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Bayesian Approach
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Supervisor: Prof. Jason Wyse

The use and popularity of Neural networks have increased in the recent past due to its
performance and efficiency to solve problems of different sectors. With the improvement
in performance, there is an increase in the complexity of the structure. Small sized
networks tend to show good generalization but are also are underfitted. On the other
hand, large scale networks learn the data efficiently but lack generalization. In this
research, a Neural network pruning algorithm influenced by general Bayesian inference
has been introduced. The research is an attempt to prune the Neural network and
also to study the activation patterns of weights for different class of input data. The
proposed approach was verified on a simulated and an image dataset. On simulated
dataset it was found that pruning was maximum when the data was easily separated,
as the complexity of the data was increased, the pruning reduced substantially. The
results from real-world data show that the base network was pruned by 40%. It was
also possible to decipher the important nodes for the classication of classes. After
pruning, loss of the network was reduced to some extent.



Summary

Neural Network have the capability of learning complex data. Neural network models

are being used in various industries to learn data, mainly in classification or prediction

tasks. These models contains number of neurons which helps in the processing of the

network. With the increase in number of neurons, there is an increase in the energy

consumption and processing time. In order to implement, these models on a small

device there is a need to compress the network. In this research, a pruning algorithm

for the compression of Neural Network has been introduced.

The pruning algorithm uses generalized Bayesian methods, to prune the redundant

weights. Using this method, a Bayesian model was designed with loss function instead

of likelihood function. An activation switch function was introduced which decides

the pruning of weights. The algorithm makes use of Metropolis Hastings method, to

propose samples for the activation switch. Every weight is assigned a switch, which

decides the activation of a weight. The designed algorithm was verified on a simulated

dataset and also on a real-world dataset. The results shows the significant amount of

pruning. Also, the nodes responsible for the classification of 2 classes were identified.
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Chapter 1

Introduction

1.1 Neural Networks

In this era of advanced technology, machine learning and deep learning models are

being used in many applications. These models are generally used for prediction or

pattern analysis. Over the period of time, deep learning models have been providing

better performance which outnumbers human efficiency. It is a method in which the

replication of the structure of a human brain is performed [1]. In this technique, a

sequence of the algorithms is used to find a hierarchical representation of input infor-

mation by simulating how the human brain senses a collection of sensory information

to which it is subjected [2]. The foundation for deep learning methods was laid in the

1940s when perceptron was discovered [3]. Later in the 1980s with additional research

perceptron was modified to multi-layer perceptrons. Later in the 2000s due to short-

comings of perceptrons and limited computational ability, Neural network model with

multiple neurons was introduced. [4].

The Artificial Neural Network (ANN) is an approach to reproduce the mathemat-

ical representations of information processing which happens in the human brain on

a computer. ANN is the network of multiple neurons/perceptrons connected to each

other. ANN consists of 3 layers, namely, the input, hidden and the output layer. The
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input layer feeds the incoming data to the hidden layer, where all computation work

is performed. The computed output is given out by means of the output layer. There

can be single/multiple hidden layers between input and output layers. Neurons are

present in these layers. Every connection between the neurons has a specific weight

which is used for computation. There are two processing stages in the Neural Network

(NN) algorithm. The weights are computed in a forward direction in the first phase,

that is from from the input to the output layer. The entire task is known as Forward

Propagation (FP). In the second step, weights are adjusted by means of Backward

Propagation (BP).

In FP, once the input is fed to the network, the assignment of weights take place

randomly. Consider, a NN model as shown below [5]: where,

Figure 1.1: Artificial Neural Network model

r̄ = [r1, r2, r3, ...., rL]T ε IRL

r̄ is the input vector

w = [w̄1, w̄2, w̄3, ..., w̄z]
T ε IRLxZ

w is the weight matrix

w̄i = [wi1, wi2, wi3, ...., wiL]T ε IRL

w̄i is the i-th weight vector ȳ = [y1, y2, y3, ...., yZ ]T ε IRZ

ȳ is the network output

d̄ = [d1, d2, d3, ...., dZ ]T ε IRZ

d̄ is the expected network output and ‘T’ is a transpose operator.
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The network output is given by the formula:

yz =
L∑
i=1

ri ∗ wzi = r̄Twz (1.1)

Once the weights are calculated using FP method, the error between expected output

and the computed output is calculated. Total error in the network is the loss function

of the network. The error value is given by,

E =
1

2

∑
z

(yz − dz)2 (1.2)

For a NN to be efficient E should be minimum. This task can be performed using

Gradient Descent method. It emphasizes on calculating the partial derivative of E with

respect to each weight in the network to calculate error. Once, the error is calculated

for FP, gradient descent sets in the BP process. Using BP, weights are adjusted in such

a way to find an optimum gradient where the loss function is minimum. The steps of

the gradient descent function are decided by the step size function η also known as

learning rate (LR). Multiple iterations take place to adjust the weights in the network.

For every iteration the weights are adjusted using the formula as below:

∆wk = −ηk
(∂E
∂w

)
(1.3)

here, E indicates error function value at kth iteration; w is the weight of the links in

the network whereas ηk is the step size or learning rate to minimize the error. The

value of LR is not fixed and depends on multiple factors.

In this case of BP, the value of LR can be between 0 to 1. If η is very small, then

gradient descent will take many iterations to converge to local minima. Also, if the

value of η is very big the method will not converge as it will overshoot the optimum

point. Therefore, it is needed to select LR carefully in order to make the algorithm

converge and attain the state of minimum loss. Many research has been performed to

find the optimum value of LR.
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These two processes FP and BP generates a NN model. The model is trained for

the input data and the training accuracy is computed. After k iterations of FP and BP,

a final model with weights for all its links is generated. ANN model can have multiple

numbers of the hidden layer with hidden nodes in it. Once the model is trained, for

every connection between the nodes, weights are assigned which help to generate the

output. For example, if there are 10 input nodes and 5 hidden nodes, the total weights

will be (10 * 5) 50 between these to layers.

Once the model is generated, it is bulky with a huge amount of weights. Hence,

there is a need to optimize the model. This optimization can be in terms of compressing

the weights to decrease the network complexity. Such optimization can aid simplicity

of the network, efficient performance on training and generalized network which avoids

overfitting [6]. It includes the selection of a suitable number of inputs and outputs

nodes, the determination of the number of weights between the nodes [7].

1.2 Research Aim and Motivation

ANN can perform a wide range of complex tasks like face recognition, voice assistants

etc. but it involves high energy consumption. One of the drawbacks of ANN is that its

computationally heavy and needs Graphical Processing Units (GPU) to process. Many

industry applications have various resources at their disposal, hence high computation

is not a problem. If any such models are to be implemented on a smartphone or any

other devices with computational resources limitation, then it can result in low network

performance. Moreover, executing such models on servers can result in transmission

overhead. Hence, there is a need to compress ANN in order to make it energy efficient.

There is a need to generate smaller NN models, which can be used on fewer memory

devices. Many methods are proposed for the compression of the NN model, one of

them is ‘Pruning’.

When the ANN model is constructed, it has multiple weights. For the process-

ing task like classifications, not all theses weights are important. The attempt has

been made to understand this redundancy in the network. The aim of this research
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is to propose a concept of Bayesian update on weights to prune the Neural network.

The redundant network weights are being pruned using the iterative approach with-

out affecting the performance of the network. Also, the attempt has been made to

understand the activation patterns of weights in a Neural network for different classes.

The basic architecture of ANN consists of multiple hidden layers which have a

predefined set of hidden nodes present in it. All the links between the nodes are

assigned with weights, once the network is constructed. Some of these weights are

redundant and can be pruned in order to compress the network. In this research, the

method for ANN compression has been described.

1.3 Dissertation Structure

The dissertation is organized as follows: the next sections describes the study of re-

lated work and literature review is performed. Chapter 2, talks about the Bayesian

Inference in detail. Generalized Bayesian update, which is one of the supporting ideas

of the research is described in Chapter 3, whereas Chapter 4 explains the loss function

derivation of the network. Chapter 5 explains the Monte Carlo Markov Chain process

along with Metropolis Hasting algorithm. The proposed method for the pruning of the

NN and the algorithm is explained in Chapter 6. In Chapter 7, the details about the

implementation of the proposed algorithm on simulated data set and the real-world

dataset is described and results are explained. Chapter 8, concludes the research and

give a necessary idea about future work.

