
Real Time Sumi-E Style Rendering Techniques

Santiago Gallo Beruben

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Augmented and

Virtual Reality)

Supervisor: John Dingliana

September 7, 2020

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Santiago Gallo Beruben

September 7, 2020

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Santiago Gallo Beruben

September 7, 2020

Acknowledgments

I would like to start off by thanking my professors, particularly my dissertation advisor,

Dr. John Dingliana for his guidance through this project.

I would also like to thank my friends from from across the world, the people who

pushed me to take a leap of faith and enroll on this program, the people who gave me

all of their unconditional support in a multitude of ways and helped me get through

this tough year.

Last but not least I would like to thank my loving family as I would not be writing

this were it not for all of their support.

Santiago Gallo Beruben

University of Dublin, Trinity College

September 2020

iii

Real Time Sumi-E Style Rendering Techniques

Santiago Gallo Beruben, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: John Dingliana

Computer generated imagery (CGI) is commonplace in media such as video games and
cinema, both areas that are at the forefront of developments in the field of computer
graphics. Advancements in the field have had for the most part focused on trying
to achieve realism. However, there are situations in which realism is not desirable as
information can be abstracted and conveyed in a different yet more efficient manner,
leading to the need for non-photorealistic rendering (NPR).

A style of NPR which has not had as much widespread adoption beyond the
PlayStation 2 video game Ōkami is that of sumi-e or ink wash rendering; referring
to a set of brush painting techniques used in East Asian countries, particularly Japan,
China and Korea. Sumi-e makes use of black ink in a white paper canvas to create
simple drawings via single, well defined strokes. Sumi-e rendering techniques, like other
areas of NPR focus on edge extraction and drawing of strokes and edges, drawing of
textures and interior shading but have a different approach so that the desired art style
can be achieved.

The goal of this project is to research and implement previously established tech-
niques used for sumi-e style rendering and develop a sumi-e rendering pipeline. The
rendering pipeline will be applied to various 3D models and will be used to verify
whether sumi-e rendering is suitable for media such as video games.

Contents

Acknowledgments iii

Abstract iv

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 3

1.3 Assumptions . 3

1.4 Limitations . 3

Chapter 2 Background Research 5

2.1 Non-Photorealistic Rendering . 5

2.2 Painting in NPR . 6

2.3 Sumi-E Painting . 6

2.4 Previous Work . 8

2.4.1 State of the Art . 11

Chapter 3 Design and Implementation 17

3.1 Comparison of Rendered Images and Sumi-e Paintings 17

3.2 Rendering Pipeline Design . 18

3.3 Final Implementation . 28

v

Chapter 4 Results 31

4.1 Tests and Comparison with Sumi-E . 31

4.2 Performance . 37

4.3 Conclusions . 38

Chapter 5 Future Work 42

Bibliography 43

Appendices 44

vi

List of Tables

2.1 Set of green color values used by a cel shader as an example of how

colors are picked based on light intensity values. Displays color names,

RGB values from 0-255 and percentages used by a GLSL shader, results

shown in figure 2.8 . 14

3.1 Table of color values used by the cel shader implemented in GLSL shader.

Results shown in figure 3.8 . 24

4.1 Table displaying performance for each experiment run when testing the

sumi-e rendering pipeline. Tests were done rendering images at a reso-

lution of 1024 x 768 . 40

vii

List of Figures

1.1 Screenshot of the 2005 PlayStation2 video game, Ōkami. Copyright

Capcom Co., Ltd . 2

2.1 A painting made using the sumi-e style, plate XVI from ’On the laws of

Japanese Painting’ by Henry P. Bowie [1] 8

2.2 Bamboo, Sparrow and Rain by Torei Nishigawa. Plate VII from ’On the

laws of Japanese Painting’ by Henry P. Bowie [1] 9

2.3 Shrimp and leaf drawing generated by Strassman’s technique discussed

in ’Hairy Brushes’ by Strassman [2] . 10

2.4 Different brush strokes generated using Binh Pham’s technique discussed

in ’Expressive Brushtrokes’ [3] . 10

2.5 Structure of the system used by Shin-Jin Kang et al in ’Hardware-

accelerated real-time rendering for 3d sumi-e painting’[4] 11

2.6 Example of how texture mapping gets closer to the sumi-e look. (a)

shows a 3D mesh of a cow with its silhouette extracted and drawn in

black. (b) shows the same 3D mesh using silhouette extraction and

sphere mapping used in conjunction with a brush texture for drawing

of edges. Taken from Shin-Jin Kang et al’s work ’Hardware-accelerated

real-time rendering for 3d sumi-e painting’ [4] 13

2.7 Brush stroke textures used when drawing edges while making use of

sphere mapping, as per the technique shown in both ’Hardware-accelerated

real-time rendering for 3d sumi-e painting’[4] as well as ’Hardware-

Accelerated Sumi-e Painting for 3D Objects’[5] 13

viii

2.8 Look up table with different colors based on different light intensity

values. The lower the light intensity, the darker the color and vice versa.

Based on documentation by Hutchins and Kim [6] and colors shown in

table 2.1 . 14

2.9 Tone texture used for interior shading [5] 15

2.10 Output from using a tone texture for interior shading on a sphere [4] . 15

2.11 Output of the rendering pipeline making use of edge detection, interior

shading via tone texture and paper effect from [4] 16

3.1 Rendering pipeline used for this project, based on similar previous works

in conjunction with other NPR techniques 19

3.2 Edge detection by using equation 2.1. From left to right, ε threshold

value is set to 0.2, 0.5, 0.7 and 1.0. As ε increases, edges grow thicker,

to the point of darkening the entire rendered image at a maximum of 1.0 20

3.3 Stanford Bunny mesh rendered with different lit and unlit outline edge

values. Detected edges are drawn in black whereas interior of the mesh

is drawn in white . 20

3.4 Drawing of edges with stroke effect using different textures on the Stan-

ford Bunny 3D mesh . 21

3.5 Drawing of edges using wobble distortion on the same stroke texture.

Edge drawing can be altered slightly based on the stroke texture 22

3.6 Drawing of edges using solid colors in gray scale, blending in as the

colors get lighter to the point that edges are not seen halfway through

and interior edges blend in with the interior as edges are drawn with at

their brightest color. 22

3.7 Tone texture shading based on the work by Shin-Jin Kang et al [4]. The

usage of the tone texture instead of a cel shader allows for a bleeding

effect of ink in paper. Left image shows the initial implementation taken

from previous work and the right image shows a modified version in

which sampled values are clamped. Older implementation code shown

in appendix B, list 3 code shown in appendix B, list 4 23

3.8 Cel-shader used to pick black and white colors based on light intensity

on the Stanford Bunny 3D mesh. Code shown in appendix B, list 4 . . 23

ix

3.9 Comparison of how a cel-shader and a tone texture shader while making

use of interior textures. Code shown in appendix B, list 5 24

3.10 Texture used for generating the skybox and achieving a paper effect . . 25

3.11 Skybox drawn based on the texture shown in fig 3.10 with a drawn mesh

of the Stanford bunny . 26

3.12 Stanford bunny rendered without transparency effects by changing the

alpha channel as well as two examples with alpha channel transparency.

Middle image makes use of back face culling whereas the right image

does not and displays data taken from the back face of the 3D mesh . . 27

3.13 Stanford bunny rendered without changes to the average colors alpha

threshold as well as the alpha threshold skip values. Code shown in 7,

appendix B . 28

3.14 User interface elements added with AntTweakbar for manipulating be-

havior of the rendering pipeline . 30

4.1 Rendering pipeline output using the Stanford bunny on different posi-

tions with variation in outline thickness and usage of cel-shader or tone

texture shader . 32

4.2 Rendered images of the Stanford bunny using badly picked values for

edges drawn with stroke textures using sphere mapping 32

4.3 Closeup of the Stanford Bunny 3D mesh when using alpha transparency

effects. Shows back face culling inconsistencies and how slight variations

in parameters can help diminish the issue when present 34

4.4 Stanford Bunny 3D mesh drawn in both the background and foregound,

without and with face culling enabled 34

4.5 Rendered image of a bamboo tree drawn using the cel-shader from the

rendering pipeline. Left side shows no alpha transparency effects added.

Right side shows alpha transparency effects 35

4.6 Closeup rendered images of the bamboo tree. Top section makes use

of the tone-texture shader and bottom texture makes use of the cel-

shader. Left section makes no use of textures for interior shading and

right section makes use of textures for interior shading 36

x

4.7 Closeup to images of bamboo leaves. Left image is taken from 2.2

whereas center and right image are taken from 4.6. Center image makes

use of tone texture shading whereas the right image makes use of the

cel-shader . 36

4.8 Orange texture taken from [7]. 37

4.9 Sphere mesh generated using Blender. Top section makes use of the cel-

shader whereas bottom section makes use of the tone-texture shader.

Left section makes no use of transparency/alpha effects, middle section

makes use of transparency/alpha effects and right section makes use of

transparency/alpha effects in conjunction with an orange peel texture

taken from [7] . 38

4.10 Similar sphere to that of figure 4.9, using a higher vertex count mesh

made using Blender . 39

4.11 Low-poly airplane 3D model from [8] rendered with a cel-shader (left)

and a tone-texture shader (right) with transparency effects disabled

(top) and enabled(bottom) . 40

4.12 Modified low-poly airplane 3D model from [8], edited in Blender to have

a much higher vertex count. Rendered with a cel-shader (left) and a

tone-texture shader (right) with transparency effects disabled (top) and

enabled(bottom) . 41

xi

Chapter 1

Introduction

This dissertation consists on the research, implementation and improvement of non-

photorealistic rendering (NPR) techniques which focus on rendering images based on

sumi-e paintings. Algorithms researched and developed for this dissertation project

focus on sumi-e painting aspects applied to three points of interest for NPR techniques.

