logging in and kept getting the

incorrect password error. (Since there’s no email server set-up, I couldn’t use forgot

password)

So, I decided to re-register. Before that, I cleared the server config and data and

re-initialised solid-server. This time, I explicitly set it up for single user. Register does

not work for single-user set-up.

A.3.3 18-01-2018

Pulled node-solid-server v5.0.0-beta.5 and was finally able to execute single-user reg-

istration. Following that, I tried to run the tutorial app (https://solid.inrupt.c

om/docs/writing-solid-apps-with-angular). While there were no errors, the app

was not pulling any data to the form. Since I knew there was actually no data except

name in my solid pod, I expected at least name to be fetched. After a little debugging,

I found that the form expected data stored in the VCARD namespace, and there was

no such data. This indicated that the data needed to be created, so I simply filled the

form and submitted. I got 403 errors.

The error messages were rather crude and opaque. A lot of searching around the

documentation finally led me to https://github.com/solid/node-solid-server/i

ssues/877. After editing the data\profile\.acl file in the solid server directory, I

was finally able to create and edit some data.

Thoughts:

1. Tutorial is seriously inadequate.

98

https://github.com/solid/node-solid-server/issues/816
https://github.com/solid/node-solid-server/issues/816
https://github.com/solid/node-solid-server/issues/1029
https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://solid.inrupt.com/docs/writing-solid-apps-with-angular
https://github.com/solid/node-solid-server/issues/877
https://github.com/solid/node-solid-server/issues/877


A.4. READ DATA FROM AND WRITE DATA TO POD

2. Several steps relating to permissions have been skipped in the tutorial and it

simply assumes the reader is familiar with all configuration steps.

3. The tutorial doesn’t even properly explain what it does and how to test it.

A.4 Read data from and Write data to Pod

A.4.1 2-02-2019

Since Inrupt’s announcement that they’d be focusing on building an SDK based on

React and Ldflex, I shifted to trying out the new experience. I ran the React generator

and it worked but didn’t do much useful more than the Angular one did.

(A long break followed, during which no significant progress was made on learning

the SDK. The team behind Inrupt did some releases which added the support to write

to the Pod, but not all features laid down in the planned timeline have been released

as the developers took a detour to add support for Shapes.)

A.4.2 2-05-2019

ShardsUI was used to build a UI template and I started retrofitting the components

from generator to get data into the UI, and I was able to get the name which was the

only thing in the Pod profile at that point.

A.4.3 11-05-2019

In the two weeks since starting with the front-end, a conversation with James Martin

revealed that some documentation of the SDK was out-of-date and that the SDK’s

version corresponded to the version of the generator and not the components, although

the components package is a dependency of the generator. He also told me that some

releases of the generator had in fact added new features although not all of the previ-

ously planned features.

Session on 11-05-2019:

1. New version of generator to test new features being used to generate new scaf-

folding.

2. Solid server started

99



A.4. READ DATA FROM AND WRITE DATA TO POD

3. Albus started parallelly

Issues:

1. New generated app doesn’t work due to a 401, which theoretically shouldn’t

happen because the .acl file gives permission for the card.

2. New generated app doesn’t accept WebID for login when started on different

port. Only existing cookie login is working. “WebID not valid” error message

being displayed. This shouldn’t happen either because WebID is perfectly valid!

Solution:

The first problem might have been resolved, because now that I was running the

new generated app on a fresh port where the cookie did not exist, I went through login

again and a fresh cookie was created. It seems like due to solid-auth-client version

change, old cookie might not work in the new one. Still worth further investigation.

• Upon further investigation, the problem is still not completely clear but might

have something to do with the fact the old and new generator use slightly different

versions of solid-auth-client (2.2.14 and 2.3.0).

• There also seem to be major changes in the versions of react-components (https:

//github.com/solid/react-components 1.3.0 vs 1.6.0) which is a dependency

of https://github.com/inrupt/solid-react-components (which in turn has

been bumped from 0.1.0 to 0.3.2). Seems like I should just update all of my code

in Albus.

The second problem is tracked here. A workaround allowed me to circumvent the

issue for now, by using https://akashdeepsingh.localhost.in:8443/profile/ca

rd#me as the provider URL. https://github.com/inrupt/solid-react-components

/issues/56 Somehow, this also resolved the first problem, but I have no idea how.

Outcomes:

1. Albus is now using updated dependencies, but doesn’t fetch the image.

2. It’s clear that the solid ecosystem and developer tools are not stable enough for

production consumption as there are major regressions in minor version bumps.

A lack of tests in most libraries is also evident.

100

https://github.com/solid/react-components
https://github.com/solid/react-components
https://github.com/inrupt/solid-react-components
https://akashdeepsingh.localhost.in:8443/profile/card#me
https://akashdeepsingh.localhost.in:8443/profile/card#me
https://github.com/inrupt/solid-react-components/issues/56
https://github.com/inrupt/solid-react-components/issues/56


A.4. READ DATA FROM AND WRITE DATA TO POD

A.4.4 12-05-2019

At this point in the process of learning solid app development, there is a need to find

a reliable way of bootstrapping the data model.

The current line of thought is to just create a file in the private directory and

determine the proper permissions for it. Manually creating a file is possible, but doing

it in a production environment might mean using the upload function. There should

probably be a cleaner way around it. Giving permissions to a specific site should also

be reliable and safe. Need to evaluate how this works.

A.4.5 12-05-2019

https://github.com/inrupt/solid-react-components/tree/660a12adecc726b8b1b

0f9b8daf08ce19a862ef5 The repo is seriously lacking in documentation and seems

ill-designed for consumption by developers. It seems that the focus is on making the

generator usable but not truly extensible because what the generator uses is not well-

documented. At this point, even though I have the generator, I can’t really do much

with it when it comes to changing it to build an actual app. While this is obviously not

the intention given that the whole SDK is a work in progress, the lack of attention to

components does harm the ability of a new developer to pick up easily. Additionally,

a concept like ShEx has been introduced in the README with no preamble. On the

whole, the developer experience is broken, and documentation (if any) is so fragmented

that a developer might give up.

A.4.6 13-05-2019

I have deviated from the goal of finding a way for application bootstrapping to bring

Albus up to speed with the capabilities of the generator. I managed to fit the profile

component into the UserAccountDetails component. Profile updates are now possible.

Next step is to plug my ontology and actually create my own data. And navbar name,

img display are also done.

101

https://github.com/inrupt/solid-react-components/tree/660a12adecc726b8b1b0f9b8daf08ce19a862ef5
https://github.com/inrupt/solid-react-components/tree/660a12adecc726b8b1b0f9b8daf08ce19a862ef5


A.4. READ DATA FROM AND WRITE DATA TO POD

A.4.7 16-05-2019

3-4 hours have been spent in trying to understand how to model, store and access

application data in solid. The best resource thus found has been https://noeldemart

in.github.io/solid-focus/, which is an application written in Vue. Having looked

through code, and having made it somewhat functional, I have found that it’s not yet

intuitive and simple.

The two issues I faced were:

1. 403 when I tried to create a workspace. Turns out the app was trying to create a

basic container, and didn’t have the permissions to do so. I just edited the root

container’s acl and gave everyone write permissions. This is not ideal and I need

to figure out how to give an app permissions for creating a container for itself

but and restricting it to that.

• The important thing is that once an app is authenticated using my webid,

shouldn’t it be able to use the cookie to get the permission to do the creates

and other edits? This needs to be investigated.

• So I found this: https://github.com/solid/node-solid-server/issue

s/1171#issuecomment-481984361 and it makes sense. This also means I’ll

have to build a new local solid-server to test out the fix.

2. When I reloaded the app, the workspace was lost, i.e., the app was no longer

able to discover the workspace. A workspace essentially created a new directory

(described by an RDF basic container).

The Solid spec (https://github.com/solid/solid-spec) is probably the best

and most authoritative resource yet, but it’s very dense and requires a lot of context

about the Linked Data platform. A tutorial for creating a simple app with the second

important step: ”how to manage app data” doesn’t seem to exist.

https://noeldemartin.com/tasks/implementing-a-task-manager-using-soli

d I’ve been reading this to understand the app development process. It’s similar to my

blog, only more focused on building a much simpler application.