1.4 Related Work

One of the issues for network engineers is to determine the configuration of the network

before training. The small-sized networks are faster and cost-effective to build and also

possess generalization but main tend to underfit the training data. On the other hand,

large networks end up being over-fitted with training data and have poor generaliza-
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tion capabilities. This problem can be solved by the construction of an optimal sized

network. It can be done in two ways, either by having a constructive algorithm which

deals in an incremental way of improving network configuration or by pruning algo-

rithm. The incremental algorithm has a drawback that the network might get trapped

at local minima [8]. The pruning algorithm starts with trainable network and ends up

minimizing redundant weights or neurons. There are a few research done in this space

to improve network efficiency.

In [9] ‘Optimal Brain Damage (OBD)’ procedure is explained. It uses the second

derivative of the error with respect to the weight during backpropagation. The dis-

advantage of this approach is the computation of the Hessian matrix, which can be a

costly affair. The other method ‘Optimal Brain Surgery’ proposed by [10] uses inverse

the Hessian matrix to find the redundant weights to be pruned. It involves the simul-

taneous update of weights. These two methods are very effective but computationally

expensive and have large storage requirement.

One of the processes in which, parallel pruning of least important weights is per-

formed is described in [11]. It defines a sensitivity measure for every hidden node which

is a parameter to understand the degree of importance for every weighted connection.

This method does not involve a complex calculation of the Hessian matrix. The scope

of this method is yet to be included in classification problems. Another sensitivity-

based method is explained in [12]. The introduction of “Skeletonization” technique

could remove weights which have least significant information to improve the learning

performance. It compares the error of the network with and without the presence of

the nodes. Thus, removing the units with the least error. For the error calculation,

derivative computed in the BP process is used for generalization. The sensitivity anal-

ysis is also incorporated in the algorithm suggested in [13]. The introduced algorithm,

Novel Pruning Feed-forward Neural Network (NP-FNN), determines the number of

hidden nodes based on output sensitivity to the neurons. The pruning is depended on

the training data and it can delete multiple redundant weights in a single iteration,

thus reducing the run time.

A few other research, include generation of rule-based algorithm for pruning. In

[14], an algorithm known as Neural Network Pruning for Function Approximation
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(N2PFA) is described. It is a process, which focuses on pruning neurons than weights.

Here, the effect of removal of neurons is studied and error is calculated. The moment

at which error is deteriorated by a predefined value, the pruning stops. The drawback

of the method is that if the tolerance value is large, then significant neurons are also

pruned. An algorithm suggested in [15] aims at minimizing the sparsity of the weights

generated in the BP process by pruning the weights using statistical quantities of the

network. This algorithm posses fast processing as it uses first-order correlation data

of weights and requires less storage as it does not involve storing Hessian matrix. The

disadvantage of this approach is that the obtained network after pruning is decrepit

and is not fault-tolerant.

The work in [16] talks about the pattern recognition algorithm which makes use

of Bayesian decision boundary technique for pruning the network. The method deals

with stem-and-leaf graphics technique to calculate the hidden neurons. It maintains the

classification accuracy of the network after pruning. The credibility of this algorithm

needs to be verified on multi-classification problems. Also, the study of the initial

configuration of the network is needed.

7



Chapter 2

Bayesian Interface

2.1 Introduction

The study of statistics helps to understanding the uncertainty in the data, which is

useful in decision-making process . The base technique of numerous research is to

gather data, develop a hypothesis and test it as per the data collected, and based on

the results draw conclusions. This is the traditional path and has been followed by

many statisticians and is a form of frequentist interpretation [17] . One more popular

approach for statistical analysis is based on Bayesian methods. In this method, the

process is initiated with prior knowledge of data and updation of belief is performed.

Hence, the data distribution is analyzed and the belief is formulated based on the

information in a more formalized way

Consider an example of tossing a coin. The possible outcome in this task is either

head or tail. Suppose, the task is to interpret the probability of the result is a tail. The

frequentist method would be to accumulate data and use it to compute the probability

of a tail. However, in the Bayesian approach, it would be necessary to first gather a

prior idea about the fairness of coin and the data to find the probability of a tail. Since

the coin is fair the prior probability of a tail is 0.5. After, analyzing the data, assume

in 100 tosses 75 times the result was a tail. Hence, there is an update in the prior
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knowledge and the probability of getting a tail will be between 0.5 to 0.75 as per the

analysis. On the other hand, the frequentist model will provide a probability of being

a tail as 0.75. Thus, the Bayesian model, take into consideration some prior factors

which affect the end result.

2.2 Frequentist Statistics

Assume the observed data to be y, such that y = (y1, y2, y3, . . . ). Here y1, y2, y3 indicate

the individual observation. This data is independently and symmetrically distributed

with a probability density function (pdf) f and parameter θ. The observed data

y can be continuous or discrete, whereas θ can be scalar or a vector quantity. In

this method, the clue is to derive inferences from frequent samples to recognize how

frequency estimation of the parameter of interest performs. The likelihood function for

such a scenario is constructed as follows:

L(θ) =
n∏
i=1

f(yi|θ) (2.1)

2.3 Bayesian Statistics

Bayesian interpretation is named after scientist Thomas Bayes, who had articulated

specific cases of Bayes theorem in 1763. A few years after, it was Pierre Simon de

Laplace who gave emphasis on using Bayesian theories for practical applications. He

developed a relationship between pure mathematics and scientific reasoning by ana-

lyzing data using Bayesian methods. He emphasized upon learning from past till new

data is obtained, hence getting better results and correlation. Consider two events A

and B. The task is to impute the probability of B given, A has already occurred. This

can be expressed as shown in the below expression [18].

p(B|A) =
p(A|B)p(B)

p(A)
(2.2)
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here, B represent unknown event and A is the known event. This is also known as

Bayes Rule, Bayesian statistics is a branch of statistics that applies Bayes rule to solve

uncertain events [19].

For Bayesian methods, the main requirement is the prior knowledge of the inter-

ested parameters. These parameters are considered as unknown random variables. In

this context consider, y and θ to be random variables. The belief using joint distribu-

tion of θ and y is represented as following [5]

p(θ, y) = p(y|θ)p(θ) (2.3)

where,

p(y|θ) is the likelihood function,

p(θ) is the prior distribution.

Collection of data and prior information is the first step in Bayesian process. An

appropriate Bayesian study will constantly include honest prior information, which will

support interpretations about the correct value of the parameter and make sure there

is no wastage of important information. Later, based on collected data, a likelihood

model is created. After the model is generated, the first two steps are merged to

generate a posterior distribution using Bayes theorem. This approach is observed as

a continuous learning process, as the new data related to the problem is collected.

Then the prior distribution is replaced by current posterior distribution and with the

combination of the model, new posterior distribution is generated.

The above task can be better understood by a simple example. Consider, the

task of finding the probability, whether a person has cancer or not. As mentioned

before, the first step in any problem is to gather data. The sample space will consist

of two outcomes, i.e. either a positive for cancer detection or a negative. It will be

denoted by a random variable Y . The probability of a test is positive for cancer for a

single person is
{

0, 1
}

, here y = 0 indicates a test for cancer being negative and y = 1

indicate a positive detection for cancer. In this example, Y is a random variable and

y represent the instances of Y . θ is used to indicate the probability of the detection of
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positive cancer cases. In this example, Y is considered as a discrete function, hence its

probability mass function is given as follows:

p(y|θ) =

θ, if y = 0

1− θ, if y = 1
(2.4)

The next step is to develop a model. It is generated by using a likelihood function. The

probability of positive cancer cases is calculated as a function of θ. Let p(positive) =

p(y = 1). Therefore in terms of θ, it can be represented as p(y = 1|θ) = θ, where

0 ≤ θ ≤ 1. Similarly for negative cases, it is represented using the following notations

p(negative) = p(y = 0|θ) = 1− θ, where θ will always lie between 0 and 1.

From the above inferences, the likelihood function is generated. It will give more

information about the parameter θ and can be constructed using Bernoulli Distribution

as follows:

L(θ|y) = θy(1− θ)(1−y) (2.5)

Here, y is fixed and θ lie between 0 and 1.

The next step is to generate a prior distribution. Let θ takes value from 0.1 to

1. The mean of a probability distribution is 0.5, whereas the value of θ ranges from

0.1 to 1. The last step is to collect data followed by an application of Bayes Rule.

Multiple samples are taken to predict uncertain futuristic events considering the latest

past events. Applying Bayes rule, posterior distribution is generated combining the

prior data with likelihood model.