• Drawing of strokes and edges

• Drawing of textures

• Interior shading

The implementation of the algorithms researched and developed for this dissertation

are all running in C++ as well as the Open Graphics Language (OpenGL) using the

OpenGL Shading Language (GLSL) on a Windows 10 PC using Visual Studio 2019

Community Edition running on an Intel 8700K processor and an Nvidia GTX 1080

graphics card.

Through this chapter, motivations and objectives for this dissertation will be dis-

cussed. Chapter 2 focuses on background research of NPR and sumi-e painting, as well

as the state of the art for sumi-e rendering techniques. Chapter 3 focuses on the de-

sign implementation of a rendering pipeline which makes use of techniques researched.

Chapter 4 discusses the resulting images from the rendering pipeline, comparing differ-

ent approaches taken while using sumi-e rendering and discusses whether techniques

were successful or not at matching the characteristics of sumi-e. Chapter 5 discusses

future work and areas of improvement for the end product.

1

1.1 Motivation

The field of computer graphics has had major focus on realism, so much in fact that it

has been one of the major driving forces behind its research and development, leading

to investments worth millions of dollars[9]. However, there are situations in which

achieving realism is disadvantageous to the intent of a computer graphics application.

This leads to non photo realistic rendering (NPR), an area of computer graphics which

does not focus on achieving realism and instead focuses on replicating the look and feel

of art styles used in media such as cartoons, technical drawings, panting and pencil

drawings.

Figure 1.1: Screenshot of the 2005 PlayStation2 video game, Ōkami. Copyright Cap-
com Co., Ltd

Despite being received with high praise and critical acclaim from fans and press

alike, as well as being ported to a multitude of platforms after its original release, few

games if any have followed in Ōkami’s footsteps.While the game does an admirable

job at displaying the sumi-e style in a video game; especially for what was originally a

PlayStation2 video game, there are definite areas of improvement as it still looks very

much like a video game constrained by its hardware. 3D models look like 3D models

with a sumi-e look and feel instead of appearing to be parts of a sumi-e painting

drawn in a canvas. Only elements of background scenery such as trees and mountains

in the background blend in as part of a painting. This is an area in which Ōkami’s

accomplishments in rendering can be greatly improved upon.

2

1.2 Objective

The objective of this project is to conduct research on sumi-e focused, real- time render-

ing techniques. Algorithms that are implemented will be used to design and implement

a new rendering pipeline which adheres to principles of sumi-e painting. Once finished,

the rendering pipeline will compared with previous works and sumi-e paintings while

also evaluating whether sumi-e real-time rendering techniques could be of use in media

such as video games.

The final rendering pipeline will be used to create images consisting of multiple

elements such as foreground and background 3D meshes while also animating other

elements. Performance will also be of interest due to the real time and interactive

nature of video games as a medium. Algorithms researched and the final rendering

pipeline will be implemented in C++ using OpenGL and GLSL for shaders.

1.3 Assumptions

• Techniques researched and implemented will work repeatedly, regardless of the

meshes used

• The project will verify wether sumi-e real-time rendering techniques are feasible

in media such as video games

• Performance of the final rendering pipeline will be measured to verify its likeli-

hood to be used in video games

• The rendering pipeline will make use of vertices and normals for all 3D models

used

• Model texture coordinates will be an optional parameter when rendering 3D

meshes which make use of textures

1.4 Limitations

• Implementation will not work with graphics libraries beyond OpenGL

3

• The project will be implemented in OpenGL using C++ and Visual Studio 2019,

Community Edition in order enable its rendering pipeline

• The project will only make use of colors in the gray scale as sumi-e painting is

limited to said color palette

• The project will use a pre-existing approach for detecting of and drawing edges

and strokes as a baseline

• The project will use a pre-existing approach for using textures as a baseline

• The project will use pre-existing approaches for Interior shading as a baseline

4

Chapter 2

Background Research

2.1 Non-Photorealistic Rendering

In the field of computer graphics, achieving photo realism has been a major driving

force behind research and development. Media productions such as film and video

games convey realism through CGI by making use of multiple advancements from the

field of computer graphics. However, photo realism is of little use in cases where high

detail can hinder the transmission of information and ideas when using CGI.

In some cases the removal of detail makes it is easier to send information and convey

ideas, as described by Gooch & Gooch;

”A sailboat builder would certainly prefer technical drawings of blueprints, while some-

one who simply wanted to communicate the idea of a sailboat may only need to draw a

shape representing the boat and a triangle representing the sail.”[10]

It is due to this necessity that the field of NPR exists. By making use of NPR tech-

niques, computer graphics can remove detail from an image while also communicating

more efficiently the information and ideas said images intend to transmit. This due

to the fact that NPR techniques, as the artistic styles they emulate; focus on dis-

playing the essential parts of the objects drawn/rendered. Having a major focus on

stylization of an art style and communication of ideas, NPR makes equal use of artistic

techniques and scientific research to develop algorithms which simulate the usage of

5

different artistic tools and instruments.

Different techniques of NPR focus on matching the use of various artistic instru-

ments, in order to match the visual style of different media whether it is drawings,

cartoons or painting. They can also focus on different media such as pencil drawings

or painting. This project will focus on painting as that is the media type of sumi-e.

2.2 Painting in NPR

In order to match characteristics of an art style, NPR techniques need to replicate the

following three components of a painting/drawing as mentioned by Gooch & Gooch

[10]:

• Applicator - the brush used

• Medium - oil paint, watercolors, sumi

• Substrate - the canvas or paper used

Sumi-e has different characteristics for its applicator, medium and substrate com-

pared to other artistic techniques, there are even slight difference between sumi-e and

similar styles from China and Korea. The characteristics of paintings can be easily

associated with major elements of NPR techniques that this research project focuses

on:

• Drawing of strokes and edges - applicator and medium

• Drawing of textures - medium and substrate

• Interior shading - medium and substrate

2.3 Sumi-E Painting

Sumi-E, also known as ink wash painting is an art style developed in East Asia; par-

ticularly Japan, China and Korea. It focuses on using black ink similar to that used in

Chinese and Japanese calligraphy, which preceded this style of painting in China and

6

Japan. As characters became more complex different writing techniques developed,

painting techniques which made use of the same instruments were created [1].

In sumi-e, sumi refers to the ’ink’ which is the distinguishing feature of Japanese

painting of this style compared to its peers. Similar to how Japanese calligraphy works,

the only color employed when using sumi is black, as in order to fabricate sumi, soot

obtained from burning plants is necessary. Soot used for fabricating sumi comes from

burning plants such as juncus communis, bull rush, or thesessamen orientalis. These

materials are then turned into a ’cake’ which must be moisturized when in use and

rubbed into a stone in order to create ’ink’ or sumi [1].

Besides the usage of sumi, this art style uses a special type of canvas; a unique kind

of paper called torinoko which translates literally to ”hen’s egg” paper. Torinoko gets

its namesake from its color and texture which is similar to the appearance of a hen’s

egg. Despite its name and likeness, it is actually made from a shrub called gampi. The

paper’s texture allows for the easy flow of brush strokes and due to this, torinoko has

been used not only in sumi-e but also wood block paintings and calligraphy. Torinoko

is also known for being longer lasting and more resilient than its alternatives such as

silk canvases used in Chinese ink wash paintings [1].

The sumi-e technique is distinguished from others not only by the materials used

by also by the way in which paintings are made. Outlines are seldom made before

painting, meaning that each stroke must be thought of fully before being drawn in

order to properly fulfill its intent when creating a painting. This is another influence

of calligraphy over sumi-e [1]. Strokes must fulfill a specific role set by the painter

reflecting before performing each stroke, another influence of calligraphy on sumi-e [1].

This

Figures 2.1 and 2.2 display examples of a sumi-e pantings taken from ’On the Laws

of Japanese Painting’ by Henry P. Bowie [1]. As can be seen, sumi-e paintings are made

out of long, broad strokes in grayscale, using a white canvas and display elements of

nature such as a flora, fauna and scenery such as birds, tres and elements of the natural

landscape, all common subjects in sumi-e paintings.

7

Figure 2.1: A painting made using the sumi-e style, plate XVI from ’On the laws of
Japanese Painting’ by Henry P. Bowie [1]

2.4 Previous Work

There have been a multitude of systems used for sumi-e rendering such as the work

done by Steven Strassman [2] which was done in order to simulate how brushes would

produce strokes onto paper by generating lists of positions and pressure points via

keyboard input, shown in Figure 2.3.

Another work in sumi-e related techniques is that of Expressive Brushes by Binh

Pham [3]. In this work, Pham represented strokes via three components: trajectory,

thickness and shade. Trajectory is modeled via a cubic B-Spline, stroke thickness

is modeled by a set of points along the trajectory’s curve and shade is determined

along each trajectory. Figure 2.4 displays different e strokes generated using Pham’s

algorithm.

8

Figure 2.2: Bamboo, Sparrow and Rain by Torei Nishigawa. Plate VII from ’On the
laws of Japanese Painting’ by Henry P. Bowie [1]

While these early generate images which match characteristics of sumi-e, they are

not meant for use in media that makes heavy use of 3D model, as is the case of

video games and certain animated works. For research to be useful on interactive

entertainment media and other kinds of animated works, techniques must make use of

3D polygonal meshes. Techniques that focus on video games must also put emphasis

on real-time performance due to their interactive nature as a medium; as performance

and responsiveness are of higher importance than when doing offline rendering. One of

the few examples of sumi-e being used in video games is the PlayStatoin2 video game

”Ōkami”[11], shown in Figure 1.1.

