
Deep - Multiple Intentions Inverse Reinforcement Learning

Paras V. Prabhu

A Dissertation

Presented to the University of Dublin, Trinity College

in partial ful�lment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: Professor Ivana Dusparic

August 2019

Declaration

I, the undersigned, declare that this work has not previously been submi�ed as an exercise for

a degree at this, or any other University, and that unless otherwise stated, is my own work.

Paras V. Prabhu

August 13, 2019

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this dissertation upon

request.

Paras V. Prabhu

August 13, 2019

Acknowledgments

Firstly and most importantly, I would like to express gratitude towards my supervisor, Prof. Ivana

Dusparic, for her support, guidance and feedback throughout the dissertation. Her involvement and

insights led to the completion of this project.

I would also like to thank my family and friends for their unconditional support and encouragement

during this undertaking.

Paras V. Prabhu

University of Dublin, Trinity College

August 2019

iii

Deep - Multiple Intentions Inverse Reinforcement Learning

Paras V. Prabhu, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Professor Ivana Dusparic

�e entire �eld of Reinforcement Learning(RL) stands on the concept of reward, which is the way
to order an agent to perform a task. A slight inaccuracy in specifying rewards might lead to an RL
agent performing entirely di�erent task than we prefer. Applicability of RL in real-world domain,
hence, is limited considering resources spent in the process of adjusting rewards and re-training
agent. Inverse Reinforcement Learning(IRL) comes to rescue in such circumstances with its dis-
tinctive approach of estimating rewards, using given environmental information called features and
by observing experts performing the same tasks, �is dissertation a�empts to resolve two special
cases of IRL in a single method 1. when expert observations are intermix of multiple rewards i.e
multiple intentions are involved and 2. rewards are complex combination of features. We study the
applicability of the combination of two techniques viz. Expectation-Maximization and Deep Neural
Networks, in such situations. �e proposed approach is evaluated against previously proposed Max-
imum Entropy based Linear-IRL, in a simulated environment viz. Objectworld, with two features.
�e proposed method matches the performance of the existing method in the experiment with one
feature, while outperforms it with the other one; which gives the hint of the design’s potential to
handle both the above mentioned issues. Altogether, this dissertation puts research e�orts in the
idea of designing a single IRL approach to handle various issues involved.

Summary

Reinforcement Learning(RL) is a way of designing autonomous agents where agents interact with

their environments to learn how to behave. An environment comprises of set of states and actions

possible from those states which lead to another states. An agent’s objective is to understand how

its environment responds to the actions taken and use it in ful�lling the assigned task. �e learning

process is driven by what is called the reward maximization; a fresh agent randomly taking actions

in its environment learns with time, what policy to adopt in order to reach some bene�cial states

which o�er higher reward than others. Stating these reward states is the way of injecting human

knowledge about the assigned task to guide AI agents. Recent breakthroughs in related domains

whether it is Deep Neural Network architectures or advancement in GPU technology has li�ed

RL from books to mainstream autonomous agent designing approach, making it possible to target

large-scale, complex problems. Almost all the domains in which AI is outperforming other Machine

Learning agents or even humans, e.g. Game Playing, Resource Management, Tra�c Light control,

Chemical Reaction optimization, are such that a human system designer can clearly de�ne a reward

for them e.g. game points. If we have the right reward de�nition, the problem is reduced to an agent

learning the right policies over the time, and can be solved with standard RL methods. On contrary,

in other real world environment such as autonomous driving, virtual assistance, there may not exist

a clear reward function. It is normal practice to hand-cra� the reward function and manually tweak

it until desired performance is achieved. A be�er approach of �nding a ��ing reward function has

been put forward by Inverse Reinforcement Learning(IRL) which estimates reward by observing

experts’ behaviour. Ongoing research in this sub-�eld corroborates its potential in the environment

such as simulated driving, robotic control etc.

v

�is work targets the problem of extracting multiple reward functions from experts’ demonstration

when they are performed with more than one intentions in mind. Such technique is needed as we

approach more real world domains such as autonomous driving where large amount of observa-

tions are available, but are unlabelled with regard to the intentions with which they are performed.

�e methods yet proposed to extract multiple rewards suits well in the situations when underlying

reward is linear function of environment features, but do not address cases when it is non-linear

one.

We propose the combination of Expectation-Maximization technique to sort demonstrations into

clusters representing separate intentions and Deep Neural Network (DNN) based single intention

IRL method to extract reward functions from each clusters. DNN lends itself naturally to the problem

due to its capability to handle non-linearity, induced by the use of non-linear activation functions in

its hidden layers. �e combination of these two methods have never been implemented as per the

literature review performed as part of this work. �e design proposed puts e�orts in the direction

of creating a single method to target all IRL related issues.

�e proposed design is evaluated in the classical objectworld environment against widely used Max-

imum Entropy based linear method. �e author as an expert performed demonstrations with two

reward intentions. �ese demonstrations along with two type of features are fed to the methods.

�e evaluations performed showed that, the proposed design gives comparable performance in sit-

uations when environment features are clearly stated. On the other hand, it outperforms the linear

method by obtaining the exact positions of negative reward objects, even when features are vague.

�e evaluation gives hint of the potential of the proposed method to handle both multiple intentions

and non-linearity in single process.

Contents

Acknowledgments iii

Abstract iv

Summary v

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Reinforcement Learning . 1

1.1.2 Reward Engineering Problem with Reinforcement Learning 2

1.1.3 Inverse Reinforcement Learning . 4

1.1.4 Issues in Inverse Reinforcement Learning 6

1.2 Contribution . 7

1.3 Assumptions . 8

1.4 Roadmap . 8

Chapter 2 Background and Literature Review 10

2.1 Reinforcement Learning . 10

2.2 Inverse Reinforcement Learning (IRL) . 15

2.2.1 Signi�cance of IRL . 15

vii

2.2.2 Formal De�nition of IRL . 17

2.3 Methods for IRL . 18

2.3.1 Maximum Margin . 18

2.3.2 Entropy Optimization . 20

2.3.3 Machine Learning techniques . 23

2.3.4 Bayesian approach . 23

2.4 Multiple Intentions Inverse Reinforcement Learning (MIIRL) 24

2.5 Deep Neural Networks . 25

2.5.1 What is it? . 25

2.5.2 Arti�cial Neuron . 26

2.5.3 Train a network . 27

2.5.4 Applications . 28

Chapter 3 Design 29

3.1 Overview . 29

3.2 Handling Multiple Intentions . 30

3.3 Dealing with Non-linearity . 32

3.3.1 Network Training . 35

3.4 Summary . 39

Chapter 4 Implementation 40

4.1 IRL framework . 40

4.1.1 Environment module . 41

4.1.2 Reinforcement Learning module . 42

4.1.3 IRL module . 42

4.1.4 MIIRL module . 44

4.1.5 MIIRL-Objectworld module . 45

4.2 Actions sequence . 46

4.3 Summary . 47

Chapter 5 Evaluation 48

5.1 Objective . 48

5.2 Simulation Environment . 49

5.2.1 Objectworld - the choice of environment . 49

5.2.2 Object Placement . 49

5.2.3 Intentions and Rewards . 50

5.2.4 Environmental Features . 51

5.2.5 Expert Demonstrations . 52

5.3 Results & Discussion . 52

5.3.1 Feature: E�ect range . 52

5.3.2 Feature: Manha�an Distance . 53

5.3.3 Training Time . 54

5.4 Discussion . 56

Chapter 6 Conclusion 57

6.1 Overview . 57

6.2 Limitations & Future Work . 59

Appendix A Maximum Likelihood Estimation 61

Appendix B Expectation-Maximization Algorithm 65

Appendix C Links 67

Bibliography 68

List of Figures

1.1 Reinforcement Learning . 3

1.2 Inverse Reinforcement Learning-examples . 5

1.3 Inverse Reinforcement Learning . 6

2.1 Markov Chain . 12

2.2 Deep Neural Network . 26

2.3 Arti�cial Neuron . 26

3.1 Deep-MIIRL Overview . 30

3.2 Deep-MIIRL Expectation-Maximization view . 32

3.3 State to Features to Reward Mapping using DNN . 35

3.4 SIIRL using DNN . 37

4.1 Class Diagram for IRL-framework . 41

4.2 MIIRL sequence diagram . 46

5.1 Object placement and Generated Rewards . 50

5.2 Ground-truth Rewards . 50

5.3 Both the Features . 51

5.4 Results (Feature- E�ect Range) . 53

5.5 Results (Feature- Manha�an Distance) . 54

5.6 Training Time in minutes . 54

x

5.7 System Con�guration . 55

A.1 Similar Models with di�erent parameters . 62

A.2 �e 10 Observed points . 62

A.3 �e possible distributions’ curves . 63

Chapter 1

Introduction

�e aim of this chapter is to introduce the context of this work and state the need of research

in the areas involved. �e �rst section overviews what Reinforcement Learning (RL) is and its

applications. It then underlines how RL’s working is dependent correct reward speci�cation and

lists the reasons behind reward designing problem which resulted in the birth of a sub-�eld viz.

Inverse Reinforcement Learning(IRL). A�er de�ning IRL and the way it aids RL, it notes what are

some of the gray areas le� in the ongoing research e�orts. �e contribution section states the areas

we chose to work on during this dissertation and brie�y spells out the contributions in this regard.

We state some assumptions made during the process and structure of the remaining report in the

�nal sections.

1.1 Motivation

�e section outlines some of the basic terminologies in the context of the work and brie�y states

the problem and hence the need for research in the subject.

1.1.1 Reinforcement Learning

�e Arti�cial Intelligence popular image and its various current applications depend on the avail-

ability of underlying data from which pa�erns can be recognized; these pa�erns are then used to

1

CHAPTER 1. INTRODUCTION

predict or act on future data. �is approach seems intuitive for the application areas where data is

at the core and environment in which application will act is static e.g. image recognition. But this

approach seems inadequate when it comes to applications such as game playing, car driving etc.

which are more dynamic in nature.

On the contrary, Reinforcement Learning (RL) is a technique of learning from interaction with the

surrounding environment. Here, an agent starts acting in an environment with limited or no knowl-

edge, receives positive rewards for reaching desirable state and negative or no reward points oth-

erwise. It gradually starts developing its policy to behave in that environment in such a way to

maximize the reward received. To learn the optimal policy an agent should strike balance between

intelligence to use the knowledge it has yet gathered viz. exploitation and courage to take calcu-

lated risk of going out-of-way to collect new knowledge viz. exploration. �is approach seems very

natural to train arti�cial agents, as this is the way we Human learn to live and progress in our lives.

E.g. mastering car driving involves starting driving with basic knowledge, receiving negative criti-

cism from tutor for mistakes such as harsh turns, urgent braking or positive comments for perfect

lane changing. It is therefore no surprise that this approach started giving excellent performance in

some domains, e.g. [30] illustrates how RL agent outperforms human in Atari game environment.

�is idea of reinforcement learning being natural and humanly way for learning is also supported

by the work in behavioural studies [31] [12].

Summarizing all the above points, Reinforcement Learning can be depicted with the below Figure

1.1, where at any time step the agent senses the environment, takes an action according to its learned

policy at that time and again senses the new state and the reward a�er taking the action.

1.1.2 Reward Engineering Problem with Reinforcement Learning

From the representation of RL it is clear that e�ectiveness of RL agent depends on how accurately it

learns the policy to act. �e closer it gets to the optimal policy the be�er. It can also be seen from the

above illustration that the learned policy heavily depends on the reward function, which is o�en
1h�ps://skymind.ai/wiki/deep-reinforcement-learning

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Reinforcement Learning1

designed manually. A slight inaccuracy in the reward function has the potential to considerably

impact the policy of an agent, and hence the performance. It also decides “How quickly” and “What

things” an agent will learn while training.

�e importance of reward can be explained with the term ”the Cobra E�ect”, popularized by the late

German economist Horst Siebert to illustrate the theory of unintended consequences. �e anecdote

goes as follows,

”In a city, the government was concerned about the increased number of venomous

cobras. �e government therefore started a scheme o�ering reward for every dead co-

bra. �e strategy proved successful initially, as large number of snakes were killed for

the reward. Eventually, however, enterprising people started to breed cobras for in-

come. When the government became aware of this, they decided to scrap the scheme,

causing the cobra-breeders to set now-worthless cobras free. Consequently, the cobra

population further increased”

It elegantly captures the importance of reward in reinforcement learning. �e RL model designing

experience shared here2,describes on the similar lines, how a robotic arm learned to throw things

away instead of placing them at a distance, a�er discovering its power to use torque.

