
Exploring Collaborative Filtering Recommender

System for Scratch

Roman Shaikh, B.Tech.

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Assistant Prof. Glenn Strong

August 2019

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Roman Shaikh

August 14, 2019

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Roman Shaikh

August 14, 2019

Acknowledgements

I would like to thank my supervisor Prof. Glenn Strong for his continuous guidance

and the help he has given me throughout my thesis. I am also thankful to the School

of Computer Science and Statics, Trinity College for providing a solid infrastructure

and an excellent environment for working on my thesis. I would also like to extend

my sincere gratitude to my second reader Prof. Tim Savage for his valuable input and

suggestions on improving the thesis during the presentation.

Finally, I would like to thank my parents for supporting me and my each and every

decision in life.

Roman Shaikh

University of Dublin, Trinity College

August 2019

iii

Exploring Collaborative Filtering Recommender

System for Scratch

Roman Shaikh, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Assistant Prof. Glenn Strong

Scratch is an online learning platform developed by Lifelong Kindergarten Group at
the MIT Media Labs. Scratch helps young and inexperienced students to develop
programming skills and think creatively. With Scratch, one can program interactive
stories, games, and animation. It also provides a collaborative platform through which
users can share their own code and also see other peoples work. It has often been
observed that some users’ get demotivated easily because either they are unsure of
where to go further after they have started or because the programming exercises are
not up to their individual expectations. Thus, the concern arises of how do we keep
users motivated on Scratch and improve the user experience. An effective solution is to
recommend users with projects from other users according to their level of knowledge
and previous experience. This intuitively is known as Recommender Systems (RSs),
a system that recommends users with contents based upon their previous activities.
Recommender system in an educational environment is proven to be significantly bene-
ficial. We analyse the data made available by Scratch community and try to suggest an
effective recommendation method. We explore the traditional recommendation tech-
niques such as content-based filtering and collaborative filtering methods on dataset
and compare the recommendation results. We explore the different methods for finding
the recommendations from the dataset and the weighted average and multiple linear
regression to evaluate the predictions.

Contents

Acknowledgements iii

Abstract iv

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 Research Objective . 5

1.3 Research Challenges . 5

1.4 Dissertation Overview . 5

1.5 Dissertation Structure . 6

Chapter 2 State of the Art 7

2.1 Recommender system overview . 7

2.1.1 What is a recommender system? 7

2.1.2 Information filtering techniques 7

2.1.3 Challenges in user-based collaborative filtering algorithms . . . 9

2.2 Recommender systems in e-learning . 10

2.2.1 E-learning environment and recommendation 10

2.2.2 Recommendations in Scratch 11

2.3 Evaluation of a recommendation system 11

2.4 Other techniques in recommendation systems 12

v

Chapter 3 Methodology 14

3.1 Summary of the Collaborative Filtering process 14

3.2 The item-based collaborative filtering algorithm 16

3.2.1 Similarity computation . 16

3.2.2 Cosine based similarity . 17

3.2.3 Correlation-based similarity . 18

3.2.4 Adjusted-cosine based closeness 18

3.3 Prediction Calculation . 19

3.3.1 Assigning the rating score for user activities 19

3.3.2 Weighted sum method . 20

3.3.3 Regression model . 20

Chapter 4 Implementation 22

4.1 Collecting the data . 22

4.1.1 Data description . 22

4.1.2 Ethical implication . 23

4.1.3 Identification of the relevant dataset 23

4.2 Data Analysis . 25

4.3 Calculating similarity matrix . 29

4.3.1 Preparing the data . 29

4.3.2 Imputing missing data . 30

4.3.3 Correlation-based similarity . 31

4.3.4 Cosine-based similarity . 31

4.3.5 Adjusted-cosine based similarity 32

4.3.6 Selecting top-N recommendations 33

4.4 Prediction Calculation . 34

4.4.1 Weighted Sum method . 34

4.4.2 Comparing the recommended items 35

Chapter 5 Method of Evaluation 37

5.1 Experiment . 37

5.2 Evaluation methods . 37

5.2.1 Statical accuracy metrics . 38

vi

5.2.2 Decision support accuracy metric 38

5.3 Results . 40

5.3.1 Comparing the similarity algorithms 40

Chapter 6 Discussion and Future work 42

6.1 Limitations . 42

6.1.1 Over specialisation problem . 42

6.1.2 Concentration bias . 43

6.1.3 Cold Start problem . 43

6.1.4 Dataset limitation . 43

6.2 Future work . 44

6.2.1 Qualitative testing . 44

6.2.2 Mining text from the dataset 45

6.2.3 Social network analysis . 46

6.2.4 Recommendation based on heuristics 46

6.2.5 A better Rating mechanism . 47

Chapter 7 Conclusion 48

7.1 Summary . 48

Bibliography 51

Appendices 56

vii

List of Tables

4.1 Description of tables in dataset from Scratch online community [37]. . . 24

4.2 Mean, Variance and Standard deviation for Friends and Projects data . 29

4.3 Projects recommended . 36

viii

List of Figures

1.1 Projects by Scratch users . 2

3.1 The process of a Collaborative Filtering Algorithm 15

3.2 Computation of item-item similarity 16

4.1 The distribution of projects in dataset over the period of 5 years 26

4.2 The frequency of the use of project blocks 27

4.3 Distribution of the user accounts created by creation date 28

4.4 Distribution of the friend’s data over time 28

4.5 Pearson correlation output . 31

4.6 Cosine similarity computation output 32

4.7 Adjusted cosine similarity output . 33

4.8 Top 5 project ids according to prediction 34

5.1 Performance metrics calculations from Confusion metrics. 39

5.2 Performance comparison of the similarity calculation method 41

ix

Chapter 1

Introduction

With the development of technology more and more focus is shifting on teaching kids

the concepts of programming. Online learning is becoming an important part of our

modern world. Development of Creative thinking is one of the fundamentals of early

education. While kids usually get excited about learning new things, they lose interest

pretty quickly. As difficult and challenging as the subject of programming can be,

keeping the audience interested is even more so. Scratch by LLK group at MIT media

labs is one such platform that aims at developing programming skills in kids while also

keeping them interested. Scratch is not only aimed at developing programming skills

but also enabling creative thinking and collaboration skills in children [1].

Scratch is a graphical programming environment that enables the user to create rich

interactive projects including various media [2]. We can see various examples where

users have developed a comprehensive range of programs like animations, storylines,

games, music videos, online games, science projects, and sensor-driven projects (Figure

1.1).

1

Figure 1.1: Projects by Scratch users

The Scratch platform lets users import various media elements like sounds and im-

ages into a project or even create internally using the inbuilt editor. These objects

(called Spirits) can be made to interact with each other via programming. Program-

ming is done using Lego-like blocks that snap together to form a logical command.

These projects can then be saved on the computer or can be shared online on the

scratch website.

A key objective of Scratch is to help self-coordinated learning through tinkering

and joint effort with companions [2]. Commonly users learn Scratch as they go along

exploring, trying and attempting commands from the command palette or investigating

code from existing undertakings. To encourage such self-directed learning, the Scratch

programming environment was designed to encourage scripting, give prompt feedback

to content execution, and make information obvious [2]. When a project is shared

online on the scratch website, it can be seen by other peers/users. Users can comment

on the project to give feedback, give a like to the project or add the project to their

favourite. Peers can also use the existing project and build upon the top of it. This is

known as remixing. Scratch encourages users to explore the work by other users and

collaborate to build on it. At the beginning some Scratchers (Scratch users) complained

about the projects remix, claiming that others were stealing their work [3]. This led to a

2

discussion on the website forum about the idea of sharing in an open-source community.

Scratches goal is to make the users feel proud when their projects are remixed. Scratch

consistently adds new features to the website to support this attitude. Whenever a

project or task is remixed scratch adds a link to the project where it originally came

from, this gives the original author full credit. Also the website’s landing page features

top-remixed projects.

We have seen some quite interesting use cases of scratch. One particular is of the

users forming online companies. LLk observed that some of the online users have

started their own ”company” with the help of Scratch. A girl of 15 years of age from

a town in England who goes by the alias BeeBop, set up a project with animations

and sounds sprites and encourage users to use them in their own project or give an

individual order on request for a custom build sprite. She was starting up the no-fee

consulting company. Later, a girl with alias MusicalMoon, who was also from the UK,

really liked the project by BeeBop and inquired if she would be interested in making

a custom background for her own personal project. That is how Mesh Inc. started a

self-declared mini-company which provided remarkable games in Scratch. After some

time the company was joined by a boy from US of 14, who said he could help with

debugging since he was good at Scratch programming [3].

Scratch is also being used in formal learning environments at universities to in-

troduce high-school students and children to coding concepts. Studies have shown

that visual programming languages have a notable influence on the understanding of

computer programming concepts [4]. Some of the well-known visual programming

languages like Alice [5], RAPTOR [6] and Etoys [7] have been utilised by various ed-

ucational establishments. Scratch is one of the most popular and well-known visual

programming language today [8],[2]. Although originally designed for kids, it was ac-

cepted for introductory programming lessons by a few higher education organisations

[9].

1.1 Motivation

One of the main objectives of Scratch is to encourage collaboration amongst peers

[2]. This is done by sharing the projects online with the community, getting feedback,

tinkering with and mixing others work with their own ideas. If a user likes the project

3

scratch provides options to FAVOURITE, LOVE or REMIX it. Users can also leave

comments on the project. Users can add other users (for example the author of the

project they like) as friends i.e. follow them. Note that ”Love” and ”Like” are used

interchangeably in context on Scratch

The development of Scratch is always tightly associated with the development of

Scratch online website [10]. For Scratch to be successful, it must be connected to a

community which supports collaboration and feedback from one another and improving

on others work [11]. Hence Scratch is inherently built with the idea of ”Sharing” with

the community. Scratch gives a ”Share” option on the project page. Once the project

is shared on the website anyone can run it, tinker with it comment on it and vote using

the Love button.

Following the launch of Scratch, within just 27 months users have shared more than

500,000 projects on the community website [3]. For many Scratch users, the concept

of sharing their work with others and getting feedback and advice from peers is the

source of strong encouragement. The huge amount of work that is shared on Scratch

serves as a library of resources for exploring new ideas and learning new techniques in

programming for other users.

Scratch website also serves as a platform for collaboration. Scratchers continuously

build and adapt ideas from one another’s projects. Around 15% of the total projects

shared on scratch are remixed projects meaning they were built upon some other project

that some other scratcher has previously shared [3]. For instance there are a number

of different versions of Tetris, where different scratchers have added new functionality

and features to the game to try and improve the experience. Similarly many doll based

projects that exists on Scratch are adaptions from some original project [3].

There exist various different ways in which projects shared are discovered by other

users. On the main home page are the sections like Featured Projects, Featured Studios,

Projects Curated by, Scratch Design Studios, What the Community is Remixing, What

the Community is Loving, this sections feature projects that are either hand-picked

by curators, or are most trending projects in the community or the projects that are

getting most attention(likes, favourites, remixes etc).

However, when it comes to personalised recommendation there is no option which

looks at what is the user’s interest or is based on users activities. Like in any online

platform, self-directed learning plays an important part in Scratch. For enabling suit-

4

able self-directed learning it is important to guide the user through proper steps and

resources[12]. By recommending projects based on users development and interest we

can better enable user with a self-directed learning attitude.