In Bayesian analysis, θ is unknown parameter whereas data is denoted by D . p(θ)

denotes the prior distribution of θ and its likelihood function is given by p(D|θ). The

marginal likelihood can be represented as p(D) and p(θ|D) as the posterior distribution.

[20] Bayes theorem states that “the probability of any event is the ratio between the

value at which an expectation depending on the happening of the event ought to be

computed and the value of the thing expected upon it’s happening.” [21]. In other

words, posterior distribution is formalized as a function of the prior distribution and
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the likelihood function. It is represented as shown below:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(2.6)

Advantages of this approach are that it is a coherent statistical method and follows

a predefined framework. It is effective in method to solve unknown problems provided

prior data is available. This can also be a disadvantage as the method is concentrated

on prior information. Also, it involves expensive calculations.

2.4 Beta-binomial Model

As from the previous example of detection of cancer. The data observed is y1, y2, y3, ..., yn

such that yi ∈
{

0, 1
}

. From this, prior is assumed as a Beta distribution β(a, b). Let

a and b be the hyper-parameters for the prior distribution. This is the belief about

unobserved data and can be chosen. For initial consideration, set a = b = 1 for a Beta

distribution model, which means that p(θ|a, b) = 1 for any value of θ. This can be

considered as non-informative prior, but if the data is sufficient then it does not have

a significant impact.

The likelihood function can be considered as Bernoulli function with binomial

data. The output value can be either 1 (positive for cancer detection) or 0 (negative

for cancer detection). Hence, the likelihood function is constructed as follows:

L(y|θ) = p(y|θ) = θy(1− θ)1−y (2.7)

here y = 1, correspond positive cancer cases and θ is the probability of cancer predic-

tion.

Combining the prior and likelihood function posterior distribution is generated. It

can be formulated as

p(θ|y, a, b) ∝ p(y|θ)p(θ|a, b) (2.8)
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Using Bayes theorem,

p(θ|y, a, b) =
p(y|θ)p(θ|a, b)
p(y, a, b)

(2.9)

Applying Bernoulli and beta distribution above equation can be modified as [21],

p(θ|y, a, b) = θy(1− θ)(a,b−y) θ
(a−1)(1− θ)(b−1)

β(a, b)
/p(y, a, b)

= θy(1− θ)(a,b−y)θ(a−1)(1− θ)(b−1)/[β(a, b)p(z, a, b)]

= θa
′−1(1− θ)(b′−1)/[β(a′, b′)]

(2.10)

Hence, by correlation it can imputed that, a′ =
∑n

1=1 yi+a and b′ = n−
∑n

i=1 yi+b.

The form of posterior distribution is p(θ|y, a′, b′) which is similar to prior distribution of

p(θ|y, a, b). Therefore, it is concluded that posterior also follows a beta distribution. If

sample size n is much larger than a+b, then the hyper-parameters could have relatively

less impact on the posterior distribution.
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Chapter 3

Generalized Bayesian Update

Mathematically Bayesian inference state that it is required to study the probability

distribution of all related parameters and analyzing the values of the parameters which

are available. This helped in concluding the conditional probability of the parameter

of interest. Bayesian approach works in two phases, first it is required to impute the

marginal distribution of variables followed by the conditional probability distribution

of the variables. The first phase is prior distribution, which takes into consideration

the belief about parameters before observing the data. However, the likelihood which

is the second phase aims at drawing insights from the observed data. This is the case

of Bayesian inference described in Chapter 2, however, generalization tends to be more

specific approach [22].

Classical Bayesian update generates the likelihood model which is depended on

the distribution of the parameter of interest, let’s say θ. There are many scenarios

in which it is impractical to specify the distribution of θ. In such cases, the use of

generalized Bayesian update assist in performing coherent Bayesian inference for the

parameter θ, by making use of loss function instead of the likelihood function. This is

a special case of Bayesian inference, used when the data does not follow any specific

distribution. Hence, the loss function is used to bridge the gap. The work of [23] prove

that loss function can be used as pseudo-likelihood function. This idea has been been

used in the research.
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Consider a sampling function F0(x) of any random unknown distribution. Let p(θ)

represent the prior knowledge about θ which is the parameter of interest. Also, x is the

sample from F0 function, then it can be claimed that by any update on θ the posterior

p(θ|x) gets updated [23], where

p(θ|x) ∝ L(θ, x)p(θ) (3.1)

Many times the belief about data gets updated as the new information about

θ is obtained through x. Hence these parameters are updated for the new function.

This new function dictates the model when more information about the parameters

is avialable. If there are multiple parameters say x1 and x2, the posterior function

gets modified as it becomes a function of these parameters and can be represented as

p(θ|x1, x2). This claims that posterior remains constant even if there is an update on

(x1, x2) together or even individually.

In this study as proved by [23] the loss function is used as a pseudo negative

likelihood function.The posterior distribution of a function is determined by updating

prior and samples using a loss function. For this case, a negative likelihood function is

defined as:

L(θ) = −
∫
l(θ, x)dF0(x) (3.2)

here, l(θ, x) denote some loss function. The idea of any Bayesian method is to have

a maximum likelihood estimate, in this case, it can be done by minimizing the loss

function. Hence, the negative sign is used to reduce the loss. As per the study on

likelihood function, this case could be related to the use of negative log-likelihood

function to the loss function. It can be represented as:

logL(θ) = −l(θ, x) (3.3)

Converting equation 3.3 to standard format :

L(θ) = exp(−l(θ, x)) (3.4)

From this, it can concluded that the performance of the model can not only be analyzed
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by checking the accuracy of the model but also by studying the loss function. Hence, it

becomes necessary to minimize the loss function involving the parameter of interest θ.

There have been studies to relate negative log-likelihood to the loss function. In [23] it

is stated that after Bayesian update on the prior with the involvement of loss function,

the statisticians must verify that the solution exists. Considering this criterion, there

is a constraint on log function and it needs to be constructed as follows satisfying the

following criteria:

0 <

∫
exp

{
− l(θ, x)

}
p(θ)dθ < +∞ (3.5)

From this, it is possible overcome the shortcoming of the Bayesian method as it re-

quires a probabilistic model for the entire range of results which is subjected to all

unknown parameters. However, this method needs the formalizing of loss functions,

when the results for the variable of interest are available. It enables statisticians to

give importance to the modeling of prime parameters.

Also, for updating the prior function p(θ) to generate a posterior function p(θ|x)

given the input data x obtained from F0(x), there is a need to consider the marginal

likelihood function. For the given sampling distribution f(x, θ) with prior p(θ), the

marginal likelihood function is given as:

m(x) =

∫
f(x, θ)p(θ)dθ (3.6)

Thus Bayes theorem is modified as [24]:

p(θ|x) =
f(x, θ)p(θ)

m(x)
(3.7)
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Chapter 4

Loss Function Derivation

The ideology used in this study is based on Bayesian methods. Using the Bayesian

method, posterior distribution can be determined by studying the prior and likelihood

function. Here, a lucid method has been introduced for Bayesian interface in which the

update prior belief distribution for understanding posterior distribution is performed

using the loss function. This approach is implemented in Neural networks to understand

the posterior distribution of weights in the network. As discussed in the previous

chapter, generalized Bayesian update is used to replace the likelihood function with

the loss function. Current chapter relates the loss of an ANN to the loss function of

the Bayesian model. The present prior information is related to initial weights of the

network and testing data, based on this information it is possible to find the posterior

behavior and prune the network.

