
School of Computer Science and Statistics

Federated Meta-Learning: A Novel
Approach for Algorithm Selection

Mukesh Arambakam

Supervisor: Dr. Joeran Beel

A Dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science (Data Science)

2020

http://www.scss.tcd.ie

Declaration

I hereby declare that the work described in this dissertation is, except where otherwise stated,
entirely my own work, and has not been submitted as an exercise for a degree at this or any
other university

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:
. Mukesh Arambakam

i

07-09-2020

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Permission to lend and/or copy

I agree that the Trinity College Library may lend or copy this dissertation upon request.

Signed: Date:
. Mukesh Arambakam

ii

07-09-2020

Acknowledgements
Throughout the course of this dissertation I have received a great deal of support and
assistance from a lot of people.

First and foremost, I would like to thank my supervisor, Dr. Joeran Beel, for the research
idea and for his continuous support throughout the project. I also would like to thank him
for believing in me and giving me the autonomy to work on the project and develop each
stage of the application as I wanted.

Secondly, I would like thank my friends Manasi, Aishwarya and Jagadish, who provided me
with advice and proofread my report. I would also like to thank them for their efforts in
acting as alpha testers of the application and providing me with valuable feedback in
improving the user-experience of the application.

Finally, I would like to thank my family for their constant support and patience during these
unforeseen circumstances, especially my mother for her constant moral support without
whom this would not have been possible. Thanks Mum!

iii

Abstract

“Federated Meta-Learning” (FML), a concept that allows everyone to benefit from the
data that is generated through software libraries including machine learning and data science
libraries. It focuses on learning the algorithm performance measures and making recommen-
dations based on the model created. I introduce FMLearn, an application developed using the
client-server model, which allows the exchange of meta-data about machine learning models
and data in itself, for the purpose of meta-learned algorithm selection and configuration. The
input to FMLearn is a dataset and the output is a recommendation for the potentially best
performing algorithm(s) and it’s hyper-parameters to solve the task. This recommendation
is made by a model built using the Meta-Features obtained from the dataset description,
using the K-Nearest Neighbours algorithm and historic performance data. Scikit-Learn’s toy
datasets along with other datasets from UCI Machine Learning repository were used and eval-
uated against various machine learning algorithms using GridSearchCV and Cross-Validation
for which the execution time was measured. In the case previously seen datasets like scikit-
learn’s breast cancer dataset, an execution time of approximately 94.24min was recorded to
find the best algorithm by performing Grid Search and Cross-Validation. Whereas, when
FMLearn was asked to recommend the best algorithm, the application only took 3secs to rec-
ommend the best performing algorithm along with its model parameters. For a large dataset
like the skin segmentation, traditional means for finding the best performing algorithms takes
approximately 869.74 minutes and when FMLearn was asked to recommend the same, it took
only 3secs. In the case of previously unseen but similar datasets, the recommended algorithm
is accurate, but the hyper-parameters required re-optimisation to suite the dataset. For a
previously unseen and highly dissimilar dataset, FMLearn recommends a list of algorithms
which it thinks are best suited for that dataset based on its prior knowledge. In this case,
FMLearn recommends the best performing algorithm about 60% of the time. Overall, the
use of this application allows the user to scale down an average of 86.718% and 95.762%
of time and electricity for small and large datasets respectively by eliminating the repetitive
and time consuming task of algorithm selection and configuration from the Machine Learning
Workflow.

Keywords

Federated Meta-Learning, FMLearn, AutoML, Machine Learning, RecSys, Dataset Meta-
Features, Algorithm Selection, Algorithm Configuration

iv

Contents

1 Introduction 1
1.1 AutoML . 2
1.2 Motivation . 2
1.3 Research Problem . 3
1.4 Federated Meta Learning . 3
1.5 Research Goal . 4
1.6 Contributions . 4

2 Background Details 6
2.1 Meta-Learning . 6
2.2 Automated Machine Learning . 7

2.2.1 Algorithm Selection . 7
2.2.2 Algorithm Configuration . 8

2.3 Workflow of AutoML Libraries . 8
2.4 Meta-Features . 9
2.5 Related Work . 10

2.5.1 Federated Meta-Learning . 10
2.5.2 Other Related Concepts and Research 11

3 Design and Implementation 15
3.1 Federated Meta-Learning . 16
3.2 Workflow of Federated Meta-Learning . 16
3.3 FMLearn . 17

3.3.1 Design Decisions . 18
3.3.2 Architecture Design . 19

3.4 The Client: modified Scikit-Learn . 21
3.4.1 Data Description: Auto-Sklearn . 23

3.5 The Server: FMLearn . 24

v

3.5.1 KNN Algorithm . 28
3.5.2 Pre-Processing and Model Building 30

3.6 FMLearn Workflow . 30
3.7 Security and Privacy Concerns . 32

3.7.1 Security Concerns . 32
3.7.2 Data Protection . 34
3.7.3 Social Concerns . 35

4 Evaluation 36
4.1 Methodology . 36
4.2 Results . 39

5 Conclusion 44

6 Limitations and Future Work 45

A1Appendix 50
A1.1 Code Availability . 50
A1.2 Machine Details . 50
A1.3 Meta-Features: Auto-Sklearn . 51

vi

List of Figures

2.1 AutoML Workflow Diagram . 9

3.1 Federated Meta-Learning Workflow Diagram 16
3.2 Architecture Diagram . 20
3.3 Sample Output . 22
3.4 Class Diagram . 26
3.5 Sequence Diagram . 31

4.1 Execution Time for Small Datasets as seen in Table 4.1 40
4.2 Execution Time for Large Datasets as seen in Table 4.2 41
4.3 Percentage of Time Saved . 42

vii

List of Tables

4.1 Execution time when using GridSearch vs FMLearn for small datasets 40
4.2 Execution time when using GridSearch vs FMLearn for large datasets 41

viii

Nomenclature
Auto* Automated
AutoML Automated Machine Learning
API Application Programming Interface
DAA Distributed Application Architecture
DML Distributed Machine Learning
FML Federated Meta-Learning
FedML Federated Machine Learning
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
KNN K-Nearest Neighbours
ML Machine Learning
MtL Meta-Learning
NF Normal Form
NP Non-Deterministic Polynomial Time
PaaS Platform as a Service
SAT propositional satisfiability problem
SQL Structured Query Language
SVM Support Vector Machines
i Single Instance from a Set
m Cost Metric
A Algorithm
D Dataset
I Set of Instances
P Portfolio of Algorithms
R Problem Statement

All measurements of time used in the report are in minutes unless specified otherwise.

All measurements of power specified in this report are in watts unless specified otherwise.

ix

1 Introduction

An ever-growing number of algorithms are used to solve machine learning and data science
tasks, the challenge of algorithm selection and configuration is subjected to intensive research.
(1, 2, 3, 4, 5, 6). The algorithm selection problem characterises the challenge of finding
an effective algorithm for a given dataset or task on an instance-by-instance basis from a
set of algorithms. This problem is motivated by the fact that different algorithm performs
differently on different datasets. When put simply, algorithm A performs poorly on a dataset
X, while algorithm B performs well, choosing algorithm B over algorithm A for the given
dataset X, without having to run both algorithm A and B to find out which of these would be
a better performer is the challenge of algorithm selection. There are various techniques to find
out which algorithm works better, few examples of such techniques would be winner-takes-
all, heuristic approximation, feature analysis, meta-learning and many more. In this research
paper, the focus is on the Meta-Learning approach.

Meta-learning is one of the most promising techniques to warm start the algorithm selection
and configuration process (7). With meta-learning, a machine learning model is trained to
predict how algorithms perform on various tasks. The meta-learning model is built based on the
past performance of algorithms over a large number of tasks or datasets, which are described
through meta-features. It does this by learning the relationships between the different meta-
features of data, and performance of the algorithm on the data. For unseen tasks, the
best performing algorithms can be predicted through the meta-learner (and subsequently be
optimized using techniques such as Bayesian Hyper-Parameter Optimization). These meta-
features are also known as the characterisation measures and there are no standard set of
meta-features which can be used to describe the dataset accurately, but there are several
approaches to characterise the dataset as described in (8), (9) and (10). These meta-features
are used to describe and characterise the dataset, which is then used to provide an assessment
of algorithm’s performance.

1

1.1 AutoML

Automated Machine Learning or AutoML, is the process of automating the time consuming
task of Algorithm Selection and Optimizing the Hyper-Parameters. The task of Algorithm
Selection is usually done on an instance by instance basis. There are many tools which offer
this feature like Auto-Sklearn, OpenML, etc., however, these tools select the best performing
algorithm by predicting the performance of each algorithm for a given task by running various
algorithms on a subset of the entire dataset and then choosing the best performing algorithm
on that subset for the task. Though this is just a over-simplified explanation of what the
libraries do internally, this is a time consuming task, and in-turn electricity and computational
power before it could suggest the best performing algorithm for the task. Even if the task is
to find the best algorithm for a previously seen dataset the entire process is repeated.

The same can be said for Hyper-Parameter Optimisation / Tuning as well, this is a process
of selecting a set of optimal hyper-parameters for an algorithm. A hyper-parameter is a
parameter whose value is used to control how a machine learning algorithm solves a given
problem. Hyper-Parameter Optimisation is also a task that takes a great deal of time, elec-
tricity and computational power, before an optimal set of hyper-parameter can be chosen for
an algorithm-dataset pair. Hyper-Parameters are selected by building models based on a com-
bination of parameters specified and evaluating the models to find the best set of parameters
for which the selected algorithm performs the best.

1.2 Motivation

A challenge in algorithm selection and configuration is the (non) availability of data in some
disciplines to build the meta-learning model, which is due to the workflow of machine learning,
data science or other projects. Typically, software libraries – be it machine learning libraries
like Auto-sklearn (8), Auto-Weka (11) or ML-Plan (12), recommender system libraries like
LibRec-Auto (13), Auto-Suprise (14) are used in isolation, either locally or in the cloud.
The term “in isolation” implies that, the information regarding how algorithms perform on a
particular dataset, is neither published nor shared. Consequently, computationally expensive
algorithm selection and hyper parameter optimization is performed by each machine learning
engineer over and over again for the same datasets, which is a huge waste of Time, Electricity,
Computational Power and Money.

2

1.3 Research Problem

The resources such as time spent for the task of algorithm selection and hyper-parameter
optimisation is justifiable for the first time search of the best algorithm is performed. On
the other hand, with the increasing popularity and use of Machine Learning for various tasks,
time, electricity and computational power spent in finding the best algorithm for a given a
dataset, along with it’s optimal hyper-parameters becomes a repetitive task.

Considering a small and simple dataset like the Breast Cancer Dataset with 569 records and
30 features, spending 94.24 minutes to find the best performing algorithm is a very long
time for which the developer has to wait before proceeding with further computational tasks.
This also means an average of about 125.65W of power is being consumed by the computer
(check Appendix A1.2 for power consumption on the tested machine). For a large dataset
like the Skin Segmentation dataset with 245057 records and 4 features, it takes approximately
869.74 minutes to find the best performing algorithm and this task consumes approximately
1159.65W of energy. Even if this task is repeated a couple of hundred times, the electricity
wasted performing the same task repeatedly is huge!

