
Multi-view Camera synthesis using Convolutional

Neural Network

Valeria Olyunina B.Sc. P.Dip.

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Augmented and

Virtual Reality)

Supervisor: Matthew Moynihan, Prof Aljosa Smolic

August 2019

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Valeria Olyunina

August 14, 2019

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Valeria Olyunina

August 14, 2019

Acknowledgments

I wish to express my sincere gratitude to my supervisors - Matthew Moynihan and

Prof Aljosa Smolic - for their attention, support and valuable advice while working on

this dissertation.

I would also like to thank my husband, Mark, and my mother for allowing me time to

work on this thesis.

Valeria Olyunina

University of Dublin, Trinity College

August 2019

iii

Multi-view Camera synthesis using Convolutional

Neural Network

Valeria Olyunina, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Matthew Moynihan, Prof Aljosa Smolic

This dissertation trained a neural network capable of producing an intermediate image
between two spatially distributed images - effectively creating a novel point of view.
This research is based on the article by Niklaus et al, 2017 ”Video Frame Interpolation
via Adaptive Separable Convolution” where a convolutional neural network is deployed
to generate interpolated frames in a video sequence. The same approach is successfully
applied in this research to multi-view camera images. The neural network is re-trained
on a dataset of synthetically produced multi-view camera images. The resulting images
are evaluated both for their quality in 2D and as a tool for improving the photogram-
metery method of Shape-from-Silhouette in 3D reconstruction. The neural network
trained on multi-view camera images produced by this research can generate visually
correct interpolated multi-view images. When compared to ground truth, PSNR of
these images is above 40 and SSIM is above 92% for the distance between multi-view
cameras of less than 60cm (distance from camera to subject between 3-5m) when tested
on a synthetic test set. This is higher than the corresponding results for the original
video interpolation article. For 3D reconstruction, the cameras needed to be further
apart (1-2m) and the silhouettes were not always pixel-accurate. Within 60cm only
1% of pixels were lost, however at distance between cameras over 1 m over 3% of pixels
are lost, resulting in loss of voxels in extremities.

Summary

This dissertation addresses a problem of image interpolation in multi-view camera set-

ting. It explores the possibility of applying temporal video interpolation techniques to

spatial image interpolation and further using the generated images in 3D reconstruc-

tion methods, such as Shape-from-Silhouette.

This document first reviews 3D geometry and photogrammetry reconstruction meth-

ods, then it overviews current spatial and temporal image interpolation literature,

focusing in particular on research where deep-learning neural networks were applied to

the task. It also reviews neural network architectures suitable for the task.

In the Methodology chapter, the applied network architecture is examined in detail,

particularly with regards to the loss functions applicable to interpolation of multi-view

camera images. The synthetic dataset created specially for this research with the view

of training a multi-view neural network is described. Then suitable methods for eval-

uating the interpolated images are examined, including 2D and 3D methods.

The last chapter contains the evaluation of the images produced by the neural networks

trained for this research. The networks are compared with each other and with the

benchmark network that was created by the reference article for temporal interpolation

[35].

v

Contents

Acknowledgments iii

Abstract iv

Summary v

List of Tables ix

List of Figures x

Abbreviations xii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Overview of the Dissertation . 4

Chapter 2 State of the Art 5

2.1 3D reconstruction and Photogrammetry 6

2.1.1 Orthographic projection . 6

2.1.2 Perspective projection - epipolar geometry 7

2.1.3 Structure from Motion . 10

2.1.4 Multi-view stereo . 12

2.1.5 Shape-from-Silhouette . 13

2.2 View interpolation . 14

2.2.1 Single image interpolation techniques 15

vi

2.2.2 Spatial interpolation . 16

2.2.3 Temporal / Video interpolation 18

2.3 Neural networks and Deep learning . 20

2.3.1 Convolutional Neural Networks (CNNs) 20

2.3.2 Capsule Networks . 24

2.3.3 Recurrent Neural Networks . 26

2.3.4 Autoencoder . 27

2.3.5 Generative Adversarial Networks (GANs) 27

2.4 Neural networks in view interpolation 28

2.4.1 Deep-learned optic flow . 29

2.4.2 View interpolation based on deep-learned phase 29

2.4.3 Pixel-by-pixel view interpolation 30

2.4.4 View interpolation based on GANs 35

2.4.5 Combination approaches - based on RNNs and pose estimation . 36

Chapter 3 Methodology 37

3.1 Neural Network Description . 37

3.1.1 Network Architecture . 37

3.1.2 Network Loss . 39

3.1.3 Hyperparameters . 42

3.2 Multi-view camera dataset . 45

3.2.1 Real-life datasets . 45

3.2.2 Synthetic dataset . 47

3.3 Evaluation . 50

3.3.1 MSE and PSNR . 51

3.3.2 SSIM . 52

3.3.3 False Negative and False Positive Silhouette Pixels 52

3.3.4 Hausdorff Distance . 54

Chapter 4 Results and Discussion 58

4.1 Comparison of trained networks . 58

4.2 SSIM . 60

4.3 PSNR . 65

vii

4.4 Silhouettes - False Negative Ratio and False Positive Ratio 65

4.5 Visual comparison . 67

4.6 Hausdorff distance . 68

4.7 Real data . 71

Chapter 5 Conclusion and Future Work 73

5.1 Conclusion . 73

5.2 Future Work . 75

Bibliography 77

Appendix A 87

Appendix B 90

viii

List of Tables

3.1 Online multi-view datasets . 46

4.1 Attempted Multi-view neutral network configurations 58

4.2 Comparison of results for the trained Multi-view neutral networks . . . 60

4.3 Hausdorff distance. Average Bounding Box (BB) percentage 69

ix

List of Figures

2.1 Examples of Perspective, Affine and Orthographic projections. [5], chap-

ter 9. 7

2.2 Triangulation illustration. 9

2.3 SfS - intersection of silhouette cones [57] 13

2.4 IBR techniques classification [34] . 14

2.5 Comparing linear interpolation results with non-linear interpolation us-

ing Radon-CDT space. Linearly interpolated images in left example top

raw and in right example bottom-right [40]. 19

2.6 Example 5x5 feature maps for different hidden layers of a CNN trained

to classify hand-written digits [60]. 20

2.7 Example CNN architecture with 3 convolutional layers. Size of the

square shows the size of input images, length of the cuboid - number

of hidden layers (source: author) . 21

2.8 Example of a convolution operation applied to a local receptive field [60]. 22

2.9 Comparison of connectivity in a traditional NN (bottom row) and CNN

(top row). Image on the left shows the effect of a single input pixel x3,

image on the right show the receptive field of a single output pixel s3 [23]. 23

2.10 Typical layer of a CNN [34] . 24

2.11 Both images are classified as a “face” by CNN 25

2.12 Architecture of LSTM recurrent network “cell” [23]. 26

2.13 Examples of images generated by GAN. Rightmost column shows exam-

ples of the original images [24]. 28

2.14 Images of bedrooms generated by DCGAN [23]. 29

x

2.15 Illustration of Adaptable convolution method. The neural network re-

ceives 2 receptive field patches - R1 and R2. The NN estimates convo-

lution kernel K for the selected pixel. Convolution of patches P1 and

P2 is performed with kernel K to synthesise the output pixel [62]. . . . 31

2.16 Kernels estimated by CNN for pixels on the horizonal edge (a), diagonal

edge (b) and in a texture-less area (c). The latter has isotropic kernel.

From [62]. 32

2.17 Grid Net architecture from [61]. Both pre-warped images and per-pixel

contextual information images are fed to NN (a). GridNet encoder-

decoder NN processes images at 3 different scales. Down-sampling, up-

sampling and lateral building blocks are details in (b). 34

3.1 Overview of Neural Network architecture. Image from [63] 39

3.2 ReLU activation function . 43

3.3 Performance of different optimizers depending on the learning rate (time

of more than 120 seconds means the network failed to train. Image from

[53]. 44

3.4 Illustration of the camera setup in a Blender file. Green arrow show

the person’s range of movement. Blue circle - the positions possible for

GT camera. The left and right camera are always on a tangent to GT

camera focus line. 47

3.5 Illustration of the possible improvements to the dataset: (a) Left and

Right camera pitch to horizontal line, (b) Cameras away from the tan-

gent line. 49

3.6 Examples of images generated. 50

3.7 Example of False Negative (FN) and False Positive (FP) pixels (a). GT

only shown (b, c) as visually the interpolated image and its silhouette

are very similar to GT - both silhouettes are required to produce (a). . 53

3.8 Illustration of the camera setup for SfS reconstruction. 12 cameras are

real (on the circle), 12 are “synthetic (on the green segments). 54

4.1 Improvement in SSIM Loss and PSNR (both include non-significant pix-

els) with the number of training epochs - MV L1 51 example. 59

xi

4.2 Examples of interpolated images (c, g, k) and visual difference with the

ground truth image (model MV L1 51). See also Appendix A and B. . 61

4.3 Comparison of NNs - SSIM depending on the distance between the inter-

polated cameras (a), distance to the subject (b), pixel distance between

left and right image (c) and pixel distance of the models to the center

of the image (d). 62

4.4 Comparison of NNs - PSNR depending on the distance between the

interpolated cameras (a), distance to the subject (b), pixel distance be-

tween left and right image (c) and pixel distance of the models to the

center of the image (d). 64

4.5 Comparison of NNs - False Negative (FN) - (a) - and False Positive

(FP) - (b) - ratios depending on the distance between the interpolated

cameras. 66

4.6 Comparison of multi-view (MV L1 51) network - (a) - and non-multi-

view (DAVIS L1 51) - (b) - network interpolation results - silhouettes

false positive (red) and false negatives (green) are displayed. Non-MV

network adds significantly more false positive pixels. 67

4.7 Visual comparison of the trained neural networks on a failed result. Last

image - (h) - is ground truth. First row (a, b, c) has networks with 51-

pixel kernel: MV L1 51 network 30 epochs, MV L1 51 network 50 epochs,

MV SSIM 51 network (50 L1 + 10 SSIM epochs). Second row (d, e, f)

has networks with 71-pixel kernel: MV L1 71 network 30 epochs, MV L1

71 network 50 epochs, MV SSIM 71 (30 L1 + 10 SSIM epoch). Lastly,

(g) has the result for non-multi-view network DAVIS L1 51. 68

4.8 Example output from SfS reconstruction using just real cameras vs real

cameras plus interpolated images. 70

4.9 Example output from SfS reconstruction using just real cameras vs real

cameras plus interpolated images. Note part of the leg that disappeared

due to inaccuracies in the interpolated images - (c). 70

4.10 Applying the trained NN (MV L1 51) to real-life imagery from Green

room. 71

xii

Abbreviations

2D Two dimensional

3D Three dimensional

AR - Augmented Reality

CG - Computer Graphics

CNN - Convolutional Neural Network

FVT - Free-viewpoint Television

FVV - Free-Viewpoint Video. Same as FVT.

GAN - Generative Adversarial Network

GPU - Graphics Processing Unit

GT - Ground Truth

HSV - Human Visual System

IBR - Image-Based Rendering

IBMR - Image-Based Modeling and Rendering

LSTM - Long Short-Term Memory

MVS - Multi-view stereo

NN - Neural Network

PSNR - Peak Signal to Noise Ratio

PSR - Poisson Surface Reconstruction

RNN - Recurrent Neural Network

SfM - Structure from Motion

SfS - Shape-from-Silhouette

SSIM - The Structural Similarity Index

VR - Virtual Reality

xiii

Chapter 1

Introduction

This dissertation explores the possibility of generating novel points of view - synthetic

cameras - from input images from spatially distributed cameras. The main focus of

the research is on videos of human motion obtained from multi-view camera setups.

The primary aim is therefore the geometric accuracy of the generated images. The

synthetic images can then be used for improved reconstruction of the 3D model of the

recorded subject or for video interpolation and display of arbitrary points of view in

360 degree/ Free Viewpoint Video (FVV) scenarios.

1.1 Motivation

There is a growing requirement in the current digital world for 3D digital models of ob-

jects and people and full 3D videos of their motion. These can be used in entertainment

industry, but also in business, medical and scientific applications to help visualisation

of any problem. In the entertainment industry computer games, Augmented Reality

(AR), Virtual Reality (VR) and FVV are on the rise [1] and need accurate 3D models.

Until recently, most content available was synthetic, created by artists and designers,

but there is a growing demand for true to life assets [103].

Additionally, there is a growing demand in new visual experiences in terms of 3D TV,

360-degree video and Free-viewpoint video. These are normally filmed using multiple

cameras, but additional views can be produced using interpolation techniques [3] which

1

allow artificially created viewpoints. The techniques described in this dissertation aim

to improve the quality for these synthesised images.

FVV and Multi-view camera systems for performance capture offer a VR/AR expe-

rience with the spatio-temporal fidelity of a live performance. However, the quality

of 3D reconstruction is dependant on the technology used to capture and process the

input videos. Where depth cameras are not available, the current technology relies

on Structure-from-Motion (SfM) and Shape-from-Silhouette (SfS) techniques. These

techniques vary in accuracy, for example, where a lot of cameras are available in a

specially setup green room environment, these can be very accurate. But the accuracy

tends to deteriorate as the number of cameras decreases. Recently, some research at-

tempts reconstruction in difficult scenarios from as little as eight mobile phone cameras

[64], where there are problems of background removal and camera synchronization for

SfM reconstruction as cameras are not stationary. The quality of the SfM reconstruc-

tion suffers from ’holes’ where occlusions occur [44], inaccuracies from lack of reference

points in sparse camera setup, lack of texture, transparent or reflective features, due

to camera lens, noise, camera angle [94]. SfS reconstructions alone generally lack the

’completeness’ to produce accurate, fully-volumetric reconstructions.

This thesis presents an approach to improve the accuracy of photogrammetry-based

methods in case of sparse reconstructions by providing additional synthetic views in

between the real camera views. The approach is based on Image-Based Rendering

(IBR) techniques, particularly view interpolation. IBR techniques create new images

directly from the existing set of images without doing a full 3D reconstruction [103].

Neural networks (NNs) have revolutionised image processing in the recent years. They

have been shown to have better performance at computer vision tasks than previously

designed procedural approaches [38]. Deep neural networks are able to extract and

combine tens of thousands of features from images, where a human approach may

typically only find dozens. Deep-learning networks have been used for classification,

segmentation and creation of new images and video. IBR was previously combined

with deep-learning to create arbitrary points of view when given a collection of images

[20]. [61] is able to produce high-quality images for video-frame interpolation with a

2

convolutional neural network (CNN).

This dissertation aims to apply the same approach to multi-view camera images inter-

polation and explore the possibility of using a neural network to produce multi-view

images.

1.2 Objectives

The primary objective of this dissertation is to train a neural network capable of out-

putting accurate interpolated images in a multi-view camera scenario. As the primary

motivation for producing such images was to help 3D reconstruction, part of the pri-

mary task is to perform a 3D multi-view reconstruction using photogrammetry methods

to check if the reconstruction can be improved by adding the interpolated images.

The following secondary objectives were also part of this research:

1) Preparation of the multi-view camera dataset suitable for training the neural

network. Both real available multi-camera datasets and synthetic datasets were con-

sidered, including the option of self-generated synthetic dataset for the training.