Two of the prominent names in the �eld, Pieter Abbeel and Andrew Ng. emphasize the importance

of reward in RL as,
2h�ps://medium.com/@BonsaiAI/deep-reinforcement-learning-models-tips-tricks-for-writing-reward-functions-

a84fe525e8e0

3

CHAPTER 1. INTRODUCTION

”the entire �eld of reinforcement learning is founded on the presupposition that

the reward function, rather than the policy or the value function, is the most succinct,

robust, and transferable de�nition of the task” [1]

A quick overview of the successful RL application till date e.g. [25], shows that most of them are

the domains where environment can readily provide the reward. E.g. Atari game where winning

is rewarded positively while losing rewarded negatively. But in the real world, it is o�en not clear

at all what the reward should be and there are rarely any intrinsic reward signals such as game

score. To continue with the car driving example given in the above section, consider how many

possible parameters are there to be a good driver viz. lane changing, safe overtaking, understanding

tra�c signals and other vehicles’ signal, safe turning, maintaining safe distance and many more.

To add to the complexity there might also be possible relationships between them e.g. di�erent

safe distance for di�erent speed. Specifying the perfect reward function means correctly assigning

weights to all these parameters, so that an agent could judge the quality of the state it is in. Most of

the time these weights are manually altered until performance is improved upto certain threshold.

Clearly, considering the amount of computational power and time required to train RL agents, such

trial-error approach is only suitable where reward function is simple enough to specify and possible

states are few. As RL systems are becoming more general and autonomous, the reward engineering

that elicit desired behaviours, is becoming both more important and challenging [10].

1.1.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is a technique of extracting or approximating reward function

by observing expert’s behaviour[3]. Here, expert means anything from human to computer system,

which are supposed to behave as optimally as possible. Similar to RL, IRL too �nds co-relations

with behavioural science and human learning process. Let us continue with the car driving case.

Although, it is possible for a new learner to learn driving entirely by herself by trial-error, it could be

time consuming if not disastrous. Instead she could learn comparatively quickly by observing how

her instructor drives and so learning desirable traits while avoiding the common mistakes. Similarly,

4

CHAPTER 1. INTRODUCTION

although ultimately an agent will be deriving its own policy to operate; a be�er reward function can

help to arrive at the policy. IRL helps in this concern. Given experts’ behaviour observation, IRL

a�empts to learn the underlying reward function that expert had in mind while demonstrating.

To do so, it assumes entire state space as made up of some features and reward function is the

function of these features. �e job of IRL is then to approximate the parameters of this function i.e.

feature weightage, from the available experts’ demonstrations assuming that the expert behaved

optimally in order to maximize certain feature counts while avoiding the remaining. E.g. frequent

lane changing can be a feature which should be negatively weighted, while constant speed should

be weighted positively. �e learned reward function is then adopted in place of manually de�ned

rewards in training process.

�ere has been rising research interest in the �eld recently which underlines its potential, e.g. [21]

modelled a real mobile robot which learned from pedestrians demonstrations to navigate in an o�ce

environment in the presence of humans, [35] learns path planning tasks from partial observations.

Figure 1.2 illustrates the experiment carried out at Berkeley AI-lab by Chelsea Finn [11]. Using IRL

she taught two tasks to the robot arm shown; dish placement and pouring task. Descriptive video

about the experiments can be found at this link 3.

Summarizing all the above points, Inverse Reinforcement Learning can be depicted as in �gure 1.3.

Figure 1.2: Inverse Reinforcement Learning-examples

3h�ps://www.youtube.com/watch?v=hXxaepw0zAw

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Inverse Reinforcement Learning

1.1.4 Issues in Inverse Reinforcement Learning

Being a developing technique, there have been lots of open issues to be addressed for IRL to be

a full �edged reliable approach. An ideal IRL method would be the one which addresses all these

simultaneously. Some of these issues are overviewed below.

1. Generalization

It refers to extrapolating limited expert demonstrations available to deduce knowledge about

the unobserved situations. E.g. a state never visited by the expert. �e challenge is to gen-

eralize reward function which is not over��ed to sample observations and which deduce the

overall goal of expert instead of just focusing on the states visited [32].

2. Feature selection

From the high level functioning of IRL algorithm explained above, where reward is de�ned

as the function of features; it is straightforward that the e�ciency is directly associated with

how correctly an environment is described as set of features [33]. It is a way to induce the

prior knowledge. �e problem becomes challenging when features de�ned can not model the

expert preferences adequately.

6

CHAPTER 1. INTRODUCTION

3. Multiple Intentions

�e expert may demonstrate the related examples with di�erent goals in mind. E.g. a driver

may drive quiet and steadily when going on outing; on the other hand she may drive hastily

when going to the o�ce on the next day. An ideal IRL method should not confuse between

such observations and be able to recover all the underlying reward functions.

4. Nonlinear Rewards

Reward function is most o�en assumed to be a linear combination of features. While this

presumption su�ces for many problem, it is still inadequate to model reward function for

complex domains such as surveillance, where reward de�nition becomes complex. A reward

function is said to be non-linear when there are more than one environmental features and

a relationship between reward and one of the features becomes inconsistent in presence of

at-least one other feature.

1.2 Contribution

�is work targets the third and fourth of the issues listed in the section 1.1.4 i.e. extracting multiple

non-linear reward functions from expert’s unlabelled observations. �e existing approach follows

the two step process of �rst sorting the expert demonstrations into di�erent clusters and then apply-

ing single intention IRL methods to extract rewards for di�erent clusters. �is work identi�es the

ine�ciency of the second step while handling non-linear reward function and in order to alleviate

the problem replaces it with Deep Neural Network(DNN) based IRL method. We show how DNN’s

primary capability to handle non-linearity can be employed to solve the problem. �e proposed

method is named as Deep- Multiple Intentions Inverse Reinforcement Learning (Deep-MIIRL).

�e design is evaluated in the classical objectworld environment, where reward function is kept

non-linear function of environmental features. �e evaluation noticed the comparable performance

of both the methods when features are clearly stated. On the other hand, even though Deep-MIIRL

is not able to recover the exact reward function in case when features are vague, it outperforms

7

CHAPTER 1. INTRODUCTION

previous Linear-MIIRL.

Extracting underlying multiple reward functions from expert’s demonstration is crucial while de-

signing autonomous agents for real-world complex environment such as driving, where the reward

function is not as readily available as in other cases. �e availability of large data such as sensor

data, archived logs, which encodes implied reward function in humans’ actions, can be leveraged in

order to address the problem. In general, the research contributes in e�orts to devise such an ap-

proach using which the reward functions from unlabelled data can be extracted and used in training

AI agents.

1.3 Assumptions

To match the time constraints and resources limitations, certain assumption are made in the pro-

cess of implementation and evaluation. Evaluating the design in complex simulation environment

or real-world domain would have cause investing considerable e�orts in se�ing up experiments

and training process. To keep the focus of the dissertation on the core part i.e. e�cient reward ex-

traction, a simulated toy environment is selected for evaluation process which provides comparable

complexity to test the design and at the same time makes the environment setup hassle free. We

believe that a system performing satisfactorily on such toy environment can be extended with li�le

modi�cations to more complex domains in future.

�e training data required for the evaluation is provided by the author himself carrying out the

demonstrations, by assuming the role of an expert. �e choice of simulation environment allows

us to make this assumption. For real-world domains, this training data is usually gathered through

complex data generation process such as collecting sensor data, processing archived big data etc.

1.4 Roadmap

�e structure of the dissertation is as follows: Chapter 2 presents related research in the �eld. It ex-

plains formal de�nition, foundation and di�erent �avours of RL, IRL and MIIRL. �e Design chapter

8

CHAPTER 1. INTRODUCTION

covers the approach we take to tackle the issues explained above, divides the system into two parts

to handle each of them and formulates the algorithms. Chapter 4 talks about the implementation

details involved. Chapter 5 describes the evaluation process and the results. Chapter 6 puts the de-

sign and evaluation in the frame to conclude the report. It also underlines some of the future work

remained to be addressed.

9

Chapter 2

Background and Literature Review

�is chapter formerly introduces all the concepts related to the thesis. It starts with describing ter-

minologies and foundations of Reinforcement Learning. It then builds on it to describe IRL, di�erent

approaches taken to achieve it and a special case of IRL viz. multiple intentions IRL, which estimates

more than one rewards. Lastly, we explain the concept of Deep Neural Network and its applications.

2.1 Reinforcement Learning

Most of the Arti�cial Intelligence techniques today are largely based on availability of data from

which a model can derive some insights to act on similar data in future. �ese techniques, broadly

known as Supervised Learning, are being successfully used to address a whole range of business

challenges. However, these models are data-hungry and their performance relies heavily on the

size of training data available. �is role of datasets in AI projects has made Data the oil of new

world [46] [41]. On the other hand, the reliance of AI models on available data exhibits its obvious

limitation that, be�er modelling techniques would only enable us to extract whatever knowledge

incorporated in the adopted datasets, but never to surpass it. It is evident that, this contradicts with

the way human learn with the combination of all data, experience and experiment.

Reinforcement Learning presents an alternative approach to achieve machine intelligence which

resembles with the human learning process. RL agents try out things on their own in the respective

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

environments, perceive results of their actions in terms of rewards and in process learns how to

behave in environment to maximize those rewards. Unlike supervised learning, RL agent does not

depend on dataset and creates its own knowledge base by interacting with its environment. An

ideal RL agent should make a good use of both the knowledge it has gathered to achieve maximal

reward and also go out-of-box to try new things(actions) in order to explore greater reward. One

can envisage the possibilities we can realize with this basic concept, provided with su�cient time

and immense computational resources.

In most Arti�cial Intelligence designs, some mathematical framework is created to address problems.

For RL, the solution is the Markov Decision Processes (MDP). It enables agent to determine the ideal

behaviour in order to achieve certain state. �is goal is regulated by agent’s policy which determines

the steps to be taken from the current states. �is optimization is done with a reward feedback

system,where di�erent actions are weighted depending on the future state these actions will cause.

�e general terminology to explain MDPs is given below [39]:

1. Markov Property:

It states,

”�e future is independent of the past given the present.”

At any point in time, the future state only depends upon the current state and not on the

history of states/path followed to reach the current state and hence history can be discarded.

2. Markov Chain/Markov Process:

It is a memory-less random process i.e. the sequence of random states achieved by following

the Markov Property. �e �gure 2.1 shows a Markov chain example of a student. E.g. from

’Class 1’ he might go on to a�end ’Class 2’ or might log into Facebook with equal probabilities.

A sample of states followed is called episode, which generally end with an absorbing state

(Sleep).
1h�ps://towardsdatascience.com/reinforcement-learning-demysti�ed-markov-decision-processes-part-1-

bf00dda41690

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.1: Markov Chain1

3. Stochastic Environment:

An environment possesses Stochasticity, if taking action A from state S does not always leads

to the same next state S’ i.e. results of actions are non-deterministic. To describe such an

environment, transition probability matrix is de�ned which lists probability of landing in

every possible states in environment S’ a�er taking action A from S for every state. �e

transition matrix can either be determined beforehand if the environment is simple enough

or can be approximated on the �y by an agent when it starts acting.

4. Reward Function:

It de�nes the utility of a state i.e. what reward agent gets being in that state.

5. Discount Factor:

It is used to determine the desirability of states which do not have any intrinsic utility. E.g.

if state A is one step away from state F which has reward of 10, then discount factor of 0.9

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

would make utility of state A equal to 9(10*0.9) and so on for other states. Discount factor

aids in disseminating rewards from reward state back to initial states.

6. Markov Decision Process:

Reinforcement Learning is formally de�ned using Markov Decision Process (MDP) as [39]:

MDP consists of tuple (S, A, T, γ, R) where,

S: �nite set of environment states

A: �nite set of actions possible in the environment

T: transition probability distribution i.e. a function T(st, at, st+1) giving probability of landing

in state st+1 from st by taking action at.

R: reward function.

γ: discount factor.

Some other concept which are derived from the basic RL de�nition and are frequently used in

literature are stated below:

1. Policy is the function which determines agent’s behaviour by taking current state and re-

turning action to be taken; π: S -> A

�ere exists the optimal policy π*, by following which the agent has higher chances of achiev-

ing the maximum reward as compared to other sub-optimal policies. An RL agent’s objective

is to determine a policy as close as to the optimal policy.