A.4.8 17-05-2019

After much rummaging, I found how to make applications /emphtrusted, by following

instructions mentioned in the README of https://otto-aa.github.io/solid-fi

102

https://noeldemartin.github.io/solid-focus/
https://noeldemartin.github.io/solid-focus/
https://github.com/solid/node-solid-server/issues/1171#issuecomment-481984361
https://github.com/solid/node-solid-server/issues/1171#issuecomment-481984361
https://github.com/solid/solid-spec
https://noeldemartin.com/tasks/implementing-a-task-manager-using-solid
https://noeldemartin.com/tasks/implementing-a-task-manager-using-solid
https://otto-aa.github.io/solid-filemanager/
https://otto-aa.github.io/solid-filemanager/


A.4. READ DATA FROM AND WRITE DATA TO POD

lemanager/. Apparently this is a recent change and earlier all apps weren’t untrusted

by default.

This clears one of my earlier doubts as to how do people give apps access to pods.

Earlier, I was only able to give access by editing the acl of resources manually. The

new way I have discovered is better, but hidden in obscurity and seems inadequate for

two reasons:

1. Apps still don’t seem to have the RW permissions I have, so I still can’t create

TODOs in the TODO (solid-focus) app.

2. Apps are given access by url, or rather domain name. So, multiple apps deployed

at different routes on the same domain all get bundled access. No way yet to

specify it more finely.

3. The wording on the trusted apps page seems to suggest that apps get the same

access as the user, which may not be desirable. A broad RW access on the entire

pod is not what I was looking for, but may be required.

4. The big problem is, apps should get their own sandboxes and should have free

run in those sandboxes rather than having full admin type access on the whole

pod.

5. I’m not sure what trusted app does. The way I found to actually give permissions

to an app was to edit the acl file, this time with the app’s specific name(domain

name). Turns out this has recently been documented here.

An issue on improving permissions UX exists: https://github.com/solid/node-

solid-server/issues/1142

So, the question is: What does trusting an app do in effect? From what I gather, I

still have to give permissions to apps through acl for the folders/files that need to be

edited. Is trusting a firewall?

Answer: If done properly (no trailing /), it gives blanket permissions!!! This seems

dangerous. Also, if a container exists and there is no acl inside it, I need to create an

acl with the owner having all permissions.

Big problems: documentation is highly fragmented and disjointed. Connecting the

dots and reverse engineering seem to be the only way.

Current sources of documentation:

1. Github READMEs, Issues, PRs, Commit messages of many repos of the organi-

zations https://github.com/solid and https://github.com/inrupt

103

https://otto-aa.github.io/solid-filemanager/
https://otto-aa.github.io/solid-filemanager/
https://github.com/solid/node-solid-server/issues/1142
https://github.com/solid/node-solid-server/issues/1142


A.5. MIGRATION OF PODS

2. https://forum.solidproject.org

3. Gitter channel of solid-spec

4. A handful of blogs

A.4.9 17-05-2019

It seems at this point that the workflow for an app for first login (bootstrapping) would

be:

1. Login

2. Ask for permissions (this could be either becoming a trusted app, or getting

explicit granular permissions to read append to a particular container to be able

to create a subcontainer sandbox)

3. Create a subcontainer within in public or private container that acts as the apps

data directory

4. Create an acl in the directory giving explicit full permissions to the owner and

read, write permissions to the app

5. Maybe a disconnect button that would edit the file and remove the app’s per-

missions and then direct the user to remove the app from the trusted apps

Actions:

1. Need to understand permissions and how they are resolved for containers and

subcontainers. Can a subcontainer have more permissive rules than the parent

container for an app?

2. Need to understand what role an ontology would play. How to check constraints,

if at all? (where do shapes come in?)

Big UX issue: permissions, both giving (especially granular) and revoking

A.5 Migration of Pods

A.5.1 21-05-2019

I wanted to test Solid’s promise of portability of data by creating a mechanism for

automating Pod migration (migrating a Pod from one provider/server to another). I

had an idea that webIds would be a difficulty and that’s what I found.

104



A.6. IMPLEMENTATION: A VERY LONG POST

Steps:

1. VM with nodejs and docker

2. Clone server on VM and run with docker

3. Replace default config with custom config

4. Plug imported Pod data via volume and config refers to .db and data directories

from this

Issues:

1. .db won’t work unless the URI of the new server is same as that of imported Pod

data because OIDC is configured using that.

2. User account cannot be imported directly as the webId is tied to the old Pod

3. User data also has the same problem as above.

4. If external webId is used, both the above issues can be resolved to an extent if

the external webId is static

• An external WebId is additional overhead and introduces complexities bet-

ter avoided Refer: https://forum.solidproject.org/t/move-it-at-an

y-time-without-interruption-of-service/565/6 and https://forum.

solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in

/756/8

Update: https://forum.solidproject.org/t/transfering-a-solid-pod/1902/

2 Someone is doing something at https://mypod.id/ and it seems to utilize https:

//holo.host/ under the hood (blockchain!). Let’s see where this goes.

On a related note, some thoughts on automated account creation: https://github

.com/solid/solid-spec/blob/master/recommendations-client.md#creating-new-

accounts. This could in theory be used for migration. Essentially, you don’t move a

Pod physically, but create a new one from scratch as a replica of the old one with the

new webId. I didn’t test this out as I’ve given up on this for my project.

A.6 Implementation: A very long post

A.6.1 25-05-2019

Login and logout functionality is done. This involved taking code from the generated

app and fitting it into Albus.

105

https://forum.solidproject.org/t/move-it-at-any-time-without-interruption-of-service/565/6
https://forum.solidproject.org/t/move-it-at-any-time-without-interruption-of-service/565/6
https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in/756/8
https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in/756/8
https://forum.solidproject.org/t/will-tying-web-ids-to-hosters-create-lock-in/756/8
https://forum.solidproject.org/t/transfering-a-solid-pod/1902/2
https://forum.solidproject.org/t/transfering-a-solid-pod/1902/2
https://mypod.id/
https://holo.host/
https://holo.host/
https://github.com/solid/solid-spec/blob/master/recommendations-client.md#creating-new-accounts
https://github.com/solid/solid-spec/blob/master/recommendations-client.md#creating-new-accounts
https://github.com/solid/solid-spec/blob/master/recommendations-client.md#creating-new-accounts


A.6. IMPLEMENTATION: A VERY LONG POST

A.6.2 30-05-2019

Generator version 0.5.0 came out a week ago. Profile form is now generated using

ShEx. They have chosen to completely change the profile view. The problem I see

here is that there doesn’t exist the simple way of doing this in the generator now.

ShEx has been imposed as the canonical way while the components repo says that it

is still an experimental preview.

Other news: Solid-cli exists for non-web interaction with the solid server, that could

be useful in the migration part. https://github.com/solid/solid-cli/

I chanced upon a thread that revealed that NSS is not strictly compliant with the

spec and the spec isn’t a spec yet. https://lists.w3.org/Archives/Public/publ

ic-solid/2019May/0015.html

LDFlex It works quite well. Apart from the fact that there is no documentation, it

is a good API. add, delete, set and get have been tested. set is an upsert.

A.6.3 1-06-2019

I used rdflib.js to list and parse data from my pod. I created two post documents

manually. LDFlex doesn’t seem to have the option of working on containers, so needed

rdflib for that.

Solid-focus’ code was useful in this regard. It was also useful in understanding how

it creates app data. Now, using https://solid.github.io/ldflex-playground, I

was able to find out that it is possible to list using LDFlex. The key is using the

ldp:contains property on the container. Pretty neat.

A.6.4 3-06-2019

Getting Posts from Pod

1. Get user

2. Get storage URI

3. Construct app data directory URI

4. List Posts by using ldp:contains

Need to figure out how to check for conditions. Seems like we can’t. Should separate

public and private stuff by containers

106

https://github.com/solid/solid-cli/
https://lists.w3.org/Archives/Public/public-solid/2019May/0015.html
https://lists.w3.org/Archives/Public/public-solid/2019May/0015.html
https://solid.github.io/ldflex-playground


A.6. IMPLEMENTATION: A VERY LONG POST

Result: Able to read posts from Pod and display them.

A.6.5 5-06-2019

Likes, unlikes, comments, crossposts are done using notifications. Maybe feed can also

be discovered using notifications? This needs to be figured out.

A.6.6 7-06-2019

https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framewor

k-vs-web-standards-effort/844/4

This discussion and this post are the best representation of the confusion surround-

ing Solid. The question is, what is Solid? Or rather, where does it fit in our current

- perhaps limited - vocabulary of classifying concepts in the software development

and engineering field. First let’s just get the obvious out of the way: Solid is not a

programming language. The other classifications that we consider are:

• Framework

• Paradigm

• Pattern

• Standard (or set of standards)

So, Solid, is definitely a set of standards. That’s clear and well-documented. As for

the others, it needs some dissection. We might actually find that Solid doesn’t fit any

of these moulds perfectly, which isn’t necessarily a bad thing, but it leaves the question

of ’what is Solid?’ largely unanswered especially from the perspective of someone not

familiar with Linked Data.