9

Figure 2.3: Shrimp and leaf drawing generated by Strassman’s technique discussed in
’Hairy Brushes’ by Strassman [2]

Figure 2.4: Different brush strokes generated using Binh Pham’s technique discussed
in ’Expressive Brushtrokes’ [3]

The following techniques are all meant to be run in real time and make use of 3D

meshes to match the look of sumi-e paintings by focusing on various elements used

by NPR techniques; drawing of strokes and edges, drawing of textures and Interior

shading. They all focus on replicating the usage of elements mentioned by Bruce

Gooch; applicator, medium and substrate which correspond to a paintbrush, sumi ink

10

and torinoko paper.

2.4.1 State of the Art

One of the works by Shin-Jin Kang et al [4] demonstrates a rendering pipeline used

to render 3D objets in the sumi-e art style. This project is implemented in shaders in

order to make use of the graphics processing unit (GPU). The algorithm is split intro

three major components: silhouette outlining, interior shading and paper effect which

are shown in figure 2.5. Each of the major components on the system make use of a

specific input in order to achieve the sumi-e look. Another work by Park et al[5] goes

over similar techniques which focus more on a Korean interpretation of sumi-e but also

covers effects that apply to any form of ink wash painting such as sumi-e; brush stroke

effect/silhouette outlining.

Figure 2.5: Structure of the system used by Shin-Jin Kang et al in ’Hardware-
accelerated real-time rendering for 3d sumi-e painting’[4]

In order to achieve a sumi-e look and feel, it is necessary to outline the silhouettes

11

of objects or rather, draw the edges and add a brush stroke effect to edges. Detecting

edges can be achieved by taking into account that a 3D model’s vertices v can be

determined to be edges if their normal vector Nv are perpendicular to their view vector

V . Should the dot product of Nv and V sit between 0 and ε (threshold value for edge

detection), then the vertex is to be considered an edge. This can be shown in Equation

2.1. The bigger the threshold value is, the thicker the edges can be and should an edge

be detected, we can set its color to black, else it will be set to white [4].

0 ≤ Nv · V ≤ ε (2.1)

Once edges are detected, they can more closely match sumi-e by use of textures.

To do so, textures are used in conjunction with sphere mapping. We take the vector

from the vertex to the camera v, normalized to v̂. Vertex normal n is then to be

transformed into view coordinates, v̂. Afterwards a reflected vector r(rx, ry, rz) is

obtained in equation 2.2, from which equation 2.3 and 2.4 are used to obtain texture

coordinates (tu, tv).

r = 2(n̂ · v̂)n̂− v̂ (2.2)

m = 2
√
rx2 + ry2 + (rz + 1)2 (2.3)

tu =
rx
m

+
1

2
, tv =

ry
m

+
1

2
(2.4)

Once texture coordinates are obtained, brush stroke textures are used instead of

black, as shown in figure 2.6. In another work by Shin-Jin Kang and others [5], the

same technique for drawing of edges while making use of brush stroke textures with

sphere mapping is shown. Figure 2.7 displays textures taken from both works [4], [5]

for drawing edges.

Kang et al’s approach to interior shading is similar to that of cel-shading but with

the addition of textures instead of using look-up tables. Cel-shading is a technique used

to emulate the look of traditional cel animation, one approach to achieve cel-shading

is by measuring light intensity and color areas based on its value. In order to do so,

at each vertex, the Lambertian is obtained at each vertex by taking the normal ~n, the

light direction ~l and calculating the dot product between them as shown in equation

2.5 [6].

12

Figure 2.6: Example of how texture mapping gets closer to the sumi-e look. (a) shows
a 3D mesh of a cow with its silhouette extracted and drawn in black. (b) shows the
same 3D mesh using silhouette extraction and sphere mapping used in conjunction
with a brush texture for drawing of edges. Taken from Shin-Jin Kang et al’s work
’Hardware-accelerated real-time rendering for 3d sumi-e painting’ [4]

Figure 2.7: Brush stroke textures used when drawing edges while making use of sphere
mapping, as per the technique shown in both ’Hardware-accelerated real-time rendering
for 3d sumi-e painting’[4] as well as ’Hardware-Accelerated Sumi-e Painting for 3D
Objects’[5]

−1 ≤ ~n ·~l ≤ 1 (2.5)

Once light intensity is obtained, colors can be assigned to a mesh based on its values.

As per the work by Hutchins and Kim, anything between below 0 should be set to the

darkest tone/color whereas between 0 and 1 can be assigned to previously specified

colors, as for anything above 1 it is to be set to the brighest tone/color available [6].

These colors can be arranged on a look up table, using different light intensity values

to determine colors. Figure 2.8 displays a lookup table of colors based on their RGB

values and light intensity, as well as a resulting image of the Stanford bunny. This was

implemented in C++/OpenGL.

13

Color RGB Value RGB Value %

Green Yellow (173, 255, 47) (0.678, 1.0, 0.184)
Lime Green - Dark Gray 1 (50, 205, 50) (0.196, 0.804, 0.196)
Forest Green (34, 139, 34) (0.133, 0.545, 0.133)
Green (0, 128, 0) (0.0, 0.502, 0.0)

Table 2.1: Set of green color values used by a cel shader as an example of how colors
are picked based on light intensity values. Displays color names, RGB values from
0-255 and percentages used by a GLSL shader, results shown in figure 2.8

Figure 2.8: Look up table with different colors based on different light intensity val-
ues. The lower the light intensity, the darker the color and vice versa. Based on
documentation by Hutchins and Kim [6] and colors shown in table 2.1

Shin-Jin Kang et al’s approach while similar to cel-shading, differs slightly in how

colors are mapped. In this work, a tone texture is used in order to obtain the color of

each vertex, shown in figure 2.9. In order to make transitioning from one color shade

to another smooth, Gaussian blur is applied to the tone texture. [4].

Similar to a cel-shader, light intensity is calculated at each vertex, determining how

much light lands at each pixel s. This is shown in equation 2.6 which is the same

operation shown in equation 2.5. Similar the approach of a cel shader lookup table,

light intensity values are clamped between 0 and 1 as shown in equation 2.7.

s = ~n ·~l (2.6)

s =∈ [0, 1] (2.7)

14

Figure 2.9: Tone texture used for interior shading [5]

Light intensity s is then used to scale diffuse color of an object based on the sampled

colors taken from a texture. Afterwards, luminance is obtained from the sampled

texture value in order to obtain u texture coordinates from the tone texture, as shown

in equation 2.9. As the relevant values of the tone texture are at the X axis, tone

texture coordinate v is a static value at 0.5 as the tone texture works in a similar

fashion to a cel shader lookup table but using more calculations beyond obtaining light

intensity and assigning a color based on its value.

diffuseColor = s(r, g, b, a) (2.8)

u = min(s(0.3r + 0.59g + 0.11b), 1), v = 0.5 (2.9)

Once texture coordinates are fetched, color values can be mapped to the 3D mesh

giving interior shading colors based on the tone texture, as shown in figure 2.10.

Figure 2.10: Output from using a tone texture for interior shading on a sphere [4]

One other element of sumi-e is that corresponding to the canvas used, in this case

torinoko paper. There is a need to create effects that simulate the usage of paper as a

canvas. The work by Shin-Jin Kang et al in ’Hardware-accelerated real-time rendering

15

for 3d sumi-e painting’[4] generates an ink dispersion effectin conjunction with a paper

effect, shown in figure 2.11.

Figure 2.11: Output of the rendering pipeline making use of edge detection, interior
shading via tone texture and paper effect from [4]

One approach to having a paper effect as well as ink dispersion is by making use of

the alpha channel. Both the works by [5] and [12] make use of the alpha channel for

specific parts of their rendering pipeline.

The Nong-Dam effect can be used to convey variations in luminosity as ink tones

change from dark to bright, shown in equation 2.10 where Va refers to the alpha channel

value of the Nong-Dam effect, V refers to the vertex position in view space, C refers

to the Nong-Dam Effect center position and N refers to the view space vertex normal.

Va = (V − C) ·N (2.10)

16

Chapter 3

Design and Implementation

This chapter covers design and implementation details on the rendering pipeline im-

plemented.

3.1 Comparison of Rendered Images and Sumi-e

Paintings

In order to render 3D images that target sumi-e as their art style, a rendering pipeline

must adhere to main points of sumi-e paintings discussed in ’On the laws of japanese

painting’ [1], such as:

• Usage of only black and white colors

• Usage of ink (sumi) as a medium and egg shell paper (torinoko) as a canvas with

a brush as an applicator

• Usage of long/broad brush strokes

• Lack of sketching/drawing of outlines done before usage of the paint brush

Usage of black and white relies on defining colors by either making use of a lookup

table or a tone texture. Replicating the use of ink, eggshell paper and a paintbrush

requires more specific techniques. To do so, the rendering techniques used for this

rendering pipeline make use of textures for both simulating the use of a paintbrush

17

when drawing edges as well as eggshell paper as a canvas/substrate. Textures may also

be used when drawing the interior of a 3D mesh if necessary.

Drawing of edges are done by first doing edge detection followed by the usage of

textures to match the usage of long/broad brush strokes used to draw images. One

aspect of sumi-e painting which is easy to achieve due how the rendering pipeline works

is the lack of previous sketching before the use of a paintbrush.

Sumi-e focuses on conveying images of nature; bamboo, birds and flowers as well as

other different elements of flora and fauna being major subjects. Paintings such as those

shown in figures 2.1 and figure 2.2 from ’On the laws of Japanese Painting’[1]. Still,

the rendering pipeline can be applied to any 3D mesh in order to attempt matching

sumi-e styled images.