The problem here is the workflow of machine learning and data science libraries, these libraries
usually work in isolation and the information regarding how an algorithm performs on a partic-
ular dataset is neither published nor shared. This leads to computationally expensive and time
consuming task like algorithm selection and hyper-parameter optimisation being performed
repeatedly for the same dataset.

1.4 Federated Meta Learning

Beel proposed “Federated Meta-Learning” (15), a concept that allows everyone to benefit from
the data which is generated through software libraries including standard machine learning and
data science libraries as well as the auto* tools.

Federated Meta Learning focuses on learning the algorithm performance measures for arbitrary
tasks across devices. He envisioned federated meta learning as an ecosystem where the raw
data is kept on the original devices and the meta data, algorithm names, combined with
performance metrics of the algorithm on the tasks would be stored on a central FML server
(though a peer-to-peer architecture might also be possible). Using this historic performance
data, a model is trained and is used to predict the best performing algorithm along with its
hyper-parameters for a previously seen or unseen task.

3

1.5 Research Goal

The goal of this research is to facilitate the algorithm selection and configuration process. This
can be done by making it faster with the use of historic performance data, produced on various
devices and by various machine learning algorithms and libraries. This data can be used to
improve the performance of algorithm selection, thus saving time, electricity, computational
power and money which will otherwise be required for finding the best algorithm and its
optimal hyper-parameters for the task.

To improve the algorithm selection and configuration process, a prototype of Federated Meta
Learning named FMLearn is presented. The potential benefits of this research include the
development of FMLearn a tool that applies the concepts of Federated Meta-Learning to
suggest users with the best algorithm along with it’s hyper-parameters for a previously seen
or unseen task.

The goal is to develop an application, FMLearn as a simple proof-of-concept for Federated
Meta-Learning and it should allow everyone to benefit from the data that is generated through
machine learning and data science libraries. When put simply, the input to FMLearn is a
dataset and the output is a recommendation for the potentially best performing algorithm(s)
and it’s hyper-parameters to solve that task.

FMLearn also provides an additional benefit by acting as a publicly available knowledge base
or a directory of algorithms-data performance measures with an ability to improve and/or add
data to this knowledge base. Additionally it also showcases an ability to use this knowledge
via the API’s provided by the FMLearn application for other similar tasks. Another important
benefit is the ability for any Machine Learning or Data Science tool to use FMLearn irre-
spective of the programming language used to build them to get a recommendation for the
potentially best performing algorithm(s) and it’s hyper-parameters to solve it’s task without
being constrained by the need to use the client that is supported by this paper (modified
scikit-learn).

1.6 Contributions

This research utilises the novel concept of Federated Meta-Learning in it’s core, applies it’s
principle and proposes the first prototype of the application FMLearn. The application will
ultimately facilitate the algorithm selection and configuration process in finding the best per-
forming algorithm for a given task. Apart from this, the research also makes the following
contributions to the community:

4

• FMLearn acts as a knowledge base or directory of algorithms-data performance mea-
sures.

• Provides a publicly available API server to facilitate access of the performance measures
and also the algorithm selection and configuration process.

• Provides a client implementation in python to access the API’s provided by the server.

• This research acts a proof of concept for Federated Meta-Learning and how it helps in
saving time and hence electricity, computational power and money for the user.

This research was also published at the 7th ICML Workshop on Automated Machine Learning
(AutoML), under the name Federated Meta-Learning: Democratizing Algorithm Selection
Across Disciplines and Software Libraries (16).

5

2 Background Details

This chapter provides insights about multiple areas related to Federated Meta-Learning. It
takes a deeper look into the fundamental concepts related to this research and also discusses
other related work and existing research in the fields of Distributed (Machine) Learning,
Federated Learning, Meta-Learning, Algorithm Selection and Automated Machine Learning.
This chapter also provides an understanding of the current state of research in the areas of
Algorithm Selection, AutoML and Meta-Feature abstraction.

2.1 Meta-Learning

Meta-Learning in the context of Machine Learning is learning how to learn. It can also be
attributed to the study of principal methods that use meta-knowledge to create efficient
models by using machine learning techniques. Meta-Learning algorithm use experience to
learn how to perform a certain task, these modified learner are better than the original learner
as they have gained additional experience. Each algorithm works on a set of assumptions
about the data, that it is inductively biased, meaning that the algorithm will learn well (or
work as expected) given that the bias matches the learning problem at hand. This introduces
restrictions about the type of data and the techniques used to collect this data to perform
the meta-learning. By using different types of meta-data, like in this case meta-features of
the dataset, it is possible to learn to effectively solve a learning problem. There are three
approaches to meta-learning algorithm model-based, metrics-based and optimisation-based.

• Model-Based: This type of meta-learning models updates its model-parameters rapidly
with training over a dataset.

• Metric-Based: The core idea in type of models is similar to that of nearest neighbours
algorithms and a relationship between tasks are established.

• Optimization-Based: In this case the algorithms plays around with the optimisation
algorithms which is used to train the model.

6

2.2 Automated Machine Learning

Automated Machine Learning or AutoML, is the process of automating the time consum-
ing task of Algorithm Selection and Optimizing the Hyper-Parameters. Traditional machine
learning model creation is highly resource-intensive and requires significant domain knowledge
and time to create and compare dozens of models. With AutoML, the user will be able to
accelerate the time it takes to get ML models with great ease and efficiency. There are many
tools that offer to perform this complicated and time consuming task like Auto-Sklearn, Auto-
Weka, Auto-Keras, etc. Apart from these tasks AutoML tools also perform feature selection,
featuring engineering, data pre-processing, analyse and tune the results. Among the various
tasks performed by the AutoML Tools, the most time consuming tasks are Algorithm Selection
and Hpyer-Parameter Optimisation.

2.2.1 Algorithm Selection

Algorithm Selection is usually done on an instance by instance basis, meaning different algo-
rithm have to be chosen for different datasets. An algorithm which performs exceptionally
well for one dataset may perform poorly for another. The task of choosing an algorithm is
dependent on what data we have and how we choose to use it, meaning how the data is
cleaned, encoded, imputed, distributed and also how they co-relate with other features or
variables within the dataset. The manual task of algorithm selection involves studying and
understanding the relationship between different features of the dataset, trying various types
of pre-processing steps to bring out the inter-feature relationship which best explains the data.

The tools which perform Algorithm Selection choose the best performing algorithm by pre-
dicting the performance of each algorithm for a given task by running various algorithms on
a subset of the entire dataset repeatedly after performing different pre-processing steps and
then choose the best performing algorithm on that subset for the task. Though this is just a
over-simplified explanation of what the libraries do internally, this task is more of a straight
forward approach which reduces the effort that a developer needs to put in to select an al-
gorithm. But this process comes with a huge trade-off, it takes up a lot of time, electricity
and computational power before it could suggest the best suited algorithm for the task. Even
if the task is to find the best algorithm for a previously seen dataset the entire process is
repeated.

7

2.2.2 Algorithm Configuration

The task of Algorithm Configuration can be attributed to Hyper-Parameter Optimisation /
Tuning, which is a process of selecting a set of optimal parameters for an algorithm for which
it performs best on a dataset. A hyper-parameter is a parameter whose value is used to control
how a machine learning algorithm solves or learns to solve a given problem. Hyper-Parameter
Optimisation of an Algorithm is a type of Optimisation problem. And a typical Optimisation
problem consists of minimising or maximizing the set of parameters along with the metric.
This task takes a lot of time to solve by an expert with an in-depth knowledge, and is not
something that can be performed with ease by a developer and hence the alternate approach
of automating the task is adopted.

There are various optimisation strategies, among them, the commonly used strategies are:
Grid search, Random search, Hill Climbing and Bayesian optimization. These techniques
are used in combination with cross-validation for evaluating how the results of a statistical
analysis will generalise irrespective of the dataset. The working of these strategies are out
of scope of this paper, but to give an brief understanding, Grid search is a hyper-parameter
tuning approach that will build and evaluate various models, where each model is build on a
combination of algorithm parameters specified in a grid. The important thing to note is that
these strategies takes up a great deal of time, electricity and computational power, before a
optimal set of hyper-parameter can be chosen for an algorithm-dataset pair.

2.3 Workflow of AutoML Libraries

In this section, the workflow of AutoML libraries will be discussed without getting to the details
regarding the internal workings of the algorithms or the libraries. The figure 2.1 represents the
workflow of a typical AutoML project for a given task or dataset. The data is split into training
and testing datasets, the training dataset is first sent to the library for the purpose of model
creation. Here, the dataset is pre-processed using various techniques like data-cleaning, data
imputation, data encoding, feature selection, feature exploration, feature engineering, feature
co-relation, etc..

Once, the data has been pre-processed, the dataset is split into a smaller subsets of the
training dataset. One such subset is randomly chosen on which multiple algorithms are run
to train and create a model for comparison and evaluation. Once the training and model
creation of all chosen algorithms are completed, these models are evaluated based on multiple
parameters, one of which is their performance of an unseen data. When the performance
metrics are calculated these models are evaluated and compared between each other and the

8

Figure 2.1: AutoML Workflow Diagram

best performing model is chosen for further training. Depending on the internal evaluation
strategy of the AutoML tool used, more than one algorithm can be chosen for further training.
Once these model(s) are chosen they are trained on various configurations of hyper-parameters
using one of these search strategies; Grid Search, Randomized Search, Bayesian Optimization,
etc. Once these models are trained and their hyper-parameters are optimised on the complete
training dataset, they are evaluated against the testing dataset and the final best performing
model is returned to the user.

2.4 Meta-Features

In the notion of Meta-Learning (MtL), Meta-Features are measures used to describe datasets
and their relationship with algorithm bias. Meta-Features are used in Meta-Learning and
AutoML tasks to describe the underlying dataset to create a machine learning, recommender
systems and other models. The Meta-Features can be categorised to various groups, namely:
General, Statistical, Information-theoretic, Model-based, landmarking, Relative Landmarking,
Clustering, Complexity, etc. (9) (10) (17). The most frequently adopted meta-features in
three of the important categories used in this research are:

• General Meta-features: Number of observations, Number of attributes, Number of
output values, Dataset dimensionality.

• Statistical Meta-features: Standard deviation, Coefficient of variation, Covariance,
Linear correlation coefficient, Skewness, Kurtosis

• Information-Theoretic Meta-features: Normalized class entropy, Normalized at-
tribute entropy, Joint entropy of class and attribute, Mutual information of class and
attribute, Equivalent number of attributes, Noise-signal ratio.

9

The Meta-Features discussed above are just a small sample of various possible characterisation
features (9) (10) (17) , this is not an exhaustive list and details about these features are out
of scope of this research.

2.5 Related Work

2.5.1 Federated Meta-Learning

Chen in (18) has used the term Federated Meta-Learning once before, but in a completely
different context. The terms, Distributed Machine Learning (19) and Federated Machine
Learning (20) are related to Federated Meta-Learning, in the sense that they share a few
underlying concepts but yet totally different.