A.6.7 7-06-2019

We’re finally getting social. So, I decided to create another user. At first, I thought I’ll

need to go to a different server for it, but it turned out that I could just create a new

directory with its own config and start a new instance of solid with a new port number.

One hiccup: Probably at the /authorize call, solid updates the card, and it seems to

be writing hardcoded 8443 into that. That’s wrong. I had to manually edit the whole

thing. I need to test this with a different app (solid-focus) to isolate the issue.

107

https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framework-vs-web-standards-effort/844/4
https://forum.solidproject.org/t/newbie-perceptions-on-solid-app-framework-vs-web-standards-effort/844/4


A.6. IMPLEMENTATION: A VERY LONG POST

Good thing: Somehow my solid server’s consent page has been updated and is

asking for adding to the trusted apps list. This flow is much better, and resolved one

of my earlier concerns.

Created User individual for both users using protege. I’m not sure this is correct

but let’s see.

I need to find a way to store or calculate followers of a user for displaying that

information. So far, I store followees for a user. Followers should also be displayed.

This will work using inbox.

Long session

Achieved:

1. Followee list

2. Friend profile view readonly

3. Feed with followee’s posts

A.6.8 8-06-2019

No coding, just thoughts here.

Feed aggregation is a necessarily centralised task. In a decentralised set-up, there

are essentially two ways of building a feed of followees:

1. Pull

2. Push

In 1, we have to build the feed - on the fly - when a user logs in. This entails

crawling through all of the followees, and their posts, and aggregating them. This is

a time-consuming task. Moreover, sorting becomes harder. Marking posts as seen so

as to not repeat them across sessions is also harder as you’d have to incur storage cost

for storing such data. Discovering all your followees’ posts is time consuming enough,

and done at the client, it makes the presentation harder and brittle. If you want to

sort before presenting, as you should, that’s increased latency.

Over time, as the posts increase, you’d also want to limit the posts you get based

on recency, and whether the post has been seen. Since we lack global knowledge

beforehand, this is exceptionally hard.

108



A.6. IMPLEMENTATION: A VERY LONG POST

In 2, we expect that every time a followee publishes a new post, it gets sent to

the user’s inbox as a notification. The rest is pretty much the same. The feed is still

only created on the fly, but the network cost of getting posts from followees’ Pods can

be avoided. The problem is that it requires one’s Pod and inbox to be perpetually

available. This expectation has to be clear for Solid users.

A.6.9 16-06-2019

Tried various ways to create a container based on whether it already existed.

LDFlex does support get, but if the container doesn’t exist, it returns 404 which

isn’t being caught (promise not being rejected, https://github.com/solid/query-

ldflex/issues/23). This means checking for existence may not be possible without

rdflib.js either is possible using a ldp:contains listing on the top level container of the

Pod and iterating through all contents. Seems robust/reliable enough.

A.6.10 17-06-2019

Creating a resource entails similar operations to creating containers. LDFlex doesn’t

support this either yet, but rdflib does. It was a little tricky to figure out how to do

it from docs because they are too fragmented, incomplete, and inconsistent. I first

tried to use the fetcher’s createIfNotExists function, and it threw a weird error which I

couldn’t work around. Didn’t find any solution to it online. It’s not clear what it does.

I searched on the forum and it led me to https://forum.solidproject.org/t/my-

first-app-adding-resources/275/9 and I found putBack does what I need except

it just replaces in case the resource already exists. So the problem of checking before

creating comes up. The solutions:

1. Do a get or a listing of the container before creating. If get fails or if listing

doesn’t contain the resource, create, otherwise error.

2. Or just create. This could work because I will be creating using a unique filename

every time. A combination of a hash of webId and timestamp. This decision is

justified as an optimization for the common case of no conflicts. We can be

reasonably confident that there won’t be a conflict, and the check adds overhead

that will make experience bad. Since the project is more of a POC/MVP, this

109

https://github.com/solid/query-ldflex/issues/23
https://github.com/solid/query-ldflex/issues/23
https://forum.solidproject.org/t/my-first-app-adding-resources/275/9
https://forum.solidproject.org/t/my-first-app-adding-resources/275/9


A.6. IMPLEMENTATION: A VERY LONG POST

is fine. The safety of the create operation can be enhanced at a later time using

better tools.

A.6.11 17-06-2019

Solid has 3 ways of interacting with data programmatically:

1. REST: It would seem that this is the basic and the canonical approach also laid

out in the spec. All other interfaces seem to be built on top of the REST inter-

face, which is documented well enough and is quite comprehensive. It requires

knowledge of HTTP headers, LDP, and RDF.

2. RDFLIB.js: RDFLIB.js is perhaps the second most mature interface (apart

from the Data browser). The problem is it assumes a knowledge of RDF and

LDP. That would be fine if the documentation was better, but it’s fragmented,

incomplete, and inconsistent.

3. LDFlex: LDFlex is the newest, and by far the easiest to get started with. Unfor-

tunately, this too suffers from the incompleteness of documentation apart from

the fact that it doesn’t have all the features to be able to provide all of Solid’s

capabilities. While it’s been actively worked on, it will take some time for it to

be mature.

The bottom line: no one solution fits all of the needs for a practical application

like an OSN. At the very least, a document covering all the common CRUD scenarios

for containers, resources, and triples should exist for the 3 interfaces from a view of

helping new developers get started. This is not the case yet. None of the documents

that exist contain this information.

Some use cases such as filtered listing don’t even seem to be possible yet, due to

the way data is stored and serialized on Pods.

The bigger challenge here is to reorient developers of traditional db-backed systems

to this way of working with data.

A.6.12 22-06-2019

Given that the primary data access interface for Solid apps is RESTful, this creates

a gap for meaningful querying. Most applications are backed by a database, RDBMS

or NoSQL, which provides a sophisticated query interface that lets developers select

110



A.6. IMPLEMENTATION: A VERY LONG POST

and project at the very least, apart from more complex aggregation. Solid stores data

mainly as Turtle representation of RDF. While this serialization may not be the most

efficient, it is expressive enough for designing versatile data models. However, querying

on Turtle has traditionally been done using SPARQL, which is highly expressive, albeit

complex. While the Solid specification prescribes it (https://github.com/solid/sol

id-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#altern

ative-using-sparql), NSS lacks a SPARQL endpoint (https://github.com/solid

/node-solid-server/issues/962#issue-383649959) for querying over the data in

the Pod, making it necessary to perform operations such as selection, projection, and

aggregation over Pod data inside the client application. This makes modelling data dif-

ficult especially when designing with privacy in mind. Since permissions using ACLs

within the Pod are assigned at the level of resources (files on disk in case of NSS),

different access levels need to be isolated at the resource/container level rather than

predicate/property level. This means that if a user Alice wants to create a post visible

only to a specific follower Bob, then a separate resource needs to be created specifically

for Bob with the ACL file associated with that resource having the webId of Bob. Since

the listing of resources in a container is done at the container level without any filters,

a listing by every follower of Alice will show that resource but a request to get the

content of that resource will fail with a 403.

To fill this gap, libraries such as RDFLib and sparql-fiddle have implemented

workarounds that allow executing SPARQL over loaded RDF documents but the ex-

perience is not smooth.

Forum topics dealing with this: https://forum.solidproject.org/t/using-sp

arql-on-solid-data/1335 https://forum.solidproject.org/t/fun-fact-using-

sparql-to-query-the-type-registry/776 https://forum.solidproject.org/t/e

xecuting-sparql-query-over-json-ld-files-in-solid/1885

A.6.13 25-06-2019

There are two solutions to the discovery problem:

1. Centralized: Using a central registry that all users are registered to (maybe

opt-in; not hard to make it opt-in)

2. Decentralized: Crawling friends, friends of friends. Not feasible. Cold start

111

https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#alternative-using-sparql
https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#alternative-using-sparql
https://github.com/solid/solid-spec/blob/b941ff795acdedb7d7a24d40dabdfcce7efa9283/api-rest.md#alternative-using-sparql
https://github.com/solid/node-solid-server/issues/962#issue-383649959
https://github.com/solid/node-solid-server/issues/962#issue-383649959
https://forum.solidproject.org/t/using-sparql-on-solid-data/1335
https://forum.solidproject.org/t/using-sparql-on-solid-data/1335
https://forum.solidproject.org/t/fun-fact-using-sparql-to-query-the-type-registry/776
https://forum.solidproject.org/t/fun-fact-using-sparql-to-query-the-type-registry/776
https://forum.solidproject.org/t/executing-sparql-query-over-json-ld-files-in-solid/1885
https://forum.solidproject.org/t/executing-sparql-query-over-json-ld-files-in-solid/1885


A.6. IMPLEMENTATION: A VERY LONG POST

problems:

• A user having no friends will not be able to find anyone

• No one will be able to find a user with no friends

3. A 3rd way is a mixture. Instead of having a central registry. A user/bot Albus

can be made followee on all accounts, and essentially discovery becomes a matter

of crawling friends of Albus.