π(w|Test) ∝ l(Test|w).π(w) (4.1)

Here, w indicates, weights assigned to the network, Test indicates the test data to

be used for testing the network. For all, n outputs, the loss can be defined as some

function of all output data generated by the network for a specific configuration. It

can be formulated as below,

l(θ) =
n∏
i=1

fθ(xi) (4.2)
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The log loss of the above equation 4.2 can given as follows,

log l(θ) =
n∑
i=1

log fθ(xi) (4.3)

Consider a Neural network N with 1 input layer and output layer, coupled with n

hidden layers. After, training the network with FP and BP process, the fully connected

layered network is obtained. All the links in the network are assigned with significant

weights which are used for the computational purpose. Let the input to the network

be denoted by x, whereas the weights are denoted by wnij where i indicates the source

node, j indicates the destination node and n is the layer number. The fit of the model

is decided by the loss function. Loss function is decided by the outputs which are

misclassified. The loss function for this model can be given by Q(θ). The maximum

likelihood of the model corresponds to reducing the loss function and can be related

to negative log likelihood. This can be represented by the equation 4.3,

max logL(θ) = min
[
− log l(θ)

]
(4.4)

From the above equation 4.4, min
[
− log(L(θ))

]
can be compared to the minimization

of loss function Q(θ), i.e.

min
[
− log(l(θ))

]
= minQ(θ) (4.5)

In order to convert the equation in standard format, there is a need to remove the log

and get the equation in normal form and the loss function can be denoted as,

exp(−Q(θ)) = l(θ) (4.6)

From, the above justification, the new negative likelihood function can be expressed in

terms of loss function of the network and is denoted as follows,

l′(θ) = exp(−Q(θ)) (4.7)
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This can be considered as a classical case of using negative log likelihood function

as a loss model. Since, a proper distribution for θ cannot be defined, the loss function

is used in place of likelihood. In this approach the loss function will be used to test

the hypothesis.
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Chapter 5

Markov Chain Monte Carlo

5.1 Introduction

Bayes Theorem is used to find the maximum likelihood estimate (MLE) of θ, through

which it is possible calculate posterior distribution p(θ|y) of θ with y as data. The

method only focuses on θ however, other parameters of interest may be the distribution

of the difference between different variables like θ0, θ1. Also, posterior distribution

of f(θ), where f(θ) is some modification on θ, for example f(θ) = exp(θ). Such

variables or parameters which are difficult to compute can be calculated using Monte

Carlo methods. The central idea of Markov Chain Monte Carlo(MCMC) technique

is to generate multiple samples of a continuous random variable having some known

probability density function which can also be a posterior distribution. The generated

sequence of sample data is then used estimate the integral to get the expectation or

variance of the variable.

MCMC which is the combination of two processes, Monte-Carlo and Markov chain.

Monte-Carlo methods aims at understanding the distribution by generating random

samples for a given distribution. This approach gives better transparency and under-

standing of data as the mean or variance, is calculated from the generated samples

instead of given data distribution. This can be helpful when data is not easily avail-
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able. Hence, samples can be generated using this approach. By using Markov Chain

technique of MCMC the generation of samples is done systematically by a chain of

sequence. The distinct feature of the Markov Chain is that every sample generated

is depended only on its previous sample [25]. These two properties form the building

blocks of the MCMC method. Bayesian methods aims at finding the posterior distribu-

tion, which can be problematic at times to calculate. MCMC helps in the calculation

of likelihood for different groups of samples, which can be later united with the prior

to finding an analytical solution for posterior.

Monte Carlo techniques were derived in Mexico in the 1940s. These methods

were used to formulate the Metropolis algorithm in the 1950s. These researches were

improvised by Hastings in 1970s using statistical approach. The influence of MCMC

techniques in the field of mathematics was not stroked nearly till the 1990s [26]. There

can be many reasons for this: limitation of computational power as MCMC techniques

involve multiple calculations and it was not possible in the 1900s. For example, if

there are 5 parameters and each parameter take 1000 values, which results in 10005

combinations. This was practically not possible. The other reasons can be acceptance

of such high computational method and its practical usage. As technology evolved and

computers became supercomputers, all these drawbacks seem to be minor problems.

Now in the 21st century, with tremendous computational power possessed by comput-

ers, MCMC methods are now practically possible. An advanced study places MCMC

methods in the best ten techniques that have an impact on the advancement of science

and technology in 20th century [27].

An ideal Monte Carlo simulation will draw independent and identically distributed

samples θi where i takes values from 1 to n, from a target probability density function

p(θ) over
{
X
}

. But that is not the case every time as the correlation of samples depends

on the sampling function. Most of the times the samples generated are correlated.

The correlation of samples will be less if the sampler is efficient. The N samples are

generated from posterior density π(θ|x). It is needed to determine the expected value

of function of θ, f(θ). The posterior expectation E
{
f(θ)

}
of this function f(θ) is given

by:

E
{
f(θ)

}
=

∫
f(θ)π(θ|x)dθ (5.1)
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The few drawbacks in the 5.1 is that θ can be high dimensional. Therefore, it be-

comes difficult to compute the integration function to get the estimate. An alternate

approach could be to generate samples. Instead of computing the integration, samples

can be generated from the posterior distribution to approximate the integral value.

‘MCMC’ method implements this idea to provide the estimated value of the function

by generating samples from a distribution. Thus, the complex integration process can

be avoided using the sampling process. This can be expressed as below:

E
{
f(θ)

}
≈ 1

N

N∑
i=1

f(θi) (5.2)

here, E
{
f(θ)

}
is the expected value of the function, f(θi) are the generated samples

and N is the number of samples.

5.2 Markov Chains

The random sequence of samples x1, x2, x3, ... generated from a known distribution is

known as Markov Chain. The necessary condition that should hold true is that xj|xj−1
is independent of for any value of x, that is xj−1, xj−2, ...xj−n−1 for any value of j. In

other words, every sample generated in the chain should depend on the previous sample

and no other sample. So all the sample will determine their next sample respectively.

Consider a transition kernel s(xj|xj−1). For every value of j the following condition

holds true, s(xj|xj−1, ..., xj−n−1) = s(xj|xj−1)for some function s, given that x is a

Markov Chain. Then, the probability density function p is given by,

p(xj) =

∫
s(xj|xj−1)p(xj−1)dxj−1 (5.3)

For above density function p to hold true the transition kernel s should possess the

following properties:

1. Irreducibility: If the chain is started, then there exists a probability of generating

any possible value of x. In other words, it is possible to traverse from state i to
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state j if there exists some t ≥ 0 such that,

p(xnij) = P (xn = j|x0 = i) > 0 (5.4)

It states, it needs n steps to move from state i to state j with probability p(xnij).

If this condition hold true for the movement from state i to j and state j to i,

then both the states are communicable. Hence, Markov chains are irreducible, if

both state can communicate.

2. Aperiodicity: The samples generated in the chain will not occur again after a

fixed interval. All the samples generated will not follow any fixed frequency

pattern, it will completely be random, for example x(j+mk) 6= xj , for some k ,

for all m.

3. Recurrency: If the chain of random number tends to infinity, then it will return

to any set of x for infinite times.

5.3 Metropolis Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is used to get approximate sample values

for a distribution. Metropolis algorithm was studied and statistically generalized by

Hastings in 1970 to remove the drawbacks of Monte Carlo methods. Hastings defined

in his paper an approach to treat finite Markov Chain by implementing the concept of

acceptance probability. When the samples are generated from the state r to r′ , the

acceptance probability is given by [28]:

α
{
r, r′
}

= min

(
1,
P (r′)

P (r)

q(r|r′)
q(r′|r)

)
(5.5)

Here, q(r|r′)conditional probability of proposing a state r′ given r,

The MH algorithm is used to compute multiple samples from a target probability

density π of any indeterminate parameter θ. The aim of the algorithm is to generate
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new samples τ , by using proposed density qk(θ
t, τ) and taking into consideration the

current state of the chain θt. The new samples τ are the proposed samples. These newly

generated samples τ are either accepted or rejected. The chain accepts the new state

θt+1 = τ with a probability of acceptance lets say α, and if this probability criterion

is not satisfied then the samples are rejected. Thus it possible to generate better and

accurate samples using the MH algorithm since all the samples are not selected. The

new samples τ are generated from its previous sample θt.

The aim is to generate new samples τ for a Markov chain having state θt and

density function qk. The detailed procedure of the algorithm are as follows:

1. Start by initializing the Markov chain with some sample θ0.

2. If N samples are needed to be generated, then compute for i = 0 to N − 1

• Calculate a random number from a uniform distribution between 0 and 1,

u ∼ U[0,1]

• Generate new sample τ from the previous sample, τ ∼ q(τ |θt).

3. Next step is to compute the probability of acceptance α. It is formulated as

follows:

α(τ |θt) = min

(
1,
p(τ)qk(θ

t|τ)

p(θt)qk(τ |θt)

)
(5.6)

4. Now, the acceptance probability is compared with the uniform random number u

generated in step 2. The new value of the sample, τ is accepted if the acceptance

probability is greater than u, if not then the sample is rejected. Pseudo code for

the same can be as follows:

if α(τ |θt) > u

do θ(t+1) = τ

else, do θ(t+1) = θt

(5.7)

5. Return to step 1.

24



It is necessary to postulate the initial value θ0, else it is selected on a random basis.