Thus, this study focuses on developing an effective recommendation method for

Scratch which would recommend users with the projects based on their preference and

activities i.e. a personalised recommendation.

1.2 Research Objective

With the research goal in mind for Studying recommender system in the Scratch plat-

form, this dissertation aims at achieving following objectives.

This dissertation focuses on the various content filtering techniques primarily col-

laborative and content-based methods. We will study and apply some of these collab-

orative techniques on the Scratch data. The dataset that is made publicly available by

the LLK Scratch team will be used for analysis and model building. We will try to fit an

item-item collaborative model on the project datasets and compare the recommenda-

tion outputs using standard metrics. We will also demonstrate how a recommendation

would work on a scratch website by building a JS client/server model. Finally, we will

discuss the risks and limitations of the proposed recommendations method.

1.3 Research Challenges

• Filter the huge dataset available for finding relevant and useful information.

• Find the best collaborative filtering algorithm that fits the available dataset.

• Finding the best metrics for evaluating the generated recommendations for qual-

ity and usefulness.

1.4 Dissertation Overview

Recommender systems are all around us, from the product recommendation you get in

Amazon to Spotify generating a customised playlists. This dissertation discusses the

5

Collaborative filtering technique which is amongst one of the most common ways in

recommender system research for calculating the predictions of items for a given user.

There are many different techniques in collaborative filtering which can be applied

depending on the requirements and the data. For predicting the Scratch projects a

user might find interesting in Scratch, item-item collaborative filtering techniques are

best suited. In item-item collaborative filtering, we first calculate the closeness of the

project to other projects from our dataset and then check what projects from this list

the user is most likely to like.This is done by looking at the past activities of the user.

The data is provided by the Scratch community website. It contains details of users,

projects and the project contents that have been shared on the website. The data is

collected over a period of 5 years from 2007 to 2012. The data is then filtered to search

for the attributes that will be useful in our task for building a recommender system.

We find that the most useful from the dataset is the users and the projects table, which

contains information for our recommendation system analysis.

After fitting the item-based collaborative filtering model, we statistically evaluate

the results and compare the output.For the purpose of demonstrating the recommen-

dations system, a client/server model is built. JavaScript and Python have been used

for the client-server interaction and Pandas library for data analysis and calculating

the similarity matrix (See Appendix A for code reference).

1.5 Dissertation Structure

The rest of this document is orchestrated as following: Chapter 2 discusses the cur-

rent state of the art in the field of recommender systems and explorers the topic of

recommendation system in education. It also looks at the previous studies done on

Scratch with respect to recommendation methods. Chapter 3 describes the methodol-

ogy for collaborative filtering techniques and different prediction and recommendation

generation techniques. In Chapter 4 we apply the techniques discussed in the pre-

vious chapter on the Scratch data. Chapter 5 analyses different evaluation methods

for a recommendation system and also examine the recommendation results obtained

in the previous chapter. In Chapter 6 we discuss our recommendation approach, its

limitations and future work that is required. Chapter 7 concludes the study.

6

Chapter 2

State of the Art

2.1 Recommender system overview

2.1.1 What is a recommender system?

Often termed Recommender systems, they are simply a kind of content filtering tech-

niques and tools used to provide users with the most accurate and relevant product

suggestions filtered from a huge database of information. Recommendation system

works by discovering information patterns from the dataset, learning user choices and

yield results that are co-related with their requirement and likings.

The most common use of recommender system can be seen in the commercial

applications. From recommending movies on Netflix to predicting user ratings on

amazon, the use of recommender systems can be seen in various fields. Fields like

financial services [13] and research articles exploration [10] and to find collaborators

[14] have seen increased used recently.

Recommender systems are extensively being used in e-learning environments under

the context of TEL (Technology Enhanced Learning) [15] for improving the self-directed

learning capabilities of students.

2.1.2 Information filtering techniques

Recommender system strategies generally use two types of techniques for generating

recommendations one is content-based filtering approach and the other being collabora-

7

tive filtering approach. Some times knowledge-based systems are also used (also known

as rule-based). A combination of the above three techniques is also used commonly

known as the hybrid approach. In [16] Ricci categorises the recommender systems into

5 categories: Knowledge-based, Content-based, Demographics based, Collaborative fil-

tering, community-based and Hybrid approach.

Content-based method sometimes, also known as item-based collaborative approach

look at the individual items and their attributes to compute the similarity between the

given item i and a list of items and then selects k most similar items [17].

Contrastively, Collaborative filtering techniques look at the users and their at-

tributes. It calculates the closeness between all the users and then produces a recom-

mendation based upon it. Basically, the idea of a CF-based algorithm is to look at the

opinions of the like-minded users from the available pool and then recommend items

based on it. The data of a users behaviour can be obtained in two ways explicitly or

implicitly. Example of explicit data collection is the ratings and review a user gives to

an item. Implicit data like the previous purchase history, browsing pattern of the user

can also be useful in making a meaningful recommendation.

Knowledge-based techniques for recommendation takes into account the explicit

knowledge about different things like the product, the user and some predefined rules

to generate a recommendation. This is also known as rule-based recommendations

[18]. The rule-based technique implements the relationship-rule discovery algorithm for

finding the relationship amongst similar items and then produces a recommendation

list based on the strength of the relationship [19].

For the purpose of this study, the focus is on the most widely used and perhaps the

most effective technique [16] which is collaborative filtering. Collaborative filtering can

be commonly categorised into two 1.User-based collaborative filtering and 2.Item-based

collaborative filtering.

In user-based collaborative filtering, the behaviour of other users is incorporated

in the system to give more weights to the items which users similar to the target user

have purchased or expressed and opinion about. The intuition being the more similar

a user is to our target user, the more likely it is that the target user will like the items

that other users with similar interests have liked.

8

2.1.3 Challenges in user-based collaborative filtering algorithms

In spite of being amongst the most widely used algorithms in both small scale and

large commercial-scale applications, the widespread use of user-based collaborative

algorithms has shown some possible challenges with their use like:

• Scalability: Computational requirement for closest neighbour calculations in-

creases with both the quantity of items and the users.

• Sparsity: In a large commercial use (like Amazon recommending books form

large DB), even if a user has purchased less than 1% of the items(from millions of

books) the nearest neighbour method won’t be able to generate a recommendation

of items for that user. Resulting in poor accuracy.

In conventional collaborative filtering recommender system, the quantity of work

grows as the quantity of users increases. For producing accurate results quickly on a

large dataset we will explorer the item-based collaborative filtering technique.

The item-based method first looks at the user vs item matrix to find out the re-

lationship between the various items present in the system and then utilize this in-

formation to implicitly calculate the recommendation for the user. In [17] the author

discussed various techniques to compute the item-item similarity matrix (e.g. cosine

closeness, Pearson correlation etc.) and also different methods (E.g., regression model

vs weighted sum) to obtain recommendations from them. Because the association

amongst the item is relatively steady, item-based algorithms may be able to produce

equivalent or sometimes superior results [17].

In [17] the author studies collaborative filtering algorithms and their bottlenecks.

Tapestry [20] shows the earliest applications of item-based collaborative recommender

systems. The research in [20] relied on the direct inputs of users from the closed group,

like a college working group. However, recommender systems for large groups like

Scratch cannot rely upon every individual knowing each other one. In the course of

time, many rating based automated recommenders were developed. The GroupLens

research group at the University of Minnesota [21],[22] gives pseudonymous collabora-

tive filtering solutions for the movies and Usenet. Video Recommender [23] and Ringo

[24] are web-based music recommendation systems.

9

2.2 Recommender systems in e-learning

E-learning is a broad term that outlines an environment in which a person can learn at

any time and anywhere using a computer, generally connected to a computer network.

It is well established that e-learning can be as huge and valuable as the typical classroom

experience or significantly more than it [25]. Using e-learning, one can learn and master

the skills and knowledge just like he would in a traditional learning counterpart.

2.2.1 E-learning environment and recommendation

As e-learning systems begin to expand and are ever-expanding, the users need to first

process a large amount of information before it meets their needs and provides them

with items that are relevant to them. E-learning’s fast development has altered tra-

ditional learning conduct and presented both the students and teachers with a fresh

scenario. Students often find it difficult to navigate through a huge number of exercises

and courses, and teachers find it difficult to recommend students with materials. One

of the answers to this information overload issue in e-learning is a recommendation

framework [26].

A personalized recommendation system in e-learning and online learning environ-

ments provides learning suggestions to students. In [27] Lu discusses a framework for

a personalised learning recommender system. [26] discusses a fully mature recommen-

dation system architecture model for an e-learning framework.

In [28] we see the application of Hierarchical Clustering (HC) on a TEL dataset

built with Coursera data known as DAJEE. Recommendation from this system was

done on the basis of three educational entities, Instructors, Courses and Lessons. The

main teaching context considered were teaching preference of instructors, the course

information and the lesson information.

In [29] the author discusses a hybrid approach for the recommendation on MOOC

platforms which uses social network analysis and association rule mining techniques.

User contributions on the forums and their social interaction and peer review activities

were taken in to account to extract information for social network analysis. Followed

by the utilising this information for the collaborative filtering approach. This approach

was again tested on the Coursera dataset which showed a well-performing system given

the limited information available in the dataset.

10

2.2.2 Recommendations in Scratch

In [18] the authors discuss recommender system in scratch with respect to a course

framework for teaching Foundations of Computer Programming at Universidad Estatal

de Milagro (State University of Milagro), Ecuador, with Scratch. consisting of various

exercises that a student follows.

Benavides [20] proposes CARAMBA [30] a Scratch extension that recommends

exercises, based on taste and program complexity. CARAMBA can recommend per-

sonalized exercises for students. This again considers problem statements as exercises

that would be recommended. It also conducts a study to evaluate the improvements

in student activity as a result of the recommended exercises.

2.3 Evaluation of a recommendation system

Recommendation algorithms typically perform differently on different recommendation

tasks and domains. Therefore it is critical from a practical and research perspective to

select the proper algorithm that matches the domain and tasks that is of the interest.

The standard way to make such a choice is by comparing different algorithms offline

using some assessment metric. Survey in [31] discusses different matrics for evaluating

recommending algorithms.

In [32] the author discusses various evaluation methods for a recommender system,

particularly on the top N recommendations tasks. It proposes that while assessing algo-

rithms in the top-N suggestion task, to pick the test set cautiously otherwise precision

measurements are strongly one-sided.

The area of recommendation system research has utilised different types of metrics

to assess the quality of the recommendation framework. Mainly these are classified

into two categories [17]:

• Statistical accuracy metrics evaluation computes the correctness of the rec-

ommendation framework by equating the value of the generated recommendation

score with the user given rating in the test dataset. One of the most widely used

methods for evaluating the statistical accuracy is called the Mean Absolute Error

(MAE). MAE is calculated between the predictions and the user-ratings. MAE

gives the deviation of the recommendation score from the user given score.