2) Exploration of the neural networks suitable for the task and their hyperparam-

eters.

3) Exploration of the measurements to evaluate the quality of produced spatially

interpolated images. Accurate measurement can also be used as a loss function for the

neural network training.

As a starting point an existing NN implementation was chosen. This was designed by

[61]. The NN was chosen as it was shown to be successful at interpolation of images

for the task of video interpolation by increasing the framerate. Also, NN code was

available as re-implemented by [35]. The NN needed to be adapted for the different

task of generating multi-camera spatial images, the difference being that in multi-view

camera scenarios the images are generally much further apart than the frames in a

video.

3

1.3 Overview of the Dissertation

The layout of the dissertation is as follows:

Chapter 2 State-of-the-Art looks at the current research in the field. The first

section reviews in detail the photogrammetry methods used in 3D reconstruction -

SfM, Multi-view stereo (MVS) and SfS. The next section examines IBR, in particular

view-interpolation techniques both temporal and spatial. The third section looks at

neural networks and different neural network designs. The last section combines the

first three - looking at view-interpolation research that uses deep-learning, but also

checking if deep-learning approach was previously applied to spatial images.

Chapter 3 Methodology examines the methodology in detail. It covers three main

areas:

- Design of the neural network

- Dataset generation. Particularly the technique used to generate the synthetic multi-

view dataset of human motion that was deployed in training the neural network.

- Evaluation techniques, including 2D evaluation and 3D reconstruction (SfS method-

ology) and evaluation are discussed.

Chapter 4 Results and Discussion presents the results of this research and pro-

vides the discussion. First, the resultant interpolated multi-view images are presented

and discussed. Second, 2D evaluation techniques and results are discussed. And lastly

the results of the 3D reconstruction using the interpolated images (SfS) are presented

and discussed.

Chapter 5 Conclusion and Future Work summarises the main outcome of this

research and proposes ways in which the outcome can be improved in the future.

4

Chapter 2

State of the Art

The following chapter presents the state-of-the-art for this research. As multi-view

imagery has a large dependence on 3D geometry and this research is concerned with

improving photogrammetry techniques for 3D reconstruction, the first section delves

into 3D geometry and describes photogrammetry methods - SfM, Multi-view stereo

(MVS) and SfS.

The second section covers the state-of-the-art in view interpolation. This desrcibes

traditional methods without deep-learning.

The third section explores neural network architectures for the purposes of this research.

Is looks at CNNs, CapsuleNets, Autoencoders, RNNs and GANs. Autoenconders are

included as they form the basis of generative networks. The generation of the new

images (interpolated frames) would frequently include an encoder and a decoder.

The last section combines the previous two sections and attempts to analyse the cur-

rent research most relevant to this project - view interpolation using deep-learning.

In short this chapter explores:

1. 3D Reconstruction, in particular the algorithms of structure-from-motion, mutli-

view synthesis and Shape-from-Silhouette.

2. View Interpolation

5

3. Neural networks and deep-learning

4. Neural networks in view interpolation

2.1 3D reconstruction and Photogrammetry

3D Reconstruction of object shapes from still images and video stream is an ongoing

research topic that challenged researchers for decades. Early research first addressed

the simplified problem of orthographic projection, then perspective projection was re-

searched that resolves the uncertainty of perspective homographies. 3D reconstruction

methods of SfM, MVS and SfS are still under research to suggest the most efficient and

precise way to extract 3D geometry from a set of 2D images.

2.1.1 Orthographic projection

As early as 1992, [88] obtained good results from a stream of images using orthographic,

rather than perspective, projection and introduced Factorization method. Orthographic

projection simplified processing, removing the depth dimension 1 . Examples of pro-

jective, affine and Euclidean projections are given in Fig. 2.1. [88] worked with affine

and orthographic projections only. They decomposed the measurement matrix W (F

frames, P tracked points forms 2 ∗ F ∗ P matrix in 2D) into 2 matrices - R and S -

representing the camera rotation and the object shape respectively plus the projection

of the camera translation t along the image plane.

W = RS + teTP

[88] were able to process input with noisy measurements by introducing 3x3 matrix Q

(R = R̂Q, S = Q−1Ŝ) and metric constraints to solve for Q. They are also able to cope

with occlusions by recovering position of feature points from 3 other positions of the

feature.

1Orthographic projection is applicable when the distance from the object to the camera (Zavg) is
more than 10 times the object’s width davg: Zavg≥10 ∗ davg (from [5], chapter 9)

6

Figure 2.1: Examples of Perspective, Affine and Orthographic projections. [5], chapter
9.

2.1.2 Perspective projection - epipolar geometry

Perspective projection adds extra complexity to obtaining 3D geometry from images.

Calibrated cameras:

First, a special case of calibrated cameras is described.

The essential matrix E for correspondence between 2 images was introduced by [48]:

E = [t]×R

So, the same point in 2 images correspond as:

x̂T1Ex̂0 = 0

where x̂1is the position of the point in the second image, x̂0 is the position of the same

point in the first image and E is the essential matrix - forming epipolar constraint.

Point x̂0 in the first image is transformed using the essential matrix E into a line in

the second image - l1 = Ex̂0, which is called epipole [85].

Both translation and rotation of the 2nd camera - and traditionally, any subsequent

cameras in a sequence of images - are taken with reference to the camera position of

the first image in the sequence, i.e. the camera of the first image is the origin of the

world co-ordinates and its orientation Ro equals identity matrix.

If more than one feature point is available between the 2 images, the Essential Ma-

7

trix can be determined from a series of equations: [xi1x
T
i0]⊗E = 0, where ⊗ denotes

point-wise multiplication, and i is the index of the feature. The series of equations can

be resolved with SVD (singular-value decomposition) algorithm. It has been shown

by several researchers ([28] ; [89]; [27]) that 7 point correspondences (i.e. features) is

sufficient to find the elements of the essential matrix [85].

In addition, [28] suggested that the point co-ordinates need to be translated and scaled

to the centre of the object, so that the sum of x and y co-ordinates is 0 and the

squared sum of both co-ordinates equals twice the number of points (
∑

i x̃i =
∑

i ỹi = 0,∑
i x̃

2
i +

∑
i y

2
i = 2n)

Uncalibrated cameras

The above equations describe an ideal case, where cameras are perfectly calibrated. The

assumption of un-calibrated cameras adds an additional complexity of the calibration

matrix K. The essential matrix becomes the fundamental matrix F :

F = K−T1 EK−10

Where K is the camera calibration matrix. Or, F = [e] × H̃, where e is the focus of

expansion and matrix H̃ is one of many possible homographies [27], [19].

Calibration Matrix

While it is possible under certain constraints to convert projective reconstruction into

a metric one, i.e. recover calibration matrices Kj associated with each image (self-

calibration [27]), most 3D reconstructions assume pre-calibrated cameras or images

taken with a single camera with fixed intrinsic parameters. F · du s u0

0 F · dv v0

0 0 1

where F is focal length, du and dv - size of the camera sensor per pixel, u0 and v0 -

translation of the camera centre with regard to the image [81].

8

Figure 2.2: Triangulation illustration.

Bundle adjustment

Two images with 7 point correspondences is sufficient to estimate the Fundamental ma-

trix, so each new image or each new point-correspondence overdetermines the system.

A cost function can be introduced that aims to minimize the re-projection error. The

system of equations can be solved with a non-linear method. There are two options

for bundle adjustment: this can be done incrementally - as each new image is added -

or at the end of the process with all images.

Triangulation

The last topic to discuss in the basics of 3D reconstruction is triangulation. This is a

method to estimate depth to the object after the Fundamental matrix is known.

The method aims to minimize the projected error

cost(X) = dist(x, x̂)2 + dist(x′, x̂′)2

while satisfying x̂′TFx̂ = 0, where F is fundamental matrix and x̂, x̂′T are projections

of 3D points x and x′ onto the epipolar line. Demonstrated in Fig. 2.2.

The fundamental matrix and epipolar correspondence lie at the heart of SfM algorithm,

as any estimation will start from finding the matrix correspondence between the two

images.

9

2.1.3 Structure from Motion

The following two sections describe Structure-from-Motion (SfM) and Multi-view stereo

(MVS) algorithms. These correspond to obtaining sparse 3D point cloud reconstruc-

tion and camera positions (SfM) and dense 3D surface reconstruction (MVS).

The typical workflow of a SfM algorithm is as follows [75]:

1. Feature extraction and feature descriptors.

Correspondence between images is found based on distinctive points, so the first

step of SfM is to identify feature points and their descriptors for each image

in the stream. One of the early methods for finding the interesting points is

Autocorrelation function (ACF) [85], which finds if the point is unique in its

surroundings. The following authors further expanded on ACF: [26], [52], [78]

etc.

Suitable features are then described in terms of their neighbourhood. This is to

ensure invariance to rotation, scaling, perspective distortions, lighting changes

etc.

The proposed algorithms create a description of the point’s neighbourhood:

• SIFT [51]

• SURF [4]

• BRIEF [6]

• ASIFT [59]

• LDAHash [83]

For this work, the interpolated images are intended to be used in 3D reconstruc-

tion, and because the images are produced with a neural network an issue of

blurriness and ghost artefacts can occur in generated images and. These may

affect feature detection and make it difficult for SfM to place features correctly.

10

2. Feature Matching

The above features are matched. The simplest approach is to test every image

pair and for every feature in the first image to find the most similar feature in the

second image (similarity metric). The computational complexity of this approach

is O(N2
IMAGESN2

FEATURES), so cannot be applied to large image collections

[75]. There is research to improve the efficiency of the matching, for example,

k-dimensional trees and ANN (Approximate Nearest Neighbour) [80].

3. Identifying geometrically consistent matches

Some feature matches may be excluded when they are checked for possible geo-

metric transformations (homography, fundamental and essential matrices). If a

valid transformation maps a sufficient number of features between the images,

they are considered geometrically verified. RANSAC algorithm is usually used

for the outlier detection [75].

4. Initialisation before reconstruction and image registration

SfM chooses the appropriate initial pair of cameras that would represent the origin

of the world co-ordinates. Typically, these will have many common features and

a wide baseline [80].

The order in which the images will be added is important. New images can be

registered to the current model by solving the Perspective-n-Point (PnP) prob-

lem. The PnP problem estimates the pose of the camera for new image and, for

uncalibrated cameras, camera’s intrinsic parameters. Every new image provides

additional 2D-3D correspondences. [75].

5. Triangulation

Triangulation method is used to compute 3D space point X from feature point

correspondence (x ↔ x′). Again, several different methods are proposed. [27]

describe triangulation suitable for different types of transformations (affine, pro-

jective, etc). They discuss the differences between linear triangulation method

(DLT, inhomogeneous), error minimisation, Sampson approximation and solving

a 6-degree polynomial.

11

6. Bundle Adjustment

Bundle adjustment minimizes the reprojection error as more 2D-3D correspon-

dences are added to the system. It performs a joint non-linear refinement of

parameters Pc (Camera position and intrinsic parameters) and point positions -

X. The following formulae defines bundle adjustment, where E - reprojection

error, xj - co-ordinates of the point in image j, ρj - loss function to down-weight

the outliers and π symbolises the function that converts scene points into image

space [75].

E =
∑
j

ρj(‖π (Pc, X)− xj‖22)

The output of the SfM stage is a sparse, unscaled 3D point cloud in arbitrary

units along with camera models and poses. This can be resolved into metric

reconstruction if camera calibrations are known, or if metric parameters of some of

the points are known (for example, ground-control points in case of georeferencing

[80]) .

2.1.4 Multi-view stereo

MVS provides a complete 3D reconstruction or dense modelling of the object from

a known sparse 3D cloud and known camera positions and intrinsic matrices. [80]

summarises the review of MVS methods by As detailed by [75] with reference to [77],

there is a wide variety of MVS algorithms, which can be classified into:

1. Voxel-based methods which are 3D grids that are occupied to define the scene

(for example, [76]).

2. Surface evolution-based methods that use iteratively evolved polygonal meshes

(for example, [22]).

3. Depth-map merging methods where individual depth maps showing the distance

between the camera viewpoint to the 3D scene objects are combined into a single

model (for example, [43])

4. Patch-based methods where collections of small patches or surfels represent the

scene (for example, [68]).

12

The last two steps in MVS are to generate a polygonal 3D mesh from dense point

cloud. This can be achieved with Poisson Surface Reconstruction (PSR) [37]. Texture

is then added with Texture mapping.

It can be seen that 3D reconstruction is a multi-step process, where different method-

ologies can be selected at every step. The particular choice of algorithms for each stage

will strongly affect the accuracy of 3D reconstruction.

2.1.5 Shape-from-Silhouette

Figure 2.3: SfS - intersection of sil-
houette cones [57]

A number of techniques have been developed to

reconstruct a 3D volumetric model from the in-

tersection of the binary silhouettes projected into

3D. The resulting model is called a visual hull [16].

“Suppose that some original 3D object is viewed

from a set of reference views R. Each reference

view r has the silhouette sr with interior pixels

covered by the object. For view r one creates the

cone-like volume vhr defined by all the rays start-

ing at the image’s point of view pr and passing

through these interior points on its image plane. It is guaranteed that the actual ob-

ject must be contained in vhr. This statement is true for all r; thus, the object must be

contained in the volume vhR = ∩r∈Rvhr. As the size of R goes to infinity, and includes

all possible views, vhR converges to a shape known as the visual hull vh∞ of the original

geometry. The visual hull is not guaranteed to be the same as the original object since

concave surface regions can never be distinguished using silhouette information alone”

- from [57]. See Fig. 2.3.

SfS requires known camera positions, but once these are available this reconstruction

method has many advantages: silhouettes are easy to obtain, especially in a green

room scenario, the implementation of SfS methods is relatively simple (voxel carving

is one of the techniques) and the reconstruction always contains the convex hull of the

object [10]. For this research this method is the selected photogrammetry method as

silhouettes do not need the exact color details and are less sensitive to blurriness, as

13

compared to SfM.

2.2 View interpolation

[34] proposes the following classification of Image-Based Rendering (IBR) techniques.

Fig. 2.4 shows a graph of IBR techniques classifications. View interpolation and

view morphing are on the left of the continuum as relying on rendering with implicit

geometry and acting on pixel-per-pixel basis.

Figure 2.4: IBR techniques classification [34]

14

2.2.1 Single image interpolation techniques

This dissertation is primarily concerned with view interpolation between two views,

but interpolation techniques are also applicable to a single image. These belong to

a field of digital image processing and are required when images are resized, rotated

or transformed. It is worth mentioning single image interpolation techniques as they

can also be applied to the result of the two frame interpolation. The interpolation

techniques for a single image include:

• 2D nearest-neighbour interpolation

• Bilinear interpolation (2x2 neighbourhood)

• Bicubic interpolation (4x4 neighbourhood)

• Spline and Sinc interpolation

• Natural neighbour interpolation using Voronoi cells

• Kriging based on Gaussian distribution

When applied these can produce artefacts in the interpolated images: aliasing, blur-

ring, edge halo (McHugh, 2018). These can be rectified with anti-aliasing, interpolation

that is “edge-aware” or “weighted edge-aware” (Paluri 2012).

Interpolating between two views

Interpolation between two views belongs to two broad categories:

1. Spatial interpolation of image sequences, when camera position changes and the

objects are static.