There is also a need to specify a burn-in period. The burn-in period is the time in

which the model attains stability, hence it is required to discard the samples generated

in this period. This period can be specified by the user. If the burn-in period is very

less, then unwanted samples can be selected resulting in biasing of the distribution,

whereas if this period is large, it may result in wastage of potential samples. Thus, the

selection of burn-in period has to be appropriate. Various researches are being carried

out, to find the solution for the value of the burn-in period. The aim of this is to

negate the biasing created by the initial value selected θ0, hence the initial m samples

are discarded.

MH process will provide a proposed distribution of qk as close as possible to the

target density function and increases the efficiency of the algorithm. If the proposed

density function is symmetric, qk(θ
t, τ) = q(τ, θt), it will then result into quicker calcu-

lation of the acceptance function α. The effect of this sampling can be observed on the

posterior distribution. If the proposed value results into an increase of the posterior

distribution, then the sample will always be accepted. If the proposed distribution

reduces the posterior, then the new sample will either be accepted or rejected, whereas

if the posterior is significantly reduced by the proposed then the new samples will be

rejected with higher probability.

MH algorithm can be better understood by an example. Consider a city with

multiple schools. A survey needs to be conducted in a limited time with a maximum

number of student participation. The number of students in each school is unknown.

The task of the survey manager is to decide the school with maximum number of

students. The number of students can be determined only after reaching school. Thus,

the survey manager decides to randomly decide a school as a reference for the first

survey. Then, he calculates the probability of moving to next school, if the proposed

school has more students than the current, he moves to the new school.

Let Pnew be the proposed student count in proposed school and Pold be the count

of the student in the present school. Hence, the probability of proceeding Pproceed is
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computed as:

Pproceed =
Pnew
Pold

(5.8)

Along with this, a uniform random number u is generated in the range of 0 to 1. If

Pproceed is greater than the random number u , then the survey team moves to the next

school.

5.4 Random Walk

Considering the above example, if there are 10 schools in the city. The survey team is

at school number 1 such that θ = 1. The number of students in each school is assumed

to be increasing linearly. Also, there are a few schools but outside the survey area

hence the proposal to go to this school will always be rejected.

Suppose, the team is in school 2, θold = 2 and decides to go to the next school

θnew = 3. Assume, the population in school 3 is more than that of school 2, hence

this move is accepted. Now the current school is school 3, θold = 3. To calculate the

probability of proceed to next school is calculated as Pproceed = P (θnew)
P (θold)

= 3
4

= 0.75.

Then as per process a random number u is generated. If the value of u is greater than

Pproceed then the move is rejected. This process is repeated numerous times. This can

be generalized as follows:

Pproceed = min

(
Pnew
Pold

, 1

)
(5.9)

The above process is similar to the random walk and the next step is determined

by the previous step and no other step. For every step, it is necessary to pre-define the

maximum width of the step. To determine the width is the new problem if the width

is large the samples generated will be far away from the current value, thus reducing

the probability of being accepted. This may result in a halt of the chain on a single

value for multiple iterations. However, if the width is very small, then the chain will

need a more time to generate samples with low probability density and may result in
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under-sampling. Thus finding this value can be a topic some research. It is claimed in

[29] that optimal acceptance rate should be around 0.25. MH algorithm is powered by

this random walk and make complex simulation possible.
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Chapter 6

Methodology

6.1 Proposed Method

In this research, the aim is to prune the Neural network by using Bayesian methods.

The above described generalized Bayesian inference, which aims at using loss function

as a negative log-likelihood function is used. Once, the Neural network is constructed,

the model assigns weights for all the connections among the nodes. Some of these

weights are important for the prediction of output class, whereas there are a few weights

which are redundant. Compressing or turning these weights to 0 should not depreciate

the model performance. Also, turning the weights to 0 will result in compression of

the network.

The impression is to introduce a new parameter lets say γ, it will act as an acti-

vation function to decide which weights will be turned off (0) or on (1). In this study,

γ is one of the parameters of interest and can be related to θ mentioned in an earlier

chapter. There are two-parameter of interest; weights of the ANN (w) and the switch

variable (γ). These parameters will be used in the Bayesian model. The input to the

Bayesian model will be the test data used to test the Neural network. Let the test

data be denoted by T .
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As discussed in chapter 3 on General Bayesian Update, the loss function will be

used instead of likelihood. As the distribution of weights in the Neural network is not

predefined and difficult to analyze. The posterior Bayesian model for the parameters

is defined below:

π(w, γ|T ) ∝ −l(T |w, γ)π(w|γ)π(γ) (6.1)

Here, γ will follow a Binomial distribution. The samples of γ can have value either

0 or 1. Let the probability of γ = 0 be p, then the probability of γ = 1 be 1 − p as

per the binomial distribution. For n samples of γ, the binomial distribution will be

given as β(n, p), where n ∈ (0, 1, 2, . . . ) and p ∈ (0, 1). If the weight is pruned the

value of γ will be 0 else 1. Consider the loss function used in the above equation 6.1

l(T,w, γ), the test data T is used to predict the correct labels here. The aim is to

find the efficient distribution of w and γ. The goodness of w and γ will define the

probability of correctness of the labels.

As proved in the earlier section, the loss function is used as a negative log-likelihood

function. In this case, loss function can be computed using test data T , weights w

and activation function γ which is represented as l(T,w, γ). Since it is compared to

negative likelihood function, the loss would be represented with a negative sign, that is

−l(T,w, γ). The task is to minimize the loss function. Loss will be primarily decided

by γ. The generated samples of the activation switch γ will be multiplied with the

corresponding weight doing element-wise multiplication. Using these weights model

will classify the test data and loss function will be defined for the model. Inefficient

values of γ will increase the value of loss function. Therefore, there is a need to find

efficient samples of γ, which can reduce the loss and improve model efficiency.

As proposed, loss function will be expressed as a negative log likelihood function.

It can be represented as follows:

l(T |w, γ) ∝ exp(−l(T ;w, γ)) (6.2)

Using above relation 6.2 pseudo-posterior function can be determined for this scenario.

The posterior distribution of γ denoted as π(γ|T,w) can be generated, using the prior

knowledge π(γ) and new likelihood function as a loss function. It is developed as
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follows:

π(γ|T,w) ∝ exp(−l(T,w, γ))π(γ) (6.3)

The aim is to propose new value of γ as γ∗. There is a need to move from state

γ to γ∗. To do this task, MCMC - Metropolis Hastings algorithm is used. Using MH

algorithm the samples of γ are generated. Let say there are n weight, so it requires n

samples of γ such that γ = [γ1, γ2, γ3, ...γn]. Also, each γi correspond to the respective

weight wi. It is required to go from state γt to γt+1. A new activation sample γt+1 is

proposed such that γt+1 ∼ p(·|γt). The new value of γt+1 is decided by its previous

sample γt.

The first requirement of the MH algorithm is to generate acceptance probability

function. The values of γ which satisfy this criterion will be accepted else can be

rejected. Let the initial state of activation sample be denoted as γt and a new value be

denoted as γ∗. Before deriving acceptance probability, it is necessary to compute the

posterior probability of γ∗. By using 6.3 it can be derived as :

π(γ∗|T,w) ∝ exp(−l(T,w, γ∗))π(γ∗) (6.4)

Using equations 6.3 and 6.4 the probability of acceptance is computed as follows:

p(γt, γ∗) =
π(γ∗|T,w)

π(γt|T,w)
=

exp(−l(T,w, γ∗))π(γ∗)

exp(−l(T,w, γt))π(γt)
(6.5)

Solving the above equation 6.5 to simplified form:

p(γt, γ∗) = exp[−l(T,w, γ∗) + l(T,w, γt)]
π(γ∗)

π(γ)
(6.6)

Therefore γ∗ is accepted as new γt+1 with acceptance probability:

α(γt, γ∗) = min(1, p(γt, γ∗)) (6.7)

After the samples are generated, the study of the distribution of new activation γ∗ is

performed. This inference will help in understanding active weights and pruned weights
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as all γ correspond to the weight w. The value of γ can be as follows:

γi =

0, if pruned

1, otherwise
(6.8)

Here, i = 1 to n.

To sum up the model, the samples of γ are generated for every weight w. The

new sample γt+1 can be computed from γt. The new sample γt+1 is accepted as γ∗ if

it satisfies the probability of acceptance criteria. If this criterion is not satisfied for γ∗,

then this sample is rejected and next sample is computed. Thus, the efficient samples

are obtained, as with the introduction of new samples, the defined loss function keeps

on decreasing and the efficiency of model increases.