3.2 Rendering Pipeline Design

The rendering pipeline designed for this project is based on multiple techniques, some

used by previous sumi-e research projects and others from other NPR rendering tech-

niques. One example used as a starting point is that by Kang et al in ”Hardware-

accelerated real-time rendering for 3d sumi-e painting” [4]. The rendering implemented

consists of multiple steps as shown in figure 2.5; edge detection, drawing of edges with

lit and unlit outline thickness and stroke textures or solid colors, wobble distortion of

outline edges when using stroke textures, tone texture or cel-shader for interior shad-

ing in addition to optional use of 3D model textures being used for interior shading

as well as creation of a paper effect via alpha channel values with varying degrees of

transparency set by an average color threshold value used for setting alpha channel val-

ues as well as an alpha channel threshold value used for discarding pixels. A diagram

detailing the flow of the rendering pipeline is shown in figure 3.1.

Edge Detection

Edge detection is done similar to how it was developed in previous works as shown

in equation 2.1. The bigger the threshold value, the thicker the edges, as shown in

figure 3.2. A 3D mesh of the Stanford Bunny is taken from the Stanford 3D Scanning

Repository[13] and converted to an obj file using Blender in order to make it compat-

18

Figure 3.1: Rendering pipeline used for this project, based on similar previous works
in conjunction with other NPR techniques

ible with the model loading libraries developed for this rendering pipeline. It is then

rendered with edges drawn in black and its interior is drawn in white to better show

edges. A small segment of the shader used to achieve this effect is shown in appendix

B, listing 1.

While the ε threshold value can be determined manually, parameters for edge de-

tection can be changed slightly, by making use of lit and unlit outline thickness values

to draw edges in a more natural way, allowing the edges of lit/brighter areas to have

different thickness to that of unlit areas and vice versa, covered in [14]. This can be

19

Figure 3.2: Edge detection by using equation 2.1. From left to right, ε threshold value
is set to 0.2, 0.5, 0.7 and 1.0. As ε increases, edges grow thicker, to the point of
darkening the entire rendered image at a maximum of 1.0

seen in equation 3.1 where we use two threshold values for lit outline thickness l and

unlit outline thickness u while also making use of light direction l̂. Figure 3.3 shows

how different parameters for lit and unlit outline thickness can give the rendered im-

ages different outline thickness on different areas. Below is an element of the GLSL

shader used in which equation 3.1 is used to generate images rendered in figure 3.3.

Whenever the conditions for edge detection are fulfilled, edges are drawn in black or

else the current vertex corresponds to the interior and thus is drawn in white.

0 ≤ n̂ · v̂ ≤ mix(u, l,max(0, n̂ · l̂)) (3.1)

Figure 3.3: Stanford Bunny mesh rendered with different lit and unlit outline edge
values. Detected edges are drawn in black whereas interior of the mesh is drawn in
white

Drawing of Edges and Strokes

Edges can be easily detected and set to black but in order to get closer matching sumi-

e paintings, edges must look as if they were drawn by a paintbrush using sumi. In

Chapter 2 a technique which makes use of brush textures is explained with different

20

brush textures shown in figures 2.6 and 2.7. These brush stroke textures are used within

the fragment shader in conjunction with equations 2.2, 2.3 and 2.4 to draw edges with

an effect that simulates that of being drawn by a paintbrush. An implementation of

this technique is displayed in figure 3.4. Reference code from the GLSL shader is shown

in appendix B, listing 2.

Figure 3.4: Drawing of edges with stroke effect using different textures on the Stanford
Bunny 3D mesh

Another technique that is of use when working with textures as is the case when

drawing edges is that of wobble distortion, used in the work by Charlotte Hoare [15].

Wobble distortion refers to an offset value being given to texture coordinates, as shown

in equation 3.2.

wobbleUV = uv + uvfsato ∗ wobbleDistortion (3.2)

Using wobble distortion allows for texture mapping in edges to be adjusted based

on the distortion value as shown in figure 3.5. As can be seen, using wobble distortion

changes how edges are drawn without changing textures by adding noise. However,

a high value of wobble distortion can lead to edges not matching interior shading

properly.

The rendering pipeline also allows for users to draw edges with solid colors, doing

so would allow for edges to better match the interior shading when necessary. The

implementation currently makes use of only gray scale colors, as shown in figure Code

showing both using of textures and solid colors for outlines can be found in 2.

Once edges and strokes are both detected and drawn, the interior of the 3D mesh

comes into focus.

21

Figure 3.5: Drawing of edges using wobble distortion on the same stroke texture. Edge
drawing can be altered slightly based on the stroke texture

Figure 3.6: Drawing of edges using solid colors in gray scale, blending in as the colors
get lighter to the point that edges are not seen halfway through and interior edges
blend in with the interior as edges are drawn with at their brightest color.

Interior Shading

Techniques used for interior shading such as the use the tone textures used in previous

work; as shown in figure 2.9 are one way to draw the interior of a 3D mesh while

targeting sumi-e. The rendering pipeline makes use of either a tone texture or a cel

shader at the user’s discretion.

While using the tone texture, the GLSL shader samples the texture shown in fig-

ure 2.9 and equations 2.6, 2.7, 2.8, 2.9 to shade the interior of the 3D mesh. While

implementing equation 2.9, the usage of the min function call produced lighter tones

to be drawn in areas intended to be of darker shades. Thus, it was changed in favor of

clamping values between 0 and 1 as shown in listing 4 which differs from the original

implementation shown in listing 3 in appendix B. The original implementation is shown

on the left side of figure 3.7 whereas the fixed implementation is shown on the right

side.

Similar to the values shown in the tone texture, a cel shader implementation should

make use of only black and white colors in order to comply with one of the main

22

Figure 3.7: Tone texture shading based on the work by Shin-Jin Kang et al [4]. The
usage of the tone texture instead of a cel shader allows for a bleeding effect of ink
in paper. Left image shows the initial implementation taken from previous work and
the right image shows a modified version in which sampled values are clamped. Older
implementation code shown in appendix B, list 3 code shown in appendix B, list 4

characteristics of sumi-e paintings. The original tone texture made use of four major

colors being black, dark gray, light gray and white and in order to ease the transition

between those colors, Gaussian blur was applied. In order to compensate for the lack

of a tone texture, intermediate colors for transitioning between black to dark gray, dark

gray to light gray and light gray to dark are used as shown in table 3.1

Figure 3.8: Cel-shader used to pick black and white colors based on light intensity on
the Stanford Bunny 3D mesh. Code shown in appendix B, list 4

Drawing of 3D model textures

Some 3D meshes might require textures to convey detail either due to the lack of or

in addition to detail in the 3D mesh. Both the cel-shader and the tone-texture shader

23

Color RGB Value RGB Value % Light Intensity

Black (0, 0, 0) (0, 0, 0) < 0.075
Black - Dark Gray 1 (25, 25, 25) (0.098, 0.098, 0.098) > 0.075
Black - Dark Gray 2 (59, 59, 59) (0.2313, 0.2313, 0.2313) > 0.125
Dark Gray (82, 82, 82) (0.321, 0.321, 0.321) > 0.2
Dark Gray - Light Gray 1 (110, 110, 110) (0.43, 0.43, 0.43) > 0.275
Dark Gray - Light Gray 2 (159, 159, 159) (0.6235, 0.6235, 0.6235) > 0.325
Light Gray (188, 188, 188) (0.737, 0.737, 0.737) > 0.4
Light Gray - White 1 (204, 204, 204) (0.8, 0.8, 0.8) > 0.475
Light Gray - White 2 (227, 227, 227) (0.89, 0.89, 0.89) > 0.525
White (255, 255, 255) (1.0, 1.0, 1.0) > 0.6

Table 3.1: Table of color values used by the cel shader implemented in GLSL shader.
Results shown in figure 3.8

effect can complement interior textures while rendering images as part of the rendering

pipeline implementation.

When using a 3D model texture, its values are sampled and turned to black and

white so that colors shown stick to conventions of sumi-e shading by obtaining lumi-

nance. Afterwards, color values obtained from either the cel-shader or tone-texture

shader are used as diffuse factors which multiply the sampled sampled textur values.

A texture luminance factor is used at a user’s discretion to increse brightness of the

sampled texture. Rendered images of a sphere making use of an orange peel texture

are shown in figure 3.9. Example code is shown in 5

Figure 3.9: Comparison of how a cel-shader and a tone texture shader while making
use of interior textures. Code shown in appendix B, list 5

24

Paper Effect

The techniques researched make use of textures for two main points; the drawing of

line edges which is discussed in an earlier section of this chapter and what the work by

Kang et al [4] refers to as ’paper effect’ by making use of a background texture. As the

rendering pipeline developed for this project has a focus on applications for use in video

games and is partially inspired in the PlayStation2 video game Ōkami, it was decided

to generate a skybox. As mentioned in OGLdev.org [16], a Skybox is a technique which

wraps a rendered scene with a texture that goes degrees around the camera. Textures

used usually depict scenery such as the sky and mountains. In the case of this project

the skybox is a tiling texture of eggshell paper as shown in figure3.10.

Figure 3.10: Texture used for generating the skybox and achieving a paper effect

In order to render the skybox, textures are first loaded with one texture for each

face of the skybox being loaded to create a cube map. One the skybox is created it

25

is rendered before drawing of 3D meshes such as the Stanford bunny 3D mesh. An

example of the rendered skybox can be seen in figure 3.11.

Figure 3.11: Skybox drawn based on the texture shown in fig 3.10 with a drawn mesh
of the Stanford bunny

In order to properly replicate the paper texture effect, the background texture needs

to be present within the interior of the 3D mesh. To do so the alpha channel is used

and modified within the C++ program as well as the GLSL shader. When returning

color values for each vertex present in our 3D rendering pipeline, Red, Green and Blue

(RGB) color values are specified. In the case of the alpha channel value, the higher;

the more opaque/less transparent the vertex is.