Potential issues:

1. quasi invasive

• Solution: opt-in

2. users can unfollow

• Could be a good thing as an opt-out

• No real benefit except entire app can be made within the scope of Solid, but

still a server will need to be maintained (Pod of Albus).

• Someone who unfollows is essentially explicitly disconnecting themselves,

which may be a good thing.

A.6.14 8-07-2019

I wired create post and it’s working. I figured I don’t actually need to use my ontology,

really. Not for the posts yet at least.

Group authorization is possible: https://github.com/solid/web-access-cont

rol-spec#groups-of-agents How I plan to implement this for now is just a single

group called ApprovedFollowers.

There are currently 4 types of Visibility I plan to support (not yet editable):

• Private: Only the user sees their posts

• Public: Everyone can see the posts theoretically, but they appear in the feed of

UnapprovedFollowers (does not exist in followee’s pod)

• Followers: Only ApprovedFollowers see these (exists by default in followee’s pod)

• Specific: user(s) by webId

112

https://github.com/solid/web-access-control-spec#groups-of-agents
https://github.com/solid/web-access-control-spec#groups-of-agents


A.6. IMPLEMENTATION: A VERY LONG POST

• Custom groups: Advanced

Editability might be good to PoC, at least the visibility if not the rest of the post.

This UserStory has some ideas but doesn’t seem to have been implemented yet: ht

tps://github.com/solid/solid-spec/blob/master/UserStories/PrivateSharing.

md

A.6.15 10-07-2019

A blocking error in query-ldflex (https://github.com/solid/query-ldflex/issue

s/23) is causing frustration. I can list authorised and unauthorised items, but not

knowing which is which. Then, when I get each of them, the ones that do not allow

access via acl throw 403 and EXIT. I can’t catch and handle those errors, and so the

entire thing falls apart just because I don’t have access to some items in the list.

Also found a problem with the authenticated users group access policy: for single

tenant solid servers, it won’t work for users other than the one user that has a pod on

it. So, essentially I can’t have an access level that allows solid logged in users instead

of the whole public access.

Working Solution:

1. Clone and compile this https://github.com/RubenVerborgh/LDflex-Comuni

ca/commit/73e7ee939ba37edee6ed6b31434aefb1e3c20acf

2. Replace node modules\ldflex-comunica\lib with the lib compiled in Step 1

3. Remove blocking calls (use then instead of await)

Unresolved Issues:

1. Still can’t catch errors. Detecting using non-empty title only

2. Have to replace ldflex-comunica manually outside of the automated build

A.6.16 10-07-2019

Post creation with basic visibility levels works. Creating acl took some time. The doc

(https://github.com/solid/web-access-control-spec) is pretty good for forming

the acl file itself, but storing it to pod was a headache. I found (https://otto-

aa.github.io/solid-acl-parser/#/) and (https://github.com/nmalcev/pod-ex

plorer/blob/master/static/scripts/models/acl_manager.js) useful but the first

113

https://github.com/solid/solid-spec/blob/master/UserStories/PrivateSharing.md
https://github.com/solid/solid-spec/blob/master/UserStories/PrivateSharing.md
https://github.com/solid/solid-spec/blob/master/UserStories/PrivateSharing.md
https://github.com/solid/query-ldflex/issues/23
https://github.com/solid/query-ldflex/issues/23
https://github.com/RubenVerborgh/LDflex-Comunica/commit/73e7ee939ba37edee6ed6b31434aefb1e3c20acf
https://github.com/RubenVerborgh/LDflex-Comunica/commit/73e7ee939ba37edee6ed6b31434aefb1e3c20acf
https://github.com/solid/web-access-control-spec
https://otto-aa.github.io/solid-acl-parser/#/
https://otto-aa.github.io/solid-acl-parser/#/
https://github.com/nmalcev/pod-explorer/blob/master/static/scripts/models/acl_manager.js
https://github.com/nmalcev/pod-explorer/blob/master/static/scripts/models/acl_manager.js


A.6. IMPLEMENTATION: A VERY LONG POST

one didn’t seem to have documented support for storing and it was using N3 anyway.

The second showed me how to parse the acl file blob into rdflib and then it just took

some playing with rdflib to get it to write.

Finally, I scratched my head on a stupid mistake. Singular vs Group agents. I was

using agentClass for all agents, even for self. That was wrong. Singular agents use

agent, and group agents use agentClass.

A.6.17 12-07-2019

Tldr: it worked, eventually. But it wasn’t easy.

LDN: is a protocol at the most basic level. It is simply a way for two parties to com-

municate with push. The sender and receiver agree on a shared space on the receiver’s

Pod where the sender can creates resources (messages). And the receiver can act on

those messages at a later time. It’s like a simple postbox. So, there’s a global inbox in

the Pod. I didn’t want to use that. So, I made an inbox for Albus. For some reason, the

LDN spec mentions JSON-LD (https://www.w3.org/TR/json-ld/)asthewaytodoit.

There are some useful payload examples (https://www.w3.org/TR/ldn/#payload-ex

amples). So, I had to create my messages in JSON-LD using the activitystreams vocab-

ulary (https://www.w3.org/TR/activitystreams-vocabulary). JSON-LD isn’t too

hard (http://fsteeg.com/notes/from-rdf-to-json-with-json-ld). Saving JSON-LD using

rdflib.js is possible as described here (https://forum.solidproject.org/t/is-ther

e-a-converter-between-json-ld-and-turtle-n3/1817/3). The serialize method

was fine but to save it to the Pod, I was using Fetcher.putback and that didn’t work due

to (https://github.com/linkeddata/rdflib.js/issues/324), so I had to fix it (ht

tps://github.com/linkeddata/rdflib.js/pull/325) and host a fixed version my-

self (https://akashdeep-singh.github.io/thefreeelf/ss/rdflib.min.js). After

that, I was able to get the listing of notifications. Now I need to add Approve/Reject

buttons and add the approved followers to a group.

The other part is to create notifications. I created the notif file manually. I have

to automate it which will require replacing rdflib.min.js with my version.

UPDATE 26-07-2019: The Pull request (https://github.com/linkeddata/rdfl

ib.js/pull/325) has been approved, but is pending merge.

114

https://www.w3.org/TR/json-ld/) as the way to do it
https://www.w3.org/TR/ldn/#payload-examples
https://www.w3.org/TR/ldn/#payload-examples
https://www.w3.org/TR/activitystreams-vocabulary
https://forum.solidproject.org/t/is-there-a-converter-between-json-ld-and-turtle-n3/1817/3
https://forum.solidproject.org/t/is-there-a-converter-between-json-ld-and-turtle-n3/1817/3
https://github.com/linkeddata/rdflib.js/issues/324
https://github.com/linkeddata/rdflib.js/pull/325
https://github.com/linkeddata/rdflib.js/pull/325
https://akashdeep-singh.github.io/thefreeelf/ss/rdflib.min.js
https://github.com/linkeddata/rdflib.js/pull/325
https://github.com/linkeddata/rdflib.js/pull/325


A.7. FINAL SESSION: ALMOST FINISHING TOUCHES

A.7 Final session: almost finishing touches

A.7.1 14-07-2019

Wired discover page with listing of public profiles. Next steps: follow button wiring,

add to directory while signing up.

I need an onboarding/register page before Feed after first login. The main check

can be the existence of the albus container. The check will have to happen every time.

Essentially, if the directory exists, go ahead, if it doesn’t then go through the entire

process of creating it, and the basic containers inside it, and show the option for opting

in to the discovery layer. Then, move to Feed.

A.7.2 17-07-2019

Completed the following functions: * Sending notification

Using mostly rdflib

One point that stuck out briefly was creating notification with acl:Append and

fetcher.putBack. Turned out PUT doesn’t work with Append, so I figured out sending

POST request using webOperation. Asked a question on gitter and got an answer

within minutes.

• add followee after sending notification

Used LDFlex to add the sioc:follows predicate.

• approve/ignore follower and delete notification

Approving by adding a member to ApprovedFollowers or ignoring by Unapproved-

Followers using LDFlex, and then clear that notification from inbox and UI.