6.2 Proposed Algorithm

The task in this research is to compress the Neural network by pruning redundant

weights. For this task, an ANN model will be used that can classify images. The

Neural network model will be implemented to classify two categories of images. The

aim of image classification technique is to classify images correctly as per the classes.

It requires a binary indicator which denotes the presence of an object in an image.

The algorithm designed will be based on Generalized Bayesian Update and Proposed

methodology described in previous sections.

The detailed method of the algorithm is as follows:

• Step 1: Perform data pre-processing task on image data set. The image informa-

tion needs to be converted into the data compatible with the model.

• Step 2: Split data into train, test and validation data-set.

• Step 2: Develop a Neural network model N , to classify the images.

• Step 3: Perform model analysis and accuracy analysis.
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• Step 4: Calculate the loss function value as L.

• Step 5: For each generated weights wi of the model, assigns an activation switch

function γi with its initial value as 1, such that γ = [1, 1, 1, 1, ....] for all weights.

• Step 6: In this step, the decision regarding which weights can be pruned is taken

by the analysis of activation switch function γ using MH algorithm. The new

weights samples w∗ are generated, such that w∗i = γ∗i ∗ wi. This will be done

via, element-wise multiplication. Iterate the following steps as per the number of

weights (for example, if the number of weights in all layers is 10,000, the iteration

will be 10,000).

– In each iteration, randomly turn off one of the activation switch (γi = 0).

Hence, the corresponding weight will be pruned (wi = 0) to generate w∗.

– Using the new weights w∗, perform model analysis and calculate the new

loss function L∗ .

– Now, it is required to decide whether to accept or reject these new weights.

To do so generate a uniform random number between 0 and 1 as u.

– Compute the probability of acceptance, α such that α = min(1, e−L
∗
/e−L).

– If the acceptance probability for new weights w∗ is greater than the uniform

random number generated u, then the sample is accepted as new weight and

the loss function is calculated L∗ as L, that is L = L∗.

– If the above criterion is not satisfied then the weights are rejected and the

new samples for weights is computed, that is return to Step 6.

• Step 7: The new weights will be calculated as per the distribution of γ∗ obtained

from step 6. The model will have pruned weights as per the distribution.

• Step 8: Pruning is calculated and a new model N∗ is generated.

The new model generated N∗, will have some of the weights as 0 (wi = 0), that is they

are pruned.
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Chapter 7

Application of Algorithm

7.1 Simulated Dataset

The proposed methodology needs to be tested on small sample features. To verify the

this approach, random pixel values were simulated for two class of images. Then the

data was transferred in a CSV file. 600 sample images were generated for each of the

two classes. The details of the pixel values are as specified below.

The class 1 images had pixel value with a normal distribution where mean µ1 = +1

and standard deviation σ = 0.5. For this configuration 600 samples were generated.

There were 784 pixels, hence all the pixels had a value from this distribution. Similarly,

for class 2 images, samples were generated with normal distribution having µ2 = −1

and standard deviation σ = 0.5. Likewise, all 1200 samples were generated and used

for model building.

These generated images were then split into train, test and validation dataset in

the ratio of 60:25:15. The training dataset was subjected to a feed-forward Neural

network model N . The constructed model had 5 hidden nodes and 2 output nodes.

‘Softmax’ activation function was used at the output. The learning rate was fixed as

0.01. The model was trained with the training accuracy of 100% . Since, both the
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classes of images can be separated distinctly, the model could easily classify both the

images.

On this trained model, test dataset was tested. The accuracy on test dataset

was also 100%. Now, the proposed algorithm was implemented on the model. The

algorithm provided new weights w∗ and new network N∗. It was found that the new

network was pruned by 99% compared to the base network N . This was the behavior

observed, as the input values can be easily distinguished for both the classes. This was

the case when both classes of images were uniquely separated.

The next step was to increase the standard deviation while simulating sample

images, such that both the images would have some overlapping pixel values. The

standard deviation was increased in steps of 0.5 until 40. One of the configuration

of normal distribution for class 1 images was µ1 = +1 and σ = 30, whereas for class

2 images were generated with µ2 = −1 and σ = 30. Now the generated images for

both the classes will have some overlapping values of the pixel. The model N2 was

constructed with the similar configuration as N1. The training accuracy for model N2

was calculated as 70%.

The generated model N2 was then used for testing the test dataset. The accuracy

on test dataset dropped down to 65%. This happened as the pixel values were not

straight forward. Then algorithm was implemented on N2 model to generate new

model N∗2 . This method could prune 30% of the weights compared to the base model

N2 and providing an accuracy of 64% on the test dataset.

7.1.1 Result Analysis

As the standard deviation for the sample generation was increased, it was found that

pruning of the network substantially decreased. For simple sample data with a standard

deviation of 1, the pruning of 99% was achieved, whereas when the standard deviation

was increased to 40, the pruning of the network was observed to be 29.18%. The Table

7.1 below, shows some values for various levels of standard deviation. The results for

all values of standard deviation is shown in Appendix A.1. The Figure 7.1 shows the
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effect of increasing standard deviation on pruning.

Standard
deviation

Pruning(%)
Loss Before
Pruning

Loss After
Pruning

Reduction in loss
after pruning(%)

1 99.336 0.133 0.133 0
2 98.137 0.146 0.146 0
5 89.872 0.144 0.144 0
10 58.954 1.936 1.851 4.399
15 40.994 6.804 6.445 5.278
20 36.556 15.699 15.501 1.262
25 35.969 22.053 20.608 6.554
30 29.795 28.56 26.003 8.952
35 36.862 30.167 27.399 9.173
40 29.183 37.764 36.245 4.023

Table 7.1: Simulation Results

Figure 7.1: Plot of standard deviation vs pruning

It was observed that, even after increasing the complexity of data, the network is

being pruned. The pruning decreases slowly after σ = 10 and it suggests the possibility
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of pruning a complex network. It also suggests that there is some measurable redun-

dancy in the network. When the data is simple, that is when it can be separated using

a single hyperplane, pruning is maximum. The network needs very few parameters to

differentiate two classes. On the other hand, as the standard deviation for sampling

images was increased, the samples got more complex and both classes had overlapping

samples. Thus, such images cannot be differentiated using hyperplane, hence the net-

work needs more parameters. This justifies the decrease in pruning with an increase in

the standard deviation of samples. Thus, the hypothesis was tested on the simulated

samples of data. The following sections will provide detail information with real-world

complex dataset.

7.2 Real-world Dataset

7.2.1 Dataset

The dataset tested in this research is downloaded from Kaggle dataset library which

is an open-source website. This library consists of various datasets for classification

tasks. An image dataset was selected as the ANN model will be built to classify images.

The dataset consists of 10000 images. Every image had either a cat or a dog image

explicitly. Only one figure of a cat or a dog is present in the image. All the images

present were colored images and in jpg format. The sample images are shown in Figure

7.2 below.

7.2.2 Data Pre-processing

Before implementing a model on these images, it needs to be processed in a format

which a model can decode. Initially, all the images were re-sized to 28 x 28 pixels. The

images were later normalized using image contrast normalization techniques, to improve

the robustness against illumination changes. At last, the images were converted to

gray-scale images in order to avoid information overload in each pixel. Now all the
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Figure 7.2: Samples of cats and dogs from Image dataset

pixels will have a value in the shades of gray. Later, the pixel value of these images

was transferred into a CSV file. The CSV file contained 784(28x28) columns which

correspond to each pixel value. The other task performed after transferring pixel data

to CSV file is category labeling. Along with the pixel value, another column of the

class label was added. It contained information about the category of the image. Since,

the 2 types of images namely cat and dog were examined, it had 2 categories 0 and 1

which corresponds to cat and dog, respectively.

7.2.3 Train-Test Split

The first step performed after the dataset was retrieved was to remove all the duplicates.

The images were grouped by ‘date modified’ and ‘user’ and the scan for duplicate images

was performed. It was found all the images were unique. To analyze the model, the

entire dataset was divided into 3 parts namely training, test and validation dataset in

the ratio 60:25:15. The general convention is 60:20:20 split, since the pruning will be

mainly decided using test data, in this study an edge of 5% data has been given to

the test data compared to validation dataset. Thus, the training dataset consists of

6000 images, whereas testing dataset comprised of 2500 images and validation dataset

had around 1500 images. The idea of having a validation dataset was to confirm the
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credibility of the model.