11

• Decision support accuracy metrics evaluation evaluates how effective and

useful the predictions are at helping the user find the relevant item from the set

of all items. These metrics consider the process of recommendation as a set of

binary task, wither the recommendation is good or bad, i.e. the item is either

predicted or not considered at all. With this in mind, the prediction can be

anything like 1 or 2.5, it doesn’t matter as the user only selects items with a

rating higher than 4. Most common techniques in this category are the ROC

sensitivity and the reversal rate [33].

These techniques are covered in detail under chapter 5 Methods of Evaluation.

2.4 Other techniques in recommendation systems

Additionally, other techniques have been applied to the recommender system area, like

Clustering, Horting and Bayesian networks.

Bayesian networks work by creating models over a training dataset associated with

a decision tree-like structure. Each edge and node of the tree represents knowledge

about the user. The model can be trained and completed in the time as less as hours

or a few days. This model tends to be very small and very fast and can be as accurate as

the nearest neighbour methods [34]. Bayesian can be used practically in environments

in which the information about the user preferences changes steadily in reference to

the time which the model building requires. But Bayesian networks have been known

to fail in areas where user preferences change very rapidly.

On the other hand, clustering algorithms work by classifying users with similar pref-

erence into different groups known as clusters. After the clusters have been finalised,

predictions for a user are calculated by taking the average of the opinions of other

users in the cluster. Some of the clustering techniques consider users in the form of

participation across several clusters and the averaging is done by the weighted sum of

the degree of the participation. Clustering is known to produce non-personal results

in the recommendation, in fact, in some cases, it may give even worse accuracy than

the nearest neighbour algorithms [34]. However, once the clustering is done, there is a

large increase in performance because the comparing needs to be done on very small

clusters. Clustering techniques can also be used in conjunction with nearest neighbour

12

algorithms to reduce the size of the dataset that must be analysed.

Horting is a diagram-based methodology in which the nodes of the graph repre-

sents the users and the connections between them are edges representing the degree of

closeness between the users [35]. Recommendations are given by traversing the graph

to the nearest node and averaging the opinions of nearby nodes (i.e. users). Horting

and nearest neighbour differ from each other in the sense that in Horting graph may

be traversed through users who have not had an opinion about the item and therefore

considering the changing relationships that nearest neighbour does not consider [2]. In

a study with artificial datasets, Horting has shown superior performance to the nearest

neighbour algorithms [2].

13

Chapter 3

Methodology

In the previous chapters, we investigated what are recommendations system and the

different techniques applied in the recommender system and also their application in

the e-learning domain. This chapter will describe the process in which an item-based

collaborative filtering algorithm was applied to the Scratch data to build a recommen-

dation system. We will look at different steps involved in the collaborative filtering

methods, various item-similarity computation methods and also the prediction calcu-

lation steps.

3.1 Summary of the Collaborative Filtering process

The objective of a Collaborative Filtering (CF) algorithm is to generate a list of rec-

ommended items or to estimate the likeliness of the item for a particular user based on

the past activities of the user. In an standard CF scheme there is a list of m number

of users say U = {u1, u2, u3, u4, ..., um} and a list of n items I = {i1, i2, i3, i4, ..., in} .

Every user ui has a list associated with them consisting of items IUi
, which the user

has expressed interest in or has an impression about. In the case of Scratch we look

at the projects the user has liked and the projects user has created/published in the

past. This impressions or likings can either be collected explicitly or implicitly. Notice

that the item list for user IUi
⊆ I and its likely that the IUi

might be an empty set

(e.g. when the user newly enters the system). Also, there exists a user ua from the list

of users for whom the task is been carried out i.e. our target user. The goal for CF

14

algorithm is to discover an object (in this case projects) likeliness i.e. how likely the

user is to view or love this item. This can take two forms.

• Recommendation R is a list of items such that Ir ⊂ U which contains the

items the user will like the most. It is to be noted that the R should avoid items

that the user is previously associated with i.e., for example, the projects that the

user already has on his page.

• Prediction is a number Pa,j representing the predicted likeliness of the item for

the user ua. The predicted value is same as that of the normalized scale of the

user ratings [17]. For the case of this study in Scratch we consider this to be the

count for remixes, likes and favourites for the user-item pair.

Figure 3.1 shows a diagrammatic representation of the collaborative filtering pro-

cess. The CF algorithm shows the whole m× n matrix A as a user vs item matrix of

the user ratings. Each cell ai,j in the matrix holds value for every item the user has

rated i.e. either liked, favourited or remixed. Every rating is on the numerical scale

and can take the value 0 representing the user has not yet given the rating (i.e. liked

or favourited or remixed the project) the project or a value 3 (done all three activity)

indicating user liked the project very much.

Figure 3.1: The process of a Collaborative Filtering Algorithm

15

3.2 The item-based collaborative filtering algorithm

Unlike the user-based collaborative filtering algorithm shown above, an item-based col-

laborative filtering algorithm considers the semantics of the items a user has interacted

with (liked, remixed or added to the favourited) to compute the likeness between two

things i.e. how closely related items {i1, i2, i3, i4, ..., in} and the item of interest are.

Then it selects the k most closely related items {i1, i2, i3, i4..., ik}. Once the task of com-

puting similarities is complete, the predictions are calculated by taking the weighted

sum average of the target users ratings on these similar items. This process of similarity

calculation and prediction generation is detailed below.

3.2.1 Similarity computation

One of the most critical steps in an item-based collaborative filtering model is the

calculation of the similarity matrix between the set of items and then selecting the

most similar items. This similarity calculation step between two items i and j, basically

performs two steps first it separates the users who have evaluated both the items and

then applies a closeness calculation strategy to decide the similarity si,j Figure 3.2

represents this procedure. Here the matrix rows denote the user and the columns

denote the items.

Figure 3.2: Computation of item-item similarity

16

Various techniques have been proposed to compute the similarity between any two

items in statics. Some of the most common and well known once are Correlation-based

similarity, Cosine-based closeness and Adjusted-cosine based closeness [19]. We will

examine each of this technique and apply them on our dataset to check which of them

suits best for the chosen dataset.

3.2.2 Cosine based similarity

Cosine similarity is defined as the measure of similarity between any two non-zero

vectors. These vectors reside in as inner product space. Cosine similarity is defined

as the cosine of the angle between them. The cosine for a vector with the angle at 0

degrees is 1 and the for any angle between 0 and 90 is less than 1. Therefore it gives us

information about the orientation of the vectors and not their magnitudes. Two vectors

with orientation in the same direction have a cosine 1 and the cosine for two vectors

that are at an angle of 90 degrees with respect to each other is 0. Similarly, two vectors

within an exact opposite orientation will have a cosine similarity as -1 irrespective of

their magnitude. Cosine similarity mostly is used in positive spaces where we require

the output to be neatly bounded between [0,1]. Particularly data mining, information

retrieval and text mining all of which have high dimensionality problem extensively use

this technique. Each of the terms is assigned a new dimension to calculate the cosine

similarity between them. The cosine similarity is useful because even if two vectors are

very far apart in terms of Euclidean distance (due to their sizes), there is a chance that

they may be similarly oriented closer to each other. The smaller the angle between the

two, the higher is their cosine similarity. For this study, we consider two items as the

two vectors in the m dimensional user-space. The similarity measure is calculated by

computing the cosine of the angle between these two vectors. In Figure 3.2 we see the

similarity between items i and j in an m x n matrix for user projects. The similarity is

shown by sim(i, j) such that

sim(i, j) = cos(~i,~j) =
~i.~j

‖~i ‖2 ∗ ‖ ~j ‖2

In the equation above, dot product is represented by ”.”

17

3.2.3 Correlation-based similarity

In statistics, correlation is a statistical association between two variables, showing

the degree to which the two are linearly related to one another. There are many

correlation coefficients defined which show the degree of closeness between variables.

Pearson correlation, Interclass correlation, Spearman’s rank correlation are some of the

examples of correlation coefficients used in statistics. Pearson correlation is one of the

most widely known and used metrics to show the similarity.

Also, know as the person-r correlation coefficient, it gives us the linear correla-

tion between any to variables X and Y . It can take a value between +1 and −1,

where 1 denotes a total positive correlation between the variables, 0 denotes abso-

lutely no correlation between the variables and -1 denotes a total negative correlation

[36]. Mathematically it is defined as the covariance of the two vectors divided by the

product of their standard deviation. In a correlation-based similarity scenario, the like-

ness amongst two items i and j is computed by calculating the Pearson-r correlation

corr(i, j). For a correlation to be accurate the cases where the users have rated the

projects same will need to be separated.

sim(i, j) =

∑
u∈U

(
Ru,i −Ri

) (
Ru,j −Rj

)√∑
u∈U

(
Ru,i −Ri

)2√∑
u∈U

(
Ru,j −Rj

)2
3.2.4 Adjusted-cosine based closeness

One basic contrast between the closeness calculation in a user-based collaborative fil-

tering and item-based collaborative filtering is that in the item-based method the sim-

ilarity is calculated based on columns of the matrix, whereas in user-based method the

similarity is calculated along the rows of the matrix i.e., each pair in the co-appraised

set relates to a different user (Figure 3.2). Computing similarity utilising the fundamen-

tal cosine measure in item-based case has one significant downside - the distinctions in

the rating scale between various users are not taken into consideration. The adjusted-

cosine based similarity reduces this disadvantage by subtracting the average score from

every co-evaluated pair. The formula for this is given as below

18

sim(i, j) =

∑
u∈U

(
Ru,i −Ru

) (
Ru,j −Ru

)√∑
u∈U

(
Ru,i −Ru

)2√∑
u∈U

(
Ru,j −Ru

)2
Where Ru is the normalized score for u th user.

3.3 Prediction Calculation

One of the most significant steps in any CF-based system is to give the output in

terms of the prediction. Once we have with us the list of items that are most similar

as given by the closeness measures above, the next step is to examine the user ratings

and apply a predictive method to get the prediction. Various ways have been proposed

to compute the prediction. Regression method and Weighted Sum method are the two

such most common technique [19].

3.3.1 Assigning the rating score for user activities

In a conventional personalised recommendation, users feedback is captured through the

likes and the rating given to an item. For example in case of Netflix a user rates a movie

on a scale of 1 to 5, 1 being the lowest and 5 being the highest. Some times decimal

ratings are also allowed. Since there is no rating system in scratch and a user can either

like, favourite or remix a project and these three details are publicly available we will

use this information to develop a rating system. While viewing a project, a user has

a choice of performing various actions on the project page. He/She can either click on

Love/Like to show the appreciation or add the project to his favourite or click on remix

to copy the project to his own profile and adapt on its code. User can perform one or

two or all three of these activities. For each of the user activity (love, favourites and

remix) we assign a rating score of 1 if the user has performed the activity or 0 if not.

We then take the sum of all three activities to find a user rating on a scale of 3. So

for example, if a user has liked and favourited a project but not remixed the total user

rating is love (1) + favourite (1) + remixed (0) = 2. And If a user has only

remixed the project then the total rating for that project is love (0) + favourite

(0) + remixed (1) = 1 . Henceforth, in our weighted sum method we use this rating

to find the most relevant projects for the user.

19

3.3.2 Weighted sum method

In mathematics, a weighted function is a method used when performing an average,

a sum or an integral to assign some components more weight i.e. importance than

others to increase or decrease their impact on the result. Weighted sums are most

commonly used in statistic to decrease or compensate for the bias present in the data.