Distributed (Machine) Learning

Automatic Learning has become popular and important in the recent years due to exponential
growth of data being collected and the need to analyse data to create machine learning
models. Peteiro in his survey of methods for Distributed Machine Learning (19), points out
that these needs introduced a new type of challenge with respect to efficiency and scalability
of machine learning algorithms related to computational and memory resources. To solve
this challenge researchers proposed two approaches, one is the concept of distributed machine
learning algorithm which posses various limitations and the other strategy is to combine the
outputs of various algorithms in a fashion similar to ensembling. On doing so large datasets
can be addressed using a distributed clustering environment where both the techniques are
used in combination to attain best possible results.

Federated Learning

Federated Machine Learning (20) is a collaborative learning strategy where a machine learning
algorithm is trained across multiple devices which hold the data without exchanging it, i.e,
the users remain the owners of the data. This approach is different to traditional approach
of having a centralised repositories of data similar to OpenML (21) and also the approach
of distributed machine learning, it is assumed that the data is identically distributed across
devices. Federated Learning allows the end users to build a common, robust model across
devices without sharing data, thus addressing important issues regarding data security and
privacy.

10

Federated Learning vs Federated Meta-Learning

Federated Machine Learning enables devices to collaboratively learn a shared prediction model
while keeping all the training data on device, decoupling the ability to do machine learning
from the need to store the data in a centralised server. Whereas Federated Meta-Learning
provides an ecosystem where the learning happens locally on the users machine based on the
dataset’s meta-data that the user provides. This meta-data is used to make a recommendation
of an algorithm that is used to create a model. Here, both the learning and data is kept on
the users machine.

2.5.2 Other Related Concepts and Research

Algorithm Selection

The field of algorithm selection and configuration is an area of intense research, according to
Wikipedia, as stated by Rice in (22), the process of algorithm selection is defined as:

Definition 1: Given a portfolio P of algorithms A ∈ P , a set of instances i ∈ I and a
cost metric m : P × I → R, the algorithm selection problem consists of finding a mapping
s : I → P from instances I to algorithms P such that the cost

∑
i∈I

m(s(i), i) across all

instances is optimized.

Rice, went into great detail about explaining about what he thought were the four major
criteria in the selection process. The four primary criteria are as follows: Best Selection, Best
Selection for a Subclass of Problems, Best Selection from a Subclass of Mappings and Best
Selection from a Subclass of Mappings and Problems. He also proposed five major steps
for analysis and solution of the algorithm selection process. The steps being: Formulation,
Existence, Uniqueness, Characterization and Computation. He also explained in great detail
about these criteria and steps using various example problem and formulating the best al-
gorithm selection process for these criteria along with models. By doing this Rice in (22)
proposed 15 questions that he suggested to be asked before an algorithm is chosen.

In (23), Kerschke and others talks about algorithm selection problem by giving importance
to per-instance algorithm selection problem that is; given a computational problem, a set of
algorithms for it, and a specific instance that needs to be solved, the problem is to determine
which algorithm(s) can be expected to perform best on that instance. The authors also
relates this type of problem to per-set algorithm selection, algorithm configuration, algorithm

11

schedules and parallel algorithm portfolios and discusses about them in detail. By doing so in
(23), the authors also compare the results, discuss the problems faced and propose solutions
for algorithm selection in discrete and continuous problems. They also provide an informative
overview of problem specific feature set about which they discuss and provide a strong basis
of why these characteristics are used in algorithm selection. They also shed some light on
various other applications and contributions based on their impact in this ever growing and
evolving field of algorithm selection.

The propositional satisfiability problem or SAT is an NP-Complete problem, and in (24) the
authors propose an automated approach for constructing per-instance algorithm portfolios
for SAT and proposed a online platform called SATzilla. Here the authors propose a new
approach to algorithm selection based on the idea of building an approximate run-time predic-
tor compared to the previous "winner-takes-all" approach. In the winner-takes-all approach
where the algorithms run-time is measured on a representative set of the problem and which
ever algorithm performs better takes the top spot. The approximate run-time predictor is an
heuristic approximation to the perfect solution and the authors built an empirical hardness
model, which is a computationally inexpensive predictor of an algorithm’s run-time and it
based on features of the instance and past performance of the algorithm.

ASLib (1) is a benchmark library for algorithm selection, which focuses on (not a limitation
to) constraint satisfaction problems. The authors introduced 12 algorithm selection scenarios
from six different areas, discussed the formats and showed examples for automated exploratory
data analysis that will run for each new scenario which has been submitted to their ASLib
platform. Their platform also facilitates algorithm selection methods by providing a common
set of benchmarks and tools. The authors built on top of Rice’s (22) formalisation of algorithm
selection and also took a different approach than that of SATzilla (24). SATzilla approach was
to select a single algorithm for solving the problem instance, ASLib, tries to find a schedule
where ordering and time budget where all or a subset of the all the algorithms can be executed
in a to reflect the expected performance of the given algorithm.

AutoML

Though the above mentioned researchers laid the foundation for algorithm selection, these
researches either discussed about the problem in general or focused on one particular field like
the propositional satisfiability or SAT problem(s). Due to the growing demand in commercial
use of Machine Learning, various enterprises have aimed to satisfy the AutoML problem,
this has lead to the increase in research and development of tools which help novices to use
machine learning without the expertise required.

12

According to (8) and (11), new methods for increasing efficiency and robustness of AutoML
are the current trend and focus in this area of research. The authors proposed tools like Auto-
Sklearn and Auto-WEKA respectively to solve the problem of algorithm selection by improving
on the existing AutoML methods. In Auto-Sklearn (8), the authors made improvements
to the AutoML approach by introducing Meta-learning, in which they used to find good
instantiations of machine learning algorithms, it is a complementary approach to that of
Bayesian optimization techniques. In another approach the authors of Auto-Sklearn used
automated ensemble construction, where they used the models created during the evaluation
process, instead of discarding these models they used the models in a post-processing technique
to create an ensemble which is evaluated during optimization and from there results they found
that the ensemble almost always outperformed individual models.

In Auto-WEKA (11), the authors built on the Bayesian Optimisation approach. They used
the Tree-structure Parzen Estimator (TPE) approach which is a Sequential Model-Based Op-
timization (SMBO) algorithm, they also used Sequential model-based algorithm configuration
(SMAC) models, used to create probabilistic models. These two types of models gave ro-
bust performance for algorithm selection and probabilistic estimators for hyper-parameters
respectively, which were used to demonstrate the feasibility of an automatic approach to
learning algorithm and hyper-parameter selection. The result of this research was a tool
called Auto-WEKA, which has a list of 47 WEKA classification algorithms that were used as
a single learning algorithm, which selects a single base classifier and a meta- or ensemble-
classifiers. It was one of the first tools to perform a fully automated algorithm selection and
hyper-parameter optimization for a large set of candidates.

Meta-Features

Rivolli in (17) surveys a comprehensive list of meta-features and how they are used in classifi-
cation problems, they authors also analyse and organise the meta-features by highlighting their
positive and negative attributes of each meta-feature. They also defined what a meta-feature
is, and it is as follows:

Definition 2: Let D ∈ D be a Dataset, m : D → Rk ′
be a characterisation measure, and

σ : Rk ′ → Rk be a summarisation function. Both m and σ have also hyper-parameters
associated, hm and hσ respectively. Thus, a meta-feature f : D → Rk for a given dataset D
is given by:

f (D) = σ(m(D, hm), hσ)

13

The measure m can extract more than one value from each data set, i.e., k ′ can vary according
to D, which can be mapped to a vector of fixed length k using a summarisation function σ.

The authors also present a tool called Meta-Feature Extractor, which can be used to measure
the meta-features proposed and discussed in this paper and made the tool publicly available
to the users as a package in Python and R.

The authors in (9) and (10) introduce concepts about meta-features characterisation and
selection algorithm respectively. Castiello in (9) analyses most commonly used meta-features
and discusses their properties in an inherent manner. He also introduces new features by
transforming the existing features as a result of their analysis. The author(s) also suggest a
set of measures that can be used to describe a dataset using the proposed meta-features. The
suggested meta-features can be used as a bias for other base-learning in for their respective
tasks.

Filchenkov in (10) creates an optimal meta-feature suggestion algorithm for different cases.
The authors do this by creating a new approach for meta-feature engineering, which has been
proved useful by them for feature selection algorithm’s recommendation. They also conduct
an almost complete analysis of most of the popular meta-features and use the results so
obtained to suggest optimal meta-features for different tasks. One of the major contributions
by this paper is the analysis they have done in relation to classification algorithms. They
have used various popular classification algorithms for which the author(s) engineered new
meta-features and recommended existing meta-features for most of the popular algorithms
and they categorised this specific type of measures as model-based meta-features.

14

3 Design and Implementation

This chapter provides details regarding the FMLearn application, implementation of the pro-
posed concept, that is, Federated meta Learning and it’s working mechanisms. Each compo-
nent of the application is discussed in detail including the components that were considered
and tested, but are not a part of the final experimentation. Explanation of all the design
decisions are provided in detail so as it make it easier for the reader to understand how the
application developed over-time and reached it’s final state. The FMLearn application at-
tempts to solve the issue of redundant work put in by developers to find the best algorithm
and it’s hyper-parameters, repeatedly for a previously solved / optimised dataset, and possibly
suggests algorithms for a previously unseen dataset as well. If this is achieved, the users of
this application and the community in general will be greatly benefited by saving time spent
waiting for program to complete, saving electricity consumed on the running the machines
and cooling them, the computational power expended over a repetitive task and money spent
in all of the above is saved in finding the best algorithm and it’s hyper-parameter.

The design and implementation choices led to the development of a working prototype of the
concept Federated Meta-Learning and the application FMLearn. The server was developed in
python and is used to portray the capabilities of the application. The concept of Federated
Meta-Learning discussed in 3.1 and the changes in the workflow of a typical Machine Learning
project caused due to the introduction of Federated Meta-Learning is discussed in section 3.2.
Then we discuss in detail the prototype FMLearn which was built to demonstrate this concept
under section 3.3, while discussing it’s architecture design in section 3.3.2 along with some
design decisions in section 3.3.1 and why these were taken. We will also be discussing in detail
about the Model built by FMLearn to predict / recommend the potentially best algorithm(s)
for a given task along with it’s workflow. In section 3.4 we will be discussing in detail about
the modifications made to scikit-learn so that it can act as a client to FMLearn along with
discussing the data description used.

15

Figure 3.1: Federated Meta-Learning Workflow Diagram

3.1 Federated Meta-Learning

Federated Meta-Learning focuses on learning algorithm performance measures for arbitrary
tasks. Essentially federated meta learning is an ecosystem where the raw data is kept on the
original devices and the meta data and performance metrics of the algorithm on the tasks
would be stored on a central FML server. Using this historic performance data, predict the
best performing algorithm along with its hyper-parameters for a previously seen or unseen
task.

The input to Federated Meta-Learning is a description of the task, and the output is a rec-
ommendation for the potentially best performing algorithm(s) to solve that task. This recom-
mendation could consist simply of a list of the best algorithms, or their predicted performance
values. The list could also consist of multiple sub-lists created with different meta-learners.