7.2.4 Evaluation Metrics

The dataset used in this task has two classes of images. The two categories are evenly

distributed hence, ‘accuracy’ was used as one of the measures of evaluation. It will

measure the ratio of correct predictions given the total predictions. The metric of

prime interest in this study is ‘loss function’. The efficiency of the model will be

defined by the value of loss function it generates for a specific combination of weights.

7.2.5 Model Building and Analysis

The Neural network model was built using R software by means of Apache MXNet

package. MXNet package was selected as it provides high performance and low-level

control with the features like automatic differentiation and optimized predefined layers.

It has efficient computational power compared to NeuralNet package in R.

The first step in model building is to make data compatible to the MXNet require-

ment, hence the training dataset was first split into two data frames, one contained

only class column whereas others contained all pixel columns. These two data frames

were then converted into a matrix as MXNet requires X and Y category data in the

form of a matrix. The hyper-parameters selected for the model are as follows.

• Hidden layers: 1 hidden layer consisting of 10 hidden nodes was implemented in

the model. Each node had incoming links 784 weights which corresponds to the

input pixels data.

• Output nodes: Since the dataset contained 2 class of images, output nodes were

selected as 2.

• Activation: ‘Relu’ activation function was used between the hidden layer and

output layer, whereas for the output layer ‘Softmax’ activation was used. Hence,
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the output layer had 2 nodes.

• Learning rate: For the better performance of the model, the ‘ADAM’ optimizer

technique was used. It is a customized algorithm for gradient-based optimization

of stochastic objective functions [30].

• Epoch and batch size: The model was constructed with a batch size of 50 and

the number of training epoch was 100.

Using the above mentioned parameters, the Neural network model N was con-

structed. It was discovered that the training accuracy of the model was around 79.31%.

The entire network was now ready for testing. The fully functional network consists

of 7860 weights. This seems to be a computationally large network for the task of

classifying cats and dogs. The main aim is to prune the network without affecting the

performance. For understanding the difference in the performance of the compressed

network, the fully functional Neural network should be tested on test data. In the

initial test on the test data, the model had an accuracy of 62.37% with the initial

network loss L of 362.96.

The idea is to prune the network and study the dominant nodes for classification

of cats and dogs respectively. The weights corresponding to each node were denoted

by w = [w1, w2, w3, . . . , wn]. For each of these node an activation switch function was

introduced such that γ = [γ1, γ2, γ3, ..., γn] corresponding to each node. Initially, all the

γ are initialized to 1. The idea is to identify the redundant weights, so that the value

of γ for that weight can be made to 0. This is a replica of switch pattern in order to

turn on or off the switch with respect to the data. The new weights w∗ of the network

can simply be given by the product of w and γ∗.

After initializing γi to 1, the aim was to propose a new γ∗ such that it provides the

value of new weights w∗. These new weights are calculated using a Bayesian approach.

Initially, prior information available was initial weights w, initial activation γ, test data,

loss function. It is possible to find the posterior value of the weights based on the data.

As explained in the preceding chapters, MH algorithm was used to generate samples.

With initial loss as L and new loss as L∗, the probability of acceptance was calculated as

39



min(1, exp(−L∗)/ exp(−L)). This introduced algorithm was implemented on 3 variants

of the test dataset. The first dataset was used for understanding pruning effect on the

network, whereas the other two datasets is used to throw light on activation patterns

of nodes for cats and dogs respectively.

7.2.6 Study of Pruning Rate

The dataset comprised of both cat and dog images. This test dataset is mainly used

for understanding the pruning rate of the network. The original model N was tested

on this dataset, which provided an accuracy of 62.37% with the initial network loss

L of 362.963. After implementing the proposed algorithm on this dataset, the new

distribution of γ∗ was obtained. It resulted in better understanding of pruned weights.

The new weights w∗, were given as w∗i = wi ∗ γ∗i . These new weights accounted for

the new network N∗. The new network provided the accuracy of 61.78% whereas the

loss was reduced by 11.51%. The newly generated Neural network model N∗ was also

tested on the validation dataset. It provided a validation accuracy of 61.37%. When

all the samples were generated the initial network N was compared with new network

formed N∗ for the weights. It was found that network N∗ was pruned by 41.95%. It

was observed that the majority of the pruned weights were present between the input

layer and the hidden layer. Few weights between the hidden layer and the output layer

were pruned.

These result can be summarized below, the Table 7.2 shows the number of weights

pruned in every layer. The Table 7.3 shows the performance of the model before and

after pruning.

Total weights Pruned
weights

Pruned
weights (%)

Input Layer to Hidden Layer 7840 3296 42.04
Hidden Layer to Output Layer 20 2 10
Total Pruning 7860 3298 41.95

Table 7.2: Layerwise weights pruning
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Pruning
(%)

Before
Pruning
Accuracy
(%)

After
Pruning
Accuracy
(%)

Before
Pruning
Loss

After
Pruning
Loss

Loss Re-
duction
(%)

Validation
accuracy
(%)

41.95 62.37 61.78 362.963 321.172 11.513 61.37

Table 7.3: Pruning Results

7.2.7 Study of Activation Pattern for Cats

The test and validation dataset used for this task consisted only of cats images. It is

used to study the activation patterns of weights which are used for classification of cats

images after pruning. The reference model N was built using training dataset with

accuracy and loss value as 65.21% and 171.18 respectively. Here, the new model N∗

was constructed using the activation function values γ∗, which are generated using the

proposed algorithm. The outcome of the algorithm provided the new Neural network

model N∗. Since only cat samples were present in the test dataset, the algorithm

generated samples of γ∗ which can correctly classify cats. The model N∗ provided an

accuracy of 100%. Also, the loss function value was reduced by 99.99%. This new

model N∗ was tested for validation dataset, the validation accuracy was found to be

99%.

In order to understand the activation patterns, the pruning in the new network

N∗ obtained after operations was determined. The Neural network N∗ was pruned

by 71.39% compared to the base network N . After examining the pruned weights,

it was found that pruned weights (w∗i = 0) were present in both the types of links

between the input layer to hidden layer and also in the hidden layer and output layer.

The distribution was studied to find out that weights from hidden layer nodes number

1, 4, 5, 6, 9, 10 to output nodes can be switched off, as the weights wh1 = 0, wh4 = 0, wh5 =

0, wh6 = 0, wh9 = 0, wh10 = 0. It was observed that weights corresponding to the nodes

2, 3, 7, 8 are used for the classification of cats. These weights and node are significant

in the classification of cats.

The summarized results for this implementation are shown below. The Table 7.4

shows the layerwise pruning while detecting class 0 (cats). The Table 7.5 shows the
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performance of model for class 0 (cats) data.

Total weights Pruned
weights

Pruned
weights (%)

Input Layer to Hidden Layer 7840 5599 71.41
Hidden Layer to Output Layer 20 12 60
Total Pruning 7860 5611 71.39

Table 7.4: Layerwise weights pruning for cats

Pruning
(%)

Before
Pruning
Accuracy
(%)

After
Pruning
Accuracy
(%)

Before
Pruning
Loss

After
Pruning
Loss

Loss Re-
duction
(%)

Validation
accuracy
(%)

71.39 65.21 100 171.18 0.003 99.997 99

Table 7.5: Pruning Results for class 0 (cats)

The activation pattern nodes for the classification of class 0 (cat) is shown below in

Figure 7.3. These are the activated nodes in the hidden layer responsible for detecting

cats .

Figure 7.3: Activated nodes for cats
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7.2.8 Study of Activation Pattern for Dogs

In this section, the testing and validation dataset consisted of images restricted to dogs

only. This dataset was used to study the activation patterns of weights for dogs. Here,

the original network N as the base network with accuracy and loss value as 63.19% and

181.203 respectively. As per the method, the new model N∗ was generated using the

proposed algorithm. Similar to the case of cats, since the test dataset consists of dog

images, the algorithm, accept the samples of γ∗ which can classify dogs correctly. The

optimized model N∗ provided an accuracy of 100%. The loss function was decreased

by 99.99%. This model was also validated on validation dataset, and the validation

accuracy was found to be 99%.