For example, if a quantity F is measured multiple times independently with variance

σ2, we can find the best approximation of this measure by taking the average of all

the measurements with the weight ωi = 1
σ2 , giving us a smaller variance than each

individual measurement.

This method computes prediction for the project i for user u, by calculating the

weighted sum of rating attributes (likes, favourites, remixes etc.) for a similar item.

Formally this can be shown as the prediction Pu,i as below

Pu,i =

∑
all similar items,N (Si,N ∗ Ru,N)∑

all similar items,N (| Si,N |)

Basically, this method attempts to show how a target user u, is likely to view (favourite

it, like it or remix it) based on the similar items that he has seen (liked, loved, or

remixed) in past.

3.3.3 Regression model

In statistics, regression modelling is a collection of procedures to estimate the depen-

dency relationships between the variables. Regression analysis aids us in understanding

the effect that the dependent variable has when anyone or multiple independent vari-

ables are changed. A number of regression techniques have been invented to support

various statistical problems. Linear regression, polynomial regression, principal com-

ponent analysis etc. are some of the popular techniques.

Regression model for calculating the prediction is mostly similar to the weighted

sum method discussed above. The only difference is that instead of using ratings of

similar items, this method approximates the ratings of items based on the regression

models. When similarity is calculated using either cosine or correlation measurement,

it may lead to improper conclusions in practice because the two vectors maybe at

distance in terms of euclidean distance, but may be highly similar to each other in

20

terms of orientation. In this case, using the ratings from similar items can result in

low-quality predictions. The general idea is the same as that of the weighted sum

method, but instead of using raw ratings from the N similar items, this method uses

their approximate values which are calculated using a linear regression model.

General formulation of a CF-algorithms and the necessary methods and steps re-

quired for performing item-based collaborative filtering have been discussed until now.

In the next chapter, all these algorithms will be applied to the actual Scratch dataset.

21

Chapter 4

Implementation

For implementing the item-based collaborative filtering methods on Scratch, we first

look at the data that is required and the available datasets from Scratch.

4.1 Collecting the data

The Scratch Online Community has made the dataset for scratch platform publicly

available on [37]. The dataset has the data for the first five years of the data from

Scratch (approximately from 2007-2012). The data was collected from the MySQL

database from the Scratch website. All datasets are provided in CSV file formats,

which can be loaded into any compatible data analysis software. There are a total

of 32 datasets which contain information about various aspects of the Scratch Online

Community. These 32 datasets are divided into 3 main categories Core Datasets, Text

and Code Datasets and Project Analytics Datasets. Table 4.1 shows the description of

each and every table that is available in the dataset taken from [37].

4.1.1 Data description

• Core dataset consists of metadata and data tables that define major relation-

ships and objects which are captured by the Scratch Online Community applica-

tion.

• Text and Code datasets consist of very large tables consisting of texts sub-

22

mitted by the users. This can be helpful for NLP and text-based analysis.

• Project Analytics datasets contain tables which have quantitative summaries

of each project file. A project file is a .sb2 or .sb3 file that contains all of the

content of a scratch project.

4.1.2 Ethical implication

The dataset that this research uses is the data from the Scratch Online Community. It

has been supplied by the Lifelong Kindergarten Group at the MIT Media Lab under

public domain. Although this data is available under public domain, a Scratch Research

Data Sharing Agreement (SRDSA) [37] was signed to obtain access to the dataset files.

User privacy is fully protected while scraping the data. The rules that define the user

privacy such as only information that was publicly visible on the site to anyone visiting

the site even if it may be a web crawler software and no action was required by the

user or the site administrator were used while scraping the dataset. Some of the user

sensitive information like the self-reported gender,age email, IP address was omitted

while publishing the dataset [38].

The users of the Scratch online platform are mostly young children many below 18 years

of age, from all around the globe. Therefore, an ethics approval was required by the

LLK group from the MIT Committee on the Use of Humans as Experimental Subjects

(COUHES). Which was granted to the team and the data was published under the

specified protocol by (COUHES) MIT.

All the terms of the access to the data have been adhered to and therefore as the part

of this dissertation, no ethics approval was required from the university.

4.1.3 Identification of the relevant dataset

Keeping the objective of the research in mind of building a recommender system that

generates recommendation on ”projects” for a user, first we need to identify the relevant

data for our goal form this dataset.

For recommending projects based on user activity, we require the data related to

projects and users on the Scratch platform. Looking at the list of the datasets as shown

23

Table 4.1: Description of tables in dataset from Scratch online community [37].

24

in Table 4.1 we observe that projects.csv, projects blocks.csv, projects sprite.csv and

users.csv have most of the data related to users and projects.

• Users - holds the data about the user and which project the user has worked on.

• Projects - contains general information about the projects and the user associ-

ated with each public project.

• Projects block - holds the information about each block (the logical component

of the code) used in a project, these are the extracts of the sb2 and sb3 files.

• Projects sprite - contains the information about sprite (scripts, sounds and

images) used in each project.

Apart from these tables, the following datasets were also used to obtain information

required for user rating calculation.

• Lovers - which has information about the projects that the user has clicked Love

for.

• Friends - contains each user and its friends (the user who follow each other).

• Favourites - shows an event where a user has added a project to their Favourites.

4.2 Data Analysis

After identification of the data required, we will apply some preliminary data analysis

techniques to check for consistency and quality of the data.

Projects - We see that the more of the projects are created in the latter half of

the dataset time frame i.e. after 2010. This shows the popularity of the Scatch in the

initial phases.

25

Figure 4.1: The distribution of projects in dataset over the period of 5 years

Project Blocks - There are about 171 of these key block attributes associated

with each project in this dataset. Table 2 shows each of this block. Figure 4.2 below

shows the frequency of each block used in the projects. We see an even distribution of

the most common operators in the projects, while the less common once are not used

frequently. We can assume from this distribution that project dataset is good enough

for finding the correlations between projects.

26

Figure 4.2: The frequency of the use of project blocks

27

Users -The following figure 4.3 shows the distribution for the accounts in scratch

done by creation date over the period of 5 years.

Figure 4.3: Distribution of the user accounts created by creation date

Friends - An event where a user adds another user as a friend on the Scratch

community website is recorded in this dataset. Figure 4.4 shows the distribution of

this relationship over time.

Figure 4.4: Distribution of the friend’s data over time

From table 4.1, we observe that that on an average 6.32 projects have been created

per user with a SD of around 26. And on an average, a user has around 11 Friends

per user with a SD of 55. The variance may seem huge but considering the size of

the data which contains around 1.3 million records for friends and 1.9 million records

28

for projects in the dataset, the variance is expected. The high variance values in both

datasets indicate number of missing values from the data, this will be handled in the

data cleaning and imputation section 4.3.2.

Observations Mean Var SD Max Min NAs

Projects 6.32 721.9964 26.86999 3047 1 0

Friends 11.31493 3073.802 55.44188 4981 1 0

Table 4.2: Mean, Variance and Standard deviation for Friends and Projects data

4.3 Calculating similarity matrix

After the data analysis, we will apply the three similarity computation matrix discussed

in chapter 3 on our projects dataset. All the programming and computation is done

in python as the programming language. Various packages and libraries have been

used to facilitate the easy application of different algorithms. Pythons sci-kit learn

(sklearn)[39] library, which houses many machine learning packages has been used for

applying the cosine- correlation and adjusted cosine correlation methods. Another

library known as Pandas [40] has been used for computing the Pearson correlation

matrix.

4.3.1 Preparing the data

Since our project sprite and project blocks, both contain some information about the

project components we can merge the two datasets to form single dataset. This has two

benefits first it reduces the process of applying computation on two different datasets.

Secondly, it gives us 3 more parameters(sounds, images and scripts) from project sprite

which will add to the existing 171 parameters from project block dataset to calculate

the correlations.

1 #Load projects data from csv

2 projects_df = pd.read_csv(’data/CSVs/project_blocks.csv’, sep=’,’,

index_col =0,)

3

4 #Imputing the others data since it has mostly the null values.

5 projects_df = projects_df.drop(columns="other")

29

6 #Load projects_sprites data from csv

7 project_sprites_df = pd.read_csv(’data/CSVs/project_sprites.csv’, sep=

’,’,index_col =0)

8

9 #Merge both the panda dataframes on project_id

10 main_frame = pd.merge(projects_df , galleries_df , left_index=True ,

right_index=True)

4.3.2 Imputing missing data

As we have seen in our previous data analysis section, there are some missing values

in our dataset. For our algorithm to work correctly we need to replace this missing

data. For replacing the value we need to apply some data imputation techniques which

estimates the best possible replacement by looking at neighbouring values.

• Mean imputation - In the mean imputation methods, the missing values are

replaced by the mean of the observed variable. For example, if the variable of

sound (number of sounds used in the project) is missing for a particular project,

we take the mean of all the projects who have sound in them and replace the

missing value with it.

• KNN imputation - In K nearest neighbour imputation, the missing values are

replaced by the approximate value based on the nearest points. The assumption

being that the given K nearest neighbour point the missing value is an approx-

imation of it, k being a number of closest points to look for and is supplied by

the user it is the most commonly used technique.

For our purpose we use SimpleImputer and IterativeImputer from sklearn for imputing

the data values.

1

2 #Impute the missing values using IterativeImputer from sklearn

3 MAX_ITER = 10

4 imp = SimpleImputer(missing_values=np.nan , strategy=’mean’)

5 imp = IterativeImputer(max_iter=MAX_ITER ,initial_strategy=’knn’,

random_state =0)

6 imputed_DF = pd.DataFrame(imp.fit_transform(main_frame))

30

7 imputed_DF.columns = required_columns_df.columns

8 imputed_DF.index = required_columns_df.index

4.3.3 Correlation-based similarity

For correlation-based similarity computation, Pearson-r correlation method is applied.

The corr(method =′ pearson′) methods from the Pandas directly applies the selected

correlation method on the dataset. The correlation matrix is obtained as shown in

Figure 4.5. This matrix shows the item correlation between all the projects from the

dataset.

Figure 4.5: Pearson correlation output

Note the numerous negative correlation values in the matrix, this suggests that

many of the projects are not similar at all.

4.3.4 Cosine-based similarity

For cosine based similarity computation we apply the cosine correlation from the

sklearn.metrics.pairwise module on the dataset. Figure 4.6 shows the output matrix

31

for cosine based similarity, This matrix shows the cosine correlation values for all the

projects in the dataset.

Figure 4.6: Cosine similarity computation output

4.3.5 Adjusted-cosine based similarity

Similar to the previous method after applying the adjusted cosine functions from the

sklearn library, we obtain the similarity matrix shown in Figure 4.7. The matrix shows

correlation values of different items from dataset.

32

Figure 4.7: Adjusted cosine similarity output

Note here that since adjusted cosine is performed over columns rather than rows,

the computation time for this method is slower compared to the other two. This

computation time can be reduced by using a machine of higher computation memory

or by reducing the size of the dataset

4.3.6 Selecting top-N recommendations

From the results of the similarity obtained above, for a given item i of a particular user

we get the correlation score for each of the similar items from our dataset. We select

the top - N values from the matrix (N=5) to be presented to the user U. This gives us

the top 5 similar items to the user item I.