2. Temporal interpolation of image sequences (video interpolation) - when objects

in the images/ frames can move. In practice, video interpolation may combine

both the moving camera and non-static objects hence incorporating spacial in-

terpolation.

15

The simplest technique for interpolation between two images is linear interpolation

where the intermediate pixel can be calculated at any intermediate point α ∈ [0, 1]

with:

αI2 + (1− α) I1

Where I1 and I2 are pixel values in image 1 and 2. This method produces blurry result

where both of the original images can still be distinguished.

2.2.2 Spatial interpolation

Feature based image morphing

Early spatial interpolation was introduced by [9]. They worked with computer graphics

(CG) images in order to improve the speed of generating CG views. Their technique

first determined pixel-by-pixel correspondences between images and stored morph maps

for further calculation. When required positions and colors of the points were linearly

interpolated. As the authors worked with synthetic images, range data and the cam-

era transformations were readily available. They were able to synthesize arbitrary

intermediate points of view with bi-directional mapping. The new views only had

view-independent shading.

[76] worked with natural images and assumed known camera projections. They ex-

panded on view morphing techniques aiming to keep the shape of 3D objects. The

authors first resolve the case of parallel views and prove that for parallel views with

orthographic projection linear interpolation between feature points produces the cor-

rect result. For non-parallel views, image re-projection is used - this allows to move

the image to a different plane using homography matrix.

Their algorithm is composed of 3 steps:

1) Pre-warping - applies reverse homography camera matrices to the 2 images, to bring

the images to a single plane and all 3 cameras to a single line.

2) Morph - linearly interpolate position and colors between 2 images.

3) Post-warping - apply homography of the target image camera to obtain the final

view.

16

Both works by [9] and [76] had a big influence on the subsequent research.

Before proceeding to the more recent interpolation techniques, two methods applicable

to spatial view interpolation need to be described here: forward mapping and backward

(inverse) mapping.

Forward Mapping

Forward mapping maps each pixel on the reference view(s) to the target view using

some form of geometry, e.g., depth map (explicit geometry) or correspondences between

views (implicit geometry)[34]. If xt - 2D point in the target image, xr - 2D point in

the reference image, X - point in 3D space, Cr and Ct - camera positions for reference

and target images, Pr and Pt - camera projections, ρr and ρt - scaling factors.

ρtxt = Pt
−1 (Cr − Ct) + ρrPt

−1Prxr

The resultant pixel xt in the target image can be evaluated from the above equation.

There is a problem with this approach - not all pixels in the target image may be

populated and therefore will need to be interpolated, or at the same time as many

pixels may land on the same pixel in the target image. Even after the interpolation

there may still be holes in the image due to magnification and disocclusion. [34]

Therefore, the more traditional approach to use is the reverse of forward mapping:

Inverse mapping

In inverse mapping the pixel mapping in the target is found by tracing the ray from

the target view back to the reference view [34]:

ρrxr = Pr
−1 (Ct − Cr) + ρtPr

−1Ptxt

Or, expressed in terms of homography H = P r
−1Pt:

xr = Hxt + d e

Where H defines the 2D planar perspective transformation from target screen to ref-

erence camera, e is the epipole, d is a scale factor and d e therefore defines epipolar

17

line.

Inverse mapping ensures that there are no gaps in the target image. However, if xt is

occluded in the reference view the search yields no result [34].

More recent references on view synthesis are able to work with un-calibrated cameras.

[21] expands the work of [77], work with uncalibrated cameras and proposes a new al-

gorithm based on interpolating homographies rather than pixel positions and colours.

[25] combines spatial interpolation based on feature matching with temporal interpo-

lation based on optical flow (see below). They assert that their approach is suited for

wide-baseline setups, where dense stereo matching cannot be applied.

2.2.3 Temporal / Video interpolation

For the temporal interpolation the subject may be moving at the same time as the

camera, which creates complicated motion, occlusions etc. It may not be possible to

simply interpolate based on homographies, also the camera movement is un-known.

According to [95] the general problem of image morphing techniques is that the warp-

ing and blending might introduce errors when dealing with complex motions between

the known images, especially in presence of (dis-)occlusions (caused by moving objects)

the approach might exhibit artefacts in these regions.

Optic flow.

A few researchers worked on the image interpolation with optical flow - wrapping the

optical flow with input frames to get the interpolated frames - [54], [7], [95] etc. [95]

computes the optical flow between 2 interpolated images - this is a bi-directional pro-

cess as both forward and backward flows are computed. He uses [96] for estimating

the optical flow. As the result, because the path is defined at every pixel, no holes are

produced when generating interpolated frames.

Another approach is to employ dense image correspondences. These are partially based

on the above spatial techniques and homographies: [82],[46].

As an alternative approach, a method based on Fourier transform is recently used

18

Figure 2.5: Comparing linear interpolation results with non-linear interpolation using
Radon-CDT space. Linearly interpolated images in left example top raw and in right
example bottom-right [40].

by [40]. He proposes linear interpolation in Radon Cumulative Distribution Transform

space, where the interpolated image is still linearly separable into the 2 original images.

The pixel location information is encoded in transport flows (optimal transport metric),

so each pixel and neighbourhood are considered from ‘Lagrangian’ point of view. The

transform captures translation and scaling, as well as more complicated transforma-

tions - see Fig. 2.5 for an example of the method applied to capturing movement and

face interpolation.

Interpolation with dimensionality reduction (Isomap) is proposed by as a technique

that is able to keep the 3D shape of the object, but seems to only be applicable

in the case of repetitive motion, i.e. camera rotating around a rigid object, person

waving hand etc [72]. The method finds feature point correspondences between the

interpolated images and interpolates a curve between the data points in the feature

space, before fitting the intermediate images to the curve.

As a conclusion for this section, we can summarize that that important properties of

the interpolated frame for 3D reconstruction are:

• Keeping features and edges

• Correct location of features and edges

19

• Sharp

• No ghost artefacts

• No holes

2.3 Neural networks and Deep learning

2.3.1 Convolutional Neural Networks (CNNs)

CNNs have revolutionised image processing in the last decade. They were the first

successful application of deep-learning architectures.

Figure 2.6: Example 5x5 feature maps for different hidden layers of a CNN trained to
classify hand-written digits [60].

Their success in image processing is attributed to their sparse connectivity, which make

processing images more computationally efficient. Also, parameter sharing - unlike tra-

ditional neural net where each weight is only applied once, the convolution kernel is

applied to every pixel in the image, which makes it possible to extract the feature

independent of the location in the image. CNNs are also equivariant to translation

20

meaning that translation in the input affects the output in the same way [23].

While CNNs have achieved impressive results in image processing, there is still lack

of understanding of the internal operation and behaviour of complex models. [102]

propose a new approach to visualisation of individual feature maps at any layer in the

CNN model. They use a multi-layered Deconvolutional network (deconvnet) to project

the feature activations back to the input pixel space. [60] uses this technique to visu-

alise feature maps of a middle layer in a CNN for hand-written digit classification - see

Fig. 2.6. Each of the 20 maps in the figure represent a 5x5 block image, corresponding

to the 5x5 weights in the local receptive field. Whiter blocks mean a smaller weight,

darker blocks mean a larger weight. It can be seen that the features are quite compli-

cated and not random - all the neurons in a single hidden layer will detect the same

feature, just at different locations in the input image.

Figure 2.7: Example CNN architecture with 3 convolutional layers. Size of the square
shows the size of input images, length of the cuboid - number of hidden layers (source:
author)

Fig. 2.7 displays an example of an architecture of a CNN deployed for image classi-

fication - clothes items in this case. This networks consists of 4 convolutional layers

21

interlaced with pooling layers (activation layers not shown). As is typical for a feature

extractor - the image size gets smaller (from 28x28 to 7x7 pixels) as the number of

hidden layers in the network grows (to 324 hidden layers). The last 2 layers in the

network are fully connected allowing for the classification of the images.

The operation of convolution and local receptive field is demonstrated in Fig. 2.8. This

shows a local receptive field of 5x5 pixels corresponding to a single neuron in the next

hidden layer.

Figure 2.8: Example of a convolution operation ap-
plied to a local receptive field [60].

Convolution is an operation on

two functions of real-valued ar-

gument. Usually in image pro-

cessing the first function is a 2D

image or a 3D tensor (including

time parameter) - in case of a

video. The second function is the

convolution kernel, or sometimes

it’s called feature map. The lat-

ter is usually much smaller in size

than the image.

In the discrete domain the formulae for convolution can be written as:

S (i, j) = (I ∗K) (i, j) =
∑
m

∑
n

I (m,n)K(i−m,j − n)

Sometimes for implementation this is re-written as equivalent

S (i, j) = (K ∗ I) (i, j)

as operation is commutative. Also, alternatively, the calculation can be done for cross-

correlation where the kernel is not flipped. This is used in implementation by many

neural network libraries.

The layers in convolutional network are sparsely connected. This is illustrated in Fig.

22

Figure 2.9: Comparison of connectivity in a traditional NN (bottom row) and CNN
(top row). Image on the left shows the effect of a single input pixel x3, image on the
right show the receptive field of a single output pixel s3 [23].

2.9 - input x3 only affects some of the output pixels, where in a traditional neural

network - all outputs are affected by all inputs. Same for the receptive field - output

pixel s3 is only affected by 3 inputs rather than all.

The connectivity can be even sparser if stride bigger than 1 is used, i.e. kernel is not

applied to every pixel, but to every 2nd pixel, 3rd etc. This is equivalent to downsam-

pling in full convolution function and is used for computational efficiency and low-rate

sampling.

Usually, the convolution operation is combined with pooling. This can be:

• A maximum value in the neighbourhood (max pooling)

• Average of a neighbourhood (average pooling)

• L2-norm of the neighbourhood

• Weighted-average based on a distance from the central pixel

23

Usually neighbourhoods are square of size 2x2 or 4x4. Pooling operation removes small

changes, makes features invariant to small translations, or can introduce an arbitrary

invariance to other transformations depending on the parameters [23].

So, a typical layer of CNN comprises of the following - see Fig. 2.10:

Figure 2.10: Typical layer of a
CNN [34]

1. Convolution

2. Activation function (ReLU for example)

3. Pooling

The CNN benefits from having multiple convolu-

tional layers - which is the “deep” part in deep-

learning. For example, 16-19 layers in VGGNet,

22 layers in GoogleLeNet/ Inception, and up to

152 layers in ResNet - all of these neural networks

were developed in 2014 - 2015 [13].

CNNs are used in computer vision extensively -

they have a proven application in image classifi-

cation and object recognition, but they can also be

used for segmentation, super-resolution and image

generation. The last application is used in this

research in the form of encoder-decoder architec-

ture, where initial convolution layers are used to

extract features, then up-sampling layers are used

to create a new image using the extracted features.

2.3.2 Capsule Networks

There are certain drawbacks of CNNs. Spatial relationships between components are

not very important to a CNN. Fig. 2.11 illustrates this concept - both images in the

figure are recognised as “face” by CNN. This is because in CNN features are combined

into higher level features based on a weighted sum, so the positional parameter is lost

[66].

[30] developed CapsuleNets to counteract this problem. CapusleNets use iterative pro-

24

Figure 2.11: Both images are classified as a “face” by CNN

cess called “routing-by-agreement”, that “updates the probability with which a part

is assigned to a whole based on the proximity of the vote coming from that part to

the votes coming from other parts that are assigned to that whole” [30]. This allows

knowledge of familiar shapes to derive segmentation.

A capsule network has several layers of capsules. Each capsule consists of a 4x4 pose

matrix, M , and an activation probability, a. CapsuleNets convert the set of activa-

tion probabilities and poses of the capsules from one layer into the next layer using

Expectation-Maximisation procedure (EM) [30].

[30] trained CapsuleNet and CNN for comparison on the same small set of 3D objects

(5 classes, 5 objects for each class) imaged from different azimuth, elevations etc. Each

object had 18 different azimuth, 9 elevations and 6 different lighting conditions. The

author shows that although there is no advantage over CNNs on familiar viewpoints.

CapsuleNets performed considerably better on novel viewpoints (13% error vs 20% on

different azimuth, 12% vs 18% error on different elevation).

This research is very new and so far, was applied to classification and object segmen-

tation tasks: ([8], [41]). It seems however that it should have good potential for video

interpolation as this presents the subject from different novel points of view.

25

2.3.3 Recurrent Neural Networks

Figure 2.12: Architecture of LSTM recurrent network “cell” [23].

Recurrent Neural Networks (RNNs) are designed for processing sequential data, this

can be a sequence of human limb positions in a video or a sequence of words in a

sentence. If we had τ positions (states) in a sequence, the output from processing the

position t ∈ [0, τ] is passed for processing to position t+1. RNNs and in particular

gated RNNs (Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)) are

known to be very effective at natural language processing, handwriting recognition,

speech recognition, image captioning and parsing [23].

There are many different architectures of RNNs, the simplest once having one layer,

but they have been shown to be more effective with multiple layers, i.e. deep RNNs

[65]. Some allow input not just from the previous state, but from all the previous

states, some allow self-input.

Below is the architecture of LSTM recurrent network “cell”. LSTM NNs allow not

26

only the input from the previous states in the sequence, but also self-input which is

gated by the previous states. “Cells” are connected recurrently to each other.

While natural language processing is the most known use of RNNs, there are some

relevant applications for video processing and video generation which are discussed in

the next chapter.

2.3.4 Autoencoder

Autoencoders (AE) are one of the oldest types of neural networks that has existed

for decades. This neural network can generate new images from input images and is

employed in generative neural networks discussed below.

The network consists of two parts:

1. encoder function h = f (x), where x is the input (image) and

2. decoder function r = g(h) that produces a reconstruction based on the input.

h - is the code used to represent the input, for example, the features of the input image

[23].

At its simplest x = g(f (h)) meaning that the original image is copied, which is not very

useful. The network therefore needs to be constraint by regularizers. Undercomplete

and sparse autoencoders can learn features and be used for dimensionality reduction.

Denoising autoencoders (DAE) were used to de-noise images. Contractive autoencoders

(CAE) produce tangent vectors similar to PCA, so they learn a more powerful nonlinear

generalization of PCA [23].

While autoencoders themselves are used for dimensionality reduction and information

retrieval tasks, they are the theoretical foundation for the more advanced generative

networks.

2.3.5 Generative Adversarial Networks (GANs)

GANs have received recent attention. Pioneered in 2014 by [24], this network consists

of two neural networks:

27

Figure 2.13: Examples of images generated by GAN. Rightmost column shows examples
of the original images [24].

1. a generative model G that generates the images or video, and

2. a discriminative model D that attempts to distinguish the generated images from

real-samples. It outputs the probability that a sample came from the training

data rather than the generating model G

The training procedure for G is to maximize the probability of D making a mistake.

If G(z, θg) is the differentiable function represented by a multilayer generator per-

ceptron with parameters θg. And D(x, θd) is the second multilayer discriminator

perceptron that outputs a scalar. The value function is then calculated as:

min
G

max
D

V (D,G) = Ex∼Pdata(x) [logD (x)]− Ez∼Pz(z)[1−D(G(z))]

The work of [24] was further improved on by [69] who created a deep convolutional GAN

(DCGAN). DCGAN performs very well in the image synthesis tasks - see examples in

Fig. 2.14.