2. Value function associates a value with every state representing expected reward starting

from that state and following the policy.

Vπ(s) = E[R(s1) + γ R(s2) + γ2 R(s1) | π]

3. Optimal Value function is the value function associated with the optimal policy i.e. it has

highest expected reward. V*(s)= max Vπ(s), ∀ s ε S.

4. Q-value: Unlike value function which shows pro�tability of a state, Q-values represents prof-

itability of an action from that state. We can easily imagine when considering Q-value is de-

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

sirable over Value functions e.g. the state in which a robot has reached a cli� does not have

any sense until its next action decides whether it shall fall into valley or gets to diamonds on

the other side.

5. Bellman equation helps to maximize the sum of cumulative rewards by considering both the

immediate possible reward of taking an action and possible rewards in distant future. Optimal

Q-value function is de�ned using it as,

Q*(s, a) = R(s, a) + γ [
∑

s’ (T(s, a, s’) V*(s’))]

Using this de�nition optimal value function can also be restated as,

V*(s)= maxa Q*(s, a)

V*(s)= maxa [R(s, a) + γ (
∑

s’ (T (s, a, s’) V*(s’)))] .. (2.1)

6. Value Iteration vs Policy Iteration Value Iteration is an iterative method to solve for the

equation 2.1 until state values converges. It involves repetitively solving for state value func-

tion (V) or state-action value function (Q) for the combination of each state and each action.

�e generated values can then be used by RL agent to decide an action to take from its current

state so as to get to the next state with maximal value possible.

We can imagine that as state-space or action-space increases, value iteration would take longer

to converge. Also, an RL agent only needs policy to operate and not actual values i.e. values

may take longer to converge but they started o�ering same policy much earlier than their

convergence. �erefore, we can stop iterating as soon as policy converges. �is approach is

called policy iteration.

7. Temporal Di�erence It can be seen that both the above methods require environment model

beforehand to iterate, that is to say these methods are suitable for model-based agents. For

the situations when an environment model is not available, a modi�ed version of the above

methods viz. Temporal Di�erence (TD), is used to learn the policy. �e basic idea behind TD

Learning is to update Q-values on-the-�y as an agent starts interacting with environment,

instead of computing them beforehand.

14

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

TD(s, a) = [R (s, a) + γ maxa’ Q (s’, a’)] - Q (s, a)

Qt(s, a) = Qt-1 (s, a) + α TDt (s, a)

where α is the learning rate to control how fast the values change.

TD updates the past Q-values estimation upon each new interaction with environment. �is

equation is bound to converge a�er �nite iteration in non-changing environment and so we

can use it to �nd out the policy. Even if environmental conditions change in the middle, it

has the ability to adapt to them on-the-�y. �erefore, TD is more suitable to use in real world

scenarios.

�us, RL boils down to representing environments in terms of state and actions, forming reward

function, specifying required discount factor and then solving it using any of the above method Value

Iteration, Policy Iteration or TD to form policy to behave.

2.2 Inverse Reinforcement Learning (IRL)

In recent years, IRL has a�racted researchers from Arti�cial Intelligence domain as well as from

�elds such as psychology, behavioral science, control theory etc. Its notion of making systems

intelligent not only by leaving them learn by themselves but also combining it with the available

human expertise looks promising considering the current state of the art [38] [34]. Some primary

reasons of this developing interest are listed here.

2.2.1 Signi�cance of IRL

Reward function inference

Generally when autonomous agent is designed, the problem is speci�ed as forward learning/forward

control task using RL methods(as explained above) or optimal control methods. �e core part of this

speci�cation is representation of expected behaviour, preferences via a reward function. When it is

speci�ed manually, one needs to repeatedly tune it and test system. before we begin to get expected

behaviour. Also the process gets cumbersome as environment becomes complex or parameters in-

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

creases, and hence it is not practical to follow this process in real world applications. �e issue

constraints the RL approach to problems in which a lucid reward function is readily available. IRL

aims to target this constraint by bypassing manual reward speci�cation to directly infer it from

examples of desired behaviour [4].

Enhanced Generalization

From all the other parameters of MDP listed above, reward function is the most succinct and rep-

resentative of them for preferences of agents [1]. Policies i.e. state-to-action mapping, as put by

Control �eory, is the more direct way to represent preferences; but this is a short-term solution as

a slight change in environmental condition would leave policies worthless in new conditions. E.g. if

few more states are added, then there will be no representation for them in terms of policy. We need

to de�ne state-action mapping each time a new state added, and while doing so the e�ect of new

states on existing policy should also be considered. On the other hand, if preferences are modelled

via reward function, then as long as new states are represented similarly as older ones, no change is

needed. Using RL methods, a new policy for changed environment can be regenerated. If dynamic

RL methods like TD learning explained above are used, then it is not even required to regenerate

and agent can adjust with new environment on-the-�y. �us, the characteristic of IRL to recover

reward function than any other aspects of MDP make it more generic.

Possible Applications

From the conception of IRL, it possess the potential to contribute to modelling problems for human

and animal behaviour [38]. E.g. Ullman[42] and Baker[6] formulated human behaviour as planning

problem and recovered the human goals using IRL. �e research in IRL has rapidly brought it across

as a mainstream technique in variety of applications:

1. Intelligent Personalized Vehicle command by recovering user preferences from sample driving

demonstrations. �ese include several types of control such as helicopter control [2], boat

driving [33], socially aware robot navigation learning from humans to avoid colliding into

16

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

humans [22] [18].

�e e�ciency of hybrid vehicles i.e. mix of engine power & ba�ery power, depends on param-

eters such as ba�ery level, engine e�ciency to operate at di�erent speed. If the future power

requirements are known, a more economical use of engine vs. ba�ery power can be planned.

[43] proposed model to predict the future routes so that the ba�ery power scheduling can be

e�cient, without requiring any hardware improvements or change in driver behaviour.

2. Modelling some other agent’s preferences to plan our policies. [48] applied it to predict route

and destinations using model learned from preferences of 25 taxi drivers over 100,000 miles.

[37] combined IRL with LEARCH(LEArning to searCH) approach to implement planning algo-

rithm for legged locomotion robot. [49] designed robot-navigation model from goal-directed

trajectories of pedestrians.

3. �e capability to infer preferences from observations lends itself naturally in multi-agent set-

ting where an agent would act either cooperatively with other agents to maximize the e�-

ciency or adverserially to overpower the opposition. [7] employs IRL in adverserial multi-

agent environment to penetrate a perimeter patrol by learning patrollers’ policies and prefer-

ences.

2.2.2 Formal De�nition of IRL

�is de�nition builds on the terms and terminologies explained above in RL section.

Expert: A human or system which performs demonstrations and which is assumed to have been

near-optimal while doing so.

Expert’s Reward function(RE): �e reward function an expert had in mind while carrying out

demonstrations.

MDP/RE : MDP without reward function.

Trajectory/Observation/Sample (τ) : {(s1, a1), (s2, a2) . . . (st, at) }

It is an series of states and respective actions taken by an expert in a single episode, which likely to

17

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

end in end/absorbing state.

Expert Demonstrations (D): {τ 1,τ 2 . . τm}

A collection of trajectories observed in a single session. It is assumed that all τ ∈ D are entirely

observed.

IRL seeks to recover RE that best describes the given observations.

2.3 Methods for IRL

�is section introduces various methods proposed to solve the IRL problem above. To correlate dif-

ferent approaches, some common steps which generalizes the process are listed below as template.

Input: Expert Demonstrations (D) {τ 1,τ 2 . . τm}
Output: Recovered Reward function RE
Steps:

1. Create MDP without Reward function from expert’s demonstrations.

2. Describe reward as a function of some parameters such as states, state features etc.

3. Figure out MDPs behaviour (e.g. in terms of policy, state-visitation frequency etc.) under
current reward function

4. Update reward function parameter to lessen the di�erence between MDP’s current behaviour
and expert’s observed behaviour.

5. Iterate the steps until the di�erence is reduced.

Di�erent approaches assumes Expert’s Reward function in di�erent format e.g. linear function

of state features, probability distribution over states, probability distribution over possible actions

etc. �e solution is then to update this assumption to new values which would explain the possibility

of expert’s demonstration more certainly.

2.3.1 MaximumMargin

�is approach seeks such a reward function which explains observed demonstrations be�er than

other possible policies by a margin.

18

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Linear Programming

�is is the initial approach proposed by Ng and Russell [34] which generate reward function which

would produce the inpu�ed expert’s policy as optimal solution when solved with MDP. Note, it

requires the exact policy of an expert and not the demonstrations. In order to maximize the margin,

it seeks to maximize the di�erence between action values for each state of solved MDP and the

second best MDP possible. It assumes reward function as linear weighted sum of basis functions as,

RE = w1φ1(s) + w2φ2(s) + ..wiφi(s)

,where φi de�nes the basis function and wi is the weight assigned.

�e method proposed originally for a discrete state-space. If state-space is continuous then, Ng and

Russel suggest, we can fragmentize it and take samples to generalize it into discrete state space.

Apprenticeship Learning

�e Linear Programming method has limitations as it requires the policy of an expert which is rarely

available directly. Instead, expert demonstrations are readily available in most cases. Apprenticeship

Learning [1] modi�es linear programming approach to learn from demonstrations. For this purpose,

it de�nes the term feature count. Environment is assumed to have been made up of set of features

possessing values and each state is characterized with some of those features. Expected feature count

is sum of feature values under a policy.

µ(π) = E

[∑∞
t=0 γ

tφ(st)|π
]

For set of demonstrations, feature count is given as,

µ(πE) = E

[
1
N

∑N
i=1

∑∞
t=0 γ

tφ(si
t)|π
]

�en, to �nd a reward function so as to minimize the divergence between expert’s feature count and

assumed policy would be the task to do. �e algorithm repetitively adjust ’w’s to do so. Abbeel and

Ng states that, as long as feature count and reward function are simple enough to be correlated, a

reward function would be close enough with the original one. [33] solves the formed problem using

gradient descent method in reward space. Syed[40] approaches the problem in an unique way to

formulate it as zero-sum game between the max player choosing a policy and adversary replying

19

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

with reward function.

2.3.2 Entropy Optimization

�e maximum margin algorithms solely depend upon matching feature expectation of expert’s

demonstrations. �e problem with this approach is that many policies and hence many reward

functions may satisfy a feature expectation constraint. For example, reward function giving zero

reward for every state explains every observed demonstration quite perfectly. �is is known as de-

generacy problem which makes IRL an ill-posed problem. As a remedy to it, Entropy Optimization

methods resort to maximum entropy principle [16].

Maximum Entropy

�is approach initially introduced Maximum Entropy in context of IRL. As explained above Maxi-

mum Margin methods results in degeneracy problem. Apart from that, it also assumes that demon-

strations given are all optimal ways of doing thing. In reality, there could be some noises and sub-

optimal behaviour demonstrated by expert in some cases. To continue with the car driving exam-

ple, car instructor could always have some glitches in his driving, but the leaner is not expected to

learn from it and should neglect such noisy behaviour. Maximum Entropy deals with these issue by

leveraging probabilistic approach of maximum entropy, which allows to extract the policy distribu-

tion from expert trajectories which only depends on feature expectation and no other aspects [47].

�is approach allows the algorithm to deal with noise and probable suboptimal behaviour in expert

demonstration.

In order to do so, it de�nes reward function as linear combination of state features,

Rθ= θT.f (s) =
∑

s ε τ (θT f s) . . (2.2),

where f τ is feature representation of trajectory state space and θ is feature weight vector to be de-

termined.

At the core of the method, there is a probabilistic technique viz. maximum likelihood estimation

(MLE), which is elaborated in detail in Appendix A for reference. To brie�y elucidate it here, it takes

20

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

statistical model and data as input, and outputs parameter values of that model that maximizes the

likelihood of generating such a data under that model.

In case of Maximum Entropy IRL, the statistical model is assumed as follows. �e probability of a

trajectory being performed by an expert is exponentially proportional to its expected reward.

i.e. Pr(τ) ∝ eRθ(τ)

i.e. Pr(τ) = eRθ(τ)/Z .. (2.3)

where Z is the normalization term de�ned as Z=
∑

τ eRθ(τ)

So now that we have probabilistic model of the trajectory distribution, we can �nd the parameters

(θ) of reward function associated with it by formulating it as optimization problem using MLE i.e.

search for θ such that it will maximize the log-likelihood of the probability distribution function

(2.3).