• list ApprovedFollowers on Friends page

Listing ApprovedFollowers using LDFlex

A.7.3 18-07-2019

Several hours poured into setting up boilerplate programmatically. Some major issues

were faced relating to creation of acl files that snowballed into a chain of problems.

This led to me finding out that I had added additional permissions in the root acl

file. I removed those, and then wasn’t able to create the albus folder either. This made

115



A.7. FINAL SESSION: ALMOST FINISHING TOUCHES

no sense as I clearly had permissions. So, I decided to update my NSS to the latest(http

s://github.com/solid/node-solid-server/commit/5729fe534665a022f4cc41384a

f2c47a4f1eaf57).

That broke as well, at a step before even creation of albus folder was attempted due

to an open bug (https://github.com/solid/node-solid-server/issues/1120). So,

I reverted to my old NSS version (not considerably older, https://github.com/solid

/node-solid-server/commit/bdc5acba326f215c3d32eb2b234ec73d0f5cc9ce), which

brought me back to not being able to create the albus folder itself. Some reading

around got me to an old issue (https://github.com/solid/acl-check/issues/24)

which pointed to the fix (https://github.com/solid/acl-check/issues/24#issu

ecomment-490144797). It’s a workaround that requires commenting a line in the root

acl file. While this is workable, it precludes production launch of the app as the root

acl file needs manual editing. As long as these issues are not fixed, Solid is not ready.

Now, bootstrapping also works, but not without manually editing the root .acl file.

Consent for registering to the central directory also works now.

For now, the project is complete, but the application isn’t. I’ve learnt what I needed

to learn. I will come back to the application later and finish it.

116

https://github.com/solid/node-solid-server/commit/5729fe534665a022f4cc41384af2c47a4f1eaf57
https://github.com/solid/node-solid-server/commit/5729fe534665a022f4cc41384af2c47a4f1eaf57
https://github.com/solid/node-solid-server/commit/5729fe534665a022f4cc41384af2c47a4f1eaf57
https://github.com/solid/node-solid-server/issues/1120
https://github.com/solid/node-solid-server/commit/bdc5acba326f215c3d32eb2b234ec73d0f5cc9ce
https://github.com/solid/node-solid-server/commit/bdc5acba326f215c3d32eb2b234ec73d0f5cc9ce
https://github.com/solid/acl-check/issues/24
https://github.com/solid/acl-check/issues/24#issuecomment-490144797
https://github.com/solid/acl-check/issues/24#issuecomment-490144797


Appendix B

Application Screenshots

Figure B.1: Homepage

117



Figure B.2: Homepage with Logout button revealed

Figure B.3: Homepage with Notifications expanded

118



Figure B.4: Login with WebID

Figure B.5: Pod Provider selection

119



Figure B.6: WebID-OIDC authentication: enter credentials

Figure B.7: Add application to trusted applications

120



Figure B.8: Consent to store and publish WebID

Figure B.9: Write post

121



Figure B.10: View and edit your own profile

Figure B.11: View another user’s profile (Read-only)

122



Figure B.12: View your followers and followees

Figure B.13: List all users on the network who have opted-in to be discovered

123



Figure B.14: Alert message upon sending a follow request to another user

Figure B.15: Homepage from the point of view of Jon Snow

124



Part II

Getting Started with Solid

125



A Beginner’s Guide to Solid

What is Solid?

Solid (SOcially LInked Data) is an evolution of the Web. It is a specification of stan-

dards, conventions and tools to enable privacy-preserving web applications.

How is it different from Javascript?

Javascript/ECMAScript is a programming language. Solid is more of a platform or a

paradigm. It let’s you use Javascript/ECMAScript to build your application.

How is it different from React/Vue/Angular?

React/Vue/Angular are frameworks/libraries that help you write scalable front-end

Web applications with features that facilitate state management, modular code, data

binding, and templates. These frameworks are associated with the popular MVVM

pattern1. Solid applications can use any of these frameworks. Solid doesn’t replace

these frameworks.

126



Figure i: The traditional three layer application architecture

Figure ii: Solid application architecture

127



How is it different from Django/Spring Boot/Ex-

press.Js/Rails?

These technologies are Web frameworks2 used for writing HTTP-based servers for the

backend of the applications. With Solid, you don’t need these technologies, because

you won’t be writing backend servers. Solid applications are front-end applications,

and your Solid Pod acts as the backend for your application.

Consider the traditional three-layer architecture3 (Fig. i) and compare with the

architecture of a Solid application (Fig. ii). The Solid application’s logic layer is

written in the front-end with the Pod acting as the data layer.

Basics of Solid

Solid has 5 main components:

1. Pod

• A Pod is a personal storage space owned and managed by each user

• Users can give access to parts of the Pod to apps

• Users can host their own Pods or create a Pod with a Pod provider of their

choice

• Read more on the Solid community site4

2. WebID-OIDC, WebID-TLS Authentication

• You don’t log-in to individual Solid applications

• You log-in to your Pod

1https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel

&oldid=909212899 [Accessed: 07-08-2019]
2https://en.wikipedia.org/w/index.php?title=Web_framework&oldid=907817661 [Ac-

cessed: 08-08-2019]
3https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=

904835974#Three-tier_architecture [Accessed: 07-08-2019]
4http://web.archive.org/web/20190810190711/https://solid.inrupt.com/how-it-works

[Accessed: 10-08-2019]

128

https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=909212899
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=909212899
https://en.wikipedia.org/w/index.php?title=Web_framework&oldid=907817661
https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=904835974#Three-tier_architecture
https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=904835974#Three-tier_architecture
http://web.archive.org/web/20190810190711/https://solid.inrupt.com/how-it-works


• Each Pod has an associated WebID URI, which is the web address of your

profile page in your Pod

• There are two ways of authenticating to your Pod

(a) WebID-OIDC, which is a protocol based on OpenID Connect. You log-

in with a username and a password, and an ID token is generated for

authenticating subsequent requests to your Pod. Read more about the

protocol on the official Github repository5

(b) WebID-TLS, which is a protocol that utilises TLS certificates for au-

thentication. Read more about the protocol on the editor’s draft of its

specification6

3. Access Control through Web Access Control (WAC)

• Solid allows you to give specific users or groups of users access to parts of

your Pod through the WAC protocol

• A .acl file for each container7 and resource8 in your Pod defines define

which users get what kind of access to the associated resource

• More detailed information can be found in the official Github repository9 of

the specification

4. RDF

• In Solid, data is either in the form of Linked Data or binary files10

• Linked Data is modelled using RDF11

5https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c

3d80b6f [Accessed: 10-08-2019]
6https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html [Accessed: 29-07-

2019]
7https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpc [Accessed: 10-08-2019]
8https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpr-resource [Accessed: 10-08-2019]
9https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a

90432e488e96260 [Accessed: 10-08-2019]
10https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881d

f39#content-representation [Accessed: 10-08-2019]
11https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ [Accessed: 10-08-2019]

129

https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c3d80b6f
https://github.com/solid/webid-oidc-spec/tree/2b2c5a3625be7e0286066db9f29a41e6c3d80b6f
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html
https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpc
https://www.w3.org/TR/2015/REC-ldp-20150226/#ldpr-resource
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
https://github.com/solid/web-access-control-spec/tree/a71580b46a3ff124fa72d765a90432e488e96260
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#content-representation
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#content-representation
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/


• RDF represents data structured as graphs which are both labelled and multi-

directed12

• RDF can be serialised using various file formats

• In Solid, you are most likely to encounter either Turtle13 or JSON-LD14,15

• Read more about content representation in the Solid specification16

5. HTTPS REST API

• All interaction between an application and your Pod is through an HTTPS

RESTful API17

• This API is specified in the Solid where you can read about it in more

detail18

• A WebSockets API19 is also available for implementing the publish/subscribe

pattern

6. Linked Data Notifications

• A protocol for push message communication between users

• Sender has permissions to send messages to Receiver’s inbox

• Receiver can list the messages later and act on them later

• Read more about the protocol in its specification20

12https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldi

d=904648151 [Accessed: 10-08-2019]
13https://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/ [Accessed: 10-08-2019]
14https://www.w3.org/TR/2014/REC-json-ld-20140116/ [Accessed: 10-08-2019]
15https://json-ld.org/ [Accessed: 10-08-2019]
16https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881d

f39/content-representation.md [Accessed: 10-08-2019]
17https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881d

f39#https-rest-api [Accessed: 10-08-2019]
18https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881d

f39/api-rest.md [Accessed: 10-08-2019]
19https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881d

f39/api-websockets.md [Accessed: 10-08-2019]
20https://www.w3.org/TR/2017/REC-ldn-20170502/ [Accessed: 10-08-2019]