1 #Get Top 5 from the similarity matrix

2 top5 = final_df.loc[project_id]. nlargest (5)

3 recommendation_pairs = top5.to_dict ()

33

4.4 Prediction Calculation

After we have the item-item correlation matrix ready, we proceed to calculate the

prediction score for each of the item based on users activity.

4.4.1 Weighted Sum method

Weighted sum method has been used for prediction calculation because of its simplicity

to implement. For an item I for user U, this method calculates the prediction score by

evaluating the sum of the ratings given by the user on other similar items to item I.

Each rating by the user is assigned a weight si,j based on the similarity output of the

item.

1 #Calculates the prediction score for a user given recommendation as

the list of similar recommended projects and target project_id

2 def calculate_prediction_score(user_id ,project_id ,

similar_recommendation):

3 _w = [get_user_ratings(user_id)]

4 _x = similar_recommendation

5 score = sum(_x * _w for _x, _w in zip(x, w))/ calculate_score(_x

)

6 return score

Figure 4.8: Top 5 project ids according to prediction

The figure shows the top 5 most similar items computed after applying the weighted

sum method. For the supplied user id: xxxxxxx and project id: 2437714 all the other

are the recommendation scores for the top 5 similar items.

34

4.4.2 Comparing the recommended items

On comparing the results that we get from the recommendation method we observe

the following. We follow the link of each project ID to see the structure of the project.

Every project comprises of similar set coding blocks as of the original project by the user

U. For instance every project has one forever loop, one wait timer one costume switch.

Also, note the two most similar projects have the sound block explicitly specified and

while the next two have an implicit sound build in requiring no sound block. This gives

us confidence about the similarity matrix outputs in the N-dimensional user space. It

is also observed the second most similar project (id=2437719) is given priority because

it was liked and remixed by our test user.

35

Project URL Code Snip

https://scratch.mit.edu/projects/2437714/

Likes: 0, Favourite: 0, Remixes: 0

https://scratch.mit.edu/projects/2437719/

Likes: 2, Favourite: 4, Remixes: 2

https://scratch.mit.edu/projects/2437771/

Likes: 3, Favourite: 3, Remixes: 0

https://scratch.mit.edu/projects/2437735/

Likes: 0, Favourite: 0, Remixes: 0

Table 4.3: Projects recommended

The next chapter will deal with evaluating and comparing the quality of these

recommendations methods and prediction scores more formally. It discusses various

different metrics for evaluating the recommendation methods and prediction scores.

36

Chapter 5

Method of Evaluation

This section discusses various evaluation methods that exist in the recommender sys-

tem research paradigm to determine the quality and accuracy of the recommendation

method discussed in previous chapter. We also compare the recommendation system

based on the three similarity computation algorithms discussed previously.

5.1 Experiment

After building the model and applying the methods on our training dataset, we apply

the methods on our test dataset for comparing the accuracy. From the dataset of over

1.9 million observations of projects and around 1 million users, the data set was divided

into 80% as training data and 20% was used as test data for the model.

5.2 Evaluation methods

Various methods of evaluation have been studied in the paradigm of recommender

system research. These methods are mainly used to evaluate the accuracy of a recom-

mender system. These metrics can be broadly categorised into 2 groups as described

below.

37

5.2.1 Statical accuracy metrics

A statistical accuracy measure is the one which evaluates the accuracy of a recom-

mender system by calculating the difference in the actual user given score in the test

data and the score calculated by the recommender system.

• MAE(Mean Absolute Error) is one of the most popular metrics that is widely

used to compare the actual and expected values. Basically, MAE is the measure

of the deviation of the predicted recommendation rating from the actual user

given ratings. In the scratch dataset for each pair of {predicted, user − rating},
MAE handles the absolute difference between them equally i.e. it is given by

| redicted−user rating |. MAE is computed by summing the absolute difference

for all the predicted, user-rating pairs and then averaging it over the total number

of pairs. Mathematically it can be written as,

MAE =

∑
(predicted ratings− user ratings)

Total number of pairs

• Root Mean Squared Error (RMSE) is another statistical accuracy matric

that is used for measuring model performance. It was first used in the areas of

environmental changes and climate research [41]. While MAE assigns the same

weight to all the errors, RMSE penalizes large variance in the reading as it assigns

errors with large absolute value more weight compared to the smaller values.

MAE =

√√√√ 1

n

n∑
i=1

e2i

5.2.2 Decision support accuracy metric

Decision support accuracy metrics are used to measure the usefulness of a recommen-

dation engine at assisting the user in selecting the top-quality items from a list of all

available items. They work by assuming the predictions to be a binary process. Either

an item is a good one or a bad one, i.e. it is either predicted or excluded from predic-

tion. If on a rating scale of 5 if a user only chooses items with a rating more than 4, it

becomes irreverent if the rating is 2.5 or 3. Some of the most widely utilised support

38

accuracy matrices are ROC sensitivity, weighted error and reversal rate [33].

• ROC sensitivity - Receiver Operating Characteristics curve is a graphi-

cal plot that is used to visualise and select classifiers based on their performance.

ROC graphs are being used since long time in the area of signal detection system

for showing variance in a hit and false rates of the classifiers [42]. The medical

community has a huge literature on the use of ROC for decision making on diag-

nostic testing. ROC curves are adopted in machine learning for comparing and

evaluating various algorithms. ROC graphs have recently gained popularity in

the machine learning community due to the understanding that simple accuracy

metrics are a weak measure of the performance of the classifiers [43]. Besides of

being useful as a performance mapping technique, they have additional qualities

that make them suitable for problems with very skewed data distribution.

We begin with building a confusion matrix for the classifier, counting the number

of correctly classified and incorrectly classified values into the matrix. As shown

in figure 5.1 the true positive and true negatives are the correctly classified values

by the classifier and false positive and false negative are the incorrectly classified

values.

Figure 5.1: Performance metrics calculations from Confusion metrics.

Figure 5.1 shows various standard metrics that can be calculated from the confu-

sion matrix. Formally it is defined as the area under the curve of the ROC curve.

39

ROC is plotted as sensitivity v/s (1- specificity) of the test. In case of a rec-

ommender system Sensitivity is defined as the probability of a random selection

of item is accepted by the filtering method (a good prediction) and specificity

is defined as the probability of a random selection of item being rejected by the

filtering method (a bad prediction). A good filtering method would enable the

user to select from 90% of the good recommendation and 10% of the bad ones.

• Reversal rate is defined as the frequency at which the recommendation by

the system is wrong or incorrect. On a scale of 5, it is commonly given by the

percentage of the recommendation where the prediction was varied by 3 or more

points.

• Weighted error is the metrics which gives extra weight to the errors due to the

strong outlook about the recommended item. For instance, if a user considers an

item to be his favourite (i.e. a rating of 5 out of 5) the error for this could be

considered double or more.

Some of the new and novel approaches have been discussed in [44] which are based

on coverage and serendipity of the recommendations. It discusses the metrics beyond

the accuracy of the recommendations and takes into consideration the quality and use-

fulness of the system

For the simplicity and ease of interpretation of MAE, we select it as our preferred

choice of evaluation. In the experiment [33] Sarwar notes that MAE and ROC give

the same arrangement of different experimental procedures with respect to prediction

quality.

5.3 Results

5.3.1 Comparing the similarity algorithms

After running the three similarity computation methods namely cosine, adjusted-cosine

and Pearson-r correlation as discussed in previous chapters on our training data and

using the weighted sum method to get the predictions score, we calculate the MAE of

40

for each of the methods. Figure 5.2 shows the results of the three algorithms on the

dataset.

Figure 5.2: Performance comparison of the similarity calculation method

Since a lower value of MAE denotes a better performance, we observe the best

performance is given by the adjusted cosine similarity method. However since the

computation time required for the adjusted-cosine matrix calculation is high and the

difference between Cosine and Adjusted cosine is relatively less we can say Cosine sim-

ilarity is best suited for the Scratch dataset. Note that since the Person-correlation

matrix gave us many negative values its MAE score is higher compared to other two

methods.

The client-server model in appendix A which was built to demonstrate the working

of recommender system uses cosine similarity implementation.

41

Chapter 6

Discussion and Future work

Although we have successfully displayed the working of the proposed recommenda-

tion methods, there are many more ways in which the recommendation system for a

complex platform like Scratch could be developed. In the design of this item-based

recommendation, we assume the item-item similarity and user rating are the defining

characteristic of the user preference, however that may not be necessarily the case.

In this chapter, we discuss the limitations of the current system and the possible im-

provements that could be made to improve the performance of current recommender

system.

6.1 Limitations

6.1.1 Over specialisation problem

One of the major problem faced by collaborative filtering algorithms is the problem

of over specialisation. A classic example of this is when one buys a lawn mover on

amazon, he only sees recommendations for lawn mover. A good recommender should

provide suggestions on a diverse set of items, rather than suggesting the same type of

items that the user is already acquired or liked in past. The recommendation system

proposed in this study suffers from this problem i.e. if a user has liked a certain type

of project in Scratch, the recommended are generated for the project that has a similar

characteristic. It prevents the user from discovering new items that might help them.

Researchers have tried to solve the problem by neighbourhood based CF and hybrid

42

recommender systems [45].

6.1.2 Concentration bias

A concentration bias arises when a recommender system proposes the items with higher

ratings more than with low ratings. Especially in CF algorithms which use user ratings

to recommend the items, they often create the ”rich gets richer” effect for more well-

known products, this concentration bias limits the reach of lesser-known items to the

user. Various researchers have tried to eliminate concentration bias problem from clas-

sical recommendation algorithms like k-NN filtering [45]. [46] suggests a probabilistic

neighbourhood-based method popularly known as k-PN as an alternative which con-

sistently outperforms k-NN in terms of concentration bias.

6.1.3 Cold Start problem

A cold start problem occurs when a new user or item enters the system and there is

no information about it. Cold start problem can be broadly divided into three types

new item problem, new user problem and new system problem [47]. In the case of

a new user, it is very difficult to give a recommendation as there is no information

available about the user. In the case of projects in scratch when a new item enters the

system there is some information about the project, hence we can at least compute the

similarity matrix for the item. However, without a user rating, we cannot calculate

the prediction score. Content bases systems succeed in case of the new item as they

do not depend on the user for generating the recommendations.

6.1.4 Dataset limitation

Over the years scratch has gone through many iterations of development. The first

version (Scratch 0.x to 1.x) of the scratch was implemented in Squeak [48]. Later when

Scratch 2.0 was launched in 2013 it shifted to ActionScript. The current version of

scratch launched on January 2nd, 2019 i.e. Scratch 3.0 uses javaScript for its imple-

mentation [49]. This dataset was scraped at the initial phase of Scratch from 2007 to

2012, hence it only contains projects from Scratch 1.x.

The development has led to many UI changes to the scratch development workspace

43

over time. UI may have a significant influence on user activity and skills development

[50]. The quality of projects and user data might have been affected by this effect.

Also, many new attributes and features have been added to the newer version of the

project files that give us the parameters for item similarity computation. Hence the

more recent data collections effort is needed in order to accurately calculate the item

similarity between projects.