L = argmax θ [log
∏
τdεD

(Pr(τ d))]

L= - argmin θ [(1
M) (

∑
τ dε D (log (eRθ(τ)/Z)))]

((1
M) is taken just for the mathematical convenience and it doesn’t a�ect the optimization problem

in hand)

L= argmin θ [((1
M)
∑

τ dε D Rθ(τ d)) + log
∑

τ eRθ(τ)]

Di�erentiating with respect to reward parameter θ,

∇θL = (1
M) (

∑
τ dε D∇θ(Rθ(τ d))) - (

∑
τPr(τ)∇θ(Rθ(τ)))

�e second term here can be converted to the function of all states S in the trajectories τ .

∇θL = (1
M) (

∑
τ dε D∇θ(Rθ(τ d))) - (

∑
SPr(S)∇θ(Rθ(τ)))

Here the �rst term is called expert feature expectation which is the summation over each feature

of each state visited by expert in given demonstrations.

�e second term is called learned feature expectation which is feature expectation calculated

similarly as above; only the demonstrations are generated by following the policy generated under

learned reward function. �e required demonstrations are generated by starting from the same start

states as of expert’s, and then following the learned policy. �e required calculation os performed

by dynamic algorithm.

21

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

�e equation is wri�en in short hand as,

∇θL = µD − E(µ)..(2.4)

Finally, equation (2.4) is the optimization target which can be solved by simply calculating minima

using gradient descent following below steps.

Input: Expert Demonstrations (D) {τ 1,τ 2 . . τm}
Output: Reward function parameter θ
Steps:

1. Iterate over given expert demonstrations to calculate µD

2. Randomly initialize θ.

3. Using Rθ , �nd current policy π(a|s) (using value/policy iteration).
Calculate learned feature expectation E(µ) using Dynamic Programming.

4. Compute gradient in equation (2.4)

5. Using gradient update θ.

6. Go to step 3.

Relative Entropy

Maximum Entropy IRL requires to calculate policy at each iteration, as evident from the steps above.

Satisfying this requirement would start going out of hand, as state space start ge�ing larger and

continuous. Relative Entropy IRL [8] seeks to eliminate the dependence on learning environment

dynamics.

Initially random trajectories having feature counts close to that of demonstrated ones are created.

Secondly another set of trajectories are sampled under some uniform baseline policy assumed. �en

reward function can be learned by iteratively minimizing the relative entropy between these sets of

distribution. Finn et al. [11] implemented REIRL by employing neural networks to represent reward

where di�erence in SVF between two sets of policies is backpropogated as error signals.

22

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.3.3 Machine Learning techniques

A few a�empts to address IRL problem using classical ML techniques such as regression or classi�-

cation have also been made.

Feature creation

All the IRL methods implemented relies on availability of environment described in term of features.

Levine et al. [23] devised method to address both reward function recovery and environment feature

creation. It begins with empty set of features. �e �rst step viz. Optimization step constructs reward

function for current set of features and the next step viz. Fi�ing step creates new set of features that

describes constructed reward function more precisely than previous set of features. �e process

involves expressing states in form of minimal regression tress for rewards which results in new �ne

tuned features which makes RE appropriate with demonstrations.

Classi�cation

Klein et al. [20] formulated IRL as a classi�cation problem where the loss function of a classi�er is pa-

rameterized with feature expectation of trajectories. It also formulated Q-values in terms of feature

expectation as, which made it possible to connect Q-values and IRL through feature weights. �e

algorithm then minimizes the loss function by adjusting feature weights through gradient descent

method. Klein [19] further extended the method to cope up with unknown environment dynamics,

estimating it using given demonstration through regression.

2.3.4 Bayesian approach

Bayesian inference is a method in which Bayes’ theorem is used to update the probability for a

hypothesis as more evidence or information becomes available. For example, if the problem is to

�nd the probability if a person having cancer, initially it is straightforward to answer with whatever

percent of the population has cancer. As we get some additional information such as the person is

a chain-smoker, the probability can be safely increased, �is is known as Bayesian update.

23

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Bayes rule is give as,

P (A|B) = P (B|A)P (A)
P (B)

,where A is the event we want to �nd probability of and B is the new evidence/information. P (A|B)

is the probability of event A given evidence B about it, called posterior. P (B|A), called likelihood,

is the probability of observing evidence B, under initial hypothesized probability of A. P(A), called

prior, is the initial probability of happening even A. P(B), called marginal likelihood, is the general

probability of observing evidence B. Ramachandran and Amir [36] de�ned posterior distribution

over reward function as,

P (RE|τ) =
P (τ |RE)P (RE)

P (τ)

where P (τ |RE) =
∏

(s,a)∈τ Pr((s, a)|RE)

Under the given reward hypothesis, some state-action pairs are more probable to occur. �e reward

hypothesis is continuously updated as more number of trajectories are considered to �t correctly to

observations. Michini et al. [28][29] extended this approach by dividing a trajectory into sub-parts

and designate each of it with separate reward function to represent their own sub-goals.

2.4 Multiple Intentions Inverse Reinforcement Learning (MIIRL)

Many a times a large amount of data for a particular domain is available to us as result of archived

data or collected through modern-day smart sensors technology. E.g. nuScenes [9] recently pub-

lished data collected through 13 high-end sensors ��ed to cars including camera, RADAR and LI-

DAR. Such datasets can be leveraged in designing reward functions for AI agents performing IRL

on them. �e problem arises in straightforward use of the datasets due to the contexts in which

these demonstrations were observed. For example, a person might be rushing to o�ce one day or

driving safely while on family outing the next day. Simply feeding such observations to any IRL

method would produce chaotic reward function which would not be able to catch any of the in-

tentions correctly. MIIRL solves this problem of extracting multiple reward functions from given

demonstrations.

Vroman et al [5] aggregates Linear IRL with clustering technique which sorts demonstrations into

24

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

di�erent goals clusters. �e process is iterative where reward functions for each cluster are found as

per initial assumptions and then each demonstration is weighted for each cluster as per how much

it adheres to the policy generated under the reward function of that cluster. In the next iteration, a

demonstrations input to calculate the reward function of a cluster is weighted against the likelihood

of adherence to that cluster found in previous step. �e process requires the number of clusters

beforehand.

Gleave and Habryka [13] extended this method in the context of Entropy Optimization explained

in 2.3.2 to make it more sample e�cient i.e. it could learn from small numbers of demonstrations.

It does so by simply adding regularization term to the loss function. �e underlying assumption is

that, all the clusters’ intentions are closely related to each other and di�ers very slightly; therefore

the reward weights (θ) for each cluster are equally distributed around some mean. �e regulariza-

tion term added to the loss bars the reward weights (θ) from moving too far away from the mean.

Bogert and Doshi [7] formulated this problem as multiple experts interacting with each other through

acting in the environment. �e interaction is framed as general-sum strategic game between two

players. In the process, one agent learns the preferences and therefore, distribution over reward

function of the other one. [26] extended the approach to suit multiple agent environment.

2.5 Deep Neural Networks

2.5.1 What is it?

Deep Neural Network is the computation model which simulates human brain’s working in order

to perform and which in theory has capability to represent any complex relationships. A high level

picture of a DNN is depicted below.

DNN is made up of number of layers where each layer contains neurons in it. Each neuron receives

information from every neuron from the layer behind it, does some computation on the received

information and forwards it to the next layer. With enough training data feed in to a DNN, it learns

what transformations to perform on it to convert it to the desired output in the last layer.

25

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.2: Deep Neural Network2

2.5.2 Arti�cial Neuron

Primary component of DNN is arti�cial neuron which non-linearly transforms the input received

into output.

Figure 2.3: Arti�cial Neuron3

For example. the neuron in the �gure receives three inputs(’X’s). Each of them are multiplied by

some weights(’W’s) before taking summation over them.
2h�ps://towardsdatascience.com/applied-deep-learning-part-1-arti�cial-neural-networks-d7834f67a4f6
3h�ps://tex.stackexchange.com/questions/132444/diagram-of-an-arti�cial-neural-network

26

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

f(x)= b + w1.x1+ w2.x2. . . + wn.xn = b+WTX

�en, instead of directly passing this output to the next layer it applies a some non-linear activation

function e.g. sigmoid on it.

y=σ(f(x))

2.5.3 Train a network

Training DNN means learning proper values for all W and b. It is achieved through the process

of feed forward and backpropagation. In feed forward stage, each training example is passed

through a network and network transforms it to some output using neuron computations explained

above. �e next stage is to calculate Loss (L) i.e. the estimate of how much the predicted output

diverges from the actual one. Ideally, the loss function should be zero. �e training process aims to

make it as close as possible to zero.

Once loss is determined, the next stage is to adjust each W and b so as to minimize that loss. Gra-

dient Descent is the mathematical technique based on calculus which is used for this purpose.

Gradient value of loss with respect a weight i.e ∂(L)
∂(w1)

is calculated, which determines responsibility

of w1 for the current loss. Using that gradient value, w1 is nudged as below.

w1 = w1 + ∂(L)
∂(w1)

· α

,where α is called learning rate which determines how fast network weights are to be adjusted

(usually 0.001).

It starts from calculating gradient for the last layers’ neuron and then going backward for each lay-

ers’ neuron, hence the name backpropagation. As we can see, calculating gradient and adjusting

values for each and every weight in network is very computationally heavy task which requires

considerable amount of time and resources. A�er enough of training, each of the W and b are so

adjusted that when the new data comes in from the input the desired output can be expected from

a network.

�e real power of DNN lies in the activation functions which controls �ring up of neuron and gives

non-linearity to networks. Without them, a neural network is just a combination of multiple linear

27

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

functions. Sigmoid, ReLu, Tanh are some �avours of activation functions. All these factors together

give DNN the capability to represent any complex continuous function viz. Universal Approximation

[15], which sets it apart from other Machine Learning techniques.

2.5.4 Applications

�e Universal Approximation characteristic make DNN popular implementation choice to solve RL

problems. Mao et al. [27] employed RL to autonomously decide to allocate and schedule machine

resources to waiting jobs to minimize the average job waiting time. Current resource allocation and

jobs’ pro�le forms the state space which is fed to DNN. Loss function is de�ned as sum of negative

inverse of waiting time for each job. �e network is created with single hidden layer of 20 neurons

fully connected to input and output layers. Hausknecht and Stone [14] used a variant of DNN viz.

RNN, which gives a network the capacity to memorize. �ey trained the system to play Atari 2600

games, which takes only screen pixels as input and acts in the available action space of a game. �e

loss function is the game score given by the game engine. �e memory element enables the agent to

take decision not only depending on the current screen situation but also considering some previous

screen memorized. �e architecture surpassed the human level performance baseline as well as the

previous milestone setup by the DNN architecture without memory [30].

28

Chapter 3

Design

�e previous chapters introduced the overall need for IRL, the special case viz. MIIRL for extracting

multiple reward functions from demonstrations, the a�empts in the direction and some open areas.

�e scope of this work is to develop a single method which handles both multiple intentions and non-

linear rewards. �e literature review showed that although these have been addressed separately,

there is no common approach to target both. We propose one approach called Deep-MIIRL to handle

both these issues under one roof, using mathematical technique of Expectation-Maximization(EM)

and Deep Neural Network(DNN).

Before moving forward, it is advised to get acquainted with EM algorithm explained in Appendix

B, entropy optimization and MLE from section 2.3.2 and basics of MIIRL from section 2.4, on which

the design is based on and refers to in order to avoid repetition.

3.1 Overview

�e overall system can be viewed as a process which is fed with environment details such as states

& features of each state, expert demonstration samples and number of intentions with which those

demonstrations are carried out and it outputs the reward function parameters for each intention.

Let us lay down the basic terminologies,

J: number of intentions i.e. number of clusters.

29

CHAPTER 3. DESIGN

f (s): F-dimensional vector per state representing values for F number of features.

Rθ= θT· f (s): �is de�nition of reward function is extended in later sections to handle non-linear

reward functions; but the basic idea remains same as in section 2.3 i.e. reward is the function of state

features. θ is called reward function parameter.

τ : a sequence of state-action pairs {(s1,a1), (s2,a2) . . (st,at)} called a trajectory.

D: expert demonstrations consisting m-number of trajectories (τ 1, τ 2 . . τm), where each

trajectory is performed by an expert with any one of the J-intentions in mind.

