
Plagiarism Detection in Verilog Hardware

Description Language Programs using Machine

Learning

Anusha Gupta

MSc. in Computer Science - Data Science

in completion of the Postgraduate Taught Course

School of Computer Science & Statistics

Trinity College Dublin, Ireland

Supervisor: Prof. John Waldron

September 2020

©Anusha Gupta September 6, 2020 Page 1/55

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other

university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow the li-

brary to do so onmy behalf, subject to Irish Copyright Legislation and Trinity College Library conditions

of use and acknowledgement.

Anusha Gupta

September 6, 2020

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 2/55

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Anusha Gupta

September 6, 2020

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 3/55

Acknowledgments

On the completion of this dissertation, I would like to extendmy sincere and heartfelt obligation towards

all the people who have helped me in this endeavour.

I am extremely thankful to my supervisor, Prof. John Waldron, for his continuous guidance and

encouragement to accomplish this dissertation.

I also acknowledge with the deep sense of reverence, my gratitude towards my parents and sister,

who have always supported me through out the course. At last but not the least, gratitude goes to my

friends who directly or indirectly helped me to complete this dissertation.

Anusha Gupta

September 6, 2020

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 4/55

Plagiarism Detection in Verilog

Hardware Description Language

Programs using Machine Learning

Anusha Gupta, Master of Science in Computer Science - Data Science

University of Dublin, Trinity College, 2020

Supervisor - Prof. John Waldron

In this dissertation, we study how we can apply machine learning algorithms to detect plagiarism

in Verilog Hardware Description Language programs. It presents a novel technique which can identify

similarities between VHDL programs and gives the most similar files among all the files trained. The

second part of the research focuses on evaluating the trained machine learning models and identifying

which is themost accurate among those in providing the results of plagiarized files. The training as well

as testing datasets used in this study consists of the code metrics which are annotated in the form of

tokens representing the structure of each VHDL program. Several machine learning algorithms were

compared in this research to identify the best performing algorithm, among which Stochastic Gradient

Descent classifier came out to be the most accurate with 82.3% accuracy. Lastly, the results of this

algorithm were used to detect the similar files and identify plagiarism within them.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 5/55