In its simplest form, federated meta-learning would simply be a knowledge base or directory
of algorithm-dataset performance measures. Ultimately, Federated Meta-Learning would be
able to predict algorithm performance for unseen tasks.

3.2 Workflow of Federated Meta-Learning

From section 2.3, we know that a typical algorithm selection and configuration task using the
AutoML tools result in a repetitive and time consuming process which in turn eats up a lot of
computing resources, electricity and money. To tackle this problem the concept of Federated
Meta-Learning as seen in section 3.1 can be applied. When we take this concept and apply it
to the current ecosystem of Machine Learning tasks we get a workflow as show in Figure 3.1.

16

Let’s go into detail about the workflow of Federated Meta-Learning, Initial steps of the work-
flow remain similar to the working of AutoML (as seen in section 2.3). The data is split
into training and testing datasets, the training dataset in first sent to the library for the
purpose of model creation. Here, the dataset is pre-processed using various techniques like
data-cleaning, data imputation, data encoding, feature selection, feature exploration, feature
engineering, feature co-relation, etc.

The difference between the 2 processes arise at the point when the data is obtained. The
data apart from being sent to the library for pre-processing it is also sent to the Federated
Meta-Learning application after finding the meta-features of the dataset. Once these meta-
features are obtained Federated Meta-Learning predicts / recommends the potentially best
performing algorithm(s) along with it’s hyper-parameters for the given dataset. Once this
recommendation is received by the Machine Learning library it re-optimises the algorithms
and builds the model based on the training dataset which was received after pre-processing
and this model is then evaluated against the testing dataset and then the final model is
returned to the user.

The major difference with the workflows described in Figure 2.1 (as seen in the Section 2.3 -
Workflow of AutoML Libraries) and Figure 3.1 is the introduction of an external application
which applies the concept of Federated Meta-Learning. This application results in the elim-
ination of the repetitive nature of algorithm selection and configuration task, which would
drastically reduce the time spent on such a task along with the computational resources,
electricity and money spent here.

3.3 FMLearn

FMLearn is an application which is a simple proof of concept of Federated Meta-Learning.
FMLearn allows everyone to benefit from the data that is generated through machine learning
and data science libraries. FMLearn is built using the Distributed Application Architecture
(DAA), following the Client-Server Model. This allows the users to access as well as to
exchange information and services with others. Though a Peer-To-Peer Model would be
possible, this design was avoided due to the limitation in time as well as favouring the ease
of development using the client-server model.

FMLearn consists of a client which in our case a modified version of the popular Machine
Learning library Scikit-Learn, but it could be any machine learning library. The Server is a
Python Flask Application which handles all API calls and Data Store requests made by the user.
FMLearn also acts as a knowledge base, storing all the algorithms-data performance measure
collected though the machine learning library. The server also provides publicly available

17

API’s which can be accessed by any Machine Learning or Data Science tool to use FMLearn
irrespective of the programming language used to build them to get a recommendation for the
potentially best performing algorithm(s) and it’s hyper-parameters to solve it’s task without
being constrained by the need to use the client that is supported by this paper (modified
scikit-learn).

3.3.1 Design Decisions

A few important Design Decisions that needs to be addressed before proceeding with further
discussions are as follows:

• Why Client-Server Model?

The biggest design decision was taken in the early stages of the dissertation. A decision
was taken to proceed with the Client-Server model rather than a Peer-To-Peer model
with respect to the architecture design of the application. This was an "Experience
Based Design" as I have prior experience working with Client-Server Application model
and more importantly due to the limited availability of time and ease of development
which cannot be achieved when a Peer-To-Peer architecture is followed.

• Why Scikit-Learn?

Scikit-learn is a free software machine learning library for the Python programming
language (25). It is also among the popular and easy to use python libraries available in
the market. Though other libraries with similar capabilities are available in the internet
scikit-learn was chosen as an "Intuition Based Design" due to familiarity with the library
and it’s easy to use nature.

• Why a Public API Server?

The concept of Federated Meta-Learning (15), was envisioned as an ecosystem where
everyone would benefit from the data that is generated though Machine Learning libraries
and the prediction of the best performing algorithm along with it’s hyper-parameters be
available to all. A public API server ensures that even if the developers aren’t using the
supported client - modified scikit-learn - they can still benefit from the recommendations
made by FMLearn.

• Why not a stand-alone client?

A stand alone client was a possible aim for this dissertation, as said the client doesn’t
highly depend on the features provided by scikit-learn, though a few dependencies exists.
But this idea was dropped due to limited availability of time to concentrate on building

18

and improving the server where the recommendations were to be made.

• Why Flask?

Flask is a popular, extensible web micro-framework for building web applications with
Python (26) and is among the most used web applications frameworks in python. It
was a choice between Django and Flask, and Flask was chosen because of ease of use in
terms of quick development when compared to Django. This was a "Reference Based
Design" decision and when trying out both frameworks it was easier to get things started
with Flask as opposed to Django. It is also easy to deploy Flask on to a free hosting
services like Heroku, for the application to go live.

• Why PostgreSQL?

PostgreSQL is a free and open-source relational database management system. It is
easy to use when compared to other options and most importantly as it is a widely used
database it was also available as a database deployment option in various online hosting
platforms such as Heroku.

These are among the major design decisions made in the early stages of the dissertation which
needed to be addressed before proceeding. Though a few other design decisions were made
during the process of development they will be explained as and when the appropriate section
of the application is discussed.

3.3.2 Architecture Design

The figure 3.2 describes the client-server architecture of the FMLearn application as a whole,
along with a few other components that haven’t been discussed yet, these components will
be introduced here and will be expanded upon later sections of this report.

From the Figure 3.2 we can see that the entire application is divided into two major chunks
the client and the server. The client here is the modified version of Scikit-Learn which is
explained in Section 3.4 in detail. To which I have introduced an additional package called
‘fmlearn‘. This package provides the user with the capability to interact with the server.
This package also functions as an important link to the intermediary step where the data
description is obtained for a given dataset or task i.e., the dataset is converted into it’s meta-
features. The conversion of dataset to it’s Meta-Features is handled by a 3rd party library
called Auto-Sklearn (8). Auto-Sklearn is an external library, a dependency is introduced here,
details about it will be further explained in Section 3.4.1.

19

Figure 3.2: Architecture Diagram

FMLearn Client

The client majorly performs 2 tasks, publishing the data to the server and displaying the
results obtained for algorithm recommendation from the server to the user. Irrespective of
the task, the fmlearn module obtains the dataset from the user and it is converted to it’s
Meta-Features with the help of Auto-Sklearn. Depending on the task the user might want a
recommendation of the best performing algorithm or might want to contribute his findings
to the betterment of the FMLearn in general. Depending on the use case either an API
call is made to obtain the recommendation for the user or the model details along with the
performance metrics which is obtained from the user and the model directly, then an API call
is made to publish these details to the server respectively.

FMLearn Server

The server performs various roles depending on the task and is explained in Section 3.5 in
detail. The server primarily acts a recommender system, recommending algorithm(s) for a
given task. The server also acts a knowledge base or directory of algorithm-dataset perfor-
mance measures, apart from this is also provides API’s to expand or build this knowledge base.
This knowledge base is stored in a PostgreSQL Database and is also used to build a Machine
Learning model. The model was built using the K-Nearest Neighbors algorithm. The details
about the model and algorithm in general will be discussed in the Section 3.5.1. This model
is used to make recommendations to the users for previously seen or unseen task or dataset.
The model’s ability to recommend the best performing algorithm(s) have been exposed to the
public via API’s.

20

3.4 The Client: modified Scikit-Learn

In this Client-Server Architecture, the stable release of the client i.e., modified version of
scikit-learn is available on GitHub via the following link:

https://github.com/mukeshmk/scikit-learn/releases/latest.

The complete code repository is available at: https://github.com/mukeshmk/scikit-learn/
which is forked from: https://github.com/scikit-learn/scikit-learn.

After downloading the stable release and installing the library by following the instructions
specified in the README.md file, we can use it normally as we use scikit-learn, since it’s a fork
of the original release it has all the features of the stable release plus it has the features of
FMLearn.

Initialisation of FMLearn

To initialise fmlearn’s client we have to import the FMLClient package from sklearn.fmlearn

and then create an object of the class FMLClient as follows:

imports the FMLearn client into the program

from sklearn.fmlearn import FMLClient

initialises the client

fmlearn = FMLClient()

Obtaining the Meta-Features

Once the client as been initialised irrespective of the task the first thing to do would be do
tell FMLearn what dataset we will be using for the task this can be done as follows:

assuming that the import for train_test_split has been done

and the data has been loaded and split into ’X’ and ’y’

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=12)

this is a function introduced by the Client to let FMLearn know

what dataset is being used for the task.

fmlearn.set_dataset(x_train, y_train, x_test, y_test)

Setting the dataset using the sets_dataset() method triggers a background call to an
external 3rd party library called Auto-Sklearn which is used to describe the Dataset and

21

https://github.com/mukeshmk/scikit-learn/releases/latest
https://github.com/mukeshmk/scikit-learn/
https://github.com/scikit-learn/scikit-learn

obtain the Meta-Features for that dataset. This is further explained in Section 3.4.1. These
Meta-Features thus collected is then sent to the server to be processed as required.

Available Methods

Depending on the objective of the user, the user can proceed with his program in one of these
two ways:

1. Get recommendation for a task.

2. Publish performance data for a task.

Recommendation for a Task

If the user wants to get a recommendation for a task all they would have to do is to call the
method predict_metric() as follows:

this method returns the recommendation of the

best performing algorithm along with its hyper-parameters

for the dataset set using the set_dataset() method

fmlearn.predict_metric()

This method provided by the client internally makes an API call to the server, sending the
server the Meta-Features of the dataset which was obtained from auto-sklearn. Upon
reaching the server, the server processes the request, responding with the appropriate algorithm
recommendation which is then sent to the user as shown in Figure 3.3. The recommendation
can then be used by the user to create a model with the specified algorithm and the hyper-
parameter values. The created model can then be used by user to proceed with the task after
re-optimising the parameters to suite the users dataset.

Figure 3.3: Sample Output

22

Publish Metrics for a Task

If the user wants to publish a performance metric for a task which they performed, the user
can do so by using the publish() method by passing the model used, scoring metric and the
score as it’s parameters as follows:

the ‘model‘ parameter contains the model trained using the dataset

‘fmlearn.ACCURACY‘ specifies the evaluation metric used

the ‘score‘ parameter contains the evaluation results.

fmlearn.publish(model, fmlearn.ACCURACY, score)

Upon calling the client’s publish method the meta-features of the dataset, model details
including the algorithm name, hyper-parameters, along with the evaluation metric and the
evaluation scores are sent to the FMLearn server. This data is processed and stored in the
database, which is later be used to build a model.

3.4.1 Data Description: Auto-Sklearn

As discussed in section 2.4, Meta-Features describe the dataset, and there are various dedi-
cated tools which provide the required features. One such tool is Auto-Sklearn (8). It is an
open-source AutoML tool written in Python that automatically determines effective machine
learning pipelines for classification and regression datasets. Though this is an AutoML tool,
it was used here for it’s meta-learning step in the AutoML pipeline, which it uses to warm
start the Bayesian optimization procedure in it’s core. This meta-learning step. i.e., obtain-
ing meta-features is abstracted inside all the features provided by the tool and is not easily
available to the users to use outside the tool.