Figure 3.1: Deep-MIIRL Overview

3.2 Handling Multiple Intentions

�e high-level frame of the architecture is of a sorting algorithm which separates trajectories into

clusters representing di�erent intentions. Once we have trajectories separated into clusters, single

intention IRL is applied to each cluster to extract θ. But as we can see, in this case sorting in one-go

is impractical, considering limited information in hand. Hence, we resort to EM algorithm which

instead of doing hard-sorting, does so�-sorting by assigning weights(within 0-1) to each trajectory

for each cluster as per how likely it belongs to that cluster. �is likelihood is the possibility of a

trajectory being generated by a policy under the current reward function of that cluster. Once so�-

sorting weights are determined in this step, single intention IRL is applied for each cluster. Here,

input of each trajectory is weighted against its so�-sorting weight for that cluster.

30

CHAPTER 3. DESIGN

Let us state few more notations,

zij: so�-sorting weight of trajectory τ i belonging to cluster j.

ρj : prior-probability of cluster j (between 0-1) i.e. what percentage of trajectories belong to cluster

j.

πθj(s, a) : probability of taking action ’a’ from state ’s’ when following policy π generated under

reward function with parameter θj. Policy can be found by any standard RL method (value iteration

or policy iteration, explained in previous chapters).

In E-step, we approximate zij for every τ i and cluster j, as follows,

zij =
∏

(s,a)∈τ i

πθj (s,a)ρj
N (3.1)

Product of probabilities for all (s,a) pairs in τ i gives joint-probability of τ i as a whole being gener-

ated by following policy π generated under reward function with parameter θj. �is term is weighted

against cluster’s prior-probability(ρj). N is just a normalization term to keep zij from growing out

of proportion. �e equation as a whole gives probability of τ i belonging to cluster j.

In M-step, we update our hypothesis about ρ and θ to make them maximally likely under new

z values.

Updating ρ is a trivial task, as it involves simply averaging over the probabilities with which trajec-

tories belong to a cluster, as follows,

ρj=
∑

i

zij
M (3.2)

Updating θ is the critical step here. Any single intention IRL(SIIRL) can be plugged here with one

modi�cation: input of a trajectory τ i in calculating θj is considered only as much as it belongs to

the cluster-J i.e. zij. At this point, we consider it as a black-box which takes in demonstrations(D),

features f (s), so�-sorting weights(z) and returns updated reward parameters θ. In the next section,

the speci�cs on how to use DNN based SIIRL here to handle non-linearity are detailed. Both the steps

31

CHAPTER 3. DESIGN

are iterated until values begin to converge or until speci�c number of iterations.

All the procedure is summarized below in the form of pseudo-code in Algorithm 1 and also depicted

in the Figure 3.2.

Figure 3.2: Deep-MIIRL Expectation-Maximization view

3.3 Dealing with Non-linearity

As we have the larger picture in place now, let us concentrate on its sub-part viz. SIIRL which

�nds reward parameters(θ) for every cluster separately. As pointed out in earlier section, we can

plug-in any SIIRL method in here. We based our choice for this method on the Maximum Entropy

based IRL’s (see section 2.3.2) enhancement provided by Wulfmeier et al. [44], which proved DNN’s

suitability in SIIRL problem. �e choice of this architecture is natural considering DNN’s intrinsic

capability to handle non-linearity (see section in 2.5).

32

CHAPTER 3. DESIGN

Algorithm 1 Handling Multiple Intentions
Input J, f (s), D(τ 1, τ 2 . . τn)
Output θ

1: procedure
2: θ ← (J − dimensional)
3: ρ← (J − dimensional)
4: z ← (J ∗M − dimensional)
5: for every j in (1 to J) do
6: Using θj, �nd current policy πj (using value iteration/policy iteration).
7: N ← 0
8: for every τ i in D do
9: joint− probabilityi ← 1

10: for every (s,a) pair in τ i do
11: joint− probabilityi ← joint−probabilityi ∗ [probability of (s, a) under πj]

12: N ← N + joint− probabilityi
13: for every τ i in D do
14: zij ←

joint−probabilityi∗ρj
N

15: for every j in (1 to J) do
16: total − probability ← 0
17: for every i in (1 to M) do
18: total − probability ← total − probability + zij
19: ρj ← total−probability

M

20: for every j in (1 to J) do
21: θj ← SIIRL(f(s), D)

22: Go to step 5.

33

CHAPTER 3. DESIGN

At the core of Maximum Entropy IRL and methods developed from it, the assumption is that re-

ward function is linear combination of environmental features. As stated by equation (2.2),

Rθ= θT f (s)

�e assumption poses the obvious limitation in situations when reward function can not be ex-

plained in linear terms. To remedy this, our approach twists this assumption to make reward func-

tion non-linearly transformed linear combinations.

Rθ= θT ψ(s)

ψ(s)= σ(W·f (s))

Here, Sigmoid (σ(e)) is a basic non-linear activation function applied to every element e. It can

be replaced with any other non-linear function to suit a problem in hand. �e same logic can be

stretched to arbitrary length as,

Rθ= θT ψ1(s)

ψ2(s)= σ(W1·ψ1(s))

ψ3(s)= σ(W2·ψ2(s))

·

·

ψn(s)= σ(Wn-1·f (s))

�erefore, we can approximate any reward function with state features and suitable values for ’W’s.

34

CHAPTER 3. DESIGN

�is structure is similar to deep neural network(DNN), which maps input to output governed by

network parameters. Figure 3.3 explains the concept intuitively where any state can be mapped

to its reward parameter by the network. �e states’ features are fed from input layer and a trained

network is expected to map them to the respective reward parameters, governed by network weights

representing ’W’s. �e non-linear transformation is handled by all the activation-functions of the

neurons.

Figure 3.3: State to Features to Reward Mapping using DNN

3.3.1 Network Training

�e training process for the network architecture proposed here would di�er from traditional DNN

applications such as computer vision, in terms of input data. �ese applications requires di�erent

instances of input, so a network could learn to map them to output by adjusting the weights. In our

design, the input data would always be the same i.e. the state features, as the number of states in

an environment is always going to be a �x number once de�ned. �erefore, it is the loss measure

of a network and how we backpropagate it to adjust weights, which would dominate the training

process mainly.

To de�ne the loss measure, we rely on the loss-gradient de�ned by Maximum-Entropy method(section

35

CHAPTER 3. DESIGN

2.3.2) as in equation (2.4)

∇θL = ∂L
∂θ = µD − E(µ)

,where µD is expert feature expectation and E(µ) is learned feature expectation. Minimizing

this loss using gradient-descent would lead to proper θ values.

µD can be calculated using the same process given by section 2.3.2 i.e. to iterate over expert trajec-

tories to sum up feature count for each state each feature. �is is the one time process as expert

demonstrations are going to be same always once given1. �e one thing needs to be modi�ed here to

make it suitable for multiple intentions, as speci�ed in section 3.2 i.e. weight each trajectory against

how much it belong to the cluster we are currently calculating reward parameters for. In other

words, τ i’s feature inputs are multiplied with zij while training for cluster j.

On the other hand, the process for calculating E(µ) di�ers from Maximum-Entropy. We use the

current reward generated by the network to obtain the current policy. �en sample trajectories are

generated under that policy. We start from the same start states as that of in expert demonstrations

and follow the generated policy to create sample trajectories in the same number as that of expert’s.

Once we have the sample trajectories, calculating E(µ) is similar to �nding µD explained above,

except that this calculation is performed repeatedly a�er every forward pass.

�e loss-gradient de�ned above is in relation with θ. As we need it in relation with network weight

W’s (∂L∂W i
) to perform backpropagation, the chain-rule is applied to �nd this relationship as follows,

∇WiL = ∂L
∂θ ·

∂θ
∂W i

,∀ i

∇WiL = (µD − E(µ)) · ∂θ
∂W i

,∀ i

Here the second term is the normal network gradient showing the relationship between the output

reward θ and a weight Wi. �is gives us our �nal gradient which is backpropagated to tweak the
1Demonstrations would be changing in special cases such as life-long learning, active learning where an agent keeps

on updating throughout its life. In such cases, µD needs to be recalculated time-to-time.

36

CHAPTER 3. DESIGN

network weights.

�e procedure is summarized in Algorithm 2 and Algorithm 3 through the pseudo-code and also de-

picted in Figure 3.4. Note that, this component �ts in the place of SIIRL of section 3.2. In the pseudo-

code, FORWARD PASS and BACKPROPAGATE are standard DNN methods to transform input to

output and backpropagate loss measure to adjust the weights respectively. GENERATE POLICY is

a standard RL method which creates a policy using value iteration/policy iteration from the reward

given.

Figure 3.4: SIIRL using DNN

37

CHAPTER 3. DESIGN

Algorithm 2 SIIRL
Input zj, f (s), D(τ 1, τ 2 . . τn), epochs
Output θj

1: procedure
2: F ← (no. of features)
3: S ← (no. of states)
4: expert feature expectation← (F − dimensional)
5: learned feature expectation← (F − dimensional)
6: expert feature expectation← 0
7: learned feature expectation← 0
8: θ learned← (S − dimensional)
9: Reward learned← (S − dimensional)

10: for every τ i in D do
11: for every (s) in τ i do
12: for feature in (1 to F) do
13: expert feature expectationfeature ← [expert feature expectationfeature]+zj ∗

[f feature(s)]

14: for e in (1 to epochs) do
15: for every (s) in States do
16: θ learneds ← FORWARD PASS(s)
17: Reward learneds ← (θ learneds ∗ f(s))
18: Dsampled ← GENERATE TRAJECTORIES(Reward learned)
19: for every τ i in Dsampled do
20: for every (s) in τ i do
21: for feature in (1 to F) do
22: learned feature expectationfeature ← [learned feature expectationfeature]+

f feature(s)

23: LOSS ← (expert feature expectation− learned feature expectation)
24: BACKPROPAGATE(LOSS)

38

CHAPTER 3. DESIGN

Algorithm 3 GENERATE TRAJECTORIES
Input Reward learned, Dexpert
Output Dsampled

1: procedure
2: M ← (length(D))
3: Dsampled ← (M − dimensional)
4: πcurrent ← (GENERATE POLICY (Reward learned))
5: for every τ i in D do
6: state← (τ i[0])
7: L← (length(τ i))
8: τ sample ← (L− dimensional)
9: for l in (1 to L) do

10: next state← (πcurrent(state))
11: τ sample.add(next state)
12: state← (next state)

13: Dsampled.add(τ sample)

3.4 Summary

Our design’s high-level architecture is primarily based on Expectation-Maximization technique

which aids in simultaneously sorting demonstrated trajectories into di�erent clusters and calcu-

lating reward functions for each clusters using single intention IRL. We proposed the use of DNN

based single intention IRL method in the second part, to handle non-linearities in reward functions.

�e training process for the network design here di�ers from other traditional applications in that,

we input the same data i.e. state features in each forward pass and get reward function parameters

from output. �us, the entire training process relies on how we calculate loss measure; for which

we used loss measure provided by earlier stable technique viz. Maximum-Entropy IRL. In e�ect,

our design is a consolidation of two of the existing approaches which enables us to extract multiple

non-linear reward functions.

39

Chapter 4

Implementation

�is chapter describes the implementation of MIIRL agent. We extend the existing framework which

implements the necessary basic components. We detail how these components are improved upon

to suite the needs and also about the necessary layer added on top of them. �e system working is

explained through the high-level UML class diagrams which presents overview of the components

involved. It is followed by the sequence diagram which explains �ow of actions. Interface of a few

crucial methods and their implementation is described wherever necessary.

4.1 IRL framework

For implementation of the proposed Deep-MIIRL technique, we use the framework provided by

Alger[3] which provides the primary components such as simulation environment, policy iteration,

Linear IRL, Maximum-Entropy based IRL, Deep IRL etc., which are building blocks for our design.

It is implemented in Python-3.7 using following libraries,

• NumPy

• �eano (for DNN)

• scikit-learn

40

CHAPTER 4. IMPLEMENTATION

• MatPlotLib (for graph plo�ing)

�e UML class diagram for the framework is shown in Fig. 4.1 which depicts only crucial parts for

our project, as the entire framework is vast enough to portray. �e parts highlighted in red are the

components we added or changed as part of this project.