In order to make use of transparency effects in the alpha channel, we enable blending

and back face culling so that alpha channel values are in use when rendering so that

vertices can be transparent while also making it so that back faces are not rendered,

avoiding an issue in which back faces are shown as some vertices are transparent, as

shown in figure the following shown in listing 6 from appendix B. Enabling alpha

channel blending makes it so that output colors are calculated using equation 3.3

which takes current colors and alpha channel values in the frame buffer and obtains

new output colors based on the alpha values.

OutputDstColor = Alpha ∗ Color + (1− Alpha) ∗OutputColor (3.3)

As darker colors should blend less with the background, we can infer that the

darker the color, the higher the alpha channel is whereas the brighter the color, the

more transparent the color is. Thus, we can assign an alpha channel value based on the

26

average color, meaning that alpha channel is inversely proportional to average color at

a vertex, as shown in equation 3.4. An example of how a 3D mesh with and without

blending enabled as well as how a mesh looks like with and without back face culling

is shown in figure 3.12.

AlphaChannel = 1− (Color.x+ Color.y + Color.z)/3 (3.4)

Figure 3.12: Stanford bunny rendered without transparency effects by changing the
alpha channel as well as two examples with alpha channel transparency. Middle image
makes use of back face culling whereas the right image does not and displays data
taken from the back face of the 3D mesh

While equation 3.4 allows us to obtain an alpha value, we make use of another set of

parameters in order to force alpha values to be changed and vertices to be drawn or not.

First, we make use of an average color threshold value to determine wether to change

alpha values or not. If the average color is below a specified threshold, alpha channel

value is changed by use of equation 3.4. Another parameter used is an alpha channel

threshold value. If the alpha channel is under a specific threshold, vertices are skipped

entirely thus allowing for an even more pronounced paper blending effect. Example

code is shown in listing 7, appendix B. Examples of how these effects look are shown in

figure 3.13. Increasing the average color alpha threshold value makes it so that colors

brighter than the threshold value get get their alpha channel value modified according

to their average color. The higher the value, the less transparent vertices will be as

fewer colors will be of higher intensity than the threshold value. Alpha threshold skip

is used to skip/discard vertices whose alpha values are under the threshold value. The

higher the alpha threshold skip value, the more vertices are skipped/discarded which

makes it so that the 3D mesh blends more with the background with the possibility of

27

making elements of the back face showing despite backface culling being enabled.

Figure 3.13: Stanford bunny rendered without changes to the average colors alpha
threshold as well as the alpha threshold skip values. Code shown in 7, appendix B

3.3 Final Implementation

The final fragment shader for the rendering pipeline is shown in listing 8 and the

vertex shader is shown in listing 9, both in appendix B. As various elements of the

final program can be fine tuned manually at runtime, they are displayed in a user

interface element of the program made with AntTweakbar. UI elements are shown in a

small window at the top right corner of the program, shown in figure 3.14 and detailed

below:

• Unlit Outline Thickness: changes the thickness of unlit outlines

• Lit Outline Thickness: changes the thickness of lit outlines

• Outline Selection: gives the option of setting a solid edge (false) or using a brush

stroke texture of drawing of edges (true)

• Solid Outline Color: when ’Outline Selection’ is set to false, allows for the out-

line’s color to be changed in grayscale colors

• Wobble Distortion: when ’Outline Selection’ is set to true, allows for offset-

ting/noise being added to the stroke texture when drawing edges

• Cel Shader Selection: when set to false, a tone texture is used to perform interior

shading. When set to true, a cel-shader is used instead

28

• Texture Selection: when a 3D mesh allows for it and the option is set to true,

a texture is used for interior shading in conjunction with the cel shader or tone

texture shader

• Texture Luminance: increases the intensity of the tone texture

• Avg Color Alpha Threshold: changing this value allows for alpha channel values

to be changed based on a color’s average value. The higher the average color

threshold value, the more colors get alpha channel changed.

• Alpha Threshold Skip: used to skip vertices whose alpha channel values are lower

than or equal to the threshold value. The highest value available can make the

3D model disappear as all vertices are discarded

In addition to the parameters shown in AntTweakbar for changing parameters in

the rendering pipeline, keyboard inputs can be used to move around the problem,

shown below.

• w - moves camera position up

• a - moves camera position down

• s - moves camera position left

• d - moves camera position right

• mouse wheel forward - moves camera position forward

• mouse wheel backwards - moves camera position backwwards

• l - moves light source around the environment

• r - rotates 3D mesh on its axis

• R - resets keyboard input parameters (camera position, 3D mesh rotation, light

source position)

29

Figure 3.14: User interface elements added with AntTweakbar for manipulating be-
havior of the rendering pipeline

30

Chapter 4

Results

This chapter covers rendered images obtained by using the final rendering pipeline and

evaluate how close they match characteristics of sumi-e paintings. A variety of 3D

models will be used to verify the flexibility of the rendering pipeline while working

with different models and parameters. Performance will also be measured in terms of

frame rate to evaluate the likelihood of a sumi-e style rendering pipeline being used for

real-time rendered media such as video games. A conclusion will be given on whether

a rendering pipeline akin to the one developed for this project could be usable in media

such as video games.

4.1 Tests and Comparison with Sumi-E

As shown in figure 3.1, the rendering pipeline consists of multiple effects which can be

used to modify the look of a 3D model so that it might match characteristics of sumi-e

paintings. As previously established, characteristics of sumi-e paintings the rendering

pipeline and resulting images should target are:

• Usage of only black and white colors

• Usage of ink (sumi) as a medium and egg shell paper (torinoko) as a canvas with

a brush as an applicator

• Usage of long/broad brush strokes

31

• Lack of sketching/drawing of outlines done before usage of the paint brush

Figure 4.1 displays different angles of the Stanford bunny drawn using the final

rendering pipeline with varying degrees of outline thickness and using either the cel

shader or the tone texture shader as options. Characteristics such as the use of black

and white colors, usage of brush strokes and lack of previous sketching can be seen

as well as the use of eggshell paper due to the eggshell paper skybox in addition to

transparency via use of the alpha channel.

Figure 4.1: Rendering pipeline output using the Stanford bunny on different positions
with variation in outline thickness and usage of cel-shader or tone texture shader

While specific characteristics of sumi-e painting are achieved by the rendering

pipeline, there are elements that struggle when trying to match the targeted art style.

Using brush stroke textures with sphere mapping can achieve a brush stroke look while

drawing edges as shown on the rightmost rendered image in figure 4.1, however it can

also be inconsistent with how the interior of a 3D mesh is drawn and using a high wob-

ble distortion value can lead to edges being drawn in way that appears as if edges were

drawn/sketched previous to painting, conflicting with one of the major characteristics

of sumi-e, as shown in figure 4.2.

Figure 4.2: Rendered images of the Stanford bunny using badly picked values for edges
drawn with stroke textures using sphere mapping

32

In order to achieve the paper effect, the rendering pipeline makes use of the alpha

channel to make elements of the image transparent and blend with the background

texture that makes up the skybox/canvas. To do so, a sampled vertex makes use of

its average color to obtain the alpha channel value which is inversely proportional to

the average color. Drawing objects with alpha transparency effects requires back face

culling to be enabled so that faces are not drawn as artifacts from the back face can

show up as seen in figure 3.12.

Enabling back face culling allows for the background texture taken from the skybox

to complement interior shading of a 3D mesh. However, upon doing a close inspection

as seen in figure 4.3, back face culling can have inconsistent results as elements of the

feet and ears fromt he back face of the Stanford bunny can be seen at the front face

despite back face culling being enabled. Adjustments to parameters of the rendering

pipeline such as using a solid yet lighter color for drawing edges, outline thickness

changes or different textures used for drawing edges can help remove elements from

the back face being shown through the front face of a 3D mesh, as shown in figure 4.3.

Issues with back face culling when a mesh interior is fully transparent can be more

troublesome in a game environment when elements of the scene are directly behind

others. Figure 4.4 shows how the issue can look when back face culling is not enabled

(left) and when back face culling is enabled (right) while much of the interior shading

is transparent.

Another 3D model used for testing the rendering pipeline is that of a bamboo tree

taken from TurboSquid [17]. The bamboo tree consists of a stalk and a high density

of leaves at the top, includes textures for the 3D model. Figure 4.5 displays the mesh

rendered with and without alpha transparency effects while using the cel shader and

no texture obtained from the original source used for interior shading. As can be seen,

transparency effects allow for the mesh to blend in with the background when shown

from afar and even when not having transparency effects enabled, a mesh such as the

bamboo tree can blend in as part of the scenery.

Figure 4.6 displays multiple closeups of the bamboo tree, alternating between using

the cel-shader or the tone texture shader whilst also enabling and disabling the bamboo

clum texture included with the 3D mesh used for interior shading. These closeups allow

for a better comparison with the example painting shown in figure 2.1 which displays

a bamboo stalk in conjunction with leaves. Gaps between sections of the stalk can be

33

Figure 4.3: Closeup of the Stanford Bunny 3D mesh when using alpha transparency
effects. Shows back face culling inconsistencies and how slight variations in parameters
can help diminish the issue when present

Figure 4.4: Stanford Bunny 3D mesh drawn in both the background and foregound,
without and with face culling enabled

seen in all rendered images and shading of leaves can match the original painting in

certain areas. A closer look at leaves rendered and compared with the original painting

can be seen in figure 4.7, where using the tone-texture shader makes rendered images

of leaves match the painting shown in figure 2.2 more closely than the cel-shader.