A more recent dataset would give a better understanding of the user’s mindset and

may probably give a different result for different similarity algorithms. The dataset

also provides very little information on the user rating part. Some implicit information

like the clicks the user makes and the changes a user makes to different projects may

help in gaining more knowledge about users preference.

6.2 Future work

6.2.1 Qualitative testing

As discussed in chapter 5 we evaluated and validated the prediction accuracy for the

proposed recommendation techniques. Research in the recommendation system space

mainly focuses on the prediction rating accuracy. And since accuracy only partly

comprises the user experience of the recommender system, more qualitative testing is

required for evaluating the usefulness of the technique. It needs to be verified against

the need of the user who is getting the recommendation. One of the goals of developing

this recommendation system for Scratch was to aid the user in their learning journey

by suggesting projects that might improve their skills and the techniques they are

learning. Some of the methods that could be used are an A/B testing amongst the

users, collecting user data about the recommendations or by surveying the users for

their opinion about the recommended items.

A/B testing

Also known as the bucket test or split-run test is a method to compare two versions, A

and B of the same technique, commonly done on users response to the different versions

to determine which one is more effective. Using the A/B testing methods different

versions of recommendation can be served to users to see which one is more useful to

44

the user. For example, if the user chooses to view a more complex project instead of

the more similar one to the original, this could give an insight of how to develop a

recommendation which will help the user in discovering more complex projects.

User Surveys

A user survey could be conducted to get an understanding of what the user thinks of

the recommendations given to him/her. This could help us understand the user needs

and performance parameters upon which we could tune the recommendation system.

As noted in [49] preference elicitation is a difficult problem since many time a user

is unaware of his own personal preference, especially when he is beginning to use the

system or is unaware of all the available choices. [49] also suggests asking users a small

set of goals in the signup process to understand the user’s recommendation parameters

for the individual.

Many novel methods have been proposed in [51] which focuses on the user-centric de-

velopment of the recommendation systems. It proposes a framework that considers how

the objective components of the system e.g. algorithms, are perceived subjectively and

how these perceptions along with situational and personal characteristics, gives a dif-

ferent user experience leading to different interactions with the system. For example, if

the user perceives the recommendation quality of these different algorithms differently,

a higher perceived quality of the recommendation leads to higher interaction with the

system.

6.2.2 Mining text from the dataset

While exploring the available dataset, we found that the text and code dataset con-

tains much interesting information that might be useful in building a stronger rec-

ommender system. The comments posted on a project and galleries are available in

pcomments text and gcomments text datasets. Projects strings contain information

about all the user-generated strings that have been used in the project. All these

text-based information could yield some meaningful information if explored correctly.

45

A careful sentiment analysis of the comments might help us understand the kind of

responses a project is getting. Based on which we could infer project usefulness to

various users. In addition, comments on different project by the same user could help

us understand users personal taste which could help in predicting user choices. Strings

inside projects could help in categorising the project into various groups and sections,

which in turn could help in building a cluster-based recommendation. Also, there is

information available about the tag text which is the tags assigned to the project by

different users. This could also help in categorising the projects. TFIDF algorithms

could be used to find the frequency of terms and then classify the projects into different

categories.

6.2.3 Social network analysis

Scratch also has a large community website and a community forum where users inter-

act with one another, ask for help and post useful information. Users can follow one

another if they find the profile interesting. A social network graph analysis can be done

on this information to find users with similar interests and user groups that are closely

connected to identify similar interest groups. Followers can be recommended based on

this information. Projects can also be recommended amongst the groups themselves

based on the idea of being from the same circle.

6.2.4 Recommendation based on heuristics

CF-based and content-based recommender systems are well known in the field. How-

ever, they may not be perfect for every recommendation problem. Many different

approaches need to be explored for building a good recommendation for scratch. One

of the more simple and easy to implement approaches is the heuristics based. In a

heuristics-based system, one could implement a different set of rules to recommend

projects to users. For example, if the user is new in the system, we might recommend

projects that guide the person in getting started and simpler projects. If the user is an

experienced one and has built many complex projects, recommendations for projects

from other users who have more complex projects in their profile may be recommended.

46

6.2.5 A better Rating mechanism

In the proposed system we have assigned a 3 point rating system depending upon

the user liking, favouriting and remixing the project. Perhaps this is one of the most

basic and rudimentary approaches for obtaining user ratings. Because Scratch does

not have any direct rating mechanism such as required in any traditional user based

recommender system, it is necessary to develop a comprehensive mechanism that truly

reflects the user’s choices. One approach could be assigning weights to various activities

that a user performs on a project such as likes and remixes. This weights could be

obtained based on careful observations of user activities. For example, if a user performs

a remix of a project only if he/she is really interested in it, more weight could be given

to the remix activity. And if the user performs likes more frequently to most of the

projects just to show the appreciation the weight of like activity could be reduced.

Also, more user activities could be included such as commenting and tagging on a

project for more granularity on the rating scale. Other methods could also be explored

for more accurate representation of user’s taste

47

Chapter 7

Conclusion

7.1 Summary

This dissertation explores the concept of recommender systems for Scratch. It briefly

describes the motivation for the study and focuses on the problem of content discovery

and self-directed learning in the Scratch environment. The idea of a recommender

system might look like a simple problem from the top but it requires an understanding

of the underlying data analysis concepts. Various different recommender systems used

in different fields have been discussed. Specifically the ones in the area of e-learning

and online teaching, which have gained popularity and are used extensively. Different

studies have attempted to develop a recommender system for Scratch in their own

teaching context.

Over the period, various research has been done in the area of a recommender

system. Various techniques have been proposed for building recommend systems for

different applications. This thesis discusses the standard techniques in recommender

system space and their uses. Content-based filtering, collaborative filtering and an

hybrid approach are most widely used and accepted as standard amongst the com-

munity. A Collaborative filtering process is used and applied on the Scratch data to

try and build an item-based collaborative filtering recommender system. Basic tasks

in a recommender system like generating a recommendation list and calculating the

prediction are detailed for the dataset.

For generating a recommendation list in an item-based collaborative technique, the

48

first step is similarity computation. Three different techniques are used for similarity

computation. Cosine based similarity, correlation-based similarity and adjusted cosine

based similarity are the three well-known techniques for computing the item similarity.

These three techniques were applied on the dataset to get the item similarity matrix for

all the project a user has on his profile. Once the item similarity matrix was generated,

prediction calculation was done based on the weighted sum method. Prediction output

gave us the predicted recommendation rating for the user. Once the prediction was

generated. the projects were recommended to the user according to the score.

Different methods of evaluation for the accuracy of recommendation are discussed.

For measuring the accuracy of the recommendation we use MAE as the evaluation

metrics. While comparing the three similarity calculation methods, it is observed that

the cosine similarity is the best performing one on the Scratch dataset.

When we look at the top 5 generated recommendation of Scratch projects similar

to the supplied item i.e our seed project, we observe some similarities between the

recommended items. All the items had a similar set of script blocks and sprite usages.

This shows the correctness of the similarity computation blocks in N-dimensional user

space.

Although this thesis demonstrates a working model of a recommendation system for

scratch, much more work is needed to validate the usefulness of the proposed methods.

Many more useful techniques could be developed by incorporating the user’s behaviour

over time. This method of recommendation is more prone to general problems faced

by recommender systems. Limitations like over specialisation problem, the cold start

problem and the concentration bias limit the work of the proposed method. Moreover,

the quality of the data available also affects largely on the prediction results. If the

data has missing values for the user ratings, predictions cannot be calculated correctly

by the algorithms.

Future work for this study would involve qualitatively testing the proposed method

for the usefulness of the system. Various testing methodologies could be adopted like

a/b testing, user surveys or other novel techniques as discussed in [51]. Also, more data

could be extracted from the datasets to gain more information about the user, like a

text analysis, or a sentiment analysis could be done on the text data of the projects

for understanding the user’s preference and taste. A more complex analysis could be

a social network graph analysis on the follower-followee friendship to understand the

49

user interactions and taste. A heuristics-based recommendation could be a fast and

effective alternative if developed correctly.

To demonstrate this a client/server model was developed (Appendix A). In the

scripts, we use standard Scratch API and Python data analysis libraries and ML li-

braries for model building.

50

Bibliography

[1] M. Resnick and K. Robinson, Lifelong kindergarten: Cultivating creativity through

projects, passion, peers, and play. MIT press, 2017.

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The scratch

programming language and environment,” ACM Transactions on Computing Ed-

ucation (TOCE), vol. 10, no. 4, p. 16, 2010.

[3] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-

nan, A. Millner, E. Rosenbaum, J. S. Silver, B. Silverman, et al., “Scratch: Pro-

gramming for all.,” Commun. Acm, vol. 52, no. 11, pp. 60–67, 2009.

[4] J.-M. Sáez-López, M. Román-González, and E. Vázquez-Cano, “Visual program-

ming languages integrated across the curriculum in elementary school: A two

year case study using scratch in five schools,” Computers & Education, vol. 97,

pp. 129–141, 2016.

[5] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in introductory com-

puter science,” in ACM SIGCSE Bulletin, vol. 35, pp. 191–195, ACM, 2003.

[6] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “Raptor:

introducing programming to non-majors with flowcharts,” Journal of Computing

Sciences in Colleges, vol. 19, no. 4, pp. 52–60, 2004.

[7] C. J. Bouras, V. Poulopoulos, and V. Tsogkas, “Squeak etoys: Interactive and

collaborative learning environments,” in Handbook of research on social interaction

technologies and collaboration software: Concepts and trends, pp. 417–427, IGI

Global, 2010.

51

[8] D. J. Malan and H. H. Leitner, “Scratch for budding computer scientists,” ACM

Sigcse Bulletin, vol. 39, no. 1, pp. 223–227, 2007.

[9] I. F. de Kereki, “Scratch: Applications in computer science 1,” in 2008 38th

Annual Frontiers in Education Conference, pp. T3B–7, IEEE, 2008.

[10] H.-H. Chen, I. Ororbia, G. Alexander, and C. L. Giles, “Expertseer: A keyphrase

based expert recommender for digital libraries,” arXiv preprint arXiv:1511.02058,

2015.

[11] N. R. Council et al., How people learn: Brain, mind, experience, and school:

Expanded edition. National Academies Press, 2000.

[12] L. Song and J. R. Hill, “A conceptual model for understanding self-directed learn-

ing in online environments,” Journal of Interactive Online Learning, vol. 6, no. 1,

pp. 27–42, 2007.

[13] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, “The vita financial services sales

support environment,” in Proceedings of the national conference on artificial intel-

ligence, vol. 22, p. 1692, Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, 2007.

[14] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles, “Collabseer: a search en-

gine for collaboration discovery,” in Proceedings of the 11th annual international

ACM/IEEE joint conference on Digital libraries, pp. 231–240, ACM, 2011.

[15] N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel, and R. Koper, “Rec-

ommender systems in technology enhanced learning,” in Recommender systems

handbook, Springer, 2011.

[16] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender systems hand-

book,” in Recommender systems handbook, pp. 1–35, Springer, 2011.

[17] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., “Item-based collaborative

filtering recommendation algorithms.,” Www, vol. 1, pp. 285–295, 2001.