Contents

Declaration 1

Permission to Lend and/or Copy 2

Acknowledgments 3

Abstract 4

List of Figures 7

List of Tables 8

List of Abbreviations 9

1 Introduction 11

1.1 Motivation . 11

1.1.1 Verilog Hardware Description Language . 14

1.1.2 Machine Learning . 15

1.2 Objectives . 16

1.3 Overview of the Dissertation . 16

2 Literature Review 18

2.1 Introduction . 18

2.1.1 GPlag . 18

2.1.2 XPlag . 19

2.1.3 Fuzzy-Based Approach . 19

2.1.4 Gene Sequence Inspired Approach . 20

2.1.5 Parse Tree Similarities . 20

2.1.6 Algorithm-Based Approach . 21

2.2 Current Trends in Plagiarism Detection . 22

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 6/55

2.3 Machine Learning in Plagiarism Detection . 23

2.3.1 Code Metrics . 24

2.3.2 Scikit-Learn . 25

3 Methodology 26

3.1 Algorithms for Source Code Plagiarism Detection . 26

3.1.1 K-Nearest Neighbour Classifier . 27

3.1.2 Decision Tree Classifier . 28

3.1.3 Random Forest Classifier . 29

3.1.4 Stochastic Gradient Descent Classifier . 30

3.1.5 Multi-Layer Perceptron Classifier . 31

3.1.6 Linear Discriminant Analysis Classifier . 33

3.2 Code Metrics Dataset . 35

3.2.1 Generating Code Metrics . 36

3.2.2 Training Dataset . 36

3.2.3 Validation Dataset . 37

3.3 Implementation . 39

3.4 Evaluation . 39

3.4.1 Model Evaluation Technique . 39

3.4.2 Model Evaluation Metrics . 40

4 Results and Discussion 43

4.1 Comparison of Trained Models . 43

4.2 Detection of Plagiarized Programs . 46

5 Conclusion and Future work 49

5.1 Conclusion . 49

5.2 Future Work . 49

Bibliography 50

A Appendix 55

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 7/55

List of Figures

1.1 Program Plagiarism Spectrum [11] . 13

1.2 Abstract Syntax Tree [42] . 14

2.1 Program Dependence Graph [9] . 19

2.2 Parse Tree [19] . 21

3.1 Graphical Representation of K-Nearest Neighbour [18] . 27

3.2 Decision Tree [45] . 28

3.3 Representation of Random Forest Algorithm [43] . 30

3.4 Stochastic Gradient Descent [23] . 31

3.5 Structure of Neural Network [2] . 32

3.6 Graphical Representation of LDA [32] . 34

3.7 List of Source Code Metrics used for Plagiarism Detection in VHDL 37

3.8 Sample Structure of Dataset . 38

3.9 Architecture Diagram of the System . 38

3.10 K-Fold Cross Validation [30] . 40

3.11 Representation of True Positive, False Positive, True Negative and False Negative [28] 42

4.1 Precision Graph . 45

4.2 Recall Graph . 45

4.3 F-Score Graph . 46

4.4 Confusion Matrix . 47

4.5 F-Measure Table . 47

4.6 Source Code - Programmer 12 . 48

4.7 Source Code - Programmer 3 . 48

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 8/55

List of Tables

3.1 An Example of Line Length Tokens and Frequencies . 38

4.1 Accuracy Table . 44

4.2 AUC Table . 44

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 9/55

List of Abbreviations

• VHDL - Verilog Hardware Description Language

• AUC - Area Under Curve

• PDG - Program Dependence Graph

• GCC - GNU Compile Collection

• RTL - Register Transfer Language

• SVD - Singular Value Decomposition

• NLP - Natural Language Processing

• DTM - Document Term Matrix

• LDA - Latent Dirichlet Allocation

• RKR - Running KARP Rabin

• GST - Greedy String Tiling

• AST - Abstract Syntactic Tree

• CV - Cross Validation

• KNN - K Nearest Neighbour

• SGDC - Stochastic Gradient Descent Classifier

• MLPC - Multi-Layer Perceptron Classifier

• GD - Gradient Descent

• SVM - Support Vector Machine

• LDA - Linear Discriminant Analysis

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 10/55

• TF-IDF - Term Frequency-Invert Document Frequency

• TP - True Positives

• TN - True Negatives

• FP - False Positives

• FN - False Negatives

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 11/55

Chapter 1

Introduction

This dissertation explores the area of plagiarism detection in source codes. The main focus of this

research is on Verilog Hardware Description Language programming assignments submitted by stu-

dents of Trinity College Dublin. The primary aim is to propose a machine learning technique to detect

plagiarism in VHDL programs. Also, it focuses on obtaining the most accurate machine learning

algorithm among the six compared which can help in detecting the plagiarized files more accurately.

1.1 Motivation

Plagiarism and cheating are a major problem in academia since decades. Many universities have

taken measures to address this issue in their own way by adopting various rules and regulations,

providing general education programs for students as well as purchasing plagiarism detection soft-

wares. J. Zobel [47] has mentioned one such case study of plagiarism which occurred in the school

of computer science Information Technology at RMIT University. This incident pointed out the dis-

covery of an external private tutor who was selling assignments to the students. According to J. Zobel

[47], he was active for at least three semesters and was not only selling solutions but was also taking

exams on particular students’ behalf. However, the case was out in media and as plagiarism was

considered as a serious offence by the community, the ‘private tutor’ and students were sentenced

in court. Moreover, through his study, he explained that a large number of invigilation processes are

required if students are to be convinced to do their own work, that is, plagiarism is encouraged by lazy

invigilation and the universities who are avoiding the issue of plagiarism are undermining the quality of

their degrees. Therefore, systematic invigilation and cross checking is needed to eliminate plagiarism

from academia.

This dissertation is a research conducted so that the problem of plagiarism faced by instructors

in programming assignments can be solved. Although there are various researches done and tools

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 12/55

developed to detect plagiarism in different programming languages, VHDL programs were not the

focus of many of those tools and researches. Hence, this research focuses on the implementation

of plagiarism detection technique for VHDL programs which were submitted by students as their as-

signments in a course module. Not only plagiarism detection in student’s assignments, the proposed

technique can also be implemented in wide variety of areas mentioned as follows [29]:

• Criminal Prosecution – Identification of author of a malware belonging to suspects.