Meta-features provided by Auto-Sklearn fit the following meta-features categories: General,
Statistical and Information-Theoretic meta-features, though a few meta-features exists out-
side these categories, but majority of them fall into these. An utility package was introduced
inside the FMLearn’s client (modified Scikit-Learn) to make use of the functionality provided
by auto-sklearn to obtain the meta-feature of a dataset. This utility function performs the
input checks, transforms the data and performs the required validations before passing on the
dataframe to Auto-Sklearn’s calculate meta-features method. It is available in this package
via the imported method.

from autosklearn.metalearning.metafeatures.metafeatures

import calculate_all_metafeatures_with_labels

23

The input to the calculate_all_metafeatures_with_labels() method is the dataset
and the output is a set of meta-features. These meta-features are then converted into the
required format and then forwarded to server via API calls. A few of the meta-features
thus obtained are: ClassEntropy, ClassProbabilityMean, NumberOfMissingValues,

NumberOfCategoricalFeatures, NumberOfNumericFeatures, etc. Depending on the
dataset there can be about 24-30 meta-features obtained for a given dataset. Refer appendix
A1.3, for the complete list of meta-features and to see a an example of values obtained via
the Auto-Sklearn.

The end user is abstracted away from existence of this feature, the call to auto-sklearn is
handled internally by the client upon letting the client know about the dataset in use.

this is a method provided by the FMLearn client that internally calls

‘calculate_all_metafeatures_with_labels()‘ method provided by auto-sklearn

which provides the meta-features required.

fmlearn.set_dataset(x_train, y_train, x_test, y_test)

Design Decision

Before finalising with auto-sklearn another library by Hadi called dataset2vec (27) was
explored and evaluated for it’s effectiveness in model building. This library represents a tabular
dataset in a hierarchical fashion by defining a dataset as a set of features, where each feature
is a set of instance values. Working with this library proved to be quite challenging due to
the lack of documentation and lack of pre-trained model which converts the dataset to it’s
meta-features and thus making it necessary for the user to train a model. Though this paper
claimed to out-perform the current state-of-the-art, a design decision was made to not use
dataset2vec and instead proceed with auto-sklearn, as a model was available and also a
support by the community to improve the meta-feature extraction model.

3.5 The Server: FMLearn

The stable release of the server - FMLearn in this Client-Server Architecture is available on
GitHub via the following link:

https://github.com/mukeshmk/fm-learn/releases/latest.

The complete code repository is availabe at: https://github.com/mukeshmk/fm-learn. The
application is also deployed on Heroku. Heroku is a platform as a service (PaaS) that enables
FMLearn to available on the cloud to be accessed by everyone. The application is deployed

24

https://github.com/mukeshmk/fm-learn/releases/latest
https://github.com/mukeshmk/fm-learn

and available via the link mentioned below, though this is an API server a basic user-interface
has been developed so as to provide information about Federated Meta-Learning and API
documentation.

https://fmlearn.herokuapp.com/.

API’s Provided

The server provides several API’s among which two of the important API’s are the publish

and predict API’s. These API’s represent the two important functionalities of the proposed
prototype.

Publish API

The publish API solves the problem with the workflow of machine learning and data sci-
ence libraries. These libraries usually work in isolation and the information regarding how an
algorithm performs on a particular dataset is neither publisher nor shared.

the input JSON object to publish API

{

"algorithm_name": algorithm_name,

"dataset_hash": dataset_hash,

"meta_features": [

{

"feat_name": feature_name,

"feat_value": feature_value

}

],

"metric_name": metric_name,

"metric_value": metric_value,

"params": [

{

"param_name": hyper_parameter_name,

"param_value": hyper_parameter_value

}

],

"target_type": target_type

}

NOTE: "meta_features and params" are a list of objects

but for illustration purpose only 1 item has been shown.

25

https://fmlearn.herokuapp.com/

The publish API can be called from within these libraries as done in the modified scikit-learn
presented and thus enabling the users to share the algorithm performance data. The API is a
POST method which can be accessed via this endpoint /metric and takes a JSON object as
input in the format as described above.

The Underlying Database

The input data is validated, preprocessed and stored in the database. A PostgreSQL database
used in this application which contains 3 tables to store the information received from the
client. These tables are structured as follows as shown in Figure 3.4. The three tables are
Metric, Meta Feature and Params, the Metric table has a one to many relation ship with
both the Meta Feature and Params tables and this relationship puts the database in it’s 3rd
Normal Form.

Figure 3.4: Class Diagram

This database thus created acts as a knowledge base which contains information about the
algorithm-data performance metrics. FMLearn also provides others API’s to access this data

26

which enables sharing of performance details of various algorithms among software libraries.
The response of this API when there are no internal errors is a JSON object similar to the
request object with a HTTP status code of 200.

Predict API

The predict API solves the problem with the repetitive nature of the workflow of machine
learning libraries, where the algorithm selection and hyper-parameter optimization tasks are
to be performed repeatedly. The predict API can be called by the machine learning libraries,
as done in the modified scikit-learn presented in this paper, and thus breaking the cycle and
saving time, electricity, computation power and money. The API is a GET method which can
be accessed via this endpoint /metric/predict and the API accepts a JSON object as input
which is similar to the below format:

the input JSON object to predict API

{

"dataset_hash": dataset_hash,

"meta_features": [

{

"feat_name": feature_name,

"feat_value": feature_value

}

],

"target_type": target_type

}

NOTE: the key "meta_features" accepts a list of objects

but for illustration purpose only 1 item has been shown.

This input is validated, preprocessed and then sent to the model for the best algorithm
prediction (this is discussed in detail in Section 3.5.1) and the result of the prediction is sent
to the user as the best algorithm recommendation for the given task. This response is a JSON
object in the following format:

the output JSON object of predict API

{

"recommendations": [

{

"algorithm_name": algorithm_name,

"metric_name": metric_name,

"metric_value": metric_value,

27

"params": [

{

"param_name": hyper_parameter_name,

"param_value": hyper_parameter_value

}

],

"target_type": target_type

}

]

}

NOTE: "recommendations and params" are a list of objects

but for illustration purpose only 1 item has been shown.

3.5.1 KNN Algorithm

The goal is to use FMLearn to try and find the closest existing dataset which is very similar
to the dataset for which an algorithm is to be recommended. Then recommending best per-
forming algorithm for the requested dataset is based on the closest existing dataset. FMLearn
doesn’t try to predict the best performing algorithm rather tries to predict the closest dataset,
this is an important point to be noted in the algorithm recommendation process. Prediction of
an algorithm along with their hyper-parameters using a machine learning model might not be
feasible as there are various types of machine learning problems like classification, regression
and clustering just to name a few. These problem types employ various algorithms within each
type, which have varying performances and the resulting model will be a multi-class output
problem. This problem will be to try and predict algorithm name, metric used, metric value,
and not to mention the parameters of an algorithm. This will result in a lot of mismatch with
the hyper-parameter suggestion and the output recommended will just be a random set of
values. This might become feasible given the existence of a huge dataset and a complicated
neural network, but gathering this data is out of scope of this dissertation. Here, in this disser-
tation we are building the first proof of concept for Federated Meta-Learning. Thus predicting
the closest existing dataset for the input dataset and then finding the best algorithm for that
dataset is the best possible approach in the given scenario.

The algorithm used to make prediction or recommendation of the best performing algorithm
for a given task is the K-Nearest Neighbours (KNN) algorithm. KNN is a supervised,
non parametric learning algorithm, meaning, the target variable is known and that it does not
make an assumption about the underlying data distribution pattern. In the case of FMLearn,
a KNN classification algorithm has been used with k=1 and the distance between points is

28

calculated using Euclidean distance. The "K" in KNN is the number of nearest neighbors to
which the given input point must be the closest to before labeling the input point. In terms
of FMLearn, "K" represents the number of datasets that the input dataset has to be closest
to. Since we want to find one dataset to which the input dataset is closest to we are setting
the value of "k=1".

Design Decision

To guarantee reliable recommendations of algorithms based on historic performances of algorithms-
data pairs, K-Nearest Neighbours algorithm and a Support Vector Machine were ideal choices
to being with. Both KNN and SVM were tested with FMLearn. Though in it’s current state
FMLearn has a very small dataset with a low dimensionality or small number of features, both
algorithms perform equally well. A decision was made to go with KNN over SVM because
on the long run, when the number of instances or points in the dataset increase KNN begins
to outperform in a low-dimensional space, whereas as SVM might face difficulty is finding a
linear separation in the dataset when the number of points increase. Though KNN is very
sensitive to bad features and outliers, in this case we know that all the features being used to
build the model are required to describe the dataset and are obtained from auto-sklearn and
as for the case of outliers, since K value being used in KNN is one, outliers will not be a major
factor and will not affect predictions or algorithm recommendations. Whereas, in the case of
SVM, which is generally considered to be a better performer than KNN, the drawbacks arise
when the number of points increase, even if a smart kernel is used, the number of output
classes that get created increases as the number of new datasets or variations of datasets seen
by FMLearn increase. This puts SVM in a huge disadvantage as the need arises to create
separating planes for each class. Thus for these reasons KNN was chosen over SVM as the
algorithm of choice for recommending the best performing algorithm for the user.

Algorithm Recommendations

Recommending the best algorithm falls into 3 different possibilities based on the closes of the
input dataset, which can be categorised as follows:

• Previously known dataset.

• Previously unknown dataset, which is similar to a known dataset.

• Previously unknown dataset, which is dissimilar to a known dataset.

In the case of a previously known dataset for which the best algorithm is also known, the
distance between the points is 0 units, thus making the predictions 100% accurate. Whereas,

29

for previously unknown dataset which is highly similar to known dataset the prediction of al-
gorithm is accurate but the hyper-parameters require re-optimisation to suite the new dataset.
But, in the case of an unknown dataset which is highly dissimilar to a known dataset, the
model is able to predict the type machine learning problem the dataset belongs to, but not
the best algorithm for it, instead it recommends a set of algorithms which it thinks are the
best suited in this case instead of recommending a single algorithm.

3.5.2 Pre-Processing and Model Building

The data-frame which is the sent to the KNN Algorithm consists of the following features:
meta-features and target type as input and the output is the dataset hash. The meta-features
consists of a maximum of 29 features, if the feature doesn’t exist of the dataset, the missing
value is imputed with -1. The other pre-processing done are as follows the meta-feature values
are scaled between 0 and 1, the feature "Target Type" is one hot encoded and the output
variable "Dataset Hash" is label encoded. Since we are only trying to find the closest dataset
the repeated datasets are removed based on the dataset hash, thus retaining the variations
of the same dataset. The pre-processed dataset is sent to model for training and later used
for prediction of the dataset. Based on the predicted dataset, FMLearn suggests the best
performing algorithm to the user.

The model training and re-training is an automated process in FMLearn. The model is retained
when a trigger from the database is sent to the application. This trigger is set off, after every
10 new records that are added to the database (this number is configurable though the config
file). This enables FMLearn to keep improving it’s model and it’s predictions as and when
new data is published to it, thus improving the recommendations.