52

[18] A. Zielinski, “A utility-based semantic recommender for technology-enhanced

learning,” in 2015 IEEE 15th International Conference on Advanced Learning

Technologies, pp. 394–396, IEEE, 2015.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “analysis of recommendation

algorithms for e-commerce, in proceeding of the 2th acm, e-commerce conference

(ec00), october 2000,” 2000.

[20] C. Jesennia, A. Puris, D. Benavides, et al., “Recommender systems and scratch:

An integrated approach for enhancing computer programming learning,” IEEE

Transactions on Learning Technologies, 2019.

[21] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an

open architecture for collaborative filtering of netnews,” in Proceedings of the 1994

ACM conference on Computer supported cooperative work, pp. 175–186, ACM,

1994.

[22] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl,

“Grouplens: applying collaborative filtering to usenet news,” Communications of

the ACM, vol. 40, no. 3, pp. 77–87, 1997.

[23] U. Shardanand and P. Maes, “Social information filtering: algorithms for automat-

ing” word of mouth”,” in Chi, vol. 95, pp. 210–217, Citeseer, 1995.

[24] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and evaluating

choices in a virtual community of use,” in Proceedings of the SIGCHI conference on

Human factors in computing systems, pp. 194–201, ACM Press/Addison-Wesley

Publishing Co., 1995.

[25] H. Tan, J. Guo, and Y. Li, “E-learning recommendation system,” in 2008 In-

ternational Conference on Computer Science and Software Engineering, vol. 5,

pp. 430–433, IEEE, 2008.

[26] A. Pongpech, M. E. Orlowska, and S. W. Sadiq, “Personalized courses recom-

mendation functionality for flex-el,” in Seventh IEEE International Conference

on Advanced Learning Technologies (ICALT 2007), pp. 631–633, IEEE, 2007.

53

[27] J. Lu, “A personalized e-learning material recommender system,” in Interna-

tional Conference on Information Technology and Applications, Macquarie Sci-

entific Publishing, 2004.

[28] C. Limongelli, M. Lombardi, and A. Marani, “Towards the recommendation of

resources in coursera,” in Intelligent Tutoring Systems: 13th International Con-

ference, ITS 2016. Proceedings, vol. 9684, p. 461, Springer, 2016.

[29] A. Kardan, A. Narimani, and F. Ataiefard, “A hybrid approach for thread recom-

mendation in mooc forums,” International Journal of Social, Behavioral, Educa-

tional, Economic, Business and Industrial Engineering, vol. 11, no. 10, pp. 2195–

2201, 2017.

[30] J. Cardenas, “Scratch and caramba video.”

[31] A. Gunawardana and G. Shani, “A survey of accuracy evaluation metrics of rec-

ommendation tasks,” Journal of Machine Learning Research, vol. 10, no. Dec,

pp. 2935–2962, 2009.

[32] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms

on top-n recommendation tasks,” in Proceedings of the fourth ACM conference on

Recommender systems, pp. 39–46, ACM, 2010.

[33] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl,

“Using filtering agents to improve prediction quality in the grouplens research

collaborative filtering system,” in in the GroupLens Research Collaborative Fil-

tering System???. Proceedings of the ACM Conference on Computer Supported

Cooperative Work (CSCW, 1998.

[34] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive al-

gorithms for collaborative filtering,” in Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pp. 43–52, Morgan Kaufmann Publishers

Inc., 1998.

[35] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, “Horting hatches an egg: A

new graph-theoretic approach to collaborative filtering,” in Proceedings of the fifth

54

ACM SIGKDD international conference on Knowledge discovery and data mining,

pp. 201–212, ACM, 1999.

[36] C. Zaiontz, “real-statistics.com basic concepts of correlation,” 2019.

[37] “Scratch research data.”

[38] “nature.com.”

[39] “scikit-learn.”

[40] “Python data analysis library.”

[41] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute

error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific

model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[42] J. P. Egan, Signal detection theory and ROC-analysis. Academic press, 1975.

[43] F. J. Provost, T. Fawcett, et al., “Analysis and visualization of classifier per-

formance: Comparison under imprecise class and cost distributions.,” in KDD,

vol. 97, pp. 43–48, 1997.

[44] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy: evaluating

recommender systems by coverage and serendipity,” in Proceedings of the fourth

ACM conference on Recommender systems, pp. 257–260, ACM, 2010.

[45] S. Jain, A. Grover, P. S. Thakur, and S. K. Choudhary, “Trends, problems and

solutions of recommender system,” in International Conference on Computing,

Communication & Automation, pp. 955–958, IEEE, 2015.

[46] P. Adamopoulos and A. Tuzhilin, “On over-specialization and concentration bias

of recommendations: Probabilistic neighborhood selection in collaborative filtering

systems,” RecSys 2014 - Proceedings of the 8th ACM Conference on Recommender

Systems, pp. 153–160, 10 2014.

[47] L. Sharma and A. Gera, “A survey of recommendation system: Research chal-

lenges,” International Journal of Engineering Trends and Technology (IJETT),

vol. 4, no. 5, pp. 1989–1992, 2013.

55

[48] “Development of scratch 1.0.”

[49] “Scratch3.0.”

[50] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl, “Is seeing believing?:

how recommender system interfaces affect users’ opinions,” in Proceedings of the

SIGCHI conference on Human factors in computing systems, pp. 585–592, ACM,

2003.

[51] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell, “Ex-

plaining the user experience of recommender systems,” User Modeling and User-

Adapted Interaction, vol. 22, no. 4-5, pp. 441–504, 2012.

56

Appendix A

1 #!/usr/bin/python

2 #

3 # Created on Sat Jul 4 20:31:00 2019

4 # Copyright (C) 2019, shaikhr@tcd.ie

5 # @author: shaikhr

6 #

7 # API reference guide : https :// github.com/LLK/scratch -rest -api/wiki/

Projects

8 # Scratch data guide : https :// communitydata.science/scratch -data/

9

10 #Libs for Serving

11 from http.server import HTTPServer , BaseHTTPRequestHandler

12 from urllib.parse import urlparse ,parse_qs

13 from io import BytesIO

14 import urllib.request , json

15

16 #not required for now can be commented

17 from selenium import webdriver

18 from selenium.webdriver.chrome.options import Options

19 import time

20

21 #Libs for data analysis

22 import pandas as pd

23 from sklearn.impute import SimpleImputer

24 from sklearn.experimental import enable_iterative_imputer

25 from sklearn.impute import IterativeImputer

26 from sklearn import preprocessing

27 from sklearn.metrics.pairwise import euclidean_distances

28 from sklearn.metrics.pairwise import cosine_similarity

29 from scipy.spatial.distance import correlation

57

30

31

32 #Returns a list of the users that the specified user has followed.

33 def get_user_following(username , LIMIT):

34 if not LIMIT:

35 LIMIT = 10

36 OFFSET = 0

37 with urllib.request.urlopen("https :// api.scratch.mit.edu/users/"+

username+"/following?limit="+str(LIMIT)+"&offset="+str(OFFSET)) as

url:

38 data = json.loads(url.read().decode ())

39 return data

40

41

42 #Returns an array of details regarding the projects that a given user

has favourited on the website.

43 def get_user_favriots(username , LIMIT):

44 if not LIMIT:

45 LIMIT = 3

46 OFFSET = 0

47 with urllib.request.urlopen("https :// api.scratch.mit.edu/users/"+

username+"/favorites?limit="+str(LIMIT)+"&offset="+str(OFFSET)) as

url:

48 data = json.loads(url.read().decode ())

49 return data

50

51

52 #Returns an array with information regarding the projects that a given

user has shared on the Scratch website.

53 def get_user_projects(username , LIMIT):

54 if not LIMIT:

55 LIMIT = 10

56 OFFSET = 0

57 with urllib.request.urlopen("https :// api.scratch.mit.edu/users/"+

username+"/projects?limit="+str(LIMIT)+"&offset="+str(OFFSET)) as

url:

58 data = json.loads(url.read().decode ())

59 return data

60

58

61

62 #Returns an array with information regarding the project with provided

ID of particular username (dosent work , requires auth)

63 def get_user_project_details(username ,project_id):

64 with urllib.request.urlopen("https :// api.scratch.mit.edu/users/"+

username+"/projects/"+project_id) as url:

65 data = json.loads(url.read().decode ())

66 return data

67

68

69 #Gets the project name from given project ID (api deprecated , using

selenium to render JS)

70 def get_project_title(project_id):

71 url = ’https :// scratch.mit.edu/projects/’+str(project_id)

72 #rendered page is a JS script , no use of lxml #alternative is using

selenium

73 chrome_options = Options ()

74 chrome_options.add_argument("--headless")

75 driver = webdriver.Chrome(’./ selenium/chromedriver ’,chrome_options=

chrome_options) # Optional argument , if not specified will search

path.

76 #driver = webdriver.Chrome (’./ selenium/chromedriver.exe ’)

77 driver.get(url)

78 time.sleep (5)

79 title = driver.title

80 driver.quit()

81 return title

82

83

84 # (No working API , therefor using lxml html parsing)

85 def get_author_from_project(project_id):

86 url = ’https :// scratch.mit.edu/projects/’+str(project_id)

87 #rendered page is a JS script , no use of lxml #alternative is using

selenium

88 chrome_options = Options ()

89 chrome_options.add_argument("--headless")

90 driver = webdriver.Chrome(’./ selenium/chromedriver.exe’,

chrome_options=chrome_options) # Optional argument , if not

specified will search path.

59

91 #driver = webdriver.Chrome (’./ selenium/chromedriver.exe ’)

92 driver.get(url)

93 time.sleep (5)

94 author = driver.find_element_by_xpath("//div[@class=’title ’]/a").

text

95 driver.quit()

96 return author

97

98

99 #Takes project json object as input and returns the stats if present.

100 def get_project_stats(project_obj):

101 #Difficult to retrive the below values from current APIs therefor

assigning mock values.