• Corporate Litigation – Identification of author of codes in case of violation of a no-compete

clause of contract by an employee.

• Plagiarism Detection – Identification of author in case of cheating in academia.

The plagiarized program can be defined as the programs which have been copied from other

programs by making small transformations. There are several scenarios in which plagiarism can be

occurred such as [22] [34]:

• Willingness of students to share the code with other students in case the assignment deadline

is approaching.

• Students working together on an assignment can result in submission of similar programs with

naming and formatting differences.

• Assignments can be stolen through shared printers and workstations.

• Programs from previous semesters can be used as only specifications are modified from one

semester to next.

• Small assignments, not plagiarized though, seem to be similar because several students arrive

at the same design independently.

There are various transformations made by students in their assignments to avoid being caught.

Those transformations in source codes can take various forms and some of them are as follows [31]:

• Format Alteration – This is simply the insertion and removal of blank spaces and comments.

• Identifier Renaming – Altering identifiers’ names is another common practice for plagiarism as

it does not violate program’s correctness.

• Statement Reordering – The statements which do not have sequential dependencies such as

declarations can be reordered easily.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 13/55

• Control Replacement – There are many replacements for simple codes in programming lan-

guages such as while loops can replace for loops, the conditions of if else can be interchanged

for the same logic, etc.

• Code Insertion – Codes which do not alter the original logic of the program can be inserted to

disguise plagiarism.

Figure 1.1: Program Plagiarism Spectrum [11]

Some of the above mentioned types of plagiarism can be detected by instructors themselves with-

out the help of any tool. However, minute differences would need a tool or a technique to detect

plagiarized files. Three of the major techniques implemented in plagiraism detection tools that are

mentioned by Chao Li [31]:

• String Based – The statements in the programs are considered as strings and are compared

to find the same strings. However, blanks, comments and identifier renaming are ignored in this

method which makes it fragile.

• Abstract Syntax Tree based – The program is parsed into an abstract syntax tree as shown in

Figure 1.2 and it is searched for similar subtrees which is labelled as plagiarized if found.

• Token based – In this method, identifiers and keywords are used as token sequences and

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 14/55

duplicate sequences are considered as plagiarism. However, it is fragile to reordering and code

insertion. JPlag and Moss are some of the tools using this method.

Figure 1.2: Abstract Syntax Tree [42]

Figure 1.1 shows a diagram of six levels of program modification in plagiarism proposed by Faidhi

and Robinson [12]. According to this diagram, Level 0 is the lowest level of plagiarismwhich consists of

copied programs without modifications whereas level 6 is the highest level which consists of programs

with modified control logic. It is difficult to detect plagiarism on the basis of structural properties when

the level is 4 or above. The attribute counting techniques, however, do not rely on this diagram and

are not suffering from the problem mentioned above [5]. Hence, this dissertation discusses machine

learning method based on attribute counting technique, in other words, extraction of code metrics.

1.1.1 Verilog Hardware Description Language

Verilog Hardware Description Language is a text based description of digital logic circuits and their

behaviour over time. It has syntactical similarities to software programming languages but are funda-

mentally different as it helps in describing the time and signal strengths [40]. It is basically used for

simulation and testing of a design of an actual circuit and is not very sensitive to statements ordering

like other procedural languages.

In this research, the data consists of VHDL assignments of 18 students undertaking a four years

honour degree in computer science at Trinity College Dublin. The assignments are a part of Digi-

tal Logic Design course studied by students for two semesters. The VHDL is taught in the second

semester which is the main focus of this dissertation. These assignments include structure verilog for

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 15/55

simple combinational logic problems to difficult sequential logic problems using shift registers, coun-

ters, etc [40] [33]. The Verilog compiler and simulator used by the course is the Icarus Verilog tool

which can be used on multiple operating systems. Although this information is useful for context,

further research in this dissertation does not require any understanding of VHDL.