Figure 4.1: Class Diagram for IRL-framework

4.1.1 Environment module

�is is the parent class for all the environments provided. It provides the interface for creating a sim-

ulation environment with all the essentials. It was primarily designed for RL problems and therefore

has provisions for specifying terms related to it also. We deal with the Object-world environment

in our case. Its constructor method’s signature is provided below.

class Objectworld(Gridworld):

def init(self, gridsize, nObjects, nColours, wind, discount):

• gridsize: no. of blocks in row and column of a grid. (a grid is always a square)

• nObjects: no. of objects placed

41

CHAPTER 4. IMPLEMENTATION

• nColours: no. of colors of placed objects

• wind: uncertainty in the environment. It de�nes stochasticity i.e. the possibility of an agent

taking random actions.

• discount: RL related term (γ) (refer section 2.1)

�e original code was to randomly distribute objects over grid; we changed that part to de�ne �x

positions so as to repeat the same experiments with di�erent se�ings.

def featureMatrix(self, featureMap=”manhattan”):

We added this method to specify environmental features. �e default one is manha�an distance.

�e other one used in the experiments is E�ect range. �ese are cra�ed manually considering the

context of the project, but can also be auto-speci�ed using other improvements in IRL methods.

4.1.2 Reinforcement Learning module

�e entire module is primarily designed for RL related problems. We use Value Iteration part of

it to generate policy of learned rewards to sample trajectories. �ese trajectories are then used to

calculate learned feature expectation, as explained in the design chapter.

def findPolicy(environment, reward, stochastic=True):

�e method uses Q-learning approach to determine policy. Reward here is the learned reward ob-

tained from the learned reward parameters at the end of forward pass through network.

4.1.3 IRL module

It provides components for single intention-IRL with three di�erent �avours: Linear-IRL, Maximum

Entropy based Linear IRL, and Deep IRL. Last two are used in the project. Below given is the interface

42

CHAPTER 4. IMPLEMENTATION

method for the IRL class which each of these three types implements with di�erent approaches.

def irl(environment, featureMatrix, trajectories, epochs,

learningRate):

• environment: Objectworld in our case.

• featureMatrix: features

• trajectories: expert trajectories provided.

• epochs: no. of time all the trajectories will pass through the process.

• learningRate: rate for gradient descent/ network training

As explained in the design chapter, we needed to improve on this method to consider so�-sorting

weight (i.e zij), which gives probabilities of a trajectory belonging to a cluster. �e above method’s

signature and internal working are so modi�ed to accommodate this change, as below.

def irl(environment, featureMatrix, expertTrajectories, epochs,

learningRate, softSortingWeights):

Here, so�SortingWeights is of same dimension as expertTrajectories, expressing probabilities of each

of trajectories belonging to the cluster currently under consideration.

We also detail other helper methods in the module which are required in the process.

In both Maximum-Entropy based Linear IRL and Deep IRL, training is based on the di�erence be-

tween features of expert trajectories and sampled trajectories. �e signature of the method perform-

ing the task is given below. It returns result of the same dimension as that of no. of features. As

with the above method, this one is also modi�ed to accommodate so�-sorting weights.

def findFeatureExpectations(featureMatrix, trajectories,

softSortingWeights):

43

CHAPTER 4. IMPLEMENTATION

Below given method is used to generate sampled trajectories from the current reward obtained from

the current guess of the reward parameters. It starts from the same start-states as that of expert and

then follows the current policy obtained using �ndPolicy() method given above, to generate the same

length of trajectory as that of expert. It repeats the procedure for all the expert trajectories and then

returns the generated sampled trajectories as output.

def generateSampledTrajectories(environment, reward,

expertTrajectories):

4.1.4 MIIRL module

�is method updates so�-sorting weights(zij) as per current cluster-priors (ρ) and reward param-

eters (θ).

def computeSoftSortingWeights(theta,clusterPriors):

�e below method is the interface for all the above methods. We specify the required data to this

module and it takes care of calling the necessary methods in order, returns extracted reward param-

eters and in the end also presents the color-map of grid for sake of lucidity (the same color-maps

are used for evaluation purpose).

�e snapshot of a few instructions is also given. �e arguments of the called methods are avoided

for simplicity. At the start of each iteration, current so�-sorting weights are computed for all the

clusters and then for each cluster reward parameters are updated.

def miirl(noOfCusters, noOfIterations, expertTrajectories,

environment, featureMatrix, method, networkStructure):

for i in range (noOfIterations):

softSortingWeights= computeSoftSortingWeights()

for j in range (noOfCusters):

theta[j] = irl()

44

CHAPTER 4. IMPLEMENTATION

• noOfCusters: number of intentions of expert trajectories have to be provided beforehand.

• noOfIterations: iterations of Expectation-Maximization algorithm.

• method: linear/max-ent-linear/deep. In our experiments, we used the last two.

• networkStructure: number and shape of hidden layers.

4.1.5 MIIRL-Objectworld module

It’s the entry-point/main method for the framework. It initializes the required components and then

passes them to the interface miirl() method above. �e objecworld environment is initialized as:

import objectworld as objectworld

environment = objectworld.Objectworld(10, 10, 3, 0.2, 0.9)

�en a feature matrix is fetched. �e method does not take any arguments and hence fetches man-

ha�an distance by default.

featureMatrix = ow.featureMatrix()

�e expert demonstrations are performed in a separate session and the trajectories are stored in a

log �le. requestExpertTrajectories() fetches those trajectories from the log �le.

expertTrajectories = ow.requestExpertTrajectories()

�e related con�guration variables are also de�ned here.

noOfClusters=2

noOfIterations=50

networkStructure=(15,15)

method=”deep”

No. of hidden layers and their shape can be changed by changing networkStructure variable. For

instance, there are two hidden layers with 15 neurons in each.

45

CHAPTER 4. IMPLEMENTATION

4.2 Actions sequence

�e previous section explained the system from component point of view. Let us focus on how these

components interact. �e sequence diagram of actions occurring in the system in shown in Fig. 4.2.

As mentioned in earlier section, MIIRL-Objectworld is the entry-point of the system where all the

Figure 4.2: MIIRL sequence diagram

required con�guration is initialized. It boots an environment, in our case Objectworld, with number

of objects, colors and type of features. It then requests expert to perform demonstrations. An expert

carries out demonstrations in the environment. �e actual expert demonstrations are performed

in separate session in this project. �erefore, request demonstrations action is ful�lled by fetching

them from log �le. With all the con�gured information, MIIRL interface method is instantiated. �is

call is handed over to either Max-Ent based Linear MIIRL or Deep-MIIRL depending on the method

variable. MIIRL module shown in the sequence diagram is the combination of both IRL and MIIRL

components of the above section. �e steps illustrated in design chapter are then followed between

46

CHAPTER 4. IMPLEMENTATION

MIIRL and RL, which ultimately returns reward parameters.

4.3 Summary

�is chapter presented implementation details in accordance with the design proposed. �e exist-

ing RL+IRL framework available with various basic components is enhanced upon in order to do

so. We presented the snapshot of the relevant module from the entire framework in form of the

class diagram and indicated the parts we improved and newly added. �e interface of a few crucial

methods, their brief functioning is given. �e parts of actual code are a�ached wherever necessary.

A�er components are laid, their interaction in chronological order is depicted through the sequence

diagram.

47

Chapter 5

Evaluation

�is chapter presents the details on the evaluation process of the project. It begins by explaining why

the Objectworld environment is selected for testing the proposed approach. We then give details

about how its employed in our experiments, types of environmental features used and two di�erent

intentions with which demonstrations are carried out. �e comparison of our approach with the

Linear-MIIRL method shows increasing accuracy as environment is de�ned with clearer features.

5.1 Objective

As mentioned before in Design chapter, the aim is to target two core issues simultaneously,

a. extracting multiple reward functions from expert demonstrations,

when b. they are non-linear functions of environmental features.

Maximum Entropy based Linear-MIIRL is selected to compare the results due to its widespread use

as evident from literature review. It has shown remarkable performance to extract multiple linear

reward. Our method is expected to keep its performance and also to extend it when rewards are

non-linear.

We fed both expert demonstrations and features to these method and rewards extracted from them

are compared against the known ground-truth. � experiments are run until values began to con-

verge. Our method is expected to outperform Linear-MIIRL by recovering more part of ground-truth

48

CHAPTER 5. EVALUATION

reward. �is advantage must be consistent for di�erent features, to con�rm that it does not favour

only one kind of feature.

We also compare both the methods based on training time required. As Deep-MIIRL involved train-

ing neural network which is computationally intensive, its expected to require longer training du-

ration than linear method.

5.2 Simulation Environment

5.2.1 Objectworld - the choice of environment

Instead of directly testing on real-world problem simulations, we have chosen Objectworld envi-

ronment, which is an elementary environment for primarily testing the suitability of the proposed

approach. In Objectworld, colored objects having some range of e�ect are placed randomly on a grid

which assigns some characteristics to the states surrounding it. Rewards generated are such that

placement of an object makes reward generated by some other object inconsistent, which makes it

non-linear. �is provides the essential complexity required for evaluation, while keeping the e�orts

required for recreating the experiments minimal. Once a method has passed the primary evaluation

phase, the same environment has the facility to increase the complexity, or one can opt for more

real world environment. �e similar environment was used by previous researches like Levine et al.

[24], Wulfmeier et al. [44], Jin and Spanos [17].

5.2.2 Object Placement

We considered 3 colors viz. red having e�ect range up to 2 steps, green up to 1 step and blue also

up to 1 step. Placement of these objects on the grid generates two types of rewards. �e states

within range of both red and green have one type of reward marked by Green color. On other

hand, states within range of red only posses other type of reward marked by Red color. Blue objects

served as distractors having no e�ect. Here, placement of green object is making rewards by red

objects inconsistent. Figure 5.1 shows how objects are placed for the experiments and the reward

49

CHAPTER 5. EVALUATION

map generated by it.

Figure 5.1: Object placement and Generated Rewards

5.2.3 Intentions and Rewards

Two types of intentions are assumed for the experiments:

• ge�ing to green regions.

• ge�ing to red regions.

Figure 5.2: Ground-truth Rewards

�e ground-truth rewards for both the intentions is shown in �gure 5.2. �e �gure is a replica of

the grid above and numbers on le� and bo�om are the row and column numbers, provided for ease

of understanding. Here, yellower a state, higher the reward and bluer it is lesser the reward. �e

50

CHAPTER 5. EVALUATION

legend on the right side conveys the same clue. �is divides the entire state space into positive,

negative and neutral reward regions. �ese same assumptions are continued further while comparing

the results.

5.2.4 Environmental Features

Two widely used features from the previous experiments in literature are selected for the experi-

ments. �ese features are manually encoded and provided to the algorithms. �e Experiments are

repeated for both of them, keeping the other conditions maintained.

1. Manha�an Distance �e distance to the nearest object of particular color.

2. E�ect range It is a binary feature showing 1 if a state comes under the e�ect of an object. As

we can notice, this one is more precise than the above, giving exact information about a state.

Figure 5.3: Both the Features

�e �gure 5.3 shows both the feature values for the state at 3rd row-1st column of the grid. 1st element

gives value for Red object, 2nd element for Green and 3rd for Blue. E�ect range feature for the state

is [1,0,0] which shows it is in e�ect of a Red object and not the other two. Similarly, Manha�an

51

CHAPTER 5. EVALUATION

Distance feature for the state is [2,2,4] which shows that it is 2 step away from the nearest Red &

Green and 4 steps away from the nearest Blue object.

5.2.5 Expert Demonstrations

�e author assuming the role of an expert carried out demonstrations for both the intentions, by

controlling the agent. Total of 1200 demonstrations are performed; 480 for the �rst intentions(green

region) are remaining for the other(red region).

�e expert starting from a random state had 9 steps to complete a single episode i.e. a trajectory is

of length 9. �e expert had to take agent to its desirable region for a particular intention. Five legal

actions are allowed from each state viz. up, down, le�, right and stay. If the agent is on edge of the

grid, and an action is taken to take it o� the grid, it stays in the same state. �e environment is kept

to be stochastic; 80% of time agent takes the same action that the expert performed and 20% of time

a random one. �erefore, while performing demonstrations the expert took care of choosing states

as far as possible from the undesirable states, to avoid accidentally falling into those states due to

random actions. All the episodes are recorded in the log �le, which is then fed to the algorithm.

�e link to a short video of the expert carrying out the demonstrations is given here1.

5.3 Results & Discussion

5.3.1 Feature: E�ect range

Figure 5.4 compares results for experiments when E�ect range is the feature fed to the algorithms.