[15] expanded on GANs allowing these to generate images from a requested category -

conditional GANs. His network is called LAPGAN.

2.4 Neural networks in view interpolation

Several researchers proposed view interpolation methods using neural networks. This

section reviews the advances in this field.

28

Figure 2.14: Images of bedrooms generated by DCGAN [23].

2.4.1 Deep-learned optic flow

The optic flow approach for image interpolation described above relies on the accurate

estimation of the optic flow. Several researches proposed optic flow neural networks.

For example, FlowNet by [17] used CNN for flow estimation, FlowNet2.0 by [33] im-

proved the quality of the estimation by stacking several CNNs. EpicFlow by [71],

task-oriented flow by [98] and Spatial Pyramid Network SPyNet by [70] are other ex-

amples. [61] uses PWCNet optical flow neural network by [84] in his work on view

interpolation - brings the frames closer together, before producing the final image us-

ing a different neural network.

The challenges in training deep neural network for optical flow estimation - differ-

ent scale of motion, changes in brightness etc - are similar to view interpolation and

therefore are relevant to this work.

2.4.2 View interpolation based on deep-learned phase

[58] proposes a new CNN - PhaseNet - for view interpolation. Their work is “based

on the intuition that motion of certain signals can be represented by the change of

their phase” [58](Fourier transform). PhaseNet “mirrors the hierarchical structure

of the phase decomposition which it takes as input. It then predicts the phase and

amplitude values of the in-between frame level by level. The final image is reconstructed

29

from these predictions at different levels”. PhaseNet CNN directly estimates phase

decomposition of the intermediate frame without optical flow. The authors propose a

new loss function - “phase loss” - based on the phase difference between the prediction

and the ground truth. To cope with different scales and orientations the input images

are first decomposed into complex-valued sub-bands Rω,θ(x, y) using steerable pyramid

filters ψω,θ. This forms the input to their decoder network where resolution is increased

level by level. The training was based on 10k triplets from the DAVIS video dataset,

from which 256x256 patches were selected randomly. Their work is compared to early

implementation by Niklaus [63], where it performs better only under certain scenarios,

like changing light conditions.

2.4.3 Pixel-by-pixel view interpolation

[105] propose video synthesis approach based on deep voxel flow (DVF). They build up

on previous paper on Deep Voxel Flow by [47]. The architecture of the neural network

(DVF-RCL) is based on encoder-decoder - the first one uses CNN, the second one

RCL (Recurrent Convolutional Layers). The network ouput is 3D-voxel flow, which is

passed to a volume sampling layer to generate the intermediate frame guided by the

flow. 3D voxel flow field F = {∆x,∆y,∆t} is separated into Fmotion = {∆x, ∆y}
and Fmask = {∆t}. The spatial component Fmotion represents optic flow and the tem-

poral component Fmask defines the weights for tri-linear interpolation. The authors

use l1-norm and l2-norm losses for training, however they find that l1-norm produces

blurry results. l1 was not able to capture perceptual differences well and high-frequency

details. They then used perceptual loss, which is accepted as useful for artistic style-

transfer and image super-resolution. [47] found that perceptual loss generates visually

more realistic looking results as compared to pixel-wise loss. They used UCF-101

dataset for training with approx. 13K videos in 101 action categories and used triplets

of frames from randomly cropped 128x128 patches. DeepFlow2 is used to predict op-

tical flow [93]. The result was compared among other research to that of early Niklaus

[63], also [47] and PhaseNet [58]. They find that PSNR numerical metric is better for

perceptual loss Lf .

Next, we discuss in detail 3 implementations by S. Niklaus et al in detail:

30

• “Video Frame Interpolation via Adaptive Convolution” [62]

• “Video Frame Interpolation via Adaptive Separable Convolution” [63]

• “Context-aware Synthesis for Video Frame Interpolation” [61]

In their early work [62] proposed to estimate the color of the pixel in the interpolated

frame by convolving the two input frame patches with individually estimated special

adaptive convolution kernel. They called this method adaptive convolution (AdaConv).

Kernel estimation is done with CNN. This method replaces the traditional two step

approach to video frame interpolation using optical flow - first motion estimation, then

pixel synthesis - with a single step of local convolution over two frames. “The convolu-

tion kernel captures both the local motion between the input frames and the coefficients

for pixel synthesis”[62], so no separate optical flow estimation step is required. See Fig.

2.15 for explanation of the Adaptable convolution method.

Figure 2.15: Illustration of Adaptable convolution method. The neural network receives
2 receptive field patches - R1 and R2. The NN estimates convolution kernel K for the
selected pixel. Convolution of patches P1 and P2 is performed with kernel K to
synthesise the output pixel [62].

Fig. 2.16 shows some example convolution kernels estimated by the NN. It can be

seen that the kernel takes pixel surroundings into the account - the examples are for

pixels on the horizonal edge, diagonal edge and in a uniform area without texture. The

authors assert that sharp results can be achieved with edge-aware convolution kernels.

The CNN used 6 convolution layers with down-convolutions in between and produced

kernel images of size 41 x 82 pixels. Authors chose receptive field patches of 72 x 72

pixels and convolution patches of 41 x 41 pixel. The patches are larger than the largest

31

(a)

(b)

(c)

Figure 2.16: Kernels estimated by CNN for pixels on the horizonal edge (a), diagonal
edge (b) and in a texture-less area (c). The latter has isotropic kernel. From [62].

32

motion estimated in the images of 38 pixels. To handle the aperture problem, receptive

field patches are a little larger than the convolution patches. CNN uses a combination

of L1 and gradient loss functions. This initial implementation used spatial softmax

layer for generating the kernel images. Same kernel is applied to all 3 colour channels.

The training dataset came from carefully selected triple-patches from youtube videos -

this approach therefore has large advantage over training the neural networks for optic

flow as this requires ground-truth optic flow data.

[63] improved performance of their original method by using 1D separable kernels in-

stead of 2D kernels and estimating kernels for all image pixels at once. The latter

improvement allows to add perceptual loss to training the neural network. The net-

work was changed to employ encoder-decoder architecture that acts on 2 pairs of 1D

kernels. Down-convolution layers were replaced with average pooling. The authors

tested several options for up-sampling : transposed convolution; sub-pixel convolution;

nearest-neighbour or bi-linear interpolation. 1D kernels were 51 pixels in size.

If the above method estimates the pixel colour at (x, y) as:

Î (x, y) = K1 (x, y) ∗P1 (x, y) + K2(x, y) ∗ P2(x, y)

Where K1, K2 are convolution kernels for image 1 and image 2 at (x,y) and P1, P 2

are patches around (x,y) in the corresponding images. Adaptive separable convolution

(SepConv) approximates K1 as k1,h ∗ k1,v and K2 as k2,h ∗ k2,v . Thus, the number of

kernel parameters reduces from n2 to 2n [63].

Perceptual loss is based on the comparison of ground-truth and NN output high-level

features of images. The authors had several options for finding the features in the

images and they used feature reconstruction loss based on the relu4 4 layer of the

VGG-19 network. The perceptual loss is defined as:

LF =
∥∥∥ϕ(Î)− ϕ(Igt)

∥∥∥2
2

Where ϕ function extracts features from an image, Î is the interpolated frame and Igt

33

(a)

(b)

Figure 2.17: Grid Net architecture from [61]. Both pre-warped images and per-pixel
contextual information images are fed to NN (a). GridNet encoder-decoder NN pro-
cesses images at 3 different scales. Down-sampling, up-sampling and lateral building
blocks are details in (b).

is the ground truth image.

In their latest work [61] aimed to be able to produce an intermediate frame at an

arbitrary point in time as well as aiming to incorporate contextual information for

each pixel. The model consists of the following steps:

1. Estimation of bi-directional flow with PWC-Net neural network for estimating

optical flow (author’s own adaptation from [84])

2. Extract per-pixel contextual information - using response of the conv1 layer from

ResNet-18 [29]. The contextual vector describes pixel’s 7 × 7 neighborhood.

3. Pre-warp both images and contextual information to time t between the two

images using bi-directional flow information.

4. Generate interpolated frame Î using encoder-decoder neural network called Grid-

Net. The NN processes images at 3 scales: per-row channel-sizes of 32, 64, and

96. See Fig. 2.17 for configuration of the NN.

The authors introduce new loss function that performs better than perceptual loss

34

qualitatively - difference between Laplacian pyramids :

LLap =
5∑
i=1

2i−1
∥∥∥Li (Î)− Li(Igt)∥∥∥

1

The results of the video frame interpolation are compared to there two previous works

(AdaConv, SepConv), optical flow approach [97], deep learning-based optical flow al-

gorithm [93], phase-based approach [58].

2.4.4 View interpolation based on GANs

Several researches also attempted to use GANs for video interpolation - [42], [74]. These

can employ the above approaches to generate the interpolated images using CNN or

RNN, but have an additional discrimator neural network for ensuring the generated

images look natural. The discriminator network attempts to tell if an image is synthet-

ically generated or is a real-world image - and will reject images that look synthesised.

[42] used multi-scale CNN and WGAN-GP (Wasserstein GAN with gradient penalty)

for video interpolation. Their GAN is based on a version of GAN proposed by [2]

called Wasserstein GAN which was shown to be more stable than traditional GAN,

the authors use DCGAN for comparison. [42] use pyramid structure for capturing the

motion information of objects in images based on feature pyramids [45], as opposed

to image pyramids [31]. They proposed a new CNN for generating the interpolated

image and use WGAN adversarial training to keep generated frames natural. CNN has

a simple structure for down-sampling and deep neural network for up-sampling. They

use three part loss function for training: L1 loss, the generative adversarial loss and

the perceptual loss, and UCF-101 and HMDB-51 datasets. They compare their results

in PSNR and SSIM to [74], [56] and [47].

[31] propose an extrapolation/ interpolation framework called Multi-Scale Frame -

Synthesis Network (MSFSN) where the frame can be generated at any point in time,

not just in the middle of 2 frames. Their network represents a multi-scale pyramid of

GAN networks. Temporal aspect is achieved by feeding the temporal ratio as well as

the images for training, the training is based on triplets of images. Loss is represented

35

as a combination of 4 terms: pixel reconstruction loss; feature reconstruction loss

to encourage similarity in feature representation; adversarial loss for matching the

distribution of generated images to the data distribution in the target feature domain;

and a new transitive consistency loss to enhance their custom mapping function G with

more constraints. The mapping function G is defined as the function predicting the

frame of interest: ytp = G(xt1 , xt2 , tp).

2.4.5 Combination approaches - based on RNNs and pose es-

timation

The above approaches addressed generic view interpolation for any 2 images from a

video input. Combination approaches are also possible - for example, for interpolation

of human motion videos human pose estimation can improve the quality of the inter-

polation.

As RNNs are good at extending sequences, there is current research into modelling

human motion with RNNs. This can be used for synthesising new frames based on

the modelled motion. For example, [32] extract human pose from video data from

YouTube using Part Affinity Fields (PaF). Each part affinity is a 2D vector field for

each limb, encoding location as well as orientation information across different body

parts. This data can then be fed to RNN (3-Layer LSTM neural network in this case)

to generate human-like motion for a given class of motion from annotated video data.

This approach seems relevant to view interpolation for this project as human motion

is the primary focus of this research. If poses are estimated between 2 images - it

should be possible to predict the pose in the interpolated image. Also, it may be useful

for obtaining the training data as it can identify the videos with certain class of motion.

36

Chapter 3

Methodology

The following subjects are covered in this chapter:

• Neural Network design, incl. the NN configuration, choices for loss function and

hyperparameters.

• Multi-view cameras dataset: quick review of available real datasets and method-

ology deployed for the generation of synthetic multi-view dataset for the training

of NN.

• Evaluation techniques, including 2D evaluation of the quality of the interpolated

images and 3D evaluation using Shape-from-Silhouette reconstruction.

3.1 Neural Network Description

3.1.1 Network Architecture

The interpolation of the images was performed using a deep CNN. The configuration

of the neural network is adapted from [35] and is unchanged. The following stages are

applicable to the network:

1) Downsampling:

6 blocks of 3 convolutional layers each (so altogether Downsampling stage is 18 convo-

lutional layers deep) gradually increasing the number of hidden layers from 32 to 512.

37

These are normal convolutions of size 3 x 3, the image is padded each time and retains

the original size within each block. There is a ReLU activation after each convolution.

Each block except the last one finishes with a pooling layer of size 2 x 2. Initially the

image size is 128 x 128, so after 5 pooling layers there are 512 hidden layers of size 4 x 4.

2) Upsampling:

Downsampling is followed by Upsampling stage with skip connections back to the

Downsampling layer’s output. There are 4 upsampling blocks each consisting of 1 up-

sampling layer, one convolutional layers and activation (ReLU). After each block the

result is matched with the corresponding in size downsampling block and the latter is

added to the result (Skip connection). Next a convolutional block integrates the added

downsampling output. There are fewer upsampling blocks than downsampling blocks,

as the last block is replaced by 1D kernel upsampling and convolutions.

3) Kernel estimation:

Upsampling is followed by estimation of vertical and horizontal 1D kernels for each

pixel. The neural network is split into 4 sub-nets - vertical and horizontal 1D kernels

for each image (k1,v, k1,h, k2,v, k2,h). Each subnet has 3 convolutional layers with acti-

vation, 1 upsampling layer and 1 more convolution.

4) Creation of the final interpolated image with separable convolution

Lastly the output image is generated by applying the vertical and horizontal kernels

per patch in a convolution to produce each pixel.

Î(x, y) = K1(x, y)⊗P1(x, y) +K2(x, y)⊗P2(x, y)

where P1(x, y) and P2(x, y) are the patches centered at (x, y) in image 1 and image

2 correspondingly, and K1(x, y) and K2(x, y) are approximations of 2D convolutional

kernels with two 1D kernels: k1,v⊗k1,h and k2,v⊗k2,h.

38

Fig. 3.1 provides details of the size of each layer and summarises the architecture -

image from [63].

Figure 3.1: Overview of Neural Network architecture. Image from [63]

Data format:

While the dataset is described below, it is good to describe the data format that the

neural network accepts here. The network is trained on the triplets of images - left

camera image, ground truth (GT) camera, right camera image. In the preparation

of the dataset for the training random patches are selected centered around the same

point (x, y) for each triplet. The patches are augmented for the purposes of training

and arrive at size 128 x 128. The left and right images are combined into a single

tensor with 6 channels of size 128 x 128. The neural network accepts batches of these

tensors as input to produce the interpolated images in the batch. The GT images are

only used for loss estimation.

3.1.2 Network Loss

After the interpolated images are produced in the batch, the neural network estimates

the loss of each image. The loss function is the effective driver of the networks learning.

[106] have shown that with the same network architecture the quality of the results

can be significantly better even with the same network architecture.

[106] compare the effect of different loss functions in the case of image restoration and

determine that L2 loss (Mean Squared Error) frequently does not produce the best

result for the images, which they attribute to the way Human Visual System (HVS)

39

senses the images. For example, L2 error imposes larger penalty on large errors and

is more tolerant to small errors independent of the underlying structure of the image.

HVS treats texture-less regions differently - in these regions it is more sensitive to lumi-

nance and color variations. Similarly, [63] suggests that L2 loss produces blurry results.