1.1.2 Machine Learning

Machine learning, as the name suggests, is an application of artificial intelligence that enables ma-

chines to automatically learn and improve from experiences by accessing data. It helps in building

models to analyze complex data and provide accurate results. Some of the things needed to create

good machine learning systems are data preparations capabilities, scalability, algorithms and ensem-

ble modeling. Machine learning can be categorized into three categories:

• Supervised Learning - In this type, the data contains a target variable according to which

predictors learn the outcome and predict or classify the testing data as per the specifications of

the problem. The labeled dataset can be used to evaluate the accuracy of the generated model.

For Example, Linear Regression, Support Vector Machine, etc.

• Unsupervised Learning - This is used when the dataset is neither classified nor labeled. It

helps in exploring the data and describing the hidden structure of the unlabeled dataset. For

Example, Clustering, etc.

• Reinforcement Learning - This learning method produces actions by interacting with the en-

vironment and is penalized or awarded according to the action chosen. It learns by using trial

and error method and determines the ideal behaviour in order to maximize its performance. The

reward feedback is provided for the agent to learn the best possible action. For Example, Deep

Neural Network, etc.

In this research, I am using supervised learning algorithms to determine the classification of the

source code files according to their programmers. The training dataset used is the labeled one and

consists of programmer as its target variable. All other variables are the code metrics extracted from

the programs written by students which provide us with the information about the characterstics of

those programs. The code metrics generated from the programs are line length, line words, indent

space, inline space, number of underscores, number of spaces, number of lines, identifiers with un-

derscores, number of identifiers and number of keywords. The training data contains the assignments

of 18 students with 15 assignments per student and testing data contains 63 anonymous assignments

without target variable, that is, Programmers. Furthermore, the algorithms used for classifying and

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 16/55

detecting plagiarism are K-Nearest Neighbours, Decision Tree, Random Forest, Stochastic Gradient

Descent, Linear Discriminant Analysis and Multi-layer Perceptron.

1.2 Objectives

The primary objective of the dissertation is to train a machine learning algorithm that is capable of

detecting similar programs which provide us with the information about the plagiarism between those

programs. The primary motivation behind it was to develop a machine learning model that can help

in detecting plagiarism in VHDL programs as there are very limited researches done in this area. The

secondary objectives that were a part of this research are:

1. Preparation of code metrics dataset for training of machine learning algorithms. It consists of

tokens representing the structure of VHDL programs being trained.

2. Exploration of machine learning algorithms, that is, which will be the best for classification of

similar programs and detecting plagiarism.

3. Exploration of the measurements to evaluate the quality of machine learning algorithms used

for training the data and identifying the most accurate among them.

The primary programming language used for writing the source codes for collection of data as

well as writing program that would fit and classify that data is Python Programming Language. As the

starting point, the existing algorithm was implemented as mentioned in [5]. However, the code was

re-implemented as per the requirements of VHDL programs as the existing code was developed for

JAVA programs. Also, the algorithms used in this research are different from the existing research

and according to new inclusions in Scikit-Learn.

1.3 Overview of the Dissertation

The layout of the dissertation is as follows:

Chapter 2 Literature Review mentions some of the current researches in this field. First few sec-

tions such as GPlag, XPlag, Fuzzy-Based Approach consist of various techniques introduced using

different algorithms in this area. Then, it introduces some of the current trends being used in plagia-

rism detection such as Karp Rabin technique, N-Grams, etc. The last section gives the insight about

some of the researches done using machine learning.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 17/55

Chapter 3 Methodology is the implementation of the research in detail. It covers four main areas:

• Machine Learning Algorithms used in this research.

• Dataset generation for training and testing of the algorithms.

• Implementation architecture of the technique.

• Evaluation techniques used for evaluating the performances of the machine learning algorithms

as well as detecting similar files to detect plagiarism.

Chapter 4 Results and Discussion presents the results of two researches done in this study.

Firstly, the results of best performing machine learning algorithm for plagiarism detection using Ac-

curacy and AUC value and secondly, the results of the plagiarized files using confusion matrix as

evaluation criteria.

Chapter 5 Conclusion and Future Work provides the main outcome of this research and proposes

ways to improve the results in the future.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 18/55

Chapter 2

Literature Review

Sections 2.1 and 2.2 explain some of the researches done in plagiarism detection using various tech-

niques other thanmachine learning. Section 2.3mentions some techniques in whichmachine learning

was used and how the code metrics dataset generation is important for it.