The rendering pipeline may be used with objects that deviate from typical subjects

of sumi-e; although there might be varying degrees of success with certain 3D models

34

Figure 4.5: Rendered image of a bamboo tree drawn using the cel-shader from the
rendering pipeline. Left side shows no alpha transparency effects added. Right side
shows alpha transparency effects

while attempting to match sumi-e paintings. As an example, a sphere mesh generated

using Blender in conjunction with an orange peel texture obtained from [7], shown

in figure 4.8, the usage of textures for shading of a model’s interior can be observed.

When using the tone-texture shader, transparency effects are not an issue compared

to the Stanford Bunny 3D mesh. Using a texture for interior shading allows detail to

be shown in the mesh despite the texture being turned to black and white, still the

low vertex count of the sphere mesh leads to issues with interior shading, particularly

when making use of cel-shading for drawing the interior.

Figure 4.10 makes use of a smoother 3D sphere mesh which has a higher vertex

count. This 3D sphere displays the effects of the sumi-e shader better. The cel-shader

achieves a smoother look but it is still not ideal as the interior shading makes the

fact that the sphere is made up of vertices apparent, even if it is not as apparent as

in the previous version of the sphere. Despite the smoother 3D mesh, the cel-shader

does not produce as natural interior shading as the tone-texture shader, whether it

is using interior textures or not or using transparency effects or not. Other effects

35

Figure 4.6: Closeup rendered images of the bamboo tree. Top section makes use of
the tone-texture shader and bottom texture makes use of the cel-shader. Left section
makes no use of textures for interior shading and right section makes use of textures
for interior shading

Figure 4.7: Closeup to images of bamboo leaves. Left image is taken from 2.2 whereas
center and right image are taken from 4.6. Center image makes use of tone texture
shading whereas the right image makes use of the cel-shader

such as transparency using alpha channel values and the drawing of edges look cleaner

when using both the cel-shader and the tone texture shader effect. Tone texture in

36

conjunction with in the orange peel used for shading the interior achieves a more

detailed look and a bleeding effect not seen when using the cel-shader on the same

model.

Figure 4.8: Orange texture taken from [7].

One example mesh which deviates from sumi-e is that of a cartoon styled, low-poly

airplane obtained from TurboSquid [8], shown in figures 4.11 and 4.12. The initial

model has a total of 1018 vertices, half of which correspond to the landing wheels and

propellers. As can be seen in figure 4.11, both the cel-shader and tone texture shader

have issues shading the interior evenly. Transparency effects used to convey the use

of paper also show back faces despite back face culling being enabled when using the

cel-shader. Figure 4.12 shows the same 3D mesh modified by adding additional vertices

in blender, having a much higher vertex count of 855275. Despite this, effects do not

apply evenly to the updated version and none of the rendered images achieve a look

that matches sumi-e beyond the use of black and white colors.

4.2 Performance

As the hardware used for this project is newer and more powerful than that used by

previous works, particularly compared to the PlayStation2 which was Ōkami’s target

platform; performance was high and consistent across all tests done, reaching frame

rates over 144 frames per second even on cases in which the vertex count was much

higher, as can be seen in table 4.1.

37

Figure 4.9: Sphere mesh generated using Blender. Top section makes use of the cel-
shader whereas bottom section makes use of the tone-texture shader. Left section makes
no use of transparency/alpha effects, middle section makes use of transparency/alpha
effects and right section makes use of transparency/alpha effects in conjunction with
an orange peel texture taken from [7]

4.3 Conclusions

There is no one-size fits all approach when using the rendering pipeline developed for

this project. The ability of the rendering pipeline to match the art style of sumi-e can

be affected by modifying parameters that require user input such as outline thickness,

use of stroke textures or the type of interior shader. Data from the rendered model such

as the shape, complexity of the model as well as the corresponding textures also affect

the resulting images. For example, models such as the Stanford Bunny or a bamboo

tree can match the art style of sumi-e when using the rendering pipeline properly.

There are occasions in which a 3D model might not be suited for using sumi-e as its

target art style, as was the case of the cartoon style airplane shown in figures 4.12 and

38

Figure 4.10: Similar sphere to that of figure 4.9, using a higher vertex count mesh
made using Blender

4.11 taken from [8]. A low polygon model or a model with a multitude of flat surfaces

can have difficulties matching sumi-e although using interior textures as shown in figure

4.9 can make a low-poly model more closely match the targeted art style.

Certain effects are well suited for generating sumi-e style images but can lead to

issues in a video-game environment as is the case of the paper effect when using alpha

transparency without a tone texture shader or interior texture, as can be seen in figure

4.3 as well as figure 4.4 since background models and elements of a model’s back face

might lead to issues making out characters. Comparing the results to Ōkami, despite

targeting sumi-e as its desired art style, it deviated in a multitude of areas.

Color was prevalent in the game and not all on-screen elements made use of the

same paper effect, making the game’s output less consistent with sumi-e while also

being better suited for a real-time game. It also made use of color which allowed for

users to better differentiate between rendered objects, as shown in figure 1.1.

39

Figure 4.11: Low-poly airplane 3D model from [8] rendered with a cel-shader (left)
and a tone-texture shader (right) with transparency effects disabled (top) and en-
abled(bottom)

Mesh Vertices Framerate

Stanford Bunny 2503 144
Sphere 482 144
Smooth Sphere 58082 144
Cartoon Airplane 1018 144
Smooth Cartoon Airplane 855275 144
Bamboo Tree 73859 144

Table 4.1: Table displaying performance for each experiment run when testing the
sumi-e rendering pipeline. Tests were done rendering images at a resolution of 1024 x
768

40

Figure 4.12: Modified low-poly airplane 3D model from [8], edited in Blender to have a
much higher vertex count. Rendered with a cel-shader (left) and a tone-texture shader
(right) with transparency effects disabled (top) and enabled(bottom)

41

Chapter 5

Future Work

The rendering pipeline developed for this project can be used for generating sumi-e style

images, however; an application such as video-games would require further research. As

performance in all experiments was high despite using a higher resolution compared to

experiments from previous works, it can be assumed that the rendering pipeline would

translate well into a game environment, performance wise. However, this can be due to

the fact that the hardware used for this project was newer and relatively more powerful

than hardware used in previous efforts.

Because of this, further research should be done by implementing a sumi-e ren-

dering pipeline in a more complex environment such as a game engine, testing how

the rendering pipeline would affect performance while working with more complex 3D

models, higher resolution textures and bigger environments. Complex animations and

interactions between 3D models such as collisions should also be tested to verify the

likelihood of sumi-e being an adequate target art style for video games.

Using a more feature complete tool set such as a game engine can also be of use

to creating animations, deviating from video games as interactions between 3D models

can apply to both real-time and offline rendering applications. Offline animation also

has the possibility of being better suited for this targeted art style due to the nature

of the medium. As such, further research should be done testing how sumi-e works as

a targeted art style for offline animation.

42

Bibliography

[1] H. P. Bowie, On the Laws of Japanese Painting: An Introduction to the Study of

the Art of Japan. San Francisco P. Elder and Company, 1911. original-date: 1911.

[2] S. Strassmann, “Hairy brushes,” ACM SIGGRAPH Computer Graphics, vol. 20,

pp. 225–232, Aug. 1986.

[3] B. Pham, “Expressive brush strokes,” CVGIP: Graphical Models and Image Pro-

cessing, vol. 53, pp. 1–6, Jan. 1991.

[4] S.-J. Kang, S.-J. Kim, and C.-H. Kim, “Hardware-accelerated real-time rendering

for 3d sumi-e painting,” in Computational Science and Its Applications — ICCSA

2003 (G. Goos, J. Hartmanis, J. van Leeuwen, V. Kumar, M. L. Gavrilova, C. J. K.

Tan, and P. L’Ecuyer, eds.), vol. 2669, pp. 599–608, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2003.

[5] J.-H. Park, S.-J. Kim, C.-G. Song, and S.-J. Kang, “Hardware-Accelerated Sumi-

e Painting for 3D Objects,” in Computational Science – ICCS 2009 (G. Allen,

J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, eds.),

vol. 5545, pp. 780–789, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[6] A. Hutchins and S. Kim, “Advanced Real-Time Cel Shading Techniques

in OpenGL.” “https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/

S12/final projects/hutchins kim.pdf”, 2012. [online] Accessed: 21-Jun-2020.

[7] Moss, “Citrus.” “https://www.filterforge.com/filters/7375.html”, 2009.

[online] Accessed: 02-Sep-2020.

[8] A. Moek, “Cartoon low poly airplane 3d.” “https://www.turbosquid.com/3d-

models/plane-render-3d-1192348”, 2017. [online] Accessed: 28-Aug-2020.

43

https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S12/final_projects/hutchins_kim.pdf
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S12/final_projects/hutchins_kim.pdf
https://www.filterforge.com/filters/7375.html
https://www.turbosquid.com/3d-models/plane-render-3d-1192348
https://www.turbosquid.com/3d-models/plane-render-3d-1192348

[9] R. Valentine, “Sony invests $250m in Epic Games.” “https://

www.gamesindustry.biz/articles/2020-07-09-sony-invests-USD250m-

in-epic-games”, 2020. [online] Accessed: 12-Jul-2020.

[10] B. Gooch and A. Gooch, Non-photorealistic rendering. Natick, Mass: A K Peters,

2001.

[11] GamesIndustryInternational, “Oart and mythology come alive as Capcom R©
announces Okami for the playstation 2 computer entertainment system.”

“https://www.gamesindustry.biz/articles/oart-and-mythology-cme-

alive-as-capcom-announces-okami-for-the-playstation-2-computer-

entertainment-system”, 2005. [online] Accessed: 21-Jun-2020.