Loss for a patch P for an error function E can be written as

LE(P) =
1

N

∑
p∈P

E(p)

where N - number of pixels p in the patch (from [106])

Below is the list of loss functions suggested for training the neural networks for image

generation and their mathematical expressions:

1) L2 loss (Mean Squared Error, quadratic)

MSE maximises the likelihood of Gaussian random variables.

Ll2 =
1

N

∑
p∈P

(x(p)− y(p))2

where x(p) and y(p) are the values of the pixels in the generated and GT patches.

2) L1 loss (Mean Absolute Error)

MAE is harder to compute than MSE and it is not differentiable at 0, but it does not

give greater influence to larger errors, so is suitable for image processing.

Ll1 =
1

N

∑
p∈P

|x(p)− y(p)|

3) SSIM loss

SSIM is a perception-based evaluation that considers image degradation as perceived

change in structural information, while also incorporating important perceptual phe-

nomena, including both luminance masking and contrast masking terms [104].

SSIM is defined for a neighbourhood of pixel p as:

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1

2σxy + C2

σ2
x + σ2

y + C2

= l(p)c(p)s(p)

40

where l is luminance, c is contrast and s is structure at pixel p(x, y). These values

depend on a set of parameters - µx and µy are the average values of x and y respec-

tively, σ2
x and σ2

y are the variances, σxy is the covariance of x and y on a window of

selected size (11 x 11 pixels in this dissertation). c1 = (k1L)2,c2 = (k2L)2,where L -

the dynamic range of the pixel-values. 3 k1 = 0.01, k2 = 0.03.

The loss function for SSIM is:

LSSIM =
1

N

∑
p∈P

1− SSIM(p)

[106] suggest that different values of variance σ influence the visual qualities of the

output patch - for example, smaller values of σ correctly represent edges (larger values

create a halo of noise around the edge). At the same time smaller values of σ fail to

keep the local structure and introduce splotchy artifacts, while larger values of σ do

not produce splotchy artifacts.

4) MS-SSIM loss (Multi-scale SSIM)

Similar to SSIM but computed at multi-scale given a diadic pyramid of M levels:

MS − SSIM(p) = lαM(p)
M∏
j=1

c(p)s
βj
j (p)

where l, c and s are luminance, contrast and structure at pixel p as defined previously

at scale M and j.

5) Laplacian pyramids loss

Suggested by [61] this loss measures the difference between Laplacian piramids. This

loss separates local and global features at different scales, depending on the number of

considered levels.

LLap =
5∑
i=1

2i−1
∥∥∥Lapi(Î)− Lapi(Igt)

∥∥∥
where Lapi(I) is the i-th level of Laplacian pyramid of image I. Î and Igt are predicted

and GT images respectively.

41

The authors in [61] suggest that Laplacian loss produces more pleasing visual results

then L1 loss.

6) Feature loss

Also suggested by [61], this loss is based on features φ extracted by a certain layer from

VGG-19. It is calculated as L2 distance between features in two images.

LF =
∥∥∥φ(Î)− φ(Igt)

∥∥∥2
2

For this research two loss functions were deployed:

- L1 loss

- Perceptual loss based on SSIM

While it would be interesting to try the other loss functions, time limitations of this

dissertation and GPU computing power did not permit such analysis.

Combining the loss functions or switching the loss function during training

Several researchers ([106], [35], [63]) suggested either combining loss functions with a

weighted sum or training some number of epochs with one loss and then switching to a

different loss function. For this dissertation the second approach was adopted for one

of the tests - switch from L1 to SSIM loss after 50 epochs.

Implementation details for NN

The neural network is implemented in Python and PyTorch. The training was per-

formed on NVIDIA GEFORCE GTX 1050 GPU. Training took 2.5 hours per epoch

for 51-kernal pixel and 5.8 hours per epoch for 71-kernel pixel.

3.1.3 Hyperparameters

There were two hyperparameters changed for the network training: kernel size and

batch size. The rest of the parameters were un-changed from [35], but are stated here

for completeness.

42

1) Activation Function

Convolutional layers are interlaced with ReLU activations.

Figure 3.2: ReLU activation func-
tion

Activation function ReLU - Rectified Linear Unit

- is formulated as :

f(x) = max(0, x)

Generally this activation is used for training the

convolutional neural networks as it is fast to com-

pute, compared to other activation options: Sig-

moid, TahH, LeakyReLU, etc, while the other op-

tions have not been shown to have better perfor-

mance.

2) Optimizer and learning rate

Optimizer used in the training is torch.optim.adamax function with learning rate of

0.001. Adamax is Pytorch implementation variant of Adam algorithm based on infinity

norm - there is also a straightforward Adam implementation (torch.optim.adam).

Adam as a method of stochastic optimization proposed by [39]. The name Adam is

derived from adaptive moment estimation. According to the authors of the method:

“Adam only requires first-order gradients and therefore has little memory requirement.

The method computes individual adaptive learning rates for different parameters from

estimates of first and second moments of the gradients.”

The method combines the advantages of two previous methods: AdaGrad [18] and

RMSProp [87]. The first method works well with sparse gradients, while the second is

applicable in on-line and non-stationary settings [39].

The learning rate used in the training is related to the choice of the optimizer and is set

as 0.001. For example, [53] analyses the performance of different optimizers depending

on the learning rate only - see Fig. 3.3. The authors run the test on MNIST dataset

training CNN with Tensorflow. It can be seen (see grey line in the figure) that the

learning rates of 0.0001-0.01 are suitable for Adam optimizer, albeit the training times

vary. Similar results were obtained by the author of this dissertation when testing with

FCN (fully connected network) on MNIST digits dataset.

43

Figure 3.3: Performance of different optimizers depending on the learning rate (time
of more than 120 seconds means the network failed to train. Image from [53].

3) Batch size

The experiment deployed batch size of 32 for training the networks with 51-pixel size

kernel and batch of size 16 for training the networks with 71-pixel size kernel. This

was primary due to the memory limitations - 71-pixel size kernel requires over 2GB

of memory (854pixels x 480 pixels x 3 colors x 71 kernel x 32 batch size = 2,794Mb),

while 51-pixel kernel requires just under 2GB. The former could not be processed with

the graphics card available.

4) Kernel size

This hyperparameter is specific to the Adaptive Separable convolution method used

in this research. The output of upsampling the left and right images is split into 1D

horizontal and vertical kernels of specific size. This kernels are utilised to calculate the

value for a single pixel in the image. Larger kernel size will mean that a larger area

around the pixel is analysed and used for the reconstruction of the pixel. [63] used

kernel size of 51-pixel, as there largest motion was just over 40 pixels. The images

used for training and testing this neural network were sometimes as far as 160 pixels

apart, so a bigger kernal size was attempted - 71-pixels. The results of the two neural

networks are compared in Chapter 4. It is possible to attempt to work with kernel size

44

of 160-pixels. The batch size would have needed to be reduced to 8 because of memory

limitations. This is something that can be done in the future iterations.

Other hyperparameters included: number of hidden layers/ channels (left unchanged

from the original model), weight initialization (gradients were initialised to zero) and

data augmentation (random rotation between -90◦and +90◦, random vertical/ horizon-

tal flip, random temporal order). The models were trained to 50 epochs.

3.2 Multi-view camera dataset

The main contribution of this dissertation was to investigate multi-view camera datasets

suitable for training the neural network or alterntively to design a synthetic dataset.

3.2.1 Real-life datasets

Real-life datasets were analysed: see below table of online multi-view datasets that

were considered 3.1. There are several requirements on the contents of the dataset:

firstly, many subjects are required. Several datasets had a large number of people

participating - e.g. OU-ISIR Gait database had 10307 people [86], HUMBI had 164

people [100], Casia Gait filmed 124 people [107].

Secondly, the cameras needed to be close together and needed to have , 3 cameras within

about 30 ◦angle, where the middle camera could be used as the GT. This is because

the neural network is trained to create a pixel from the available pixels in left and right

image - so the scale of motion is a constraint.

4 datasets had enough cameras to satisfy this requirement - OU-ISIR Gait, HUMBI,

Dyna [67] and Casia Gait, the rest of the datasets had cameras too far apart to be

suitable for the training. OU-ISIR Gait dataset had 7 cameras within 90 ◦angle, and

the same amount of the other side of the circle, so the angle between cameras is exactly

15 ◦. HUMBI had 72 cameras focused on the body (the rest were pointing at the face

of the subject) situated in 2 rows, so 10 ◦between each two cameras in each row. Casia

Gait had 11 cameras at 18 ◦to each other on one side of the room only, so cameras are

a little wider than required.

Lastly the quality of the images was of concern: HUMBI and Casia Gait only had

45

Database name Contents Number of cameras Number of people

OU-ISIR Gait People walking 14 10307
Database [86] Silouettes only
AVAMVG [50] People walking 6 20

Full PNG images
HumanEva [79] 6 human motions 7 4

incl walking
HUMBI [100] Human poses. Available size 107 164

192x108 pxls for 72 cameras
KTH [36] Football players 3 2
Human 3.6M [101] Human poses 4 11
Dyna [67] Human poses 22 10
Casia Gait [107] People walking 11 124

Image size 323x242 pxls

Table 3.1: Online multi-view datasets

images of small size available - 192x108 and 323x242 respectively. The latter also had

very low quality of the images - in low lighting and blurry. OU-ISIR Gait dataset

provides images of large size - 1280 x 960, but only image silhouettes are available for

the download.

Also, none of the available footage was filmed in a green room, which was the suggested

benefit to the dataset.

Another limitation of the available datasets was - the camera angle is fixed within the

dataset, even when many subjects are filmed. So, any neural network would be over-

trained on the particular camera setup and may not work as well in other camera setups

After having considered the available real multi-view datasets it was deemed appro-

priate to design a synthetic dataset to overcome all of the above limitations. In the

future it may be beneficial to add the real data to the synthetic dataset and re-train

the network.

46

3.2.2 Synthetic dataset

Synthetic multi-view dataset was created for the purposes of this research.

The human models for this dataset are based on research by [49]. They present Skinned

Multi-Person Linear model (SMPL) - “a learned model of human body shape and pose-

dependent shape variation”. The learned shape is based on 1700 registrations for males

and 2100 for females, the learned poses are based on 891 pose registrations spanning

20 females and 895 pose registrations spanning 20 males. As the result the authors

offer a female and a male model that come with 10 shape blendshapes and 207 pose

blendshapes.

The human models, their motion and multi-view camera setup around these are mod-

elled in Python module in Blender. The workflow for generating the initial moving

models comes from [91]. The authors create a synthetic dataset called SURREAL that

they use to train a neural network for estimating human pose, shape, and motion from

images. We adapt the same approach to generate a synthetic dataset for producing

multi-view camera images.

Figure 3.4: Illustration of the camera setup in a Blender file. Green arrow show the
person’s range of movement. Blue circle - the positions possible for GT camera. The
left and right camera are always on a tangent to GT camera focus line.

47

The following is the workflow for generating the multi-view camera dataset (steps 1-4,

7 are following from SURREAL dataset, steps 5-6, 8 are custom):

1) Select random gender (male/ female)

2) Select random clothes texture (930 female, 925 male options)

3) Apply cloth texture to body parts (24 body parts)

4) Select random motion capture file (5338 motions)

5) Generate random position for the GT camera and add the camera.

6) Generate positions for left and right cameras and add the cameras.

7) Apply motion capture at selected key frames (for this dataset - 10 frames per file

taking every 30th frame, so that there is a range of motion captured from each motion

file, but only 10 frames, so that the network can look at many randomly generated

models)

8) Store image captured at every key frame for the 3 cameras.

All images have the same background - a cut from the real green-room footage. Over

800 different random scenes were generated to produce 8506 triplets of images for

training the neural network and further 1322 triplets for testing.

Steps 5-6 are described below in detail.

Generating random positions for the 3 multi-view cameras

The position of the GT camera has the following parameters - see Fig. 3.4 for the

illustration of the camera setup:

• Distance from camera to “center” point (radius): 3 to 5 m

• Camera yaw around the vertical axis through the “center” point: 0 to 360◦

• Camera height: 0.9 to 1.9 m

• Camera roll random - from pointing to the “center” point: -10◦to +10◦

In addition the left and right camera have the following parameter:

• Left and Right camera distance from the central camera (same distance for both):

0.05m to 50 m

48

(a)

(b)

Figure 3.5: Illustration of the possible improvements to the dataset: (a) Left and Right
camera pitch to horizontal line, (b) Cameras away from the tangent line.

The parameters are random and picked for each scene with a random character. About

10-20 key frame images are taken with the current camera setup and the current char-

acter, then the next scene will have a different camera setup/ character.

All 3 cameras are pointed towards the “center” - which is a point between the position

of the person in the first frame and the center of their movement. This is to maximize

the likelihood of the person always being fully in the shot. Sometimes this was not

the case and the algorithm removed all empty triplets from the training set. So, while

most samples have the person fully in the shot, there are some cases where the person

is too close to the camera or walking out of the shot - these “half-shots” were deemed

suitable for the training and remained in the dataset.

To state some of the limitations of the current dataset that will need to be addressed

in the future:

1. All 3 cameras are on the same level. It would be beneficial to change the “pitch”

of the left and right cameras - as this would be relevant to realistic setups. See

Fig. 3.5 (a) for illustration of the concept.

2. 3 cameras are pointing towards the “center” point. Sometimes multi-view setup

would have cameras setup in parallel, so a range of values from pointing to “cen-

ter” point to “parallel” should be introduced in the setup. The author attempted

49

Figure 3.6: Examples of images generated.

to have the cameras “parallel”, but found that this meant that the character in

the left and right image were further in terms of pixels, so created a harder case

for interpolation. On the other hand, having cameras focus on a single point

improved the interpolation results.

3. All 3 cameras are on a single tangent line. In reality cameras would frequently

be setup on a circle around the subject, so this case should be addressed. See

Fig. 3.5 (b) for illustration of the concept.

4. Background is always green and therefore only useful for the green-room setup.

This is not useful for real-life scenarios, unless the background is removed first.

The dataset can be generated “in a cube” with real 3D backgrounds to overcome

this limitation. SURREAL dataset, for example, used a set of backgrounds that

came from LSUN dataset [99] - however these were 2D backgrounds.

See Fig. 3.6 for examples for images produced. 8504 triplets of images were generated

(approx. 850 different scenes, characters and motions). From this - triplets of patches

were generated randomly. Upto 20 patches were allowed to come from the same image.

All triples were checked for the character being present in the shot - any with at least

2 green images were removed. 140505 triples were included in the final patches dataset

used for the training. In addition 1322 triplets were produced for testing.

3.3 Evaluation

This section describes the evaluation methods applicable to assessing the quality of the

generated images. First, 2D image comparison methods are discussed: PSNR, SSIM

50

and Silhouette assessment. Next, the steps taken for 3D evaluation are discussed - in-

cluding Shape-from-Silhouette reconstruction details and Hausdorff distance measure.

3.3.1 MSE and PSNR

Quality metric traditionally used for assessing the image quality is the mean squared

error (MSE). This calculates the average square intensity differences between pixels in

a reference image and a “distorted” image. A version of this metric frequently applied

to measuring image quality is: Peak Signal to Noise Ratio (PSNR). While MSE rep-

resents the cumulative squared error, PSNR is a measure of the peak error. The lower

the value of MSE, the lower the error and higher the quality of the image. PSNR is

measured in decibels (dB). Higher PSNR means better quality of the reconstructed

image.