2.1 Introduction

Plagiarism is amajor problem in academia since decades and to tackle this problem, researchers have

tried to develop various plagiarism detection tools for different programming languages including Java,

C, fortran, HDL, etc. Some of these researches that motivated me in taking up this research problem

include:

2.1.1 GPlag

Chao Li [31] introduced a new technique for plagiarism detection in programming languages named

GPlag which uses Program Dependency Graphs (PDGs). A PDG as shown in Figure 2.1, is a graph

representation of the source code of a procedure, where statements are represented by vertices and

data and control dependencies between statements by edges [31]. The main aim of using PDGs

in this research was that these graphs are almost unchanged to free modification of the code by

the plagiarist and to change the graphs, a much higher effort is needed to disguise the original code

which contradicts the purpose of plagiarism. GPlag [31] is an implementation of two major techniques

that helped in increasing the robustness, efficiency and effectiveness of the tool. Firstly, Subgraph

Isomorphism which helps in identifying different types of disguises such as format alteration, code

insertion, identifier renaming, etc. and secondly, Lossy Filter which helps in pruning of the trees of

plagiarized part using G-test.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 19/55

Figure 2.1: Program Dependence Graph [9]

2.1.2 XPlag

In another research, C. Arwin [3] proposed a novel approach, XPlag, to detect plagiarism which not

only works with single programming language but it also detects inter-lingual plagiarism, that is, plagia-

rism between source codes that are converted from one programming language to another. According

to this research, there are two ways to address inter-lingual plagiarism. Firstly, by comparing token

produced by existing plagiarism detection approaches that support multiple programming languages

and second is by comparing intermediate code produced by a compiler suite that supports multiple

languages. However, they used the latter approach as former required different scanner and parser

for each language. As a compiler suite, they used GNU Compile Collection (GCC) which supports

multiple programming languages such as C, C++, Java, Fortran and Objective C. XPlag [3] works

in two phases: Indexing in which intermediate code, Register Transfer Language (RTL), generated

from source code files are indexed and Detection in which the indexes are searched using RTL and

the programs are ranked in the order of decreasing similarity, calculated by Okapi BM25 similarity

function.

2.1.3 Fuzzy-Based Approach

This research paper [1] introduced a new Fuzzy-based approach for plagiarism detection in program-

ming languages using Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System. According to

G. Acampora [1], fuzzy clustering is a suitable approach for source code plagiarism detection as it has

the capability to capture qualitative and semantic elements of similarity. One of the major advantages

of using fuzzy based approach is that it does not require a parser or compiler for each programming

language to detect plagiarism unlike string matching algorithms based on structural characteristics.

This novel approach, first, uses singular value decomposition to remove noises from the source code

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 20/55

files, then uses Fuzzy C-means clustering to cluster files based on similarity and finally optimize the

performance using Adaptive Neuro-Fuzzy Inference System. The pre-processing of source code is

required to reduce the data size and capture the semantic representation of each source code more

effectively. It includes conversion of upper case to lower case, removing numeric characters, semi-

colons, colons, single letters, etc. A term by file matrix is produced as a final output of pre-processing

which contains the frequency of each dictionary term that appears in a source code file and then nor-

malizes the frequencies using normal global weighting function and document length normalization.

Further, Singular Value Decomposition (SVD) is used to reduce dimensional space of data. The final

matrix is fed into the learning algorithm which is divided into two steps:

• Fuzzy C-Means – This generates a collection of clusters, each containing similar source code

files.

• ANFIS – This optimizes the training data and the performance is measured using the root mean

square training errors.

The final performance evaluation is done through Recall, Precision, Fscore, Specificity, Accuration

and Pearson Correlation Coefficient.

2.1.4 Gene Sequence Inspired Approach

In this research, Mark C. Johnson [22] proposed a technique for plagiarism detection in HDL programs

which is similar to evaluating similarity and ancestry of gene sequences. This approach of plagiarism

detection is an application of compression measurements of two versions of VHDL source code:

partially tokenized and literal [22]. In this technique, the files are compressed using gzip and for

each pair of students, sizes of the concatenated compressed files are compared with the individual

compressed files and similarity metrics are computed. This is repeated for both the versions of VHDL

codes. Once the similarity analysis is complete, the instructors have to inspect the most suspicious

pairs of source code to determine where plagiarism has occurred [22].