Comparing it to the ground-truth reward given above shows, both the method have obtained all the

positive reward states(yellower) for 1st intention as early as at 50 iterations; while not able to recover

negative reward states and neutral states quite perfectly until last iteration.

On the other hand for the 2nd intention, Deep-MIIRL have obtained positive reward states perfectly

when Linear-MIIRL has not achieved the comparable results. In case of negative reward states, both
1h�ps://youtu.be/4DQNBIdrE7M

52

CHAPTER 5. EVALUATION

methods shows identical performance, while for neutral states Deep-MIIRL can be seen to have

obtain almost all the states correctly which is not the case for the other method.

Figure 5.4: Results(Feature- E�ect Range)2

5.3.2 Feature: Manhattan Distance

Figure 5.5 compares results for experiments when Manha�an Distance is the feature fed to the

algorithms. Comparing it to the ground-truth reward given above shows that, for both the intentions

Linear-MIIRL is unable to achieve satisfactory performance to identify either of positive, negative

or neutral state rewards. On the other hand, although Deep-MIIRL has also been not able to identify

the correct complete regions for all the rewards, it has found the exact position of objects which

placement is causing negative reward regions (�ese positions are highlighted in dark blue) i.e. in

case of 1st intention, the positions of red objects and in case of 2nd intention, the positions of green

objects.

2�e color-maps continue with the same assumptions about colors and numbers, as stated in section 5.2.3

53

CHAPTER 5. EVALUATION

Figure 5.5: Results(Feature- Manha�an Distance)3

5.3.3 Training Time

Both the algorithms are also compared against the time required to complete 50, 100 and 200 itera-

tions. We noted that, Linear-MIIRL results began to converge around 120-130 iterations, while for

Deep-MIIRL this number was around 150-180. Hence, 200 iterations is chosen as threshold to allow

some margin and keep the experiments comparable.

Figure 5.6: Training Time in minutes

3�e color-maps continue with the same assumptions about colors and numbers, as stated in section 5.2.3

54

CHAPTER 5. EVALUATION

Figure 5.6 compares the time for both the experiments to complete various iterations. Deep-MIIRL

is evidently taking much longer than the other method, as expected due to computationally heavy

task of training the network. �e system con�guration of the machine on which the experiments

are performed is given in Figure 5.7.

Figure 5.7: System Con�guration

55

CHAPTER 5. EVALUATION

5.4 Discussion

�is chapter detailed the experiments performed to evaluate the proposed Deep-MIIRL against pre-

viously proposed Maximum Entropy based Linear MIIRL. Objectworld simulation environment is

used in the process with 10 objects of 3 colors, which generates two types of rewards. �e demon-

strations carried out by the expert targeting these two rewards, are fed to both these methods along

with two features.

We observe that, although Deep-MIIRL could not extract the exact ground-truth, its performance

is superior than the other method in case of both the features. �is highlights the consistency of

the method across the features. Both methods are almost equivalent in the case when the feature is

very precise (E�ect range). On the other hand, Deep-MIIRL outperforms in case of vague features

(Manha�an Distance) by identifying the exact positions of the objects which caused negative reward

regions. �e linear method failed to identify either of positive, negative or neutral regions in this

case.

Inability to obtain certain reward areas (e.g. neutral and negative reward state with E�ect range

feature) by Deep-MIIRL might be related to number of demonstrations provided and features con-

sidered. More e�orts can be put to reason appropriately about this phenomenon. For example,

experiments with di�erent features and various numbers of demonstrations can be performed to

understand if it is the number of demonstrations or the feature speci�cation, that is a�ecting the

outcome.

Even though it needs further corroboration from di�erent experiments involving more complex en-

vironments, range of di�erent features and more number of intentions; the evaluation, however,

gives a hint of the potential of the proposed method to handle multiple intentions and non-linear

rewards across the features. Previously, these two issues were handled separately by two di�erent

methods. Our approach combined these two into a single method, which is a small step towards

designing a common method to handle all the issues mentioned in section 1.1.4. Further research

can be carried out to incorporate the remaining two issues with the proposed method. .

56

Chapter 6

Conclusion

�is dissertation broadly concentrated on the problem of reward engineering in reinforcement learn-

ing and an approach proposed to handle it called Inverse Reinforcement Learning which estimates

rewards by observing an expert. We addressed the speci�c case of IRL when expert demonstrations

are intermix of di�erent rewards i.e. generated having di�erent intentions in mind and when re-

ward is non-linear function of environmental features. As per the literature review performed as

part of this project, these two issues were never handled in a single method before. We evaluated

the proposed approach against a previously used method, which resulted in indicating positive signs

regarding the potential of the approach. In this chapter, we overview the entire dissertation, brie�y

covering the contents of each chapter, the overall contribution and concluding with limitations of

the approach and possible future undertakings.

6.1 Overview

�e �rst chapter starts with introducing the basics of reinforcement learning �eld and how reward

speci�cation poses challenges to applicability of RL in real-world complex domains. It expounded

on a distinctive approach of learning-from-mentor taken by IRL to tackle the challenge, the open

issues for IRL including two of the issues we focused on during this work. It concluded with stating

that an ideal IRL method would have the capability to tackle all these issues in single approach and

57

CHAPTER 6. CONCLUSION

hence, underlined the necessity of the research e�ort in this direction.

�e next chapter established common related literature terms and concept, around which the disser-

tation is organized and the existing applications of the concepts. Various primary components of the

later proposed approach are illustrated here which we refer in many places. �e literature review

highlighted the need for e�orts to combine various approaches proposed to handle the issues in IRL

into a single approach. At the same place we introduced Deep Neural Network, its characteristic

which is used in the design and its applications.

�e design targeted two issues of IRL mentioned above and proposed the combination of Expectation-

Maximization technique and DNN to tackle multiple intentions and non-linear rewards respectively.

�e larger framework of EM algorithm performs iterative sorting of demonstrations into separate

clusters, where each cluster represents an intention. �e single intention IRL is applied on each

cluster to estimate rewards of intentions they represent. We chose DNN based Single intention IRL

at this place to tackle non-linear rewards, by extending the reward hypothesis proposed under pop-

ularly used Max-Ent based Linear IRL.

�e proposed design is implemented under the existing framework for RL and IRL which provides

various ready primary component. Some of these are improved upon to suit our purpose and some

were added as required by the design. �e implementation chapter laid the component-wise and

action-sequence-wise explanation of the system, along with interfaces signature and the snapshots

from the code wherever necessary.

�e classical Objectworld environment is chosen to evaluate the proposed approach against pre-

vious Max-Ent based Linear IRL. �e object placement in the environment generated two types of

rewards, which the author as an expert chased. �ese interactions of the expert with environment

are stored in log �le and fed to the two methods along with two types of environment features. �e

results showed that both the methods are comparable when clear features are available and recov-

ered most of the ground-truth. On the other hand, even though the proposed method was not able

to recover most part of the ground-truth, in case when the feature was vague, it certainly outper-

formed the previous approached by recovering the positions of the objects causing negative reward

58

CHAPTER 6. CONCLUSION

regions.

�e evaluation gave the hint of the potential of the proposed approach to handle both of the men-

tioned issues viz. handling multiple intentions and non-linear rewards, in a single process. �ere

remains a few gray areas in the approach and in relation with it. �e below section lists some of

them. Nonetheless, the proposed method combining two of the IRL issues in single process, is a small

step towards an ideal IRL method which is able to handle all of the issues mentioned in section 1.1.4

in single process.

6.2 Limitations & Future Work

�e scope and time constraints of the project le� many open areas regarding the experiments per-

formed as part of it as well as in the design. �e project can be extended in future on these fronts.

Some of the related points are noted here in brief.

Number of Intentions

�e experiments involved extracting only two intentions at this point. Although the design, in

theory, is capable to handle more than two intentions, actual experiments with more intentions

would further corroborate this factor. Also, the proposed method requires the number of intentions

beforehand. It might not always be possible to provide this information while working in real-

world domains. Further exploration is required in the Expectation-Maximization part which carries

responsibility of handling intentions.

Di�erent Environments

Current evaluation environment i.e Objectworld, as mentioned earlier, is a primary tool for as-

sessing new approaches in Reinforcement Learning. It provided certain elementary factors for the

purpose. �ere are more complex simulation environment in literature e.g. highway car driving,

which involves high dimensional state spaces, immensely non-linear rewards which would facili-

tate thorough evaluation. �e only things which need to be changed in current implementation is

59

CHAPTER 6. CONCLUSION

state-space de�nition and the way to record expert demonstrations. Such environments would also

enable testing using range of features.

Limited Demonstrations

As observed. our design required considerable number of demonstrations in order to achieve a fair

performance. Every domain might not permit this facility of executing as many demonstrations as

required. Design must cope up with available demonstrations, generalize them and keep updating

current conjecture as new data comes in. �e literature study revealed a few experiments which

deals with solving IRL with few demonstrations e.g. Xu et al. [45]. �e proposed design has scope

for improvement on this front.

Improved Networks

DNN used is implemented with elementary se�ings to validate its usability in handling non-linear

rewards. If �ne-tuned with all its assets such as parallel computations using GPU, faster optimizers

etc., it could �ll the time lag against Linear-MIIRL. Faster computation would make the design more

suitable for high-dimensional state spaces as well as for life-long learning applications.

Number of iterations

Lastly, for the scope of project, we stop iterations either at certain number or as we get close enough

to ground-truth. �is is possible as ground-truth is available to us. While applying IRL, we will

need a be�er mechanism to decide when to stop iterations. One way would be to check average

change in reward values for each state a�er each iteration (or a�er some number of iterations) and

stop iterating if it remains below a threshold for certain period. Another approach could be to

sample trajectories using the policy under current reward function and compare those against the

expert demonstrations provided. Iterations can be stopped when di�erence between them becomes

minimal.

60

Appendix A

Maximum Likelihood Estimation

�is section explains a probabilistic technique viz. maximum likelihood estimation which is the

basis for the IRL approaches such as Maximum-Likelihood IRL, Multiple Intentions IRL etc. �e

technique �nds the best suited parameter values for a statistical model that maximizes the proba-

bility of observing given data.

A statistical model is the description of a process that resulted in generation of some observed data.

For example, one may design a model to predict the students’ grade from the time they took to

complete the exam. Such a model can be represented linearly as, y= mx + c, where y is predicted

grades, x is exam completion time, and m & c are called the model parameters which are the actual

things to be determined in the creation of a model. Di�erent values of these parameters would give

the di�erent linear models as depicted in the �gure A.1.

So parameters de�ne the blueprint for a model. It is only when speci�c values are chosen for param-

eters, that we get an instantiation for a model that describes a given phenomenon. �e MLE seeks

the parameter values, such that they maximize the likelihood that the process described by a model

produced the observed data. To illustrate further, suppose we observed 10 data points representing

the exam completion time in minutes for students. �ese 10 data points are shown in the �gure A.2.

One �rst has to decide which model best describes the process of generating the data. Lets assume

61

APPENDIX A. MAXIMUM LIKELIHOOD ESTIMATION

Figure A.1: Similar Models with di�erent parameters

Figure A.2: �e 10 Observed points

that the data generation process can be adequately described by a Gaussian (normal) distribution.

Visual inspection of the �gure suggests that a Gaussian distribution is plausible because most of the

10 points are clustered in the middle with few points sca�ered to the le� and the right. �e Gaussian

distribution has 2 model parameters; the mean, µ, and the standard deviation, σ. Di�erent values

of these parameters result in di�erent curves (like the straight lines above). Maximum likelihood

62

APPENDIX A. MAXIMUM LIKELIHOOD ESTIMATION

estimation is a method that will �nd the values of µ and σ that select the curve that best �ts the data

from all the other possible curves (Figure A.3).

Figure A.3: �e possible distributions’ curves

Now that it is intuitively clear what MLE is, let’s move on to actually �nd out those parameter

values. �e probability density of observing a data point can be given by Gaussian distribution for-

mula as:

P (x;µ, σ) = 1
σ
√
2π
exp(−(x−µ)

2
2σ2)

�e joint probability of observing all the 10 points is given by:

P (x1, x2..x10, ;µ, σ) =
∏10
i=1

1
σ
√
2π
exp(

−(xi−µ)2

2σ2)

Now we are le� with �guring out the values for µ and σ which would result in �nding the maxi-

mum value for the above equation. �is can be achieved by calculating maxima using calculus. Just

calculating the partial derivatives of the above equation with respect to µ and σ, se�ing it to zero

and rearranging it to �nd a parameter of interest would result in MLE values of the parameters.