First, MSE is computed as:

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ·N

where M is number of rows and N is number of columns in the input images. Next

PSNR is computed as:

PSNR = 10log10(
R2

MSE
)

where R is the maximum fluctuation in the input image data type, so for the color

images used in this research its a number between 0 and 255.

The calculations are implemented using PyTorch torch.Tensor to speed up the cal-

culations.

For this research, because the image background is green and the same for all images,

the green pixels in the range of the background image were not considered. The results

in Chapter 5 therefore only consider significant pixels (non-green).

51

3.3.2 SSIM

According to [92] PSNR and MSE do not convey perceived visual quality. They de-

veloped measure of structural similarity (SSIM) based on a hypothesis that Human

Visual System (HVS) is highly adapted for extracting structural information. Struc-

tural information is the idea that the pixels have strong inter-dependencies especially

when they are spatially close. These dependencies carry important information about

the structure of the objects in the visual scene [55]. SSIM also incorporated important

perceptual phenomena - luminance masking and contrast masking terms. Luminance

masking is a phenomenon whereby image distortions tend to be less visible in bright

regions, while contrast masking is a phenomenon whereby distortions become less vis-

ible where there is significant activity or “texture” in the image [73].

The formulae for calculating SSIM was provided in section 3.1.2 Network Loss (see

SSIM Loss).

SSIM is also calculated using PyTorch torch.Tensor, which is particularly important

when using SSIM as a loss, as all evaluations are batched. For this research, green

pixels were excluded from SSIM evaluations - all graphs below are for significant pixels

only.

3.3.3 False Negative and False Positive Silhouette Pixels

As part of the evaluation of the quality of images included a 3D reconstruction with

Shape-from-Silhouette (SfS), for the task of SfS only silhouettes in the images are

considered. While the correctness of the colour of the pixels may be important for

video interpolation and FVV, for SfS the color information is discarded as long as

the shape (of the person) stands out from the background. It was therefore deemed

reasonable to evaluate the quality of the silhouettes only. The 2 measures proposed

are:

• Ratio of False Negative (FN) pixels to the number of pixels in the shape

• Ratio of False Positive (FP) pixels to the number of pixels in the shape

52

(a) FN (red) and FP (green) pixels

(b) Silhouette of the GT image

(c) GT image

Figure 3.7: Example of False Negative (FN) and False Positive (FP) pixels (a). GT
only shown (b, c) as visually the interpolated image and its silhouette are very similar
to GT - both silhouettes are required to produce (a).

False negative pixels are counted where GT image has silhouette, and the interpolated

image does not. False positive pixels are the opposite - where the GT does not have

the silhouette, but the interpolated image does. See Fig. 3.7 for demonstration of the

concept - red pixels are False Negative, green pixels are False Positive.

In the context of SfS, False Negative pixels would mean that voxels are removed during

the reconstruction, so these are more dangerous than False Positive pixels, that have

the potential to add voxels. Referring to Fig. 3.7 again - there will be missing voxels

around the hands and leg, and a lot of voxels added around the shape. This bad

example of interpolation was selected for the purposes of demonstration.

53

3.3.4 Hausdorff Distance

The last part of the evaluation addressed the hypothesis that interpolated multi-view

camera images can be used in photogrammetry to aid 3D reconstruction. Only Shape-

from-Silhouette reconstruction was attempted.

Figure 3.8: Illustration of the camera setup for SfS reconstruction. 12 cameras are real
(on the circle), 12 are “synthetic (on the green segments).

The evaluation steps were as follows:

1. Generate 12 real camera images around the test subject.

When the initial synthetic test dataset was generated, the resultant Blender files

(.blend) containing the generated models were saved by Python. Another Python

script loads these and replaces the original 3 cameras with 12 cameras in a perfect

circle around the model. Unlike cameras in the test dataset, the 12 cameras for

54

SfS reconstruction were always focused on the person. This created ideal condi-

tions - which would not be the case in the green room. So, a further test with

the person being away from the single focal point of all cameras is required in

the future.

The following parameters were varied for SfS Test set:

• Radius of the circle of cameras (3.5m - 5.5m) - to fit the entire model.

• Camera height - 0 - 1m up from person’s waist height.

• Starting position on the circle. Then each next camera was situated at a

30◦angle.

Both camera images and the camera extrinsic and intrinsic parameters were ex-

ported from Blender.

2. Generate theoretical camera positions for the interpolated images.

12 “interpolated” cameras were generated in addition - for the purpose of obtain-

ing the camera parameters for the interpolated images. There were no images

generated from these cameras.

The cameras are situated in the middle of the segment connecting each 2 of the

neighbouring real cameras - exactly simulating the position of the “synthetic”

camera that would have produced the interpolated images. See Fig.3.8 - syn-

thetic cameras are situated on the green segments.

3. Generate 12 interpolated images using the selected neural network model

A separate Python script generated the interpolated images using the NN model

for each pair of the real cameras.

4. Extract Silhouettes

Next, silhouette images were extracted from 24 images (12 real and 12 interpo-

lated). The extraction of the silhouettes was done based on the color of the pixel

- all pixels in the “green” range determined from the background image were set

to 0. The clothes texture of the synthetic people rarely had green color, so pixels

in the model were not removed.

55

5. Shape -from-Silhouette reconstruction

The SfS reconstruction used 3rd party code (Vacancy) which is a voxel carving

implementation in C++ [90]. The code takes camera intrinsic and extrinsic

parameters and the silhouette images, and outputs both the voxel representation

and the surface reconstruction.

The reconstruction saves all stages - the following two were used:

• The result of the reconstruction with 24 images - with the interpolated

images.

• The result of the reconstruction with 12 images (real camera images only)

to use for comparison.

6. Align and simplify meshes

Three meshes (2 reconstructed meshes from the previous step and GT mesh from

Blender) were imported into MeshLab [12]. MeshLab’s “Align” functionality was

applied to align the meshes.

Next, as the number of vertices in the reconstructed meshes (around 50K) were

much higher than the number of vertices in GT mesh (around 7K). The two

reconstructed meshes were simplified using MeshLab’s “Simplification: Cluster-

ing Decimation” function with the default parameters. As the result the recon-

structed meshes now had around 6K vertices.

7. Hausdorff distance

Hausdorff Distance between two meshes is a the maximum between the two one-

sided Hausdorff “distances” [11]:

dH(X, Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

Distance d(x, y) is computed by taking samples (vertices or faces) from mesh X

and searching for each x the closest point y on a mesh Y . So the choice of the

“first” mesh is important.

MeshLab’s “Hausdorff distance” function lets the user choose the one-sided dis-

tance rather than computing two distances and taking a maximum. For this

56

evaluation the distance was always computed from the reconstructed mesh to GT

mesh. Also, faces, rather than vertices were sampled for the reconstruction - this

was chosen as the reconstruction technique (SfS) is surface-based.

MeshLab outputs the Hausdorff distance in mesh units and also as a percentage

of the bounding box diagonal. The results below are in mesh units.

57

Chapter 4

Results and Discussion

4.1 Comparison of trained networks

Several modifications of the multi-view neural network were attempted. Below is the

table listing the attempted options - see Table 4.1. Also, the original network proposed

by [35] was trained as described by the author using DAVIS videos dataset [14] (non-

multiview) (DAVIS L1 51) to be used as a benchmark.

Model name Kernel Size Loss Batch size Max epochs
trained

MV L1 51 51 L1 32 50
MV SSIM 51 51 SSIM 32 10
(started with MV L1 51 model)
MV L1 71 71 L1 16 50
DAVIS L1 51 (Benchmark) 51 L1 32 100

Table 4.1: Attempted Multi-view neutral network configurations

The hyperparameters that were changed are:

• Training loss: L1 or SSIM

• Size of 1D vertical and horizontal kernel: 51 or 71 pixels

• Batch size: 16 or 32

58

Figure 4.1: Improvement in SSIM Loss and PSNR (both include non-significant pixels)
with the number of training epochs - MV L1 51 example.

• Different number of epochs: see Table 4.1

For the detailed description of the NN architecture please see section 3.1 in Methodol-

ogy.

The models were trained to 50 epochs. As can be seen from Fig. 4.1 the improvement

after 30 epochs is quite slow, albeit there is still some improvement in SSIM, so poten-

tially further training (outside of the scope of this dissertation) can improve the quality.

Fig. 4.2 displays the result of applying the networks for interpolation. More examples

can also be found in Appendix A and Appendix B. Working and not-working examples

are given. As can be seen the results vary from perfect quality, to where the difference

is only noticeable with a pixel-by-pixel subtraction, to visually obvious imperfections

and ghost artifacts.

Table 4.2 compares results for the trained neural networks and the benchmark network

- based on the average for a test sample of 1322 triplets of synthetic images. The best

results with regards to SSIM and PSNR were achieved with the network trained with

SSIM loss - MV SSIM 51 - see Table 4.2. However, the network trained with just L1

loss achieves better silhouette shapes - MV L1 51 - and has the lowest FN Ratio of

1.1%. So, although the pixel color may be more correct for the network with SSIM

59

loss, the shapes are better with L1 loss.

Model name SSIM PSNR FN Ratio FP Ratio
trained

MV L1 51 0.8830 28.13 0.0110 0.0246
MV SSIM 51 0.8860 40.63 0.0129 0.0244
(started with MV L1 51 model)
MV L1 71 0.8611 31.28 0.0158 0.0278
DAVIS L1 51 (Benchmark) 0.8124 26.78 0.0164 0.0601

Table 4.2: Comparison of results for the trained Multi-view neutral networks

The next few sections examine the results in detail and discuss when the models work

well and when they fail to produce visually correct results.

4.2 SSIM

First evaluation criteria to discuss is SSIM (see section 3.3.2 for the description of

this metric). The network trained on non-multi-view data (DAVIS L1 51) has SSIM

of 0.8124, which is considerably lower than the rest of the trained networks - 0.8830,

0.8860 and 0.8611 - respectively for MV L1 51, MV SSIM 51 and MV L1 71.

Fig. 4.3 (a) displays SSIM depending on the distance between left and right cameras,

so distance to ground truth is half this amount. SSIM is higher for small distances as

can be expected. For models MV L1 51 and MV SSIM 51 is higher than 0.91 for dis-

tances between cameras upto 60 cm. It is above 0.81 for distances upto 90 cm between

the interpolated cameras. The quality decreases with larger distances. Compared to

non-MV network, where SSIM is above 0.91 for the first 2 intervals only - upto 40 cm

between cameras - and is below 0.8 for distances above 60 cm.

The networks were also evaluated depending on the distance to subject - Fig. 4.3 (b).

The cameras are located around 3-5 m from the “center” point, but because the subject

60

(a) Left (b) Right

(c) Interpolated image (d) Visual Difference

(e) Left (f) Right

(g) Interpolated image (h) Visual Difference

(i) Left (j) Right

(k) Interpolated image (l) Visual Difference

Figure 4.2: Examples of interpolated images (c, g, k) and visual difference with the
ground truth image (model MV L1 51). See also Appendix A and B.

61

(a) (b)

(c) (d)

Figure 4.3: Comparison of NNs - SSIM depending on the distance between the inter-
polated cameras (a), distance to the subject (b), pixel distance between left and right
image (c) and pixel distance of the models to the center of the image (d).

62

could move both towards and away from the camera, the distance to the subject can

be outside of this range. However most samples in both training and test set still lie

within 3-5 m, so the middle categories in the graph recieve more samples.

SSIM increases as the subject gets further from the camera - as both the amount of

pixels being evaluated and the movement in pixels between left and right camera gets

smaller. Potentially the results are better because the entire movement fits into the

51/71-pixel kernel. SSIM is above 0.91 for distances over 4m.

As most training data would be within 3-5 m range, the networks do not produce a

good results when the subject gets closer than 3 m as the network has not seen enough

of the training samples. Also, when the subject is close there is a larger distance in

pixels between left and right image, so the entire movement is not potentially covered

by the kernel. At distances <3m the person would normally not fit into the image

entirely, albeit because training is based on patches the network should still be able to

cope. It should be possible to train the network for closer distances by adjusting the

samples in the training dataset and increasing the size of the kernel.

An interesting metric is SSIM depending on the pixel distance between left and right

cameras - Fig. 4.3 (c). Pixel distance in this case is measured between the horizontal

centers of the bounding boxes of the silhouettes in left and right image. This metric

is a combination of the above two metrics - distance to the subject and the distance

between left and right cameras: the pixel distance gets larger as the subject gets closer

to the camera and the distance between the interpolated cameras grows.

As the result - the closer the subject is in pixels between left and right image, the

higher is SSIM. SSIM is 0.92 for the 51-pixel kernel models when left and right image

are less than 20 pixels apart. This measure falls abruptly with the distance increasing

- it is around 0.8 for 20-40 pixel distance and is under 0.7 for larger distances, so is not

satisfactory.

The kernel size of 51/71-pixels would explain such results. But also there is a different

number of samples in each category - around half the test dataset has pixel distance

within 10 pixels, and around 3/4 have the pixel distance below 20 pixels. So, the

training would also be focused on smaller pixel distances.

Lastly, SSIM is plotted against the distance of the subject to the center of the image

63

(a) (b)

(c) (d)

Figure 4.4: Comparison of NNs - PSNR depending on the distance between the inter-
polated cameras (a), distance to the subject (b), pixel distance between left and right
image (c) and pixel distance of the models to the center of the image (d).

64

- Fig. 4.3 (d). This distance is calculated as the average horizontal distance for left

and right image from the subject to the center of the image. The models are not

particularly effected by this parameter - there is a small decrease in quality as the

subject gets further from the center of the image.

4.3 PSNR

Similar trends are applicable to PSNR (see Fig. 4.4). Here the model trained with

SSIM loss performs by far superior, producing results of over 40 on average. 71-pixel

kernel network also performs well on PSNR - 31.28. All models perform better on

PSNR than the benchmark non-multi-view model - at 26.78.

PSNR decreases as the distance between left and right camera increases. PSNR is over

40 for cameras within 60 cm, and above 30 for all categories for MV SSIM 51 model.

For MV L1 71 model it is 40 for the first 10 cm distance, and above 30 within 60 cm.

For the pixel distance between left and right image, PSNR is good (>30) for MV SSIM

51 model for distances in pixels below 60 pixels. For MV L1 71 model this number is

considerable lower (>20) for distances upto 60 pixels.

4.4 Silhouettes - False Negative Ratio and False

Positive Ratio

For the photogrammetry method of Shape-from-Silhouette reconstruction, the minor

errors in colour of the generated pixels have no significance for the silhouette extraction

- as long as the silhouette stands out from the background. For this reason, the models

were evaluated for the quality of the silhouettes. This evaluation criteria is described in

the methodology chapter - section 3.3.3. The subtraction of the background was exact

with the known values of colour for the background pixels, so the silhouettes could be

evaluated with high accuracy.

The ratios were only evaluated for the distance between the left and right cameras.

65

(a) (b)

Figure 4.5: Comparison of NNs - False Negative (FN) - (a) - and False Positive (FP)
- (b) - ratios depending on the distance between the interpolated cameras.