To study about activation patterns for dogs, there is need to understand the pruned

weights of the network N∗. After the careful examination and completion of execution

of the algorithm, it was concluded that the network N∗ was pruned by 72.92%. The

pruned weights were distributed in all the layers. The pruning of weights showed that

in hidden layer nodes number 2, 3, 4, 8, 10 can be neglected, as the weights from these

nodes to output node are 0, that is wh2 = 0, wh3 = 0, wh4 = 0, wh8 = 0, wh10 = 0. It

implies that the weights corresponding to the nodes 1, 5, 6, 7, 9 are prime nodes for the

classification of dogs.

This approach results are summarized as below. The Table 7.6 shows the layerwise

pruning while detecting class 1 (dogs). The Table 7.6 shows the performance of model

for class 1 (dogs) data.

Total weights Pruned
weights

Pruned
weights (%)

Input Layer to Hidden Layer 7840 5722 72.98
Hidden Layer to Output Layer 20 10 50
Total Pruning 7860 5732 72.92

Table 7.6: Layerwise weights pruning for dogs

The activation pattern nodes for the classification of class 1 (dog) is shown below

in Figure 7.4. This figure, the nodes responsible for detecting dogs.
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Pruning
(%)

Before
Pruning
Accuracy
(%)

After
Pruning
Accuracy
(%)

Before
Pruning
Loss

After
Pruning
Loss

Loss Re-
duction
(%)

Validation
accuracy
(%)

72.92 63.19 100 181.203 0.001 99.999 99

Table 7.7: Pruning Results for class 1 (dogs)

Figure 7.4: Activated nodes for dogs

7.2.9 Result Analysis

It can be seen from the results, the network is pruned by significant value. The pattern

recognition analysis shows the nodes important for the classification of cats and dogs.

When the cats and dogs images are given to the model, individually the network is

pruned by almost 70%. As seen from the activated nodes, the nodes for classification of

both the classes are different. Only node number 7 is common for both classes. Hence,

it is the most important node. Also, it can be seen that node 4, is the least significant

node. Hence, the results provides us the node importance and considerable pruning.
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Chapter 8

Conclusion and Future work

8.1 Conclusion

In this research, a formal pruning algorithm to compress hidden units in a multi-layered

ANN is introduced. This algorithm is influenced by general Bayesian update methods

and MCMC-Metropolis Hastings algorithm. It can efficiently prune the redundant

weights in the network. The method makes use of the redundancy of the network to

propose the configuration of the new weight. The proposed methodology is general

purpose, and it could be applied to any distinct network configurations. As suggested

from the two applications described in Chapter 7, it was observed that the pruning is

maximum when the data is classified easily with less loss of the model, for example,

the images could be separated using a single hyper-plane. As the complexity of data

is increased in the simulated example, that is the data can no more be separated by a

hyper-plane as both the class of data have overlapping values. It was noticed that the

pruning gets reduced considerably.

This method is a promising proof of concept. As the pruning results of the ap-

plication example 2 showed the pruning of 40%. The weights of the network which

are significant for the classification of two classes are retained. The obtained results

roughly suggest that the pruning in an ANN model is depended on the complexity of
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the training data and the complexity of the network configuration. Besides, pruning it

was possible to study the parts of the network which are activated for a different type

of input data. The results clearly shows that all nodes are not required for the classi-

fication of 2 classes individually. Both the class of data have a different configuration

of hidden nodes in the network.

This algorithm could prune the network to a significant extent with a considerable

decrease in the loss function of the pruned network. The advantages of the methods are

that the method generates considerable pruning, loss of the network is decreased, the

accuracy of the network is not affected significantly and also it is an adaptive method

which exploits network redundancy. On the other hand, some of the disadvantages of

this algorithm could be the method can be expensive as it involves multiple iterations

to prune the weights. As the network gets complex, the weights will increase and so is

the cost of the algorithm.

8.2 Future work

The engaging extensions of the work could be: (i) to implement this method on con-

volution Neural network and check the performance, (ii) introduction of method to

estimate and prune the weights during back-propagation, (iii) to test the network per-

formance on highly complex Neural network, involving multiple hidden layers like VGG

and ResNet. (iv) Also to study on the weights configuration of the network and its

geometric patterns.
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Appendix A

Appendix

A.1 Simulation Results

The below table shows the complete results of the simulation application. The standard

deviation was increased from 0.5 to 40 in the steps of 0.5 and corresponding pruning

was analyzed

Standard

Deviation

Pruning (%) Before Prun-

ing Loss

After Pruning

Loss

Reduction in loss

(%)

1 99.336 0.133 0.133 0

1.5 99.082 0.136 0.136 0

2 98.137 0.146 0.146 0

2.5 97.015 0.133 0.133 0

3 96.173 0.140 0.140 0

3.5 95.587 0.142 0.142 0

4 94.796 0.143 0.143 0

4.5 88.112 0.145 0.145 0

5 89.872 0.144 0.144 0

5.5 87.526 0.167 0.167 0

6 89.617 0.173 0.173 0
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6.5 85.000 0.176 0.176 0

7 86.276 0.254 0.254 0

7.5 80.000 0.220 0.220 0

8 72.934 0.479 0.407 15.013

8.5 58.827 0.590 0.590 0.000

9 53.444 0.275 0.275 0.000

9.5 67.985 2.111 1.931 8.520

10 58.954 1.936 1.851 4.399

10.5 54.770 2.180 2.180 0

11 54.107 3.030 2.943 2.869

11.5 47.041 4.282 4.013 6.288

12 55.536 4.438 3.973 10.481

12.5 51.837 4.066 2.467 39.340

13 43.367 4.464 3.536 20.784

13.5 48.597 5.930 5.615 5.315

14 44.898 5.581 4.859 12.931

14.5 46.582 6.066 5.925 2.319

15 40.994 6.804 6.445 5.278

15.5 52.372 8.427 8.113 3.720

16 45.918 9.046 8.319 8.038

16.5 43.546 8.357 7.402 11.435

17 37.985 8.530 8.291 2.798

17.5 41.454 8.561 7.499 12.403

18 45.842 14.989 13.659 8.873

18.5 30.204 12.708 11.693 7.983

19 33.418 12.314 10.777 12.483

19.5 34.056 14.982 13.320 11.096

20 36.556 15.699 15.501 1.262

20.5 49.413 20.379 18.742 8.033

21 32.653 13.931 13.483 3.218

21.5 32.577 18.029 15.429 14.422
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22 33.214 20.646 18.624 9.793

22.5 24.949 18.640 16.833 9.699

23 37.245 17.834 16.965 4.870

23.5 31.148 17.195 16.487 4.116

24 31.224 21.481 19.136 10.917

24.5 39.388 21.690 20.234 6.713

25 35.969 22.053 20.608 6.554

25.5 31.378 22.200 20.575 7.322

26 32.219 22.189 20.240 8.784

26.5 33.316 21.199 19.215 9.361

27 34.464 22.883 20.926 8.553

27.5 28.418 23.601 21.287 9.807

28 26.352 24.354 20.283 16.716

28.5 26.709 27.014 24.878 7.908

29 33.546 25.088 21.445 14.520

29.5 19.694 25.412 20.054 21.085

30 29.795 28.56 26.003 8.952

30.5 31.939 26.435 24.177 8.543

31 36.480 27.407 24.209 11.671

31.5 30.281 22.512 20.468 9.078

32 35.230 26.808 23.497 12.350

32.5 24.974 24.734 22.303 9.829

33 36.378 30.185 27.469 8.999

33.5 24.235 28.416 24.417 14.076

34 38.750 32.156 30.110 6.365

34.5 28.801 31.989 29.345 8.265

35 36.862 30.167 27.399 9.173

35.5 32.168 30.891 28.510 7.708

36 25.459 28.811 25.204 12.519

36.5 37.066 30.858 26.749 13.316

37 32.117 31.345 28.360 9.523
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37.5 35.791 34.163 32.327 5.377

38 32.832 32.395 28.724 11.332

38.5 36.480 33.745 29.685 12.030

39 21.786 32.506 29.818 8.269

39.5 23.087 35.632 33.532 5.894

40 29.183 37.764 36.245 4.0233

Table A.1: Complete Simulation Results

A.2 List of Abbreviations

ANN Artificial Neural Network
NN Neural Network
FP Forward Propagation
BP Backward Propagation
GPU Graphical Processing Units
OBD Optimal Brain Damage
NP-FNN Novel Pruning Feed-forward Neural Network
N2PFA Neural Network Pruning for Function Approximation
PDF Probability Density Function
MLE Maximum Likelihood Estimate
MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
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