As can be seen, di�erentiating the above equation becomes complicated as we repeatedly need to

apply Chain-Rule in order to solve the each and every term. So instead of directly di�erentiating the

above terms, it can be simpli�ed by applying logarithm on both sides, which converts the multipli-

63

APPENDIX A. MAXIMUM LIKELIHOOD ESTIMATION

cation terms into summation and therefore each term can be solved individually without applying

the Chain-Rule.

log(P (x1, x2..x10, ;µ, σ)) =
∑10

i=1 log(
1

σ
√
2π
exp(

−(xi−µ)2

2σ2))

∂log(P (x1,x2..x10,;µ,σ))
∂µ = 0

∂log(P (x1,x2..x10,;µ,σ))
∂σ = 0

Solving above equation results in MLE values of µ, σ.

�e Gaussian model used on the illustrative example above can be replaced with any other model

and MLE values for the respective model’s parameters can be approximated. In case of Maximum

Entropy IRL, the maximum entropy takes place of Gaussian model and reward function parameters

take place of µ and σ.

64

Appendix B

Expectation-Maximization Algorithm

Maximum Likelihood Estimation (MLE), the mathematical method explained in Appendix A, is the

way to determine model parameters when all the data is available. For the situations when not

all the data is either available or observable, the need of deriving model parameters is ful�lled by

Expectation-Maximization (EM) algorithm- that is to say EM is advance version of MLE used in more

complex situations. While MLE considers all the data and �nds the most-likely model parameters

for that data; EM �rst guesses the missing data from the available data and then using whole of the

data to update model parameters.

Steps:

1. Model parameters are initialized randomly. Incomplete data is provided as input, with the

assumption that the data is generated under above model.

2. Expectation:

Guess missing related data from the available data i.e. updating the variables.

3. Maximization:

Use complete data from Expectation step to twist the model parameters to make that data

most-likely possible under those parameters i.e updating the hypothesis

4. Repeat steps 2 and 3 until values converge or upto certain iterations.

65

APPENDIX B. EXPECTATION-MAXIMIZATION ALGORITHM

�e algorithm is guaranteed to be stable i.e. estimates would keep on improving with iterations. Due

to this characteristic, it has formed the basis for unsupervised machine learning methods. It has also

been employed for estimating latent variables, hidden markov decision models’ parameters. Along

with these bene�ts, it also comes with some downside such as slow convergence, ge�ing stuck in

local optima etc. which requires careful design measures to cope with.

66

Appendix C

Links

�e codebase for the project can be found at the below GitHub link:

https://github.com/pparas007/dissertation-irl

A short video of the author (assuming the role of an expert) carrying out the demonstrations. �ese

demonstrations are used as data for experiments:

https://youtu.be/4DQNBIdrE7M

67

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via inverse reinforcement learn-

ing”. In: ICML. 2004.

[2] Pieter Abbeel et al. “An Application of Reinforcement Learning to Aerobatic Helicopter Flight”.

In: NIPS. 2006.

[3] Ma�hew Alger. Inverse Reinforcement Learning. 2016. doi: 10.5281/zenodo.555999.

url: https://doi.org/10.5281/zenodo.555999.

[4] Brenna Argall et al. “A survey of robot learning from demonstration”. In: Robotics and Au-

tonomous Systems 57 (2009), pp. 469–483.

[5] Monica Babes-Vroman et al. “Apprenticeship Learning About Multiple Intentions”. In: ICML.

2011.

[6] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. “Action understanding as inverse

planning”. In: Cognition 113 (2009), pp. 329–349.

[7] Kenneth D. Bogert and Prashant Doshi. “Multi-Robot Inverse Reinforcement Learning Under

Occlusion with State Transition Estimation”. In: AAMAS. 2015.

[8] Abdeslam Boularias, Jens Kober, and James Peters. “Relative Entropy Inverse Reinforcement

Learning”. In: AISTATS. 2011.

[9] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”. In: arXiv

preprint arXiv:1903.11027 (2019).

68

https://doi.org/10.5281/zenodo.555999
https://doi.org/10.5281/zenodo.555999

BIBLIOGRAPHY

[10] Daniel Dewey. “Reinforcement Learning and the Reward Engineering Principle”. In: AAAI

Spring Symposia. 2014.

[11] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep Inverse Optimal

Control via Policy Optimization”. In: ArXiv abs/1603.00448 (2016).

[12] Willem Eduard Frankenhuis, Karthik Panchanathan, and Andrew G. Barto. “Enriching behav-

ioral ecology with reinforcement learning methods”. In: Behavioural processes (2018).

[13] Adam Gleave and Oliver Habryka. “Multi-task Maximum Causal Entropy Inverse Reinforce-

ment Learning”. In: 2018.

[14] Ma�hew J. Hausknecht and Peter Stone. “Deep Recurrent Q-Learning for Partially Observable

MDPs”. In: AAAI Fall Symposia. 2015.

[15] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. “Multilayer feedforward networks

are universal approximators”. In: Neural Networks 2 (1989), pp. 359–366.

[16] Edwin T. Jaynes. “Information �eory and Statistical Mechanics”. In: 1957.

[17] Ming Jin and Costas J. Spanos. “Inverse Reinforcement Learning via Deep Gaussian Process”.

In: CoRR abs/1512.08065 (2015). arXiv: 1512.08065. url: http://arxiv.org/abs/

1512.08065.

[18] Beomjoon Kim and Joelle Pineau. “Socially Adaptive Path Planning in Human Environments

Using Inverse Reinforcement Learning”. In: International Journal of Social Robotics 8 (2016),

pp. 51–66.

[19] Edouard Klein et al. “A Cascaded Supervised Learning Approach to Inverse Reinforcement

Learning”. In: ECML/PKDD. 2013.

[20] Edouard Klein et al. “Inverse Reinforcement Learning through Structured Classi�cation”. In:

NIPS. 2012.

[21] Henrik Kretzschmar et al. “Socially compliant mobile robot navigation via inverse reinforce-

ment learning”. In: I. J. Robotics Res. 35 (2016), pp. 1289–1307.

69

http://arxiv.org/abs/1512.08065
http://arxiv.org/abs/1512.08065
http://arxiv.org/abs/1512.08065

BIBLIOGRAPHY

[22] Henrik Kretzschmar et al. “Socially compliant mobile robot navigation via inverse reinforce-

ment learning”. In: �e International Journal of Robotics Research 35.11 (2016), pp. 1289–1307.

doi: 10.1177/0278364915619772. eprint: https://doi.org/10.1177/

0278364915619772.url:https://doi.org/10.1177/0278364915619772.

[23] Sergey Levine, Zoran Popovic, and Vladlen Koltun. “Feature Construction for Inverse Rein-

forcement Learning”. In: NIPS. 2010.

[24] Sergey Levine, Zoran Popovic, and Vladlen Koltun. “Nonlinear Inverse Reinforcement Learn-

ing with Gaussian Processes”. In: NIPS. 2011.

[25] Yuxi Li. “Deep Reinforcement Learning: An Overview”. In: CoRR abs/1701.07274 (2017).

[26] Xiaomin Lin, Peter A. Beling, and Randy Cogill. “Multi-agent Inverse Reinforcement Learning

for Zero-sum Games”. In: ArXiv abs/1403.6508 (2014).

[27] Hongzi Mao et al. “Resource Management with Deep Reinforcement Learning”. In: HotNets.

2016.

[28] Bernard Michini, Mark Cutler, and Jonathan P. How. “Scalable reward learning from demon-

stration”. In: 2013 IEEE International Conference on Robotics and Automation (2013), pp. 303–

308.

[29] Bernard Michini and Jonathan P. How. “Bayesian Nonparametric Inverse Reinforcement Learn-

ing”. In: ECML/PKDD. 2012.

[30] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Na-

ture 518 (2015), pp. 529–533.

[31] P. Read Montague et al. “Bee foraging in uncertain environments using predictive hebbian

learning”. In: Nature 377 (1995), pp. 725–728.

[32] �ibaut Munzer et al. “Inverse Reinforcement Learning in Relational Domains”. In: IJCAI.

2015.

70

https://doi.org/10.1177/0278364915619772
https://doi.org/10.1177/0278364915619772
https://doi.org/10.1177/0278364915619772
https://doi.org/10.1177/0278364915619772

BIBLIOGRAPHY

[33] Gergely Neu and Csaba Szepesvári. “Apprenticeship Learning using Inverse Reinforcement

Learning and Gradient Methods”. In: UAI. 2007.

[34] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learning”. In:

ICML. 2000.

[35] Xinlei Pan et al. “Human-Interactive Subgoal Supervision for E�cient Inverse Reinforcement

Learning”. In: AAMAS. 2018.

[36] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse Reinforcement Learning”. In: IJCAI.

2007.

[37] Nathan D. Ratli�, David Silver, and J. Andrew Bagnell. “Learning to search: Functional gradi-

ent techniques for imitation learning”. In: Autonomous Robots 27 (2009), pp. 25–53.

[38] Stuart J. Russell. “Learning Agents for Uncertain Environments (Extended Abstract)”. In:

COLT. 1998.

[39] Richard S. Su�on and Andrew G. Barto. “Reinforcement Learning, Second Edition An Intro-

duction. MIT Press, second edition”. In: (2018).

[40] Umar Syed and Robert E. Schapire. “A Game-�eoretic Approach to Apprenticeship Learn-

ing”. In: NIPS. 2007.

[41] “�e World’s Most Valuable Resource Is No Longer Oil, But Data”. In: �e Economist (2017).

[42] Tomer Ullman et al. “Help or Hinder: Bayesian Models of Social Goal Inference”. In: NIPS.

2009.

[43] Adam Vogel et al. “Improving Hybrid Vehicle Fuel E�ciency Using Inverse Reinforcement

Learning”. In: AAAI. 2012.

[44] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. “Maximum Entropy Deep Inverse

Reinforcement Learning”. In: 2015.

[45] Kelvin Xu et al. Few-Shot Intent Inference via Meta-Inverse Reinforcement Learning. 2019. url:

https://openreview.net/forum?id=SyeLno09Fm.

71

https://openreview.net/forum?id=SyeLno09Fm

BIBLIOGRAPHY

[46] Xiangxin Zhu et al. “Do We Need More Training Data?” In: International Journal of Computer

Vision 119 (2015), pp. 76–92.

[47] Brian D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In: AAAI. 2008.

[48] Brian D. Ziebart et al. “Navigate like a cabbie: probabilistic reasoning from observed context-

aware behavior”. In: UbiComp. 2008.

[49] Brian D. Ziebart et al. “Planning-based prediction for pedestrians”. In: 2009 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (2009), pp. 3931–3936.

72

	Acknowledgments
	Abstract
	Summary
	List of Figures
	Chapter Introduction
	Motivation
	Reinforcement Learning
	Reward Engineering Problem with Reinforcement Learning
	Inverse Reinforcement Learning
	Issues in Inverse Reinforcement Learning

	Contribution
	Assumptions
	Roadmap

	Chapter Background and Literature Review
	Reinforcement Learning
	Inverse Reinforcement Learning (IRL)
	Significance of IRL
	Formal Definition of IRL

	Methods for IRL
	Maximum Margin
	Entropy Optimization
	Machine Learning techniques
	Bayesian approach

	Multiple Intentions Inverse Reinforcement Learning (MIIRL)
	Deep Neural Networks
	What is it?
	Artificial Neuron
	Train a network
	Applications

	Chapter Design
	Overview
	Handling Multiple Intentions
	Dealing with Non-linearity
	Network Training

	Summary

	Chapter Implementation
	IRL framework
	Environment module
	Reinforcement Learning module
	IRL module
	MIIRL module
	MIIRL-Objectworld module

	Actions sequence
	Summary

	Chapter Evaluation
	Objective
	Simulation Environment
	Objectworld - the choice of environment
	Object Placement
	Intentions and Rewards
	Environmental Features
	Expert Demonstrations

	Results & Discussion
	Feature: Effect range
	Feature: Manhattan Distance
	Training Time

	Discussion

	Chapter Conclusion
	Overview
	Limitations & Future Work

	Appendix Maximum Likelihood Estimation
	Appendix Expectation-Maximization Algorithm
	Appendix Links
	Bibliography