130

https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldid=904648151
https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldid=904648151
https://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://json-ld.org/
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/content-representation.md
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/content-representation.md
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#https-rest-api
https://github.com/solid/solid-spec/tree/103b1e027356bd525e4cad0138e8288f4881df39#https-rest-api
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-rest.md
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-rest.md
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-websockets.md
https://github.com/solid/solid-spec/blob/103b1e027356bd525e4cad0138e8288f4881df39/api-websockets.md
https://www.w3.org/TR/2017/REC-ldn-20170502/


Prerequisites

Programming with Solid requires working knowledge of the following areas and this

tutorial presumes the reader is familiar with these:

• Web development using HTML, JS, CSS

• Data modelling

• Client-server architecture

• Linked Data basics (RDF, SPAQRL, OWL)21

Tutorial objectives

• Hosting your Pod

• Logging in using Solid

• CRUD (Creating, Retrieving, Updating, and Deleting) operations on data in a

Solid Pod

• Learning about data access and data modelling

Working with Solid

This tutorial will demonstrate the use of the following tools and libraries:

• node-solid-server22 for hosting your own Pod for development

• rdflib.js23 for creating and deleting containers and resources

21http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/intro-

to-linked-data [Accessed: 10-08-2019]
22https://github.com/solid/node-solid-server/tree/5729fe534665a022f4cc41384af2c

47a4f1eaf57 [Accessed: 10-08-2019]
23http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js

/doc/ [Accessed: 05-08-2019]

131

http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/intro-to-linked-data
http://web.archive.org/web/20190807004544/https://solid.inrupt.com/docs/intro-to-linked-data
https://github.com/solid/node-solid-server/tree/5729fe534665a022f4cc41384af2c47a4f1eaf57
https://github.com/solid/node-solid-server/tree/5729fe534665a022f4cc41384af2c47a4f1eaf57
http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js/doc/
http://web.archive.org/web/20190805204816/http://linkeddata.github.io/rdflib.js/doc/


• query-ldflex24 for retrieving and updating resources

• solid-auth-client25 for authentication

How to get help

If you get stuck somewhere, you can look for help in the following places:

• Official forum of the Solid project26

• Gitter room solid/chat27 for general queries or solid/node-solid-server28

• Stackoverflow29

• Github issues of the following projects. If you find a bug, you may also raise an

issue

– node-solid-server30

– rdflib.js31

– query-ldflex32

– solid-spec33

24http://web.archive.org/web/20190805203631/https://solid.github.io/query-ldflex/

[Accessed: 05-08-2019]
25http://web.archive.org/web/20190810230225/https://solid.github.io/solid-auth-

client/ [Accessed: 10-08-2019]
26https://forum.solidproject.org/ [Accessed: 10-08-2019]
27https://gitter.im/solid/chat [Accessed: 10-08-2019]
28https://gitter.im/solid/node-solid-server [Accessed: 10-08-2019]
29https://stackoverflow.com/tags/solid [Accessed: 10-08-2019]
30https://github.com/solid/node-solid-server/issues [Accessed: 10-08-2019]
31https://github.com/linkeddata/rdflib.js/issues [Accessed: 10-08-2019]
32https://github.com/solid/query-ldflex/issues [Accessed: 10-08-2019]
33https://github.com/solid/solid-spec/issues [Accessed: 10-08-2019]

132

http://web.archive.org/web/20190805203631/https://solid.github.io/query-ldflex/
http://web.archive.org/web/20190810230225/https://solid.github.io/solid-auth-client/
http://web.archive.org/web/20190810230225/https://solid.github.io/solid-auth-client/
https://forum.solidproject.org/
https://gitter.im/solid/chat
https://gitter.im/solid/node-solid-server
https://stackoverflow.com/tags/solid
https://github.com/solid/node-solid-server/issues
https://github.com/linkeddata/rdflib.js/issues
https://github.com/solid/query-ldflex/issues
https://github.com/solid/solid-spec/issues


Getting a Pod

For this tutorial, you will require a Pod to develop against. There are two ways of

getting a Pod34:

• Signing up with a Pod provider

You may get a Pod by signing up with one of the public Pod providers35.

• Hosting your own

You can also host your own Pod by simply installing node-solid-server. This

is the recommended approach for this tutorial as you will want to explore the

internals of the Pod yourself, which is not possible with public Pod providers.

Installation of node-solid-server

Installing Node.Js

In order to install the node-solid-server, you need Node.Js installed. We recommend

installled Node.Js using nvm36,37.

Once you have Node.Js, run the following command:

Installing node-solid-server from npm

npm install -g solid -server

34http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-

pod [Accessed: 10-08-2019]
35http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-

pod [Accessed: 10-08-2019]
36For Linux based systems, see nvm: https://github.com/nvm-sh/nvm/tree/07b20d5008a480f

7e579fd34e6d39919909206f4#node-version-manager--- [Accessed: 10-08-2019]
37For Windows, see nvm-windows: https://github.com/coreybutler/nvm-windows/tree

/0c58b2eed8fd515113157fd90a787f2348d7d331#node-version-manager-nvm-for-windows [Ac-

cessed: 10-08-2019]

133

http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-pod
http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-pod
http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-pod
http://web.archive.org/web/20190810191205/https://solid.inrupt.com/get-a-solid-pod
https://github.com/nvm-sh/nvm/tree/07b20d5008a480f7e579fd34e6d39919909206f4#node-version-manager---
https://github.com/nvm-sh/nvm/tree/07b20d5008a480f7e579fd34e6d39919909206f4#node-version-manager---
https://github.com/coreybutler/nvm-windows/tree/0c58b2eed8fd515113157fd90a787f2348d7d331#node-version-manager-nvm-for-windows
https://github.com/coreybutler/nvm-windows/tree/0c58b2eed8fd515113157fd90a787f2348d7d331#node-version-manager-nvm-for-windows


Generating self-signed certificate for SSL

Solid mandates the use of TLS/SSL encryption with HTTP. For development and

testing, you need to generate a self-signed certificate38 as follows. For Linux-based

systems, you can use the following command in the terminal:

openssl req -outform PEM -keyform PEM -new -x509 -sha256 -newkey rsa

:2048 -nodes -keyout ../ privkey.pem -days 365 -out ../ fullchain.

pem

Initialising your Pod server

Now, you need to configure your Pod server. The easiest way is to run the wizard using

the solid init command. For this tutorial, we recommend configuring the server with

the default options.

Running your Pod server

We will be using the solid-test command to start Solid in testing mode instead of

the standard solid command because the solid command doesn’t allow the server to

execute requests with self-signed certificates. The solid-test command can be found in

the bin directory of the solid-server global module directory. To add the command

to your PATH, run the following command in the terminal:

export PATH = $PATH:$NVM_DIR/versions/node/‘nvm current ‘/lib/

node_modules/solid -server/bin/

Then, to start the solid server (on a Linux-based system) in testing mode, run the

following command in the terminal:

solid -test start

This will start the server at https://localhost:8443. If you configured some

other port and hostname, replace them in the URL to access your server.

38http://www.selfsignedcertificate.com/ [Accessed: 10-08-2019]

134

http://www.selfsignedcertificate.com/


Registering for an account

Once your server is running, you need to create an account by navigating to the local

Pod server’s URL, https://localhost:8443/register. This will also generate a

WebID which will look similar to https://localhost:8443/profile/card#me.

Setting up test application

You will be creating a front-end Solid application using just HTML and Javascript.

You need a text editor (like Visual Studio Code39, Atom40, Sublime Text41, or vim42)

and a simple web server (like Node.Js’ local-web-server43 or Python’s http.server44).

Create two files index.html and app.js in the same directory and open these files

using your text editor.

Now, paste the following code to index.html:

<html>

<head>

<script src="https :// cdn.jsdelivr.net/npm/solid -auth -client@2 .3.0/

dist -lib/solid -auth -client.bundle.js"></script >

<script src="https :// cdn.jsdelivr.net/npm/rdflib@0 .20.1/ dist/

rdflib.min.js"></script >

<script src="https :// cdn.jsdelivr.net/npm/@solid/query -ldflex@2

.5.1/ dist/solid -query -ldflex.bundle.js"></script >

<title >Hello , Solid!</title>

</head>

<body>

<h2>Hello , Solid!</h2>

<p id="login">

You are not logged in.