[12] T.-C. Xu, L.-J. Yang, and E.-H. Wu, “Stroke-based real-time ink wash painting

style rendering for geometric models,” in SIGGRAPH Asia 2012 Technical Briefs

on - SA ’12, (Singapore, Singapore), pp. 1–4, ACM Press, 2012.

[13] “The Stanford 3d Scanning Repository.” “https://graphics.stanford.edu/

data/3Dscanrep/”, 2014. [online] Accessed: 18-Jun-2020.

[14] WikiBooks.org, “Glsl programming/unity/toon shading - wikibooks, open books

for an open world.” “https://en.wikibooks.org/wiki/GLSL Programming/

Unity/Toon Shading#Stylized Diffuse Illumination”, 2011. [online] Ac-

cessed: 28-Aug-2020.

[15] C. Hoare, “Interactive non-photorealistic rendering using glsl.” “https:

//nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc12/Hoare/

CharlotteHoare Thesis.pdf”, 2012. [online] Accessed: 19-Aug-2020.

[16] OGLDev.org, “Tutorial 25 - skybox.” “http://www.ogldev.org/www/

tutorial25/tutorial25.html”, 2011. [online] Accessed: 13-Jul-2020.

[17] IndaneeyDesign, “3d bamboo tree.” “https://www.turbosquid.com/3d-models/

3d-tree-nature-forest-1421571”, 2019. [online] Accessed: 16-Aug-2020.

44

https://www.gamesindustry.biz/articles/2020-07-09-sony-invests-USD250m-in-epic-games
https://www.gamesindustry.biz/articles/2020-07-09-sony-invests-USD250m-in-epic-games
https://www.gamesindustry.biz/articles/2020-07-09-sony-invests-USD250m-in-epic-games
https://www.gamesindustry.biz/articles/oart-and-mythology-cme-alive-as-capcom-announces-okami-for-the-playstation-2-computer-entertainment-system
https://www.gamesindustry.biz/articles/oart-and-mythology-cme-alive-as-capcom-announces-okami-for-the-playstation-2-computer-entertainment-system
https://www.gamesindustry.biz/articles/oart-and-mythology-cme-alive-as-capcom-announces-okami-for-the-playstation-2-computer-entertainment-system
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading#Stylized_Diffuse_Illumination
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading#Stylized_Diffuse_Illumination
https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc12/Hoare/CharlotteHoare_Thesis.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc12/Hoare/CharlotteHoare_Thesis.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc12/Hoare/CharlotteHoare_Thesis.pdf
http://www.ogldev.org/www/tutorial25/tutorial25.html
http://www.ogldev.org/www/tutorial25/tutorial25.html
https://www.turbosquid.com/3d-models/3d-tree-nature-forest-1421571
https://www.turbosquid.com/3d-models/3d-tree-nature-forest-1421571

Appendix A - Acronyms

Acronym Definition

3D Three-Dimensional

NPR Non-Photorealisctic Rendering

GPU Graphics Processing Unit

GLSL OpenGL Shading Language

OpenGL Open Graphics Library

RGB Red, Green, Blue

45

Appendix B - Code

Listing 1: Edge detection with outline thickness

1 // L i t / u n l i t edge d e t e c t i on and drawing

2 i f (dot (viewDir , normal d i r) < mix (u n l i t o u t l i n e t h i c k n e s s ,

l i t o u t l i n e t h i c k n e s s , max(0 . 0 , dot (normal dir , l i g h t d i r))))

3 {
4 c o l o r = vec4 (vec3 (0 . 0 , 0 . 0 , 0 . 0) , 1 . 0) ;

5 } else {
6 // Not an edge , drawn in whi te

7 c o l o r = vec4 (vec3 (1 . 0 , 1 . 0 , 1 . 0) , 1 . 0) ;

8 }
9 // Returnin co l o r

10 f r a g c o l o r = co l o r ;

Listing 2: Edge detection with outline thickness in conjunction with texture mapping

and texture wobbling

1 // Determining wether a v e r t e x i s an edge or not and i t s o u t l i n e

t h i c kn e s s

2 i f (dot (viewDir , normal d i r) < mix (u n l i t o u t l i n e t h i c k n e s s ,

l i t o u t l i n e t h i c k n e s s , max(0 . 0 , dot (normal dir , l i g h t d i r)))) {
3 i f (o u t l i n e s e l e c t i o n == true) {
4 // Drawing edge wi th brush t e x t u r e and wobb le d i s t o r t i o n

5 c o l o r = clamp (tex ture (brush texture map , vec2 (tu , tv) + vec2 (tu , tv) ∗
wobb l e d i s t o r t i on) , 0 , 1) ;

6 } else {
7 // Drawing edge wi th a s o l i d co l o r

8 c o l o r = vec4 (s o l i d o u t l i n e c o l o r , s o l i d o u t l i n e c o l o r ,

s o l i d o u t l i n e c o l o r , 1 . 0) ;

9 }
10 }

46

Listing 3: GLSL shader segment with option for using cel shader or a tone texture

shader. Makes use of min functoin when doing tone texture shading

1 i f (c e l s h a d e r s e l e c t i o n == true) {
2 // Cel shader code

3 } else {
4 vec3 d i f f u s e t e x t u r e c o l o r = texture (mesh texture map ,

a t e x tu r e c o o rd i n a t e) . rgb ;

5 f loat t one t ex tu r e u = min (i n t e n s i t y ∗ (0 . 3∗ d i f f u s e t e x t u r e c o l o r . r +

6 0 .59∗ d i f f u s e t e x t u r e c o l o r . g +

7 0.11∗ d i f f u s e t e x t u r e c o l o r . b) ,

8 1) ;

9 c o l o r = texture (tone texture map , vec2 (tone tex ture u , 0 . 5)) ;

10 }

Listing 4: GLSL shader segment with option for using a cel shader or a tone texture

shader. Uses clamping of clamping of sampled color for obtaining texture coordinates

1 i f (c e l s h a d e r s e l e c t i o n == true) {
2 // Cel shader code

3 } else {
4 vec3 d i f f u s e t e x t u r e c o l o r = texture (mesh texture map ,

a t e x tu r e c o o rd i n a t e) . rgb ;

5 f loat t one t ex tu r e u = clamp (i n t e n s i t y ∗ (0 . 3∗ d i f f u s e t e x t u r e c o l o r . r +

6 0 .59∗ d i f f u s e t e x t u r e c o l o r . g +

7 0.11∗ d i f f u s e t e x t u r e c o l o r . b) ,

8 0 , 1) ;

9 c o l o r = texture (tone texture map , vec2 (tone tex ture u , 0 . 5)) ;

10 }

Listing 5: GLSL shader segment showing how 3D model textures can be used in addi-

tion to a cel shader or a tone texture shader

1 i f (t e x t u r e s e l e c t i o n==true) {
2 // Normal Mapping Part

3 vec3 d i f f u s e t e x t u r e c o l o r = texture (mesh texture map ,

a t e x tu r e c o o rd i n a t e) . rgb ;

4 // Limunance

5 f loat d i f f u s e t e x tu r e bw = texture luminance ∗dot (d i f f u s e t e x t u r e c o l o r ,

vec3 (0 .2126729 , 0 .7151522 , 0 .0721750)) ;

6

47

7 // c e l shader co l o r ∗ d i f f u s e t e x t u r e BW co l o r

8 c o l o r = co l o r ∗vec4 (d i f f u s e t ex tu r e bw , d i f f u s e t ex tu r e bw ,

d i f f u s e t ex tu r e bw , 1 . 0) ;

9 }

Listing 6: main.cpp segment showing the enabling of alpha channel blending and back

face culling

1 glEnable (GL BLEND) ;

2 glBlendFunc (GL SRC ALPHA, GL ONE MINUS SRC ALPHA) ;

3 glEnable (GL CULL FACE) ;

4 g lCul lFace (GL BACK) ;

Listing 7: GLSL shader segment showing alpha channel enabling based on average

color threshold and discarding of vertices via an alpha channel threshold value

1 // Average co l o r used to ob ta in a lpha va lue

2 f loat avg co l o r = clamp ((c o l o r . x + co l o r . y + co l o r . z) /3 , 0 . 0 , 1 . 0) ;

3 i f (avg co l o r > avg c o l o r a l pha th r e s ho l d) {
4 c o l o r . a = clamp ((1 − avg co l o r) , 0 . 0 , 1 . 0) ;

5 }
6

7 // Threshold v a l u e s f o r d i s ca rd ing p i x e l s

8 i f (c o l o r . a < a l pha sk i p th r e sho l d) {
9 d i s ca rd ;

10 }

Listing 8: Final fragment shader used for the rendering pipeline

1 #ve r s i on 330

2

3 in vec3 n eye ;

4 in vec3 pos eye ;

5 in vec3 vs normals ;

6 in vec3 v s p o s i t i o n ; // v s p o s i t i o n

7 in vec3 v s p o s i t i o n i s o ; // zwvEcVertex

8 in vec2 a t e x tu r e c o o rd i n a t e ;

9

10 uniform sampler2D brush texture map ;

11 uniform sampler2D mesh texture map ;

12 uniform sampler2D tone texture map ;

48

13

14 uniform samplerCube cube texture ;

15

16

17 out vec4 f r a g c o l o r ;

18

19 uniform mat4 model , ortho , proj , view ;

20 uniform vec3 l ightPos , viewPos ;

21 uniform f loat ambientStrength , specu la rS t r ength ;

22 // Turn to uniforms l a t e r

23 uniform f loat l i t o u t l i n e t h i c k n e s s , u n l i t o u t l i n e t h i c k n e s s ,

s o l i d o u t l i n e c o l o r , wobb l e d i s t o r t i on , texture luminance ,

paper a lpha thre sho ld , paper a lpha d iv ;

24 uniform bool o u t l i n e s e l e c t i o n , t e x t u r e s e l e c t i o n , c e l s h a d e r s e l e c t i o n ;

25 // Rename/ d e l e t e t h e s e

26 uniform f loat d i f f u s e f a c t o r , d ry brush granu la t i on , d ry brush dens i ty ;

// Make t h i s uniform va r i a b l e (?)