3.6 FMLearn Workflow

The Figure 3.5 represents the Sequence Diagram of the application, explaining the object
interactions in a time sequences. The sequence diagram of FMLearn represents 2 major use
cases. Each use case represents the flow of object interactions in the case of where the user
wants to:

• publish data to FMLearn

• get a recommendation from FMLearn for a given dataset.

Though the working of each individual modules/objects have been discussed in previous sec-
tions of this report, this section focuses explicitly on giving a in-depth understanding of how
all the individual modules work together to form FMLearn.

30

Figure 3.5: Sequence Diagram

Use Case 1: Publish Metric

The use case 1 describes the scenario where the user wishes to publish their algorithm-data
metrics to the FMLearn application. The first step of this process is to let FMLearn know
about the underlying dataset by using the method set_dataset(). As explained in section
3.4.1, it makes an internal call to Auto Sklearn to find the meta-data / meta-features
about the dataset. These meta-features are stored in the FMLearn client object created and
are later used when publishing. Then the user performs his preprocessing tasks, finds the best
algorithm along with it’s hyper-parameters and uses the model so thus created to evaluate
the results using the model.fit() and model.predict() methods for the created model
objects the results. This model, along with it’s results is sent to FMLearn’s client via the
publish() method, where model details like the algorithm used and hyper-parameters are
extracted and a request object is created with them along with the meta-features obtained
from auto-sklearn and the algorithm metrics. This request object is a JSON object which is
used to make an API post call to the FMLearn server. Once the server receives the request

31

object it’s pre-processed and checked for the data integrity and then pushed into the database
and a 200 OK response is sent to the client.

Use Case 2: Predict Metric(s)

The second use case characterises, the scenario where the user wishes to get a recommendation
from the FMLearn application for the best performing algorithm for his dataset. The first
step here as well is to let FMLearn know about the underlying dataset by using the method
set_dataset(), this obtains the meta-features of the dataset and stores them in the client
object. The next step is to make a call to the client to get the recommendation using the
predict() method. This creates a JSON request object which contains the meta-features
which is sent across by the client to the FMLearn server via an API call as discussed in section
3.5. Upon being received by the server, the request object is pre-processed and checked
for data integrity. The pre-processed data is sent to the model built using KNN algorithm
(discussed in section 3.5.1) to make predictions about the closest dataset available, upon
finding the closest dataset, the best performing algorithm for the predicted dataset along with
it’s hyper-parameters are retrieved from the database and an response JSON object is created
and sent to the client. The client then recommends the received algorithm to the user, which
the user then further re-optimises if required and then proceed with his task.

3.7 Security and Privacy Concerns

FMLearn is a client-server architecture-based (28) application which provides public API’s for
it’s users, and it brings its own security and privacy concerns. The different aspects of security
and privacy issues that are to be considered with respect to FMLearn are - but not limited to:

1. A client-server architecture.

2. Publicly available API server (29) (which could be broken down)

3.7.1 Security Concerns

FMLearn was built using Python Flask, and uses PostgreSQL, which acts as the public API
server which exposes various API to users to use the application and is currently hosted on
Heroku .

One of the most important security concerns with the current implementation of FMLearn is
that the users have unlimited access to APIs (Flash Crowd Problem) (30), this could have
severe consequences. A denial of service is possible, and extraction of all information of few
of the major effects. This could be resolved using various rate-limiting strategies:

32

• Limiting per connection property (IP address)

• Limiting per user (account / access token / API key)

• Limiting per application property (user account / resource type)

• Limiting based on context (region / type of app)

Once these rate-limiting features have been introduced if someone tried to repeatedly access
the API, they would get the following error.

HTTP/1.1 429 Too Many Requests

Retry-After: 3600

Rate limiting prevents malicious code from abusing legitimate / illegitimate access to the API.

One of the basic and yet most powerful technique which helps to prevent a lot of security issues
is Input validation (31). Input validation should act as the first line of defense in case of a
malicious attack. It is also useful to reject malicious data which helps prevent DoS attacks by
rejecting unreasonably large inputs and against injection attacks by rejecting crafted payloads.
Some of the possible Input validation techniques which could be easily enforced in my case
are:

• Enforcing sensible length limits on inputs.
(i.e., 2MB of user’s hashed dataset is not allowed)

• Enforcing strict content types on provided data inputs.
(i.e., an API expecting JSON data should not accept anything else.

• Enforcing strict data type checking on inputs.
(i.e., Numbers should be numbers, and SQL code as input results in an error)

Even though input validation is a decent first line of defense, it will fail if used as the only
line of defense because when the application evolves and brings in complex input types it
will not prevent attacks as it will be complex to determine the validity of complex data at
input time. Moreover, complex validation procedures usually suffer from bypass attacks, and
making validations might break functionality. (32)

33

3.7.2 Data Protection

Another possible issues specific to FMLearn is the storage of hash for the complete dataset
in the proposed prototype, the dataset is hashed using sha256 though this is very secure it
has its own set of vulnerabilities (33) that need to be taken into consideration, for now we
can assume that sha256 is safe to use. But if it is broken there is a possibility that all the
user data can become compromised. Even if the hash of the dataset is not broken, but if
the meta-data about the model (like the model parameters) and dataset is available to the
hacker, it is very much possible that a model could be reconstructed and the data of the user
can be compromised.

Currently FMLearn is also vulnerable to Eavesdropping Attack, this is because the data sent
from scikit-learn to FMLearn is not encrypted and is in plain-text, so various sniffing tools
like Wireshark, Nmap, etc., can be used to monitor the network traffic and sniff the data
transmitted between client and the server. To prevent such attacks, I can use a technique
similar to twitter’s developer API access, where in the user is required to create an account
with FMLearn and is required to use certain keys generated during account creation:

ACCESS_TOKEN = ”

ACCESS_TOKEN_SECRET = ”

API_KEY = ”

API_SECRET_KEY = ”

This introduces a 3-legged oauth authentication workflow similar to twitter’s developer API
(34) access and these tokens can them be used to securely transfer data back and forth
between the client and server, without worrying about eavesdropping attack. But then by
introducing this we bring in new security vulnerabilities into the application which needs to be
addressed separately in a larger scale. But for now sticking to just encrypting the information
related to dataset let it be dataset hash or meta-data about the data, can be done as the
first step in the necessary direction for this dissertation to proceed using public key encryption
techniques. Doing just this helps protect the privacy of the user’s data from potential sniffers
and maintains the integrity of the data over the network.

The scope of improvement in terms of security is huge in this project, it can be made secure
enough for users to confidently use, but all this is just until things don’t go wrong.

34

3.7.3 Social Concerns

In the long run, social questions need consideration such as preventing manipulation of the
data, developers of algorithms may have an interest that their algorithms are "recommended"
to other users. So, the developers might manipulate data so the underlying trained model
is skewed to recommend their algorithm for any task. Doing this will result is both unfair
advantage to the developers algorithm making it popular and also cause FMLearn to suggest
wrong algorithms. Another social issue that must be addressed in the free-rider problem,
where the users benefit from the system without sharing their data.

35

4 Evaluation

In this section, the performance of FMLearn application is examined. The performance of the
application is analysed based on the amount of time saved by the application when compared
to the traditional methods of algorithm selection and hyper-parameter configuration. Apart
from analysing the amount of time saved, this section also provides information about the
electricity and money saved while using the FMLearn application. This section also provides
information about the model’s accuracy while recommending the best algorithm(s) for a
given task. Since Federated Meta-Learning and FMLearn are a Novel Concept and a Novel
Application respectively there are no pre-defined standards used to evaluate the accuracy of
algorithm recommendation. Evaluation metrics like Mean Average Precision, Mean Average
Recall, Intra-list Similarity, etc., used for recommender systems may not be able to accurately
evaluate FMLearn. Moreover, there can be more than one best performing algorithm for
the given dataset. Therefore, such evaluations are based on the comparisons from previous
records obtained by performing algorithm selection and hyper-parameter optimisation for the
same dataset under similar conditions.

NOTE: all these evaluation and testing are performed on the hardware mentioned in the
Appendix A1.2.

4.1 Methodology

To evaluate the performance of FMLearn application, FMLearn’s client was setup on two
computers. The first computer trained eight machine learning algorithms on 2 different types
of dataset, code for which can be found on GitHub:

https://github.com/mukeshmk/toy-datasets

The datasets can be classified into a small and large dataset depending on the number of
instances each dataset contains. Five small datasets having about 500 instances each and five
large dataset having about 15,000 - 250,000 instances were used.

36

https://github.com/mukeshmk/toy-datasets

Small Datasets

The small dataset used were: Breast Cancer (35), Diabetes (36), Wine (37), Boston (38) and
Iris (39). These datasets were available as part of scikit-learn library and can be imported
as follows.

package in which the datasets are available at:

from sklearn import datasets

importing the dataset into the program

example: boston dataset

boston_ds = datasets.load_boston()

similarly for other mentioned datasets using the following methods

load_diabetes(), load_breast_cancer(), load_iris() and load_wine()

Large Datasets

The UCI Machine Learning Repository (40) was used to obtain the large datasets, namely
Adult, MAGIC Gamma Telescope, Skin Segmentation (41), Statlog-Shuttle and Nursery (40)
datasets, these datasets have about 15,000 - 250,000 instances and are available to the public
as a CSV file. This data was loaded into the program as follows:

importing pandas - a data manipulation and analysis

import pandas as pd

importing data

dataset_df = pd.read_csv(path_to_data + "/file_name.csv", sep=’,’)

First Machine

On the First Machine, the task of algorithm selection and configuration was performed us-
ing the traditional time consuming method, to publish the performance metrics of the best
performing algorithm-data pairs on to FMLearn. This was done so that the model can be
re-trained with the published data.

37

Algorithm Selection

The evaluation process required finding the best performing algorithm for a given dataset
along with with hyper-parameters. To find the best performing algorithm the code segment
available below was used, here various algorithms were selected for evaluation and then added
to a list called models. The algorithms in this list were used with their default hyper-parameter
configuration to build a model and make predictions. The accuracy score of these models were
recorded and then two to three best performing algorithms were chosen for hyper-parameter
optimisation in the next step.

assuming the required packages have been imported and

data has been split into testing and training data.

models = []

models.append((’RFC’, ensemble.RandomForestClassifier()))

similarly adding other algorithms for evaluation before

selecting the best performing algorithm

finding the best algorithm

names = []

scores = []

for name, model in models:

model.fit(x_train, y_train)

y_pred = model.predict(x_test)

score = accuracy_score(y_test, y_pred)

scores.append(score)

names.append(name)

print(pd.DataFrame({’Name’: names, ’Score’: scores}))

Hyper-Parameter Optimisation

Grid-Search technique was used for hyper parameter optimization and cross-validation. For
the best performing algorithm a parameter grid was constructed where the different hyper-
parameter values were set and this grid was sent to the GridSearchCV method along with
the cross-validation datasets and a few other configurations.

cross validation specifications

strat_k_fold = StratifiedKFold(n_splits=5, random_state=10)

38

an example of the parameter grid for LogisticRegression

c_values = list(np.arange(1, 10))

param_grid = [

{’C’: c_values, ’penalty’: [’l1’, ’l2’], ’solver’: [’newton-cg’, ’lbfgs’,

’liblinear’, ’sag’, ’saga’], ’multi_class’ : [’ovr’]}

]

GridSearchCV for LogisticRegression

grid = GridSearchCV(linear_model.LogisticRegression(max_iter=10000),

param_grid, cv=strat_k_fold, scoring=’accuracy’, iid=False)

grid.fit(X, Y)

prints the best hyper-parameter configuration

print(grid.best_params_)

prints the best scores

print(grid.best_estimator_)

This process resulted in the optimal hyper-parameters for the algorithm-dataset pair and this
information was then published to FMLearn via the client.