<button id=’loginBtn ’>Log in</button >

</p>

39https://code.visualstudio.com/ [Accessed: 10-08-2019]
40https://atom.io/ [Accessed: 10-08-2019]
41https://www.sublimetext.com/ [Accessed: 10-08-2019]
42https://www.vim.org/ [Accessed: 10-08-2019]
43https://www.npmjs.com/package/local-web-server [Accessed: 10-08-2019]
44https://docs.python.org/3/library/http.server.html [Accessed: 10-08-2019]

135

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.npmjs.com/package/local-web-server
https://docs.python.org/3/library/http.server.html


<p id="logout">

You are logged in as <span id="user"></span>.

<button id=’logoutBtn ’>Log out</button >

</p>

<p id="loggedin">

<label for="profile">Profile: </label>

<input id="profile">

<button id="getNameBtn">getName </button >

<label for="fullName">Full name: </label>

<span id="fullName"></span>

<br><br>

<label for="postTitle">Enter Post title: </label>

<input id="postTitle">

<button id="createPostBtn">createPost </button >

<label for="newPostTitle">Post created with URI: </label>

<span id="newPostUri"></span>

<br><br>

<label for="creatorName">Creator Name: </label>

<span id="creatorName"></span>

<br><br>

<button id="addCreator">addCreator </button >

<br><br>

<label for="newCreator">Enter new creator: </label>

<input id="newCreator">

<button id="changeCreator">changeCreator </button >

<br><br>

<button id="deletePost">deletePost </button >

<br><br>

<button id="listPublicContents">listPublicContents </button ><br>

<span id="listPublicContentsResult"></span>

</p>

136



<script src="/app.js"></script >

</body>

</html>

The HTML file lays out the User interface of the tutorial application, and adds the

libraries we need – rdflib.js, query-ldflex, and solid-auth-client.

In app.js, place the following code:

// Utility function that toggles display of elements

function _toggleDisplay(el, flag) {

if (flag) {

el.style.display = "block";

} else {

el.style.display = "none";

}

}

document.addEventListener(’DOMContentLoaded ’, async () => {

// Step 1

// Step 2

// Step 3

// Step 4

// Step 5

// Step 6

// Step 7

});

// getName ()

// createPost ()

// addCreatorAttribute ()

137



// changeCreatorAttribute ()

// deletePost ()

// listPublicContents ()

This Javascript code simply adds a utility function we’ll need and attaches an event

listener to the document, which runs a callback when the document is ready. We will

add functionality to this application.

Once you have created these files, run your web server and navigate to /index.html.

Every time you complete a Step, you may reload the page and test the functionality.

Step 1: Logging In to your Pod

We add a listener to the login button, and one listener to the logout button.

The login listener simply opens a popup which allows for selection of Pod provider

and log-in. The code for the popup is contained in a file called popup.html which

is available in the accompanying Github repository of this tutorial45 and has been

adapted from Solid’s profile-viewer-tutorial46.

The logout listener calls the logout method of the solid-auth-client.

We also call the trackSession method of solid-auth-client. This method keeps

track of the session, i.e., the log-in status, and we pass a callback to it to update the

elements based on the log-in status.

Add the following code under the comment // Step 1 in tapp.js:

solid.auth.trackSession(session => {

const loggedIn = !! session;

_toggleDisplay(document.getElementById(’login ’), !loggedIn);

_toggleDisplay(document.getElementById(’logout ’), loggedIn);

_toggleDisplay(document.getElementById(’loggedin ’), loggedIn);

45https://github.com/akashdeep-singh/solid-tutorial/blob/6339397608f1b91dd4c170f

dcdace44f70dc4ae4/popup.html [Accessed: 11-08-2019]
46https://github.com/solid/profile-viewer-tutorial/blob/tutorials/lunch-break/st

eps/09/popup.html [Accessed: 10-08-2019]

138

https://github.com/akashdeep-singh/solid-tutorial/blob/6339397608f1b91dd4c170fdcdace44f70dc4ae4/popup.html
https://github.com/akashdeep-singh/solid-tutorial/blob/6339397608f1b91dd4c170fdcdace44f70dc4ae4/popup.html
https://github.com/solid/profile-viewer-tutorial/blob/tutorials/lunch-break/steps/09/popup.html
https://github.com/solid/profile-viewer-tutorial/blob/tutorials/lunch-break/steps/09/popup.html


document.getElementById(’user ’).textContent = session && session.

webId;

if (session) {

document.getElementById(’user ’).textContent = session.webId;

if (! document.getElementById(’profile ’).value) {

document.getElementById(’profile ’).value = session.webId;

}

}

});

document.getElementById(’loginBtn ’).addEventListener(’click ’, () =>

solid.auth.popupLogin ({ popupUri: ’popup.html ’ }));

document.getElementById(’logoutBtn ’).addEventListener(’click ’, () =>

solid.auth.logout ());

Step 2: Getting data

Now that we have authenticated with the Pod, we are interested in getting data from

the Pod. For this, we use the query-ldflex library. This library makes it easy to read

data from the Pod, without having to deal with the complexities of RDF graphs. Here,

we will get the full name of the Pod’s authenticated user from the user’s profile. Recall

that the WebID URI points to the user’s profile. The user’s profile has the full name

of the user modelled using the fn predicate of the vcard ontology47. We can be certain

that this predicate exists because it is created during registration.

Using query-ldflex, the following statement can be used to get a user’s full name if

the WebID is https://localhost:8443/profile/card#me:

// Example

const user = solid.data[https :// localhost :8443/ profile/card\#me][’

vcard:fn ’];

47https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/ [Accessed: 11-08-2019]

139

https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/


We don’t need to give profile any additional context to query-ldflex to understand

what vcard means, because it includes a set of vocabularies in its context by default48.

To complete the code for this step, add the following code under the comment Step

2 in app.js:

document.getElementById(’getNameBtn ’).addEventListener(’click ’,

async () => {

document.getElementById(’fullName ’).textContent = await getName ();

});

and add the following code under the comment // getName():

async function getName () {

const session = await solid.auth.currentSession ();

const user = solid.data[session.webId ];

// gets the vcard:fn predicate from user ’s profile

return (await user[’vcard:fn ’]);

}

Step 3: Creating a resource

Now, we will create a simple post in out Pod. The post will have only one predicate:

title defined by the dcterms49 vocabulary. To create a resource, we can’t use query-

ldflex because it doesn’t have support for creation of resources and containers yet. We

will use rdflib.js. Rdflib.js requires some additional ceremony compared to query-ldflex,

but is much more versatile. Rdflib.js is meant for graph manipulation. We also need

to declare the namespaces of the predicates we use before operating on them.

48https://github.com/solid/query-ldflex/blob/ffb9927b3cecc0a698f6e5867322b3bb618c

e1bb/src/context.json [Accessed: 10-08-2019]
49https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/

[Accessed: 10-08-2019]

140

https://github.com/solid/query-ldflex/blob/ffb9927b3cecc0a698f6e5867322b3bb618ce1bb/src/context.json
https://github.com/solid/query-ldflex/blob/ffb9927b3cecc0a698f6e5867322b3bb618ce1bb/src/context.json
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/


In order to create a post, we need to initialise a graph, and add the triple to it.

Then, we PUT the graph onto an instance of Fetcher to persist the post on the user’s

Pod. We will create the post in the /public container of the user’s Pod.

To complete the code for this step, add the following lines of code under the com-

ment // Step 3 in app.js:

document.getElementById(’createPostBtn ’).addEventListener(’click ’,

async () => {

const postTitle = document.getElementById(’postTitle ’).value;

if (postTitle){

const session = await solid.auth.currentSession ();

const user = solid.data[session.webId ];

const storageUri = (await user[’pim:storage ’]).value;

const newPostUri = await createPost(storageUri , postTitle);

document.getElementById(’newPostUri ’).textContent = newPostUri;

} else {

alert(’Post title cannot be empty!’);

}

});

and the following lines of code under the comment // createPost():

async function createPost (storageUri , title) {

// declares the namespace for the dcterms vocabulary

const DCTERMS = $rdf.Namespace(’http :// purl.org/dc/terms/’);

const store = $rdf.graph (); // initialise graph

const timeout = 5000 // set timeout to 5000 ms

const fetcher = new $rdf.Fetcher(store , timeout); // initialise

fetcher object

const postUri = storageUri + ’/public/solidTutorialTestPost -’ + Date

.now(); // create the post ’s URI

const entry = store.sym(postUri); // convert the

post URI to the symbol object

store.add(entry , DCTERMS(’title ’), title , entry); // add a triple

to the graph

await fetcher.putBack(entry); // putBack

creates the resource at the URI using PUT

141



return postUri;

}

Step 4: Adding predicates to the resource

Adding additional predicates to a resource is supported by query-ldflex. It is as easy as

calling the add method on the resource, which creates a new predicate with the passed

value. We will create a predicate creator defined by the dcterms vocabulary.