Fig. 4.5 (a) shows that all networks, including the non-multi-view network, have few

false negative pixels when distance between cameras is below 60 cm (less than <1%).

The network trained with L1 loss and 51-pixel kernel performs best - the error rate

is <0.5% for distances <50 cm, and is less than 1% for distances <70 cm. But at

distance between cameras of 1m the best network can loose 3.7% of silhouette pixels,

which can result in the corresponding loss of voxels during 3D reconstruction from just

one interpolated image. This is a high amount considering that several interpolated

images would be used during in the reconstruction.

The number of False Positive pixels is generally larger - Fig. 4.5 (b). Here the dis-

advantage of the non-multi-view trained network - DAVIS L1 51 - becomes apparent,

strongly over-inflating the generated silhouettes. This can add 2% of pixels to the

silhouettes at 20 cm between cameras and over 14% for distances between cameras of 1

m. This is compared to 0.7% and 5.4% for the best performing network. The example

of how the non-multi-view network over-inflates a silhouette is shown in Fig. 4.6.

66

(a) (b)

Figure 4.6: Comparison of multi-view (MV L1 51) network - (a) - and non-multi-view
(DAVIS L1 51) - (b) - network interpolation results - silhouettes false positive (red)
and false negatives (green) are displayed. Non-MV network adds significantly more
false positive pixels.

4.5 Visual comparison

It is interesting to compare the output of the networks visually - this difference is only

noticeable in results with low quality, so the below failed sample was specially picked

for demonstrating the network differences - Fig. 4.7.

The top row of the images contains images with 51-pixel kernel at 30 epochs, 50

epochs and 50 epochs + 10 epochs with SSIM loss. The second row displays images

with 71-pixel kernel at 30 epochs, 50 epochs and 30 epochs + 10 epochs with SSIM

loss (training was not extended to 50 + 10 SSIM loss epochs for 71-pixel kernel). The

3rd row displays the result for non-multi-view network and the ground truth.

It can be seen that albeit the network with SSIM loss has the highest SSIM/ PSNR, it

is less accurate visually as compared to networks trained with L1 loss. The person has

lost half of the left arm in case of MV SSIM 51 network - Fig. 4.7 (c). The sharpest

result is produced by the network with 71-pixel kernel - Fig. 4.7 (e). For example,

the network has kept the wrinkles on the shirt. And while 71-kernel network performs

worse than 51-kernel networks both on SSIM/ PSNR and silhouettes, visually the re-

sult is appealing as the person has both arms reasonably shaped.

67

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.7: Visual comparison of the trained neural networks on a failed result. Last
image - (h) - is ground truth. First row (a, b, c) has networks with 51-pixel kernel: MV
L1 51 network 30 epochs, MV L1 51 network 50 epochs, MV SSIM 51 network (50 L1
+ 10 SSIM epochs). Second row (d, e, f) has networks with 71-pixel kernel: MV L1
71 network 30 epochs, MV L1 71 network 50 epochs, MV SSIM 71 (30 L1 + 10 SSIM
epoch). Lastly, (g) has the result for non-multi-view network DAVIS L1 51.

The non-multi-view trained network (DAVIS L1 51) duplicates the figure and fails to

produce a single silhouette.

4.6 Hausdorff distance

For this dissertation a 3D test was created to check the hypothesis that the interpolated

images created with a multi-view neural network could assist in 3D reconstruction. A

number of cameras was placed in a perfect circle around the subject at distance of 3.5

to 5.5 m. Then the equivalent number of synthetic images were created by interpolat-

ing every pair of neighbouring cameras. The appropriate number of cameras for this

68

test was selected as 12, as this reflects a realistic green room setting. Further details of

SfS reconstruction and Hausdorff distance are described in Methodology - section 3.3.4.

It needs to be said that the distance between the cameras relate to their number and

the radius of the circle as:

D = 2 sin(π/Ncam)r

where D - distance between left and right camera, Ncam - the number of cameras in the

circle, r is the radius of the circle. So, for 12 cameras the distance between cameras is

1.55m at 3.5 m radius and 2.84m at 5.5 m radius - this is considerably larger than the

distances that the network was trained for.

All of the below results relate to model with 51-px kernel trained with L1-Loss for 50

epochs (MV L1 51) - as this model achieved the best silhouettes and false negative ratio.

Table 4.3 displays the results of evaluting SfS reconstructions from 12 real cameras

and 12 real cameras plus interpolated images. When evaluating from the ground truth

mesh to the target reconstructed mesh - the results are better for the reconstruction

from 12 real cameras. RMS for 12 cameras is 0.0189 which is a smaller error than RMS

for 24 cameras - 0.0231. Mean Bounding box error is also smaller for 12 cameras -

0.0089 as compared to 0.0115.

Reconstruction from BB min BB max BB mean BB RMS

24-cameras 0.0 0.1270 0.0115 0.0231
(12 real+ 12 interpolated)
12-cameras 0.0 0.1182 0.0089 0.0189

Table 4.3: Hausdorff distance. Average Bounding Box (BB) percentage

Fig. 4.8 and Fig. 4.9 display some examples of SfS reconstruction. It can be seen that

24-cameras produces a more refined model. However if interpolated images have some

false negative pixels there is a risk of loosing voxels - see Fig. 4.9Fig. 4.9 (c). In this

example, the limb is lost in 3D recontruction as compared to reconstruction with only

real cameras.

69

(a) Ground Truth (b) 12 real cameras
(c) 24 cameras (12 real plus
12 interpolated images)

Figure 4.8: Example output from SfS reconstruction using just real cameras vs real
cameras plus interpolated images.

(a) Ground Truth (b) 12 real cameras
(c) 24 cameras (12 real plus
12 interpolated images)

Figure 4.9: Example output from SfS reconstruction using just real cameras vs real
cameras plus interpolated images. Note part of the leg that disappeared due to inac-
curacies in the interpolated images - (c).

70

(a) Left (b) Interpolated image (c) Right

Figure 4.10: Applying the trained NN (MV L1 51) to real-life imagery from Green
room.

4.7 Real data

The trained model was applied to real-life images. No ground truth was available for

the images, so the only result available is visual - illustrated in Fig. 4.10.

As can be seen in the image - the neural network trained on synthetic images can be

applied to real-life data and produces a realistic result. Notice that the network was

able to add the gap between the legs and able to get the correct orientation of the body.

Currently the trained network has a limitation - the network can only be applied when

the subject in the interpolated images is placed on the green background - the back-

ground that was used for training the network. For SfS reconstruction this limitation

is not prohibiting as the silhouette of the subject will be extracted. However for FVV

the image needs to be interpolated as a whole, so further work is required if this ap-

proach is to be used for free-viewpoint video - the network needs to be retrained with

71

3D background.

72

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This research has investigated the possibility of generating spatially interpolated im-

ages to create novel viewpoints. It focused on interpolating images from multi-view

cameras in a special setup, e.g. green room, with a single human performer. The

approach endeavoured to deploy a neural network for creation of such images. Along

with the general idea to generate images from multi-view camera images, there was

a specific hypothesis to be answered - if synthetically generated intermediate images

can help with photogrammetry. This research only partially addressed this hypothesis

as only Shape-from-Silhouette reconstruction was attempted, and not Structure-from-

Motion.

As the result of this dissertation a synthetic multi-view images dataset was created that

could be used for training the neural network. Several neural network architectures

were considered with the view of being used for the task. Also, different evaluation

methods were considered for assessing the generated images - as well as a method

proposed for assessing the quality specifically for the purpose of SfS reconstruction -

silhouette false positive/ false negatives.

The following conclusions were made based on the results of this research:

73

1. CNN is capable of producing spatially interpolated images when cameras are not

too far apart. These images can have the correct angle of view without prior 3D

estimation.

In this research the network was trained with maximum kernel of 71-pixels and

the interpolated images had high quality for cameras upto 60 cm apart, or where

the subject is no further than 20 pixels horizontally between left and right image.

2. A neural network can be trained on synthetic images and then applied to real-life

imagery.

Multi-view data for training a neural network can be hard to obtain, so using a

synthetic dataset can be very helpful. The dataset created for this research had

some limitations, i.e. static background image, static camera intrinsics, equal

camera height for the interpolated cameras etc, but with a synthetic dataset it

is a matter of adding the additional features to improve the dataset.

3. The neural networks trained for this research on multi-view images produced

better interpolated results than the original network proposed by [35] for temporal

interpolation.

When applied to images that were far apart pixel-wise the temporal network

produced duplicate silhouettes, where spatial networks better able to cope with

the range of movement. The temporal network was also behind on both SSIM,

PSNR and False Positive silhouette ratio for all categories. It performed well on

False negative silhouette ratio, due to the network generously over-inflating the

silhouettes.

4. With regards to 3D reconstruction with Shape-from-Silhouette, the reconstruc-

tions including the interpolated images were generally more refined than the

reconstructions from just real cameras. However they performed worse on Haus-

dorff distance, usually due to missing parts of extremities. Any inconsistency

pixel-wise between the ground truth and the interpolated images will result in

loss of voxels during the reconstruction, even where the images have an accept-

able quality visually.

It is unlikely that a neural network can be trained to be pixel-wise precise, so

this approach is not recommended for the use in photogrammetry.

74

5. The interpolated images were realistic looking, so this approach can be used in

free-viewpoint video, if the neural network is retrained to be non-sensitive to the

background. For this the image need to be taken in 3D setup, where not only

the human performer, but the whole background is modelled.

6. Different neural network configurations generated different quality images. The

networks trained with SSIM loss generally had blurrier results, albeit they per-

formed best on SSIM and PSNR. The network trained with a larger kernel (71-

pixel) and L1 loss was able to produce the sharpest details, i.e. keep wrinkles

on a shirt. The network trained with 51-pixel and L1 loss kernel had the best

results when silhouettes were examined.

5.2 Future Work

The task of interpolating multi-view images can be further addressed by the follow-

ing improvements. However, as mentioned above the author does not believe that

pixel-level accuracy can be achieved with more training to produce images suitable for

photogrammetry.

1. Improve multi-view dataset:

• Add pitch to left and right camera with regards to horizontal line

• Add varied 3D backgrounds

• Change camera intrinsics. This will allow to place the cameras closer to the

subject.

• Improve models - real clothes, more motion scripts

• Add specifically parts that fail to interpolate - hands, legs, faces etc

• Add real-life samples to the synthetic dataset

2. Neural network training:

• Train with larger kernel to allow the network to cope with the larger range

of motion. The load on GPU is the main prohibitor of introducing a larger

kernel.

75

• Train with False negative/ false positive loss specifically to get the correct

silhouettes.

• Train with GAN architecture, so that a discriminator network can discard

images that look “interpolated” rather than “real”. This approach should

be able to deal with situations were arms were duplicated or faces smudged.

Also, with regards to SfS reconstruction - only the subject in the focus of the cameras

was tested, it would be reasonable to test with the subject not being in the center

of the images. More testing can also be performed where the distance between the

cameras is smaller and the number of cameras is larger.

More testing is also required on real-life images preferably with ground truth from a

green room.

76

Bibliography

[1] ABIResearch (2018). Augmented Reality & Virtual Reality Coverage. Market

update. https://www.abiresearch.com/market-research/service/augmented-virtual-

reality/.

[2] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan.

https://arxiv.org/abs/1701.07875.

[3] Ballan, L., Brostow, G. J., Puwein, J., and Pollefeys, M. (2010). Unstructured

video-based rendering: Interactive exploration of casually captured videos. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2010), pages 1–11.

[4] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). SURF: Speeded up

robust features. Computer Vision and Image Understanding, 110:346359.

[5] Belongie, S. (2009). CSE 252B: Computer Vision II.

https://cseweb.ucsd.edu/classes/sp04/cse252b/notes.

[6] Calonder, M., Lepetit, V., and Fua, P. (2011). Brief: Binary robust independent

elementary features. 11th European Conference on Computer Vision.

[7] Chen, K. and Dirk, A. (2010). Image sequence interpolation using optimal control.

Journal of Mathematical Imaging and Vision, 41.

[8] Chen, R., Jalal, M. A., Mihaylova, L., and Moore, R. K. (2018). Learning capsules

for vehicle logo recognition. 21st International Conference on Information Fusion

(FUSION).

77

[9] Chen, S. E. and Williams, L. (1993). View interpolation for image synthesis. Pro-

ceedings of the 20th annual conference on Computer graphics and interactive tech-

niques: SIGGRAPH.

[10] Cheung, K., Baker, S., and Kanade, T. (2005). Shape-From-Silhouette Across

Time. Part I: Theory and Algorithms. The Robotics Institute.

[11] Cignoni, P. (2010). Meshlab stuff. practical mesh processing experiments.

https://meshlabstuff.blogspot.com/2010/01/.

[12] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia,

G. (2008). MeshLab: an Open-Source Mesh Processing Tool. In Scarano, V., Chiara,

R. D., and Erra, U., editors, Eurographics Italian Chapter Conference. The Euro-

graphics Association.

[13] Das, S. (2017). CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet

and more ... https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-

googlenet-resnet-and-more-666091488df5.

[14] DAVIS (2017). DAVIS: Densely Annotated VIdeo Segmentation. Semi-supervised

dataset. https://davischallenge.org/davis2017/code.html.

[15] Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative image

models using a laplacian pyramid of adversarial networks. CVPR.

[16] Dimitrios, C. and Antonios, G. (2012). Three-Dimensional Scene Reconstruction:

A Review of Approaches, pages 142–162. IGI Global.

[17] Dosovitskiy, A., Fischer, P., Ilg, E., Husser, P., Hazirbas, C., Golkov, V., Smagt,

P. v. d., Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with

convolutional networks. IEEE International Conference on Computer Vision.

[18] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine Learning Re-

search, 12:2121–2159.

[19] Faugeras, O. D. (1992). What can be seen in three dimensions with an uncalibrated

stereo-rig? Second European Conference on Computer Vision.

78

[20] Flynn, J., Neulander, I., Philbin, J., and Snavely, N. (2015). Deepstereo: Learning

to predict new views from the worlds imagery. CoRR abs/1506.06825.

[21] Fragneto, P. and Fusiello, A. (2012). Uncalibrated view synthesis with homogra-

phy interpolation. Second Joint 3DIM/ 3DPVT Conference 3d Imaging, Modeling,

Processing, Visualization and Transmission (3DIMPVT 2012), pages 270–277.

[22] Furukawa, Y. and Ponce, J. (2009). Carved visual hulls for image-based modeling.

International Journal of Computer Vision, 81:53–67.

[23] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

[24] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.

https://arxiv.org/abs/1406.2661.

[25] Gurdan, T., Oswald, M. R., and Cremers, D. (2014). Spatial and temporal inter-

polation of multi-view image sequences. Pattern Recognition, GCPR 2014, 8753:305–

316.

[26] Harris, C. and Stephens, M. J. (1988). A combined corner and edge detector.

Alvey-Vision Conference.

[27] Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer

Vision. Cambridge, 2 edition.

[28] Hartley, R. I. (1995). In defence of the 8-point algorithm. In Proceedings of IEEE

International Conference on Computer Vision, pages 1064–1070.

[29] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. IEEE Conference on Computer Vision and Pattern Recognition.

[30] Hinton, G., Sabour, S., and Frosst, N. (2018). Matrix-capsules with EM routing.