Second Machine

On a second machine, the same experiments were run, but before the training started, an
API call to FMLearn was made, where a prediction/recommendation request was made for
the best performing algorithm for the given dataset. In this scenario the client just used the
returned recommendation for the best algorithm with its hyper parameters, no training was
needed. The model was created with the recommended results and then was re-optimised
which enabled the user to proceed with the task of making predictions.

4.2 Results

FMLearn automatically submits all performance metrics and algorithm names along with the
meta-features and hashes of the datasets to the server via the API calls from the client.
The total execution time for traditional approach in algorithm selection and configurations
methods are between 13.67 minutes (Iris) and 94.24 minutes (Breast Cancer) for the small
datasets (see Table: 4.1), and between 256.42 minutes (Nursery) and 869.74 minutes (Skin
Segmentation) for the large dataset (see Table 4.2). Whereas the total execution time, even

39

if the user chooses to re-optimise the hyper-parameters are between 0.31 minutes (Iris) and
18.84 minutes (Breast Cancer) for small datasets and between 15.51 minutes (Nursery) and
29.91 minutes (Skin Segmentation) for large datasets.

Execution Time (in minutes) for Small Datasets

Datasets Optimize All
Algorithms

FMLearn Re-Optimise
best algorithm

Saving in %

Breast-Cancer 94.24 0.05 18.79 80

Boston 47.36 0.05 6.96 85.01

Diabetes 62.17 0.04 10.37 83.25

Wine 26.54 0.04 3.25 87.6

Iris 13.67 0.02 0.29 97.73

Average 48.796 0.04 7.932 86.718

Table 4.1: Execution time when using GridSearch vs FMLearn for small datasets

Figure 4.1: Execution Time for Small Datasets as seen in Table 4.1

Hence, for a small dataset, the user saves an average of 48.79 minutes and about 92.24
minutes (for Breast-Cancer Dataset) in a best case scenario. Whereas, for a large dataset the
user saves an average of 533.21 minutes and about 869.74 minutes (for Skin Segmentation
Dataset) in a best case scenario. This amounts to about 86.72% and 95.762% (for small and

40

large datasets respectively) of time saved for the user, which otherwise is spent waiting for the
machine learning program to performs algorithm selection and hyper-parameter optimisation
to select the best algorithm-parameters pair for the given dataset. In a scenario where the
user would want to re-optimize hyper parameters, re-training was required for only the best
algorithm suggested by FMLearn. Under these circumstances, time saved on an average by
the user was about 40.864 minutes for small datasets and 513.15 minutes for large datasets.
These recommendations for best performing algorithms were consistent with the previously
obtained results for the same data and thus reporting a 100% accuracy for recommendations
for previously seen datasets.

Execution Time (in minutes) for Large Datasets

Datasets Optimize All
Algorithms

FMLearn Re-Optimise
best algorithm

Saving in %

Adult 582.51 0.05 19.01 96.72

MAGIC Gamma Telescope 279.01 0.04 14.63 94.74

Nursery 256.42 0.04 15.47 93.95

Skin Segmentation 869.74 0.05 29.86 96.56

Statlog-Shuttle 678.37 0.04 21.35 96.84

Average 533.21 0.044 20.06 95.762

Table 4.2: Execution time when using GridSearch vs FMLearn for large datasets

Figure 4.2: Execution Time for Large Datasets as seen in Table 4.2

41

Figures 4.1 and 4.2 visually represent and compare the overall time consumed by traditional
approach vs FMLearn’s approach. From these figures we can see the advantages of using
FMLearn over the traditional approach for algorithm selection or other AutoML libraries.
FMLearn provides accurate and quick responses by making recommendations from a model
created using historic performance data. Since, it is an ever growing and ever learning appli-
cation, the recommendations made by FMLearn gets better over time. Percentage of Time
saved by using FMLearn for small and large datasets are represented in Figure 4.3. Figure
4.3a represents the percentage of time saved for small datasets as a radial chart, where each
doughnut represents a dataset and the arc length of the doughnut represents the percentage
of time saved by the user when using FMLearn. Similarly figure 4.3b represents the percentage
of time saved for a large dataset.

(a) Small Dataset (b) Large Dataset

Figure 4.3: Percentage of Time Saved

Upon considering the statistics obtained from the above results and using them in calculating
the power consumption, we can see that the average power consumed for finding the best
performing algorithm using the traditional approach for one of the small datasets is about
65.061W, but when FMLearn was used the average power consumed is only about 10.629W
which is about 86.718% saving in the power used. In the case of large datasets, the average
power consumed to find the best performing algorithm is about 710.946W, but when FMLearn
was used the average power consumed is only about 26.805W, which approximates to 95.762%
reduction in power utilisation when compared to the traditional approach where FMLearn is
not used.

42

Algorithm Recommendations

The best algorithm recommendations falls into 3 different categories based on the closeness
of the input dataset as explained in Section 3.5.1, which can be categorised as follows:

• Previously known dataset.

• Previously unknown dataset, which is similar to a known dataset.

• Previously unknown dataset, which is dissimilar to a known dataset.

The results discussed above are for previously known datasets. In the case of unknown but
similar datasets, a the same experiment was conducted but with one modification, instead of
using a known dataset, an unknown yet, similar datasets was used. These similar datasets
were obtained from a large dataset like the Statlog-Shuttle dataset. For example, this dataset
was taken and broken down into small chunks of about 100k records, and these small subsets
of data were used to get recommendations from FMLearn. Though the meta-features of the
dataset varied, we can be confident that the changes in values will not be drastic as they
were obtained from the same parent dataset. In this case, the prediction of algorithm is
accurate, but the hyper-parameters requires re-optimisation to suite the new subset of the
data. Whereas, in the case of a previously unseen dataset which is highly dissimilar to the
datasets known to FMLearn, the model is able to predict the type of machine learning problem
the dataset belongs to, i.e, if it’s a classification, regression, clustering, etc, but not the best
algorithm for it, it instead recommends a set of algorithms which it thinks are the best in this
case instead of recommending a single algorithm. In this case, the best performing algorithm
is recommended by FMLearn about 60% of the time. This set of algorithms are based on the
closeness between the previously known datasets.

43

5 Conclusion

From the evaluation of the concept of Federated Meta-Learning via implemented version of
the application FMLearn, there is a clear improvement in the workflow of Algorithm Selection
and Hyper-Parameter Optimisation. The algorithm recommendation system was specifically
designed to replicate real work scenarios, thus facilitating the algorithm selection and config-
uration process. Though the application FMLearn is a prototype and a proof of concept for
Federated Meta-Learning, the results proved that the concept and the application saves about
86.718% of the time when compared to the traditional process of algorithm selection in the
case of small datasets and about 95.762% of time in the case of large datasets. Apart from
saving time, the results also proved the reduced use of energy, thanks to the reduced amount
of time consumed, 86.718% and 95.762% reduction for small and large datasets respectively.
This reduction in energy and time will also save money and computational resources for
developers.

The biggest contribution of FMLearn in the algorithm selection and configuration process is,
elimination of the repetitive and time consuming nature of the task. Other major contributions
can be attributed to the accurate nature of recommendations made and the ability of the
system to grow overtime. As discussed in Section 3.5.1 and Section 3.5.2, FMLearn makes
better predictions when it has more data to work with. The model rebuilding/retraining
techniques used in the application makes it easier for FMLearn to make better predictions and
improve user experience.

44

6 Limitations and Future Work

FMLearn and Federated Meta-Learning opens up new avenues for research, the current im-
plementation of FMLearn is a prototype, which just scratches the surface when compared to
it’s full potential.

Limitations

The current implementation of FMLearn is limited to tabular datasets and feature-based
supervised machine learning algorithms. The limitation with respect to the use of tabular
datasets is due to the fact that obtaining meta-features which describe different types of data
like image, audio, video, etc., accurately are not available and is an area of intense research
(42) (43). There are no widely used tools available and developing such a tool is out of scope of
this research. The restriction to use a feature-based supervised machine learning algorithms
is that they are relatively less complex and having less number of hyper-parameters when
compared to complex structures and neural networks with thousands of hyper-parameters,
implementing this was avoided due to the limitation in time.

Future Work

The immediate future work concerning this project should be to move the client out of scikit-
learn and develop it as a stand alone library, this will enable wide spread use in the community
which will result in the availability of vast variety of datasets. The increased availability will
result in a better model thus improving the recommendations made my FMLearn. A more
ambitious future work of this project could lead to research and implementation related to
recommending complex neural networks or working with other forms of data source apart from
tabular datasets.

45

Bibliography

[1] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Frechette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. Aslib: A benchmark library for algorithm selection. Artificial Intelligence,
237, 06 2015. doi: 10.1016/j.artint.2016.04.003.

[2] Joaquin Vanschoren, Carlos Soares, Pavel Brazdil, and Lars Kotthoff. Meta-Learning and
Algorithm Selection. 08 2014.

[3] Roberto Calandra. Workshop on meta-learning (metalearn 2017), 2020. URL http:

//metalearning.ml/2017/.

[4] Andrew Collins, Dominika Tkaczyk, and Joeran Beel. A novel approach to recommen-
dation algorithm selection using meta-learning. In AICS, pages 210–219, 2018.

[5] Cristóbal Romero, Juan Luis Olmo Ortiz, and Sebastian Ventura. A meta-learning ap-
proach for recommending a subset of white-box classification algorithms for moodle
datasets. 01 2013.

[6] M Vartak, A Thiagarajan, C Miranda, J Bratman, and H Larochelle. A meta-learning
perspective on cold-start recommendations for items. advances in neural information
processing systems. page 6907–6917, 2017.

[7] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning -
Methods, Systems, Challenges. 01 2019.

[8] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning.
In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’15, page 2755–2763, Cambridge, MA, USA, 2015. MIT Press.

[9] Ciro Castiello, Giovanna Castellano, and Anna Fanelli. Meta-data: Characterization of
input features for meta-learning. pages 457–468, 07 2005. doi: 10.1007/11526018_45.

46

http://metalearning.ml/2017/
http://metalearning.ml/2017/

[10] Andrey Filchenkov. Datasets meta-feature description for recommending feature selection
algorithm. 11 2015. doi: 10.1109/AINL-ISMW-FRUCT.2015.7382962.

[11] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown.
Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka.
Journal of Machine Learning Research, 18(25):1–5, 2017. URL http://jmlr.org/

papers/v18/16-261.html.