102 sprites_website = 5

103 scripts_website = 10

104 blocks = 6

105 block_types = 7

106 images = 2

107 sounds = 2

108 ugstrings = 11

109 stats = {’sprites_website ’:sprites_website ,’scripts_website ’:

scripts_website ,’blocks ’:blocks ,’block_types ’:block_types ,’images ’

:images ,’sounds ’:sounds ,’ugstrings ’:ugstrings}

110 for key in project_obj:

111 if key == ’id’:

112 stats[’id’] = project_obj[key]

113 if key == ’stats ’:

114 stats.update(project_obj[key])

115 return stats

116 return stats

117

118

119 #Checks if the supplied project has a remix associated with it. If yes

returns the remix object containing the remixes

120 def is_project_remix(project_obj):

121 for key in project_obj:

122 if key == ’remix ’:

123 #Nested for not too heavy because only 2 remix has only two

components

60

124 for x in project_obj[key]:

125 if project_obj[key][x] != None:

126 return project_obj[key]

127 else:

128 return False

129

130

131 #Gets from the CSV database against the supplies stats of the project

132 def generate_recommmendation_from_db(stats_obj):

133 #Load data from the csv

134 projects_df = pd.read_csv(’data/CSVs/projects.csv’, sep=’,’,

index_col =0, nrows =100)

135 #index = projects_df.index

136 #columns = projects_df.columns

137 #values = projects_df.values

138

139 #Filter columns

140 required_columns_df = projects_df [[’viewers_website ’,’lovers_website

’,’downloaders_website ’,’sprites_website ’,’scripts_website ’, ’

blocks ’, ’block_types ’, ’images ’, ’sounds ’, ’ugstrings ’]]

141

142 project_id = stats_obj.pop(’id’)

143

144 new_stats_row = pd.Series(stats_obj)

145 new_stats_row.name = project_id

146 required_columns_df = required_columns_df.append(new_stats_row)

147

148 #Impute the missing values using IterativeImputer from sklearn

149 #imp = SimpleImputer(missing_values=np.nan , strategy=’mean ’)

150 imp = IterativeImputer(max_iter =10, initial_strategy=’most_frequent ’,

random_state =0)

151 imputed_DF = pd.DataFrame(imp.fit_transform(required_columns_df))

152 imputed_DF.columns = required_columns_df.columns

153 imputed_DF.index = required_columns_df.index

154

155 #Normalize the data for further calculation

156 x = imputed_DF.values

157 min_max_scaler = preprocessing.MinMaxScaler ()

158 x_scaled = min_max_scaler.fit_transform(imputed_DF)

61

159 normalised_df = pd.DataFrame(x_scaled)

160 normalised_df.columns = required_columns_df.columns

161 normalised_df.index = required_columns_df.index

162

163 #Calculate the RMSE score

164 normalised_df[’RMSE’] = pd.Series ((normalised_df.iloc [: ,1:]**2).sum

(1).pow (1/2))

165 print(normalised_df)

166

167 #Generate the similarity matrix based on the the new project stats.

168 sim = cosine_similarity(normalised_df)

169 final_df = pd.DataFrame(sim)

170 final_df.columns = required_columns_df.index

171 final_df.index = required_columns_df.index

172 print(final_df)

173

174 #Get Top 5 from the similarity matrix

175 top5 = final_df.loc[project_id]. nlargest (5)

176 recommendation_pairs = top5.to_dict ()

177

178 return recommendation_pairs

179

180

181 #Calculates recommendation score by taking the mean of the generated

recommendation matrix based on provided input stats of the project

.

182 #Need more optimized method to calculate more accurate score.

Currently needs work.(Probably apply K nearest neighbor technique

to get nearest neighbor and calculate further score.

183 def calculate_recommendation_score(stats_obj):

184 MAX_ITER = 10

185 RECOMMENDATION_NUMBER = 5

186 projects_df = pd.read_csv(’data/CSVs/projects.csv’, sep=’,’,

index_col =0, nrows =100)

187

188 #Filter columns

189 required_columns_df = projects_df [[’viewers_website ’,’lovers_website

’,’downloaders_website ’,’sprites_website ’,’scripts_website ’, ’

blocks ’, ’block_types ’, ’images ’, ’sounds ’, ’ugstrings ’]]

62

190

191 #project_id = stats_obj.pop(’id ’)

192 project_id = ’10000001 ’

193

194 new_stats_row = pd.Series(stats_obj)

195 new_stats_row.name = project_id

196 required_columns_df = required_columns_df.append(new_stats_row)

197

198 #Impute the missing values using IterativeImputer from sklearn

199 #imp = SimpleImputer(missing_values=np.nan , strategy=’mean ’)

200 imp = IterativeImputer(max_iter=MAX_ITER ,initial_strategy=’

most_frequent ’, random_state =0)

201 imputed_DF = pd.DataFrame(imp.fit_transform(required_columns_df))

202 imputed_DF.columns = required_columns_df.columns

203 imputed_DF.index = required_columns_df.index

204

205 #Normalize the data for further calculation

206 x = imputed_DF.values

207 min_max_scaler = preprocessing.MinMaxScaler ()

208 x_scaled = min_max_scaler.fit_transform(imputed_DF)

209 normalised_df = pd.DataFrame(x_scaled)

210 normalised_df.columns = required_columns_df.columns

211 normalised_df.index = required_columns_df.index

212

213 #Calculate the RMSE score

214 normalised_df[’RMSE’] = pd.Series ((normalised_df.iloc [: ,1:]**2).sum

(1).pow (1/2))

215

216 #Generate the similarity matrix based on the the new project stats.

217 sim = cosine_similarity(normalised_df)

218 final_df = pd.DataFrame(sim)

219 final_df.columns = required_columns_df.index

220 final_df.index = required_columns_df.index

221

222 score = final_df.loc[project_id]. nlargest(RECOMMENDATION_NUMBER)

223 final_score = 0

224 for x in score:

225 final_score += x

226

63

227 return final_score/RECOMMENDATION_NUMBER

228

229

230 #Reformats the stats object in the format required for the

recommendation method

231 #DICT FORMAT: {’sprites_website ’: int64(xxx), ’scripts_website ’: int64

(xxx), ’blocks ’: int64(xxx), ’block_types ’: int64(xxx), ’images ’:

int64(xxx), ’sounds ’: int64(xxx), ’ugstrings ’: int64(xxx), ’

viewers_website ’: int64(xxx), ’lovers_website ’: int64(xxx), ’

downloaders_website ’: int64(xxx)}

232 def reformat_stats(stats_obj):

233 stats_obj[’viewers_website ’] = stats_obj.pop(’views ’)

234 stats_obj[’lovers_website ’] = stats_obj.pop(’loves ’)

235 stats_obj[’downloaders_website ’] = stats_obj.pop(’favorites ’) #Need

to fix this

236 stats_obj.pop(’comments ’)

237 stats_obj.pop(’remixes ’)

238 return stats_obj

239

240

241 #Generates recommendations for a given username , and returns a json

object

242 def get_recommended_projects(username):

243 RECOMMENDATION_REASON_1 = "<i> Recommended because you follow: <a

href=/users/"

244 RECOMMENDATION_REASON_2 = "<i> Recommended because you have project:

<a href=/ projects/"

245 RECOMMENDATION_REASON_3 = "<i> Recommended because user: <a href=/

projects/"

246 RECOMMENDATION_REASON_4 = "<i> Recommended because its a remix of <a

href=/ projects/"

247

248 all_followers = get_user_following(username ,10)

249 all_recommendation = []

250

251 #Gets recommendation from the csv database against the given user

data

252 for projects in get_user_projects(username ,5):

253 project_stats = get_project_stats(projects)

64

254 project_id = project_stats["id"]

255

256 recommendations_from_db = generate_recommmendation_from_db(

reformat_stats(project_stats))

257 recommended_project_ids = recommendations_from_db.keys()

258

259 for recom in recommended_project_ids:

260 recommendations ={}

261 recommendations[’id’] = recom

262 recommendations[’title ’] = recom #get_project_title(recom)----->

replace for getting actual name of the project insted of the ID

but very slow because of selenium call

263 recommendations[’stats ’] = project_stats

264 recommendations[’score ’] = recommendations_from_db[recom]

265 recommendations[’reason ’] = RECOMMENDATION_REASON_2 + str(

project_id) + ">" + str(project_id) + " "

266 recommendations[’reason_id ’] = username

267 all_recommendation.append(recommendations)

268

269 #Get details of the users who the user is following (projects of

following , favorites of following)

270 for user in all_followers:

271

272 #Projects from followers

273 all_follower_projects = get_user_projects(user["username"],5)

274 for project in all_follower_projects:

275 recommendations ={}

276 recommendations[’id’] = project["id"]

277 recommendations[’title ’] = project["title"]

278 recommendations[’stats ’] = project["stats"]

279 recommendations[’score ’] = calculate_recommendation_score(

project["stats"])

280 recommendations[’reason ’] = RECOMMENDATION_REASON_1 + user["

username"] + ">" + user["username"] + " "

281 recommendations[’reason_id ’] = user["id"]

282 all_recommendation.append(recommendations)

283

284 #Projects that the followers have liked

285 all_followers_favourite = get_user_favriots(user["username"],5)

65

286 for favourite in all_followers_favourite:

287 recommendations ={}

288 recommendations[’id’]= favourite["id"]

289 recommendations[’title ’]= favourite["title"]

290 recommendations[’stats ’] = favourite["stats"]

291 recommendations[’score ’] = calculate_recommendation_score(

favourite["stats"])

292 recommendations[’reason ’] = RECOMMENDATION_REASON_3 + user["

username"] + ">" + user["username"] + " has liked it."

293 recommendations[’reason_id ’] = user["id"]

294 all_recommendation.append(recommendations)

295

296 #Check if project has remix of the project , and add that to the

recommendation list.

297 for project in get_user_projects(user["username"],5):

298 is_remix = is_project_remix(project)

299 if is_remix:

300 recommendations ={}

301 recommendations[’id’]= is_remix["parent"]

302 recommendations[’title ’]= project["title"]

303 recommendations[’stats ’] = project["stats"]

304 recommendations[’score ’] = calculate_recommendation_score(

project["stats"])

305 recommendations[’reason ’] = RECOMMENDATION_REASON_4 + str(

is_remix["root"]) + ">" + str(is_remix["root"]) + " "

306 recommendations[’reason_id ’] = user["id"]

307 all_recommendation.append(recommendations)

308

309 #Get details of the favorite project of the user (No working API ,

therefor using selenium for parsing).

310 #Too slow needs ,an alternative

311 all_favriots = get_user_favriots(username ,5)

312 for favriots in all_favriots:

313 project_id = favriots["id"]

314 #get_author_from_project(project_id)

315

316 #print(all_recommendation)

317 return json.dumps(all_recommendation)

318

66

319

320 #Extends pythons simple http server to handle GET requests locally

321 class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):

322 def end_headers (self):

323 #Required for running locally on chrome (allows CORS for all

request to the server)

324 self.send_header(’Access -Control -Allow -Origin ’, ’*’)

325 BaseHTTPRequestHandler.end_headers(self)

326

327 #Gets the username in the GET request url as username and returns a

list of recommendations

328 def do_GET(self):

329 self.send_response (200)

330 self.end_headers ()

331 query_components = parse_qs(urlparse(self.path).query)

332 username = query_components["username"][0]

333 response = BytesIO ()

334 response.write(b’The username recived in URL is ’)

335 response.write(bytes(username , ’utf -8’))

336 self.wfile.write(bytes(get_recommended_projects(username), ’utf -8’

))

337

338

339 #Handels post request , wrote this to get data via POST , not used

currently

340 def do_POST(self):

341 content_length = int(self.headers[’Content -Length ’])

342 body = self.rfile.read(content_length)

343 self.send_response (200)

344 self.end_headers ()

345 response = BytesIO ()

346 response.write(b’This is POST request. ’)

347 response.write(body)

348 self.wfile.write(response.getvalue ())

349

350

351 if __name__ == "__main__":

352 try:

353 #NOTE: If you update port here , remember to update in the JS

67

extension as well.

354 PORT = 8000

355 HOST = ’localhost ’

356 httpd = HTTPServer ((HOST , PORT), SimpleHTTPRequestHandler)

357 print(’Started httpserver on port ’ + str(PORT))

358 httpd.serve_forever ()

359

360 except KeyboardInterrupt:

361 print(’^C received , shutting down the web server ’)

362 httpd.socket.close ()

68