International Conference on Learning Representations.

[31] Hu, Z., Ma, Y., and Ma, L. (2017). Multi-scale video frame-synthesis network

with transitive consistency loss. CVPR.

79

[32] Hwang, J. and Shabbir, D. (2017). Human Motion Re-

construction from Action Video Data Using a 3-Layer-LSTM.

http://cs231n.stanford.edu/reports/2017/pdfs/945.pdf.

[33] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017).

Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR.

[34] Kang, S. B., Xin Tong, Y. L., and Shum, H.-Y. (2007). Image-based rendering.

Foundations and Trends in Computer Graphics and Vision.

[35] Kartašev, M., Rapisarda, C., and Fay, D. (2018). Implementing adaptive separable

convolution for video frame interpolation. https://arxiv.org/abs/1809.07759.

[36] Kazemi, V., Burenius, M., Azizpour, H., and Sullivan, J. (2013). Multi-view body

part recognition with random forests. British Machine Vision Conference.

[37] Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction.

Eurographics Symposium on Geometry Processing.

[38] King, D. (2016). Easily create high quality object detectors with deep learning.

http://blog.dlib.net/2016/10/easily-create-high-quality-object.html.

[39] Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization.

International Conference on Learning Representations.

[40] Kolouri, S., Park, S. R., and Rohde, G. K. (2016). The radon cumulative distri-

bution transform and its application to image classification. IEEE Transactions on

Image Processing, 25(2):920–934.

[41] LaLonde, R. and Bagci, U. (2018). Capsules for object segmentation. Medical

Imaging with Deep Learning.

[42] Li, C., Gu, D., Ma, X., Yang, K., Liu, S., and Jiang, F. (2018a). Video frame

interpolation based on multi-scale convolutional network and adversarial training.

IEEE Third International Conference on Data Science in Cyberspace (DSC), pages

553–560.

80

[43] Li, J., Li, E., Chen, Y., Xu, L., and Zhang, Y. (2010). Bundled depth-map merging

for multi-view stereo. CVPR, pages 2769–2776.

[44] Li, S., Zhu, C., and Sun, M. (2018b). Hole filling with multiple reference views in

DIBR view synthesis. IEEE Transactions on Multimedia, 20(8):1948–1959.

[45] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).

Feature pyramid networks for object detection. In CVPR.

[46] Lipski, C., Linz, C., Berger, K., Sellent, A., and Magnor, M. (2010). Virtual

video camera: Imagebased viewpoint navigation through space and time. Computer

Graphics Forum, 29:2555 – 2568.

[47] Liu, Z. W., Yeh, R. A., Tang, X. O., Liu, Y. M., and Agarwala, A. (2017). Video

frame synthesis using deep voxel flow. In 16th IEEE International Conference on

Computer Vision, pages 4473–4481.

[48] Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene

from twoprojections. Nature, 293.

[49] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015).

SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIG-

GRAPH Asia), 34(6):248:1–248:16.

[50] López-Fernández, D., Madrid-Cuevas, F. J., Carmona-Poyato, A., Maŕın-Jimnez,

M. J., and Muñoz Salinas, R. (2014). The AVA Multi-View Dataset for Gait Recog-

nition. In Mazzeo, P. L., Spagnolo, P., and Moeslund, T. B., editors, Activity Mon-

itoring by Multiple Distributed Sensing, Lecture Notes in Computer Science, pages

26–39. Springer International Publishing.

[51] Lowe, D. (2001). Object recognition from local scale-invariant features. Proceed-

ings of the IEEE International Conference on Computer Vision, 2.

[52] Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique

with an application in stereo vision. Seventh International Joint Conference on

Artificial Intelligence (IJCAI-81).

81

[53] Mack, D. (2018). How to pick the best learning rate for your machine learn-

ing project. https://medium.com/octavian-ai/which-optimizer-and-learning-rate-

should-i-use-for-deep-learning-5acb418f9b2.

[54] Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P.

(2009). Moving gradients: A path-based method for plausible image interpolation.

ACM Trans. Graph., 28.

[55] Manikandan, L., Anusha, M., and Fred, A. L. (2014). Structural similarity based

efficient multi-view video coding. IOSR Journal of Engineering.

[56] Mathieu, M., Couprie, C., and LeCun, Y. (2016). Deep multi-scale video prediction

beyond mean square error. In International Conference on Learning Representations.

[57] Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan, L. (2000).

Image-based visual hulls. ACM SIGGRAPH 2000 Conference Proceedings, page

369374.

[58] Meyer, S., Wang, O., Zimmer, H., Grosse, M., and Sorkine-Hornung, A. (2015).

Phase-based frame interpolation for video. In CVPR, pages 1410–1418.

[59] Morel, J. M. and G., Y. (2009). Asift: A new framework for fully affine invariant

image comparison. SIAM Journal on Imaging Sciences, 2:438–469.

[60] Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

[61] Niklaus, S. and Liu, F. (2018). Context-aware synthesis for video frame interpo-

lation. CVPR, abs/1803.10967.

[62] Niklaus, S., Mai, L., and Liu, F. (2017a). Video frame interpolation via adaptive

convolution. CVPR, abs/1703.07514.

[63] Niklaus, S., Mai, L., and Liu, F. (2017b). Video frame interpolation via adaptive

separable convolution. IEEE International Conference on Computer Vision, pages

261–270.

[64] Pages, R., Amplianitis, K., Monaghan, D., Ondrej, J., and Smolic, A. (2018).

Affordable content creation for free-viewpoint video and vr/ar applications. Journal

of Visual Communication and Image Representation, 53:192–201.

82

[65] Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep

recurrent neural networks. International Conference on Learning Representations.

[66] Pechyonkin, M. (2017). Understanding hinton’s capsule networks. part I: In-

tuition. https://medium.com/ai3-theory-practice-business/understanding-hintons-

capsule-networks-part-i-intuition-b4b559d1159b.

[67] Pons-Moll, G., Romero, J., Mahmood, N., and Black, M. J. (2015). Dyna: A

model of dynamic human shape in motion. ACM Transactions on Graphics, (Proc.

SIGGRAPH), 34(4):120:1–120:14.

[68] Quan, M. and Lhuillier, L. (2005). A quasi-dense approach to surface reconstruc-

tion from uncalibrated images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(3):418–433.

[69] Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. International Confer-

ence on Learning Representations.

[70] Ranjan, A. and Black, M. J. (2017). Optical flow estimation using a spatial

pyramid network. In CVPR.

[71] Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid, C. (2015). Epicflow:

Edge-preserving interpolation of correspondences for optical flow,. In CVPR.

[72] Robaszkiewicz, S. and El Ghazzal, S. (2013). Interpolating images between video

framesusing non-linear dimensionality reduction. Proceedings of the 30th Interna-

tional Conference on Ma- chine Learning.

[73] Sai Prasad Reddy, K. and Nagabhushan Raju, K. (2017). Video quality assess-

ment metrics for infrared video frames using different edge detection algorithms.

In International Conference on Current Trends in Computer, Electrical, Electronics

and Communication, pages 231–236.

[74] Samsonov, V. (2017). Deep frame interpolation.

https://arxiv.org/pdf/1706.01159.pdf.

83

[75] Schonberger, J. L. and Frahm, J. M. (2016). Structure-from-motion revisited. In

CVPR, pages 4104–4113.

[76] Seitz, S. and Dyer, C. (1999). Photorealistic scene reconstruction by voxel coloring.

International Journal of Computer Vision, 35.

[77] Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A

comparison and evaluation of multi-view stereo reconstruction algorithms. CVPR.

[78] Shi, J. and Tomasi, C. (1994). Good features to track. CVPR.

[79] Sigal, L., Balan, A., and Black, M. J. (2010). Humaneva: Synchronized video and

motion capture dataset and baseline algorithm for evaluation of articulated human

motion. International Journal of Computer Vision.

[80] Smith, M. W., Carrivick, J. L., and Quincey, D. J. (2016). Structure from motion

photogrammetry in physical geography. Progress in Physical Geography, 40(2):247–

275.

[81] Smolic, A. (2019). Augmented reality lectures.

https://tcd.blackboard.com/bbcswebdav/pid-1169545-dt-content-rid-

6756029 1/courses/CS7434-A-SEM202-201819/02 AR2019 CameraModel.pdf.

[82] Stich, T., Linz, C., Albuquerque, G., and Magnor, M. A. (2008). View and time

interpolation in image space. Comput. Graph. Forum, 27:1781–1787.

[83] Strecha, C., Bronstein, A. M., Bronstein, M., and Fua, P. (2012). Ldahash: Im-

proved matching with smaller descriptors. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 34.

[84] Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). Pwc-net: Cnns for optical

flow using pyramid, warping, and cost volume. CVPR, pages 8934–8943.

[85] Szeliski, R. (2010). Computer Vision:Algorithms and Applications. Springer.

[86] Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., and Yagi, Y. (2018).

Multi-view large population gait dataset and its performance evaluation for cross-

view gait recognition. IPSJ Trans. on Computer Vision and Applications, 10(4):1–14.

84

[87] Tieleman, T. and Hinton, G. (2012). Lecture 6.5 - RMSProp: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural Networks for

Machine Learning.

[88] Tomasi, C. and Kanade, T. (1992). Shape and motion from image streams under

orthography - a factorization method. International Journal of Computer Vision,

9(2):137–154.

[89] Torr, P. H. S. and Murray, D. (1997). The development and comparison of robust

methods for estimating the fundamental matrix. International Journal of Computer

Vision.

[90] VACANCY (2019). Vacancy: A voxel carving implementation in c++.

https://github.com/unclearness/vacancy.

[91] Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., and

Schmid, C. (2017). Learning from synthetic humans. In CVPR.

[92] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image

quality assessment: From error visibility to structural similarity. IEEE Transactions

on Image Processing, 13.

[93] Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C. (2013). Deepflow:

Large displacement optical flow with deep matching. IEEE International Conference

on Computer Vision, pages 1385–1392.

[94] Wenger, S. M. B. (2016). Evaluation of SfM against traditional stereophotogram-

metry and Lidar techniques for DSM creation in various land cover areas. Thesis,

Stellenbosch University.

[95] Werlberger, M., Pock, T., Unger, M., and Bischof, H. (2011). Optical flow guided

tv-l1 video interpolation and restoration. Proceedings of the 8th international con-

ference on Energy minimization methods in computer vision and pattern recognition,

pages 273–286.

[96] Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H.

(2009). Anisotropic Huber-L1 Optical Flow. British Machine Vision Conference, 1.

85

[97] Xu, L., Jia, J., and Matsushita, Y. (2012). Motion detail preservingoptical flow

estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98] Xue, T., Chen, B., Wu, J., Wei, D., and Freeman, W. (2019). Video enhancement

with task-oriented flow. CVPR.

[99] Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). LSUN: Construction of

a Large-scale Image Dataset using Deep Learning with Humans in the Loop. arXiv.

[100] Yu, Z., Yoon, J. S., Venkatesh, P., Park, J., Yu, J., and Park, H. S. (2018).

HUMBI 1.0: HUman Multiview Behavioral Imaging Dataset. CVPR.

[101] Zanfir, A., Marinoiu, E., and Sminchisescu, C. (2018). Monocular 3d pose and

shape estimation of multiple people in natural scenes the importance of multiple

scene constraints. CVPR.

[102] Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding convolutional

networks. CVPR.

[103] Zhang, C. and Chen, T. (2004). A survey on image-based rendering - repre-

sentation, sampling and compression. Signal Processing: Image Communication,

19:1–28.

[104] Zhang, J., Yuan, C., Huang, G., Zhao, Y., Ren, W., Cao, Q., Li, J., and Jin, M.

(2018a). Acquisition of a full-resolution image and aliasing reduction for a spatially

modulated imaging polarimeter with two snapshots. Applied optics, 57(10):2376–

2382.

[105] Zhang, Z., Song, L., Xie, R., and Chen, L. (2018b). Video frame interpolation

using recurrent convolutional layers. In IEEE Fourth International Conference on

Multimedia Big Data (BigMM), pages 1–6.

[106] Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2017). Loss functions for image

restoration with neural networks. IEEE Transactions on Computational Imaging,

3(1):47–57.

86

[107] Zheng, S., Zhang, J., Huang, K., He, R., and Tan, T. (2011). Robust view

transformation model for gait recognition. International Conference on Image Pro-

cessing(ICIP).

87

Appendix A

This appendix displays examples of interpolated images and their visual difference to

the ground truth in order of decreasing SSIM.

Model: MV SSIM 51.

Dist cameras: 0.58m

Distance subject: 4.61m

Pixel distance: 11 pxls

SSIM: 0.9774

PSNR: 47.06

Dist cameras: 0.72m

Distance subject: 3.34m

Pixel distance: 13 pxls

SSIM: 0.9540

PSNR: 38.14

Dist cameras: 0.76m

Distance: 3.60 m

Pixel distance: 24 pxls

SSIM: 0.9041

PSNR: 37.88

88

Dist cameras: 0.64m

Distance: 5.05 m

Pixel distance: 19 pxls

SSIM: 0.8534

PSNR: 36.29

Dist cameras: 0.76m

Distance: 3.21 m

Pixel distance: 23 pxls

SSIM: 0.7591

PSNR: 32.97

Dist cameras: 0.58m

Distance: 2.96m

Pixel distance: 13 pxls

SSIM: 0.6795

PSNR: 30.35

Dist cameras: 0.94m

Distance: 2.19m

Pixel distance: 108 pxls

SSIM: 0.6011

PSNR: 23.53

Dist cameras: 0.96m

Distance: 2.35m

Pixel distance: 87 pxls

SSIM: 0.5320

PSNR: 24.60

89

Appendix B

This appendix displays examples of interpolated images and ground truth with high-

lighted “false negative” (FN) - red - and “false positive” (FP) - green - pixels in order

of increasing False Negative ratio. FN pixels denote pixels that are present in the

ground truth, but not in the interpolated image. FP pixels denote pixels present in

the interpolated image, but not in the ground truth. Model: MV SSIM 51.

Dist cameras: 0.26m

Distance subject: 4.34m

Pixel distance: 15 pxls

FN ratio: 0.0014

FP ratio: 0.0168

Dist cameras: 0.64m

Distance subject: 3.84m

Pixel distance: 21 pxls

FN ratio: 0.0032

FP ratio: 0.0249

Dist cameras: 0.80m

Distance subject: 3.85m

Pixel distance: 15 pxls

FN ratio: 0.0062

FP ratio: 0.0163

90

Dist cameras: 0.72m

Distance subject: 2.59m

Pixel distance: 38 pxls

FN ratio: 0.0121

FP ratio: 0.0344

Dist cameras: 0.76m

Distance subject: 2.93m

Pixel distance: 28 pxls

FN ratio: 0.0243

FP ratio: 0.0392

Dist cameras: 0.92m

Distance subject: 3.30m

Pixel distance: 32 pxls

FN ratio: 0.0361

FP ratio: 0.0466

Dist cameras: 0.96m

Distance subject: 2.71m

Pixel distance: 73 pxls

FN ratio: 0.0498

FP ratio: 0.0682

Dist cameras: 0.94m

Distance subject: 2.71m

Pixel distance: 58 pxls

FN ratio: 0.0742

FP ratio: 0.0515

91