2.1.5 Parse Tree Similarities

In a research, C.W. Anderson [11] presented a source code plagiarism detection method using parse

tree. The parse tree, Figure 2.2, is a graph that is built from the lexical of a program and exhibits the

structure for it. Compilers use it to guide compilation of the programs. The algorithm proposed by

C.W. Anderson [11] for detecting plagiarism using parse tree was: Firstly, parse each program. Then,

convert each parse tree into a string and lastly, calculate the similarity between programs using Greedy

String Tiling method. Some of the limitations of this technique include coupling of unrelated parts of

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 21/55

the program and it only supports Java language and has not been tested for other programming

languages.

Figure 2.2: Parse Tree [19]

2.1.6 Algorithm-Based Approach

Ottenstein [35] in his research discussed a quantification algorithm through which equivalent programs

are given equal values. This can be represented as a function, f, imposing a partitioning on the set of

programs such that if X and Y are unique source codes with f(X)=f(Y), then one of X and Y is a pla-

giarized version of the other [35]. However, this function is difficult to obtain as identical programs can

possibly be written independently as well as plagiarism is quite different from paraphrasing. Therefore,

Ottenstein [35] tried to find an approximation that could map similar programs into same partitions.

For this, he used four parameters: n1(number of unique operators), n2 (number of unique operands),

N1 (total number of occurrences of operators) and N2 (total number of occurrences of operands). He

used a multivariate normal density function, g, which is determined by the means vector and the co-

variance matrix. The closeness of the value of function, g, to the means vector indicates the accuracy

of plagiarism of each partition.

Another study by Alan Parker [36] presented a computer algorithm based on string comparisons

used for the detection of plagiarism in source codes. Its implementation includes removal of com-

ments, blank spaces and extra lines, comparison of character strings in two files using UNIX utilities

- grep (search strings), wc (count words and lines) and diff (compare two files), and counting the sim-

ilarity percentage of characters called character correlation. According to Alan Parker [36], it is an

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 22/55

easy implementation, however, it requires a substantial amount of computer time.

One of the researches done by professors of my university [40], Trinity College Dublin, is a contri-

bution in plagiarism detection in Verilog programs. They examined and implemented three algorithms

to calculate similarity between 11 types of student’s Verilog programs. For each assignment submit-

ted by the students, they prepared three versions using flex and C code: original submission, cleaned

(comments amd white spaces deleted) and tokenised (identifiers and numeric literals replaced by

constants). Three measures of similarity which they used were [40]:

• Jaccard measure - For two files X and Y, the formula is J(X, Y) = |X and Y|/|X or Y|

• Tversky measure - For two files X and Y, the formula is T(X, Y) = |X and Y| / |X|

• Sequence measure - For two files X and Y, the formula is R(X, Y) = 2|M| / |X| + |Y|, where M is

the number of matched elements.

To show the distribution of similarities, they plotted violin plots with median and inter-quartile range

and found similar results for each algorithm. However, one of the dangers with this research is the

over processing as all possible differences might be eliminated and the programs are made appear

similar [40].

2.2 Current Trends in Plagiarism Detection

Ducarik in his study [10] analysed the state of the art in source code analysis for plagiarism detec-

tion. According to him, source code analysis is divided into three levels: as a plain text (explores

the meaning of the text), token based (does not explore the meaning of the text) and as a model.

Natural Language Processing (NLP) is one of the famous methods which process natural language

using computers. Using NLP, the terms can be extracted out of the source codes in the form of tokens

and then analysed using various classification methods. Another approach used when several source

codes are involved is Document-termMatrix (DTM). The matrix lines are a vector for each source code

and represent the source codes as rows and the terms as columns i.e. describes the occurrence of

terms in each source code. However, the main problem with DTM is its lower memory capacity which

can be solved using sparse matrices but it adds up to computational complexity. Third approach dis-

cussed by Duracik is Latent Dirichlet Allocation (LDA) which is used to transform the source code into

topic models i.e. n of important terms. JPlag and MOSS are some of the techniques which use this

approach for plagiarism detection. Their initial stages are code-purification and tokenization (convert-

ing source code into individual sequence of characters) and post processing can be done through

various methods such as:

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 23/55

• N-grams – In this method, documents are divided into list of substrings of length n with their

frequency.