Add the following code under the comment // Step 4 in app.js:

document.getElementById(’addCreator ’).addEventListener(’click ’,

async () => {

const postUri = document.getElementById(’newPostUri ’).textContent;

if (postUri) {

document.getElementById(’creatorName ’).textContent = await

addCreatorAttribute(postUri);

} else {

alert(’Post has not been created yet!’);

}

});

and the following code under the comment // addCreatorAttribute():

async function addCreatorAttribute (postUri) {

// adds the dct:creator predicate to the post

await solid.data[postUri][’dct:creator ’].add((await getName ()).value

);

return await solid.data[postUri][’dct:creator ’];

}

Step 5: Modifying a predicate of the resource

Modifying an existing predicate is similar to adding one. To modify, we can use the

set method of query-ldflex, which replaces the existing value of the resource with the

one passed to it. In fact, set is not just useful for updating an existing predicate, it

142



can also be used to create one, i.e., upsert operation. We will update the value of the

creator to the newly input value.

Add the following code under the comment // Step 5 in app.js:

document.getElementById(’changeCreator ’).addEventListener(’click ’,

async () => {

const postUri = document.getElementById(’newPostUri ’).textContent;

const newCreator = document.getElementById(’newCreator ’).value;

if (postUri) {

if (newCreator) {

document.getElementById(’creatorName ’).textContent = await

changeCreatorAttribute(postUri , newCreator);

} else {

alert(’New creator name cannot be empty!’);

}

} else {

alert(’Post has not been created yet!’);

}

});

and the following code under the comment // changeCreatorAttribute():

async function changeCreatorAttribute (postUri , newCreator) {

// updates the dct:creator predicate of the post

await solid.data[postUri][’dct:creator ’].set(newCreator);

return await solid.data[postUri][’dct:creator ’];

}

Step 6: Deleting the resource

To delete a resource, we will again use rdflib.js. Deleting is supported using the delete

method of Fetcher by passing the URI of the resource to be deleted. For deletion, we

use an empty graph, as we don’t deal with any data.

Add the following code under the comment // Step 6 in app.js:

document.getElementById(’deletePost ’).addEventListener(’click ’,

async () => {

143



const postUri = document.getElementById(’newPostUri ’).textContent;

if (postUri) {

await deletePost(postUri);

document.getElementById(’newPostUri ’).textContent = ’’;

} else {

alert(’Post has not been created yet!’);

}

});

and the following code under the comment // deletePost():

async function deletePost (postUri) {

let store = $rdf.graph();

let timeout = 5000 // 5000 ms timeout

let fetcher = new $rdf.Fetcher(store , timeout);

return await fetcher.delete(postUri); // deletes the

resource at the URI

}

Step 7: Listing contents of a container

Sometimes, we need to list the contents of a container. For example, if we wanted

to list the posts we created. For this, we can use query-ldflex to get the contains

predicate of the container. This predicate is defined in the LDP50 vocabulary. We will

list the

Add the following code under the comment // Step 7 in app.js:

document.getElementById(’listPublicContents ’).addEventListener(’

click ’, async () => {

document.getElementById(’listPublicContentsResult ’).innerHTML =

’’;

const session = await solid.auth.currentSession ();

const user = solid.data[session.webId ];

const storageUri = (await user[’pim:storage ’]).value;

document.getElementById(’listPublicContentsResult ’).innerHTML = (

await listPublicContents(storageUri)).join(’<br >’);

50https://www.w3.org/ns/ldp [Accessed: 10-08-2019]

144

https://www.w3.org/ns/ldp


});

and the following code under the comment // listPublicContents():

async function listPublicContents (storageUri) {

const publiContents = solid.data[storageUri +’/public /’];

const list = [];

// gets the value of the ldp:contains predicate of the public

container of the Pod

// the value is a list , so we have to loop through it to get

individual contents of the Pod

for await (const item of publiContents[’ldp:contains ’]) {

list.push(item.toString ());

}

return list;

}

Next Steps: Further learning

We have successfully completed a simple Solid application with CRUD operations on

our Pod using 3 important Linked Data libraries. The next logical step would be to

learn more advanced concepts:

• Permissions using WAC

• Communication using LDN

Both of these can be implemented using rdflib.js as they involve creating resources.

Recommended Reading

• Make a Solid app on your lunch break51, which also serves as the inspiration for

this tutorial.

51http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-

your-lunch-break [Accessed: 10-08-2019]

145

http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-your-lunch-break
http://web.archive.org/web/20190807004517/https://solid.inrupt.com/docs/app-on-your-lunch-break


• The official Introduction to the Solid Specification52

• Inrupt Inc’s work on Solid53

• The open letter by Sir Tim Berners-Lee54

• Designing a Linked Data developer experience55

• Shaping Linked Data apps56

52http://web.archive.org/web/20190810191233/https://solid.inrupt.com/docs/intro-

to-solid-spec [Accessed: 10-08-2019]
53http://web.archive.org/web/20190810211330/https://inrupt.com/solid [Accessed: 10-

08-2019]
54http://web.archive.org/web/20190810211649/https://inrupt.com/blog/one-small-

step-for-the-web [Accessed: 10-08-2019]
55http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/

12/28/designing-a-linked-data-developer-experience/ [Accessed: 05-08-2019]
56http://web.archive.org/web/20190806150750/https://ruben.verborgh.org/blog/2019/

06/17/shaping-linked-data-apps/ [Accessed: 06-08-2019]

146

http://web.archive.org/web/20190810191233/https://solid.inrupt.com/docs/intro-to-solid-spec
http://web.archive.org/web/20190810191233/https://solid.inrupt.com/docs/intro-to-solid-spec
http://web.archive.org/web/20190810211330/https://inrupt.com/solid
http://web.archive.org/web/20190810211649/https://inrupt.com/blog/one-small-step-for-the-web
http://web.archive.org/web/20190810211649/https://inrupt.com/blog/one-small-step-for-the-web
http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/12/28/designing-a-linked-data-developer-experience/
http://web.archive.org/web/20190805204059/https://ruben.verborgh.org/blog/2018/12/28/designing-a-linked-data-developer-experience/
http://web.archive.org/web/20190806150750/https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
http://web.archive.org/web/20190806150750/https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/

	Acknowledgments
	Abstract
	I Thesis
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter Introduction
	Background
	Motivation
	Goals and Contributions
	Research Question
	Non-goals
	Research Areas
	Organisation of this document

	Chapter Related Work
	Literature review strategy
	State of privacy in centralised social networks
	Bootstrapping a developer in a new technology
	On-boarding and Developer Experience
	Documentation and Learning resources

	Decentralisation efforts
	State of the art of Solid
	Linked Data
	Building blocks of Solid
	Solid applications

	Summary and Next Chapter

	Chapter Research Methods
	Participant profile
	Study design
	Summary and Next Chapter

	Chapter Application Design and Implementation
	Development Environment
	Use-case Analysis
	Functional Requirements
	Design Decisions
	System design
	Data models
	Technical Implementation Details
	Summary and Next Chapter

	Chapter Evaluation
	Development Experience Evaluation
	DX1: Quality of learning resources
	DX2: Activity in the community
	DX3: Quality and quantity of tooling
	DX4: Stability of the platform
	DX5: Technical capabilities and features of the project

	Application Evaluation
	Performance
	Privacy by design
	DOSN classification

	Summary and Next Chapter

	Chapter Discussion and Conclusions
	Threats to Validity

	Chapter Future work
	Bibliography
	Appendix Development Journal
	Background
	20-12-2018

	First Contact
	20-12-2018

	Initial hurdles
	23-12-2018
	27-12-2018
	18-01-2018

	Read data from and Write data to Pod
	2-02-2019
	2-05-2019
	11-05-2019
	12-05-2019
	12-05-2019
	13-05-2019
	16-05-2019
	17-05-2019
	17-05-2019

	Migration of Pods
	21-05-2019

	Implementation: A very long post
	25-05-2019
	30-05-2019
	1-06-2019
	3-06-2019
	5-06-2019
	7-06-2019
	7-06-2019
	8-06-2019
	16-06-2019
	17-06-2019
	17-06-2019
	22-06-2019
	25-06-2019
	8-07-2019
	10-07-2019
	10-07-2019
	12-07-2019

	Final session: almost finishing touches
	14-07-2019
	17-07-2019
	18-07-2019


	Appendix Application Screenshots

	II Getting Started with Solid