27

28 const vec3 ambientColor = vec3 (0 . 0 , 1 . 0 , 0 . 0) ;

29 const vec3 d i f f u s eCo l o r = vec3 (1 . 0 , 1 . 0 , 1 . 0) ;

30 const vec3 specColor = vec3 (0 . 5 , 0 . 5 , 0 . 5) ;

31 const vec2 r e s o l u t i o n = vec2 (1024 , 768) ;

32

33 void main () {
34 // Globa l L i gh t ing Var iab l e s

35 vec4 c o l o r ;

36 vec3 l i g h t d i r = normal ize (l i gh tPos − pos eye) ;

37 vec3 norm = normal ize (vs normals) ;

38 vec3 viewDir = normal ize (viewPos − pos eye) ;

39 // Toon

40 vec3 normal d i r = normal ize (vs normals) ;

41 vec3 outLineColor = vec3 (0 . 0 , 0 . 0 , 0 . 0) ;

42 vec3 l i g h tCo l o r = vec3 (1 . 0 , 1 . 0 , 1 . 0) ;

43 f loat i n t e n s i t y ;

44 i n t e n s i t y = dot (l i g h t d i r , normal ize (norm)) ;

45 // Sumi−E Edges

46 vec3 vee = viewPos − v s p o s i t i o n ;

47 vec3 vee norm = normal ize (vee) ;

48 vec3 norm view = (view ∗ vec4 (vs normals , 1 . 0)) . xyz ;

49

49 vec3 r = 2∗(dot (norm view , vee norm)) ∗(norm view−vee norm) ;

50 f loat m = 2 ∗ s q r t (pow(r . x , 2)+pow(r . y , 2) + pow(r . z+1 ,2)) ;

51 f loat tu = r . x/m + 1/2 ;

52 f loat tv = r . y/m + 1/2 ;

53

54

55 // i f (dot (viewDir , normal d ir) < 1 .0) {
56 i f (dot (viewDir , normal d i r) < mix (u n l i t o u t l i n e t h i c k n e s s ,

l i t o u t l i n e t h i c k n e s s , max(0 . 0 , dot (normal dir , l i g h t d i r)))) {
57 i f (o u t l i n e s e l e c t i o n == true) {
58 c o l o r = clamp (tex ture (brush texture map , vec2 (tu , tv) + vec2 (tu , tv) ∗

wobb l e d i s t o r t i on) , 0 , 1) ;

59 } else {
60 c o l o r = vec4 (s o l i d o u t l i n e c o l o r , s o l i d o u t l i n e c o l o r ,

s o l i d o u t l i n e c o l o r , 1 . 0) ;

61 }
62

63 } else {
64 i f (c e l s h a d e r s e l e c t i o n == true) {
65 // Main co l o r W

66 i f (i n t e n s i t y > 0 . 6) {
67 c o l o r = vec4 (1 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ;

68 }
69 // Trans i t ion from secondary c o l o r s 3

70 // Secondary co l o r LG−W2

71 else i f (i n t e n s i t y > 0 . 525) {
72 c o l o r = vec4 (0 . 8 9 , 0 . 89 , 0 . 89 , 1 . 0) ;

73 }
74 // Secondary co l o r LG−W1

75 else i f (i n t e n s i t y > 0 . 475) {
76 c o l o r = vec4 (0 . 8 , 0 . 8 , 0 . 8 , 1 . 0) ;

77 }
78 // Main co l o r LG

79 else i f (i n t e n s i t y > 0 . 4) {
80 c o l o r = vec4 (0 . 737 , 0 . 737 , 0 . 737 , 1 . 0) ;

81 }
82 // Trans i t ion from secondary c o l o r s 2

83 // Secondary co l o r DG−LG2
84 else i f (i n t e n s i t y > 0 . 325) {

50

85 c o l o r = vec4 (0 . 6235 , 0 .6235 , 0 .6235 , 1 . 0) ;

86 }
87 // Secondary co l o r DG−LG1
88 else i f (i n t e n s i t y > 0 . 275) {
89 c o l o r = vec4 (0 . 4 3 , 0 . 43 , 0 . 43 , 1 . 0) ;

90 }
91 // Main co l o r DG

92 else i f (i n t e n s i t y > 0 . 2) {
93 c o l o r = vec4 (0 . 321 , 0 . 321 , 0 . 321 , 1 . 0) ;

94 }
95 // Trans i t ion from secondary c o l o r s 1

96 // Secondary co l o r B−DG2
97 else i f (i n t e n s i t y > 0 . 125) {
98 c o l o r = vec4 (0 . 2313 , 0 .2313 , 0 .2313 , 1 . 0) ;

99 }
100 // Secondary co l o r B−DG1
101 else i f (i n t e n s i t y > 0 . 075) {
102 c o l o r = vec4 (0 . 098 , 0 . 098 , 0 . 098 , 1 . 0) ;

103 }
104 // Main co l o r B

105 else {
106 c o l o r = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;

107 }
108 } else {
109 vec3 d i f f u s e t e x t u r e c o l o r = texture (mesh texture map ,

a t e x tu r e c o o rd i n a t e) . rgb ;

110 // f l o a t t on e t e x t u r e u = min(i n t e n s i t y ∗ (0 .3∗ d i f f u s e t e x t u r e c o l o r . r +

111 // 0.59∗ d i f f u s e t e x t u r e c o l o r . g +

112 // 0.11∗ d i f f u s e t e x t u r e c o l o r . b) ,

113 // 1) ;

114 f loat t one t ex tu r e u = clamp (i n t e n s i t y ∗ (0 . 3∗ d i f f u s e t e x t u r e c o l o r . r +

115 0 .59∗ d i f f u s e t e x t u r e c o l o r . g +

116 0 .11∗ d i f f u s e t e x t u r e c o l o r . b) ,

117 0 , 1) ;

118 c o l o r = texture (tone texture map , vec2 (tone tex ture u , 0 . 5)) ;

119 }
120 }
121 i f (t e x t u r e s e l e c t i o n==true) {
122 // Normal Mapping Part

51

123 vec3 d i f f u s e t e x t u r e c o l o r = texture (mesh texture map ,

a t e x tu r e c o o rd i n a t e) . rgb ;

124 // Limunance

125 f loat d i f f u s e t e x tu r e bw = texture luminance ∗dot (d i f f u s e t e x t u r e c o l o r ,

vec3 (0 .2126729 , 0 .7151522 , 0 .0721750)) ;

126

127 // c e l shader co l o r ∗ d i f f u s e t e x t u r e BW co l o r

128 c o l o r = co l o r ∗vec4 (d i f f u s e t ex tu r e bw , d i f f u s e t ex tu r e bw ,

d i f f u s e t ex tu r e bw , 1 . 0) ;

129 }
130

131 // Average co l o r used to ob ta in a lpha va lue

132 f loat avg co l o r = clamp ((c o l o r . x + co l o r . y + co l o r . z) /3 , 0 . 0 , 1 . 0) ;

133 i f (avg co l o r <= pape r a lpha th r e sho ld) {
134 c o l o r . a = clamp ((1 − avg co l o r) , 0 . 0 , 1 . 0) ;

135 }
136

137 // Threshold v a l u e s f o r d i s ca rd ing p i x e l s

138 i f (c o l o r . a < paper a lpha d iv) {
139 d i s ca rd ;

140 }
141 f r a g c o l o r = co l o r ;

142 }

Listing 9: Final vertex shader used by the rendering pipeline

1 #ve r s i on 330

2

3 // l ayou t (l o c a t i o n = 0) in vec3 v e r t e xPo s i t i on ;

4 // l ayou t (l o c a t i o n = 1) in vec3 vertexNormals ;

5 in vec3 ve r t exPos i t i on ;

6 in vec3 vertexNormals ;

7

8 out vec3 nEye ;

9 out vec3 fragPos ;

10 out vec3 vsNormals ;

11 out vec3 v sPos i t i on ;

12

13 uniform mat4 model , ortho , proj , view ;

14 uniform vec3 l ightPos , viewPos ;

52

15 uniform f loat ambientStrength , specu la rS t r ength ;

16

17 void main () {
18 fragPos = vec3 (model ∗ vec4 (ve r t exPos i t i on , 1 . 0)) ;

19 nEye = (view ∗ vec4 (vertexNormals , 0 . 0)) . xyz ;

20 // vsNormals = vertexNormals ;

21 vsNormals = normal ize (mat3 (model) ∗ vertexNormals) ;

22 // v sPos i t i on = ve r t e xPo s i t i on ;

23 vsPos i t i on = mat3 (model) ∗ ve r t exPos i t i on ;

24 g l P o s i t i o n = pro j ∗ view ∗ model ∗ ortho ∗ vec4 (ve r t exPos i t i on , 1 . 0) ;

25 }

53

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Objective
	Assumptions
	Limitations

	Chapter Background Research
	Non-Photorealistic Rendering
	Painting in NPR
	Sumi-E Painting
	Previous Work
	State of the Art

	Chapter Design and Implementation
	Comparison of Rendered Images and Sumi-e Paintings
	Rendering Pipeline Design
	Final Implementation

	Chapter Results
	Tests and Comparison with Sumi-E
	Performance
	Conclusions

	Chapter Future Work
	Bibliography
	Appendices