• Winnowing – It uses hashing to select a subset of n-grams of a document as its imprint. This

method is used by MOSS.

• Running-KARP-Rabin Greedy-String-Tiling (RKR-GST) – It has two phases: RKR which is

an algorithm for substring matching and used to find common substrings and GST which is used

to find more precise substrings. It is used by JPlag.

The third method mentioned by Ducarik [10] is source code model analysis and one of the appli-

cations of this method is Abstract Syntactic Tree (AST). This tree is formed using the tokens stream

of source code which represents the logical structure without pointless parts. Hashing methods are

used for comparison of ASTs as it works relatively quickly.

Apart from this, some of the existing successful plagiarism detection tools are as follows:

1. SIM - According to C. Arwin [3], this tool works with parameters like correctness, style and

uniqueness. The tokens are generated by parsing each program using flex lexical analyser and

then compared based on scores generated by comparing token strings of two programs. It can

handle name changes and reordering of statements and functions.

2. YAP3 -It detects plagiarism in two phases. First, token sequences are generated and mapped to

their base equivalents. Second, the matches are obtained using Karp-Rabin greedy string-tiling

algorithm.

3. JPlag – This is a web service and uses the same comparison algorithm as YAP3. However, to

make the tool more accurate, it includes some context of the program structure into the token

strings. For example, it uses BeginMethod token to indicate open braces at the start of the

method and OpenBrace for any other open braces [41].

2.3 Machine Learning in Plagiarism Detection

Machine learning, as the name suggests, is an application of artificial intelligence that enables ma-

chines to automatically learn and improve from experiences by accessing data. It powers multiple

applications such as recommendation systems, search engines, voice assistants, social media, etc.

Many researchers used machine learning in their researches for plagiarism detection as well. Hence,

this was the major reason of testing plagiarism using Machine Learning in this dissertation. N-grams,

tf-idf and codemetrics are some of the current trends used for developingmachine learning techniques

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 24/55

for source code plagiarism detection. One such research was done by D. Heres [17] in which he de-

veloped a machine learning tool, Infinite Monkey, to improve plagiarism detection in programming

languages. This system could identify similarities between programming files using two methods:

N-grams, tf-idf weighting and cosine similarity were used for fast retrieval of similarities in programs

and neural network model was used for classification of large source code plagiarism dataset. For

pre-processing of the codes, he used an obfuscation tool which reordered import statements, class

members, removed methods, white spaces and new lines and renamed identifiers. However, accord-

ing to this study [17], the trained model did not generalise well to the source code plagiarism tasks

they evaluated.

2.3.1 Code Metrics

While studying this approach, another thing which I came across is the importance of metrics selection

for training the model using machine learning, as used in this dissertation. R. Lange [29] proposed a

method of metric extraction out of source codes to perform author identification. Their study involves

representation of 18 metrics in the form of histogram distributions. This research paper [29] has two

goals, firstly, how well can histogram distribution of code metrics identify the style of a developer and

secondly, what is the best combination of metrics for identification of authors. The histograms were

generated by plotting metric vs its frequency graph for each document and normalized it by dividing

the frequencies by sum of all frequencies. For author identification, nearest neighbour classification

algorithm was used as it can produce a ranked list of developers in order of descending likelihood of

authorship. The best combination of codemetrics, according to this study, came out to be inline space,

inline tab, line length, line words, period, trail space, trail tab and underscore. However, they concluded

that this set of metrics may change according to the dataset as well as if one set of combination of

metrics identifies the author of one set of code, the same combination will not necessarily identify the

author of another set of code. Similarly, Faidhi [12] in one of his researches provided an empirical

program analysis experiment that determines the programming measures that might aid in detection

of plagiarism. To implement this approach, Faidhi [12] simply collected data from source codes that

can study several features of a program. He selected two sets of measures: the set which reflects

features of program sets such as number of characters per line, comments, indented lines, blank

lines, variety of identifiers, etc. and the set which tells about the intrinsic and hidden features of a

program’s structure such as metrics of flow of control diagrams. Then performed tests by deleting

one measure at a time from the set, correlated the remaining set of measures between each student,

similarity indicator was calculated using a similarity gauge and plagiarized files were counted. With

this experiment, he proved that empirical approach can detect plagiarism successfully and is sensitive

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 25/55

enough to avoid misleading an evaluator [12].