[12] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine
learning via hierarchical planning. Machine Learning, 107, 07 2018. doi: 10.1007/
s10994-018-5735-z.

[13] Masoud Mansoury and Robin Burke. Algorithm selection with librec-auto. 04 2019.

[14] Auto-surprise: An automated recommender-system (autorecsys) library with tree of
parzens estimator (tpe) optimization, 2020.

[15] Joeran Beel. Federated meta-learning: Democratizing algorithm selection across disci-
plines and software libraries. 04 2019. doi: 10.13140/RG.2.2.25744.35844.

[16] Mukesh Arambakam and Joeran Beel. Federated meta-learning: Democratizing algorithm
selection across disciplines and software libraries. 7th ICML Workshop on Automated
Machine Learning (AutoML), 2020. URL https://www.automl.org/wp-content/

uploads/2020/07/AutoML_2020_paper_39.pdf.

[17] Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís P. F. Garcia, Jefferson T. Oliva,
and André C. P. L. F. de Carvalho. Mfe: Towards reproducible meta-feature extraction.
Journal of Machine Learning Research, 21(111):1–5, 2020. URL http://jmlr.org/

papers/v21/19-348.html.

[18] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning for
recommendation. 02 2018.

[19] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. A survey of methods for distributed
machine learning. Progress in Artificial Intelligence, 2(1):1–11, 2012. doi: 10.1007/
s13748-012-0035-5.

[20] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2), January 2019. ISSN
2157-6904. doi: 10.1145/3298981. URL https://doi.org/10.1145/3298981.

47

http://jmlr.org/papers/v18/16-261.html
http://jmlr.org/papers/v18/16-261.html
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_39.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_39.pdf
http://jmlr.org/papers/v21/19-348.html
http://jmlr.org/papers/v21/19-348.html
https://doi.org/10.1145/3298981

[21] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/
2641190.2641198. URL http://doi.acm.org/10.1145/2641190.2641198.

[22] John R. Rice. The algorithm selection problem**this work was partially supported by
the national science foundation through grant gp-32940x. this chapter was presented as
the george e. forsythe memorial lecture at the computer science conference, february
19, 1975, washington, d. c. volume 15 of Advances in Computers, pages 65 – 118.
Elsevier, 1976. doi: https://doi.org/10.1016/S0065-2458(08)60520-3. URL http:

//www.sciencedirect.com/science/article/pii/S0065245808605203.

[23] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated
algorithm selection: Survey and perspectives, 2018.

[24] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Research, 32:565–606, 2008. doi:
10.1613/jair.2490.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[26] Miguel Grinberg. Flask Web Development: Developing Web Applications with Python.
O’Reilly Media, Inc., 1st edition, 2014. ISBN 1449372627.

[27] Hadi S. Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2vec: Learning
dataset meta-features, 2019.

[28] 2020. URL https://en.wikipedia.org/wiki/Client-server_model.

[29] Venkataramulu Sunkari and Chakunta Rao. Input validation vulnerabilities (sqlia) and
defenses in web applications security. International Journal of Emerging Technology and
Advanced Engineering (IJETAE), 4:207–217, 07 2014.

[30] Linlin Xie, Paul Smith, David Hutchison, Mark Banfield, Helmut Leopold, Abdul Jabbar,
and James Sterbenz. From detection to remediation: A self-organized system for ad-
dressing flash crowd problems. pages 5809–5814, 05 2008. doi: 10.1109/ICC.2008.1087.

[31] Venkataramulu Sunkari and Chakunta Rao. Input validation vulnerabilities (sqlia) and
defenses in web applications security. International Journal of Emerging Technology and
Advanced Engineering (IJETAE), 4:207–217, 07 2014.

48

http://doi.acm.org/10.1145/2641190.2641198
http://www.sciencedirect.com/science/article/pii/S0065245808605203
http://www.sciencedirect.com/science/article/pii/S0065245808605203
https://en.wikipedia.org/wiki/Client-server_model

[32] De Ryck PHILIPPE. Common api security pitfalls, 2018. URL https:

//owasp.org/www-chapter-belgium/assets/2018/2018-10-23/OWASP_

20181023_CommonAPISecurityPitfalls.pdf.

[33] Henri Gilbert and Helena Handschuh. Security analysis of sha-256 and sisters. In Mitsuru
Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, pages 175–
193, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[34] Twitter developer authentication, 2020. URL https://developer.twitter.com/en/

docs/authentication/oauth-1-0a.

[35] Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine
learning without centralized training data, 2017. URL https://ai.googleblog.com/

2017/04/federated-learning-collaborative.html.

[36] Robert Tibshirani, Iain Johnstone, Trevor Hastie, and Bradley Efron. Least angle regres-
sion. The Annals of Statistics, 32(2):407–499, 2004. doi: 10.1214/009053604000000067.

[37] Uci machine learning repository: Wine dataset, 1991. URL https://archive.ics.

uci.edu/ml/datasets/wine.

[38] David Harrison and Daniel Rubinfeld. Hedonic housing prices and the demand for clean
air. Journal of Environmental Economics and Management, 5:81–102, 03 1978. doi:
10.1016/0095-0696(78)90006-2.

[39] Ronald Aylmer Fisher. Contributions to mathematical statistics. Wiley, 1950.

[40] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

[41] Rajen Bhatt, Abhinav Dhall, Gaurav Sharma, and Santanu Chaudhury. Efficient skin
region segmentation using low complexity fuzzy decision tree model. pages 1 – 4, 01
2010. doi: 10.1109/INDCON.2009.5409447.

[42] Jeffrey S. Ellen, Casey A. Graff, and Mark D. Ohman. Improving plankton image classifi-
cation using context metadata. Limnology and Oceanography: Methods, 17(8):439–461,
2019. doi: 10.1002/lom3.10324. URL https://aslopubs.onlinelibrary.wiley.

com/doi/abs/10.1002/lom3.10324.

[43] M. Calderisi, G. Galatolo, I. Ceppa, T. Motta, and F. Vergentini. Improve image classifi-
cation tasks using simple convolutional architectures with processed metadata injection.
In 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), pages 223–230, 2019.

49

https://owasp.org/www-chapter-belgium/assets/2018/2018-10-23/OWASP_20181023_CommonAPISecurityPitfalls.pdf
https://owasp.org/www-chapter-belgium/assets/2018/2018-10-23/OWASP_20181023_CommonAPISecurityPitfalls.pdf
https://owasp.org/www-chapter-belgium/assets/2018/2018-10-23/OWASP_20181023_CommonAPISecurityPitfalls.pdf
https://developer.twitter.com/en/docs/authentication/oauth-1-0a
https://developer.twitter.com/en/docs/authentication/oauth-1-0a
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lom3.10324
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lom3.10324

A1 Appendix

A1.1 Code Availability

All the code which is used for this paper is made available on GitHub:

• The modified scikit-learn is available at:
https://github.com/mukeshmk/scikit-learn

• The code for FMLearn application is available at:
https://github.com/mukeshmk/fm-learn

• The code used for the evaluation of the data is available at:
https://github.com/mukeshmk/toy-datasets

The FMLearn application has also been deployed on heroku at https://fmlearn.herokuapp.com/.

NOTE: this is just a API server, the website doesn’t provide any functionality per-se.

A1.2 Machine Details

The configuration and details of the machine used to measure these metrics are as follows:

• Laptop: Lenovo Legion Y540

• Processor: Intel i5 9300H

• RAM: 8GB

• GPU: Nvidia GTX 1650

• Hard Drive: 1TB HDD + 125GB SSD

• OS: Windows 10

• Power Consumption: avg 80W/hour

50

https://github.com/mukeshmk/scikit-learn
https://github.com/mukeshmk/fm-learn
https://github.com/mukeshmk/toy-datasets
https://fmlearn.herokuapp.com/

A1.3 Meta-Features: Auto-Sklearn

Meta-features used to describe the dataset are:

{

ClassEntropy, SymbolsSum, SymbolsSTD, SymbolsMean, SymbolsMax, SymbolsMin,

ClassProbabilitySTD, ClassProbabilityMean, ClassProbabilityMax,

ClassProbabilityMin, InverseDatasetRatio, DatasetRatio,

RatioNominalToNumerical, RatioNumericalToNominal,

NumberOfCategoricalFeatures, NumberOfNumericFeatures,

NumberOfMissingValues, NumberOfFeaturesWithMissingValues,

NumberOfInstancesWithMissingValues, NumberOfFeatures, NumberOfClasses,

NumberOfInstances, LogInverseDatasetRatio, LogDatasetRatio,

PercentageOfMissingValues, PercentageOfFeaturesWithMissingValues,

PercentageOfInstancesWithMissingValues, LogNumberOfFeatures,

LogNumberOfInstances & TargetType.

}

On the next page you will went an example.

51

An example of meta-features obtained from the calculate_all_metafeatures_with_labels()
method from autosklearn library for the Iris Dataset are:

{

ClassEntropy: 0.9550393021523922

SymbolsSum: 0.0

SymbolsSTD: 0

SymbolsMean: 0

SymbolsMax: 0

SymbolsMin: 0

ClassProbabilitySTD: 0.12417582417582418

ClassProbabilityMean: 0.5

ClassProbabilityMax: 0.6241758241758242

ClassProbabilityMin: 0.3758241758241758

InverseDatasetRatio: 15.166666666666666

DatasetRatio: 0.06593406593406594

RatioNominalToNumerical: 0.0

RatioNumericalToNominal: 0.0

NumberOfCategoricalFeatures: 0

NumberOfNumericFeatures: 30

NumberOfMissingValues: 0.0

NumberOfFeaturesWithMissingValues: 0.0

NumberOfInstancesWithMissingValues: 0.0

NumberOfFeatures: 30.0

NumberOfClasses: 2.0

NumberOfInstances: 455.0

LogInverseDatasetRatio: 2.719100037288795

LogDatasetRatio: -2.7191000372887952

PercentageOfMissingValues: 0.0

PercentageOfFeaturesWithMissingValues: 0.0

PercentageOfInstancesWithMissingValues: 0.0

LogNumberOfFeatures: 3.4011973816621555

LogNumberOfInstances: 6.12029741895095

TargetType: binary

}

52

	Introduction
	AutoML
	Motivation
	Research Problem
	Federated Meta Learning
	Research Goal
	Contributions

	Background Details
	Meta-Learning
	Automated Machine Learning
	Algorithm Selection
	Algorithm Configuration

	Workflow of AutoML Libraries
	Meta-Features
	Related Work
	Federated Meta-Learning
	Other Related Concepts and Research

	Design and Implementation
	Federated Meta-Learning
	Workflow of Federated Meta-Learning
	FMLearn
	Design Decisions
	Architecture Design

	The Client: modified Scikit-Learn
	Data Description: Auto-Sklearn

	The Server: FMLearn
	KNN Algorithm
	Pre-Processing and Model Building

	FMLearn Workflow
	Security and Privacy Concerns
	Security Concerns
	Data Protection
	Social Concerns

	Evaluation
	Methodology
	Results

	Conclusion
	Limitations and Future Work
	Appendix
	Code Availability
	Machine Details
	Meta-Features: Auto-Sklearn