2.3.2 Scikit-Learn

As explained by F. Pedregosa [38], Scikit-Learn is a module written in Python Programming language

that includes wide variety of state of the art algorithms of machine learning for unsupervised and su-

pervised problems. As python has a high-level interactive nature as well as ecosystem of scientific

libraries, it is considered as the perfect choice for algorithmic development and exploratory data anal-

ysis [38] [46]. Scikit-Learn has many advantages over other machine learning modules such as it is

totally dependent on numpy and scipy for easy distribution and imperative programming remains its

focus. Moreover, some of the major technologies of this module are:

1. Numpy - It is used for arithmetic operations and data and model parameters. The input data is

converted to numpy arrays to integrate it with other python libraries.

2. Scipy - It is an algorithm used for statistical functions, matrix representation and linear algebra.

3. cython - It is a language that combines C with Python and helps in easily reaching the perfor-

mance of compiled languages.

Apart from these libraries, Scikit-Learn also facilitates estimators that consists of fit and predict func-

tions and some can also be used to transform data. Furthermore, it can help in the evaluation of

performance of these estimators and selection of parameters using GridSearchCV.

Besides using machine learning for plagiarism detection, this dissertation also focuses on compar-

ison of performance of algorithms in Scikit-Learn module for this particular problem. For its implemen-

tation, my major motivation came from a research done by U. Bandara [5] where he compared three

machine learning algorithms for detecting source code plagiarism in Java programming language.

The algorithms selected by him were Naive Bayes classifier, KNN classifier and Adaboost algorithm.

To compare these, he calculated the accuracies of all the algorithms and computed the confusion

matrices to check the total failures and success rate for each algorithm. According to this research,

the best performing algorithm for plagiarism detection came out to be Adaboost algorithm. However,

I will be comparing six machine learning algorithms in this dissertation by not only computing the con-

fusion matrices but also comparing the values of Precision, Recall, Fscore and AUC values of each

algorithm.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 26/55

Chapter 3

Methodology

Section 3.1 explains all the machine learning algorithms used in this research for comparison as well

as plagiarism detection. Section 3.2 explains how the dataset is generated and what code metrics

are used in it. Section 3.3 mentions all the evaluation metrics used for evaluating the performance of

the algorithms.

3.1 Algorithms for Source Code Plagiarism Detection

The periods have changed vastly over the past few decades. The computing moved from mainframes

to computers to cloud. With this evolution, various tools and techniques have also been developed to

boost computing in which Machine Learning algorithms are one of the main contributors in this period.

There are three categories in which these algorithms are divided:

• Supervised Learning - The dataset used in this type consists of a target variable along with

other predictor variables. A function is generated by training the data that maps predictors to

desired targets until the highest accuracy is achieved. Examples of supervised learning are

KNN, Random Forest, Linear Regression, Naive Bayes, etc.

• Unsupervised Learning - In this type of algorithm, dataset does not contain target variable.

Instead, it clusters the data in different groups. Examples are K-means, etc.

• Reinforcement Learning - This type of algorithm helps machine to make the decision on its

own by training and learning from the experience and capture the best possible knowledge.

Examples are Markov Decision Process.

In this dissertation, I have used Supervised Learning classification algorithms as the dataset con-

sisted of a target variable as well as it was the best suited classification algorithms for source code

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 27/55

plagiarism detection problem. The algorithms which I implemented and compared in this dissertation

are:

3.1.1 K-Nearest Neighbour Classifier

The K-Nearest Neighbour (KNN) is a simple yet effective classification algorithm of machine learning

[16]. It stores all cases on the basis of similarity measure, that is, by calculating distance between test

data and training data, Figure 3.1. The working of the algorithm is as follows:

1. Let t be a data which has to be loaded for training and testing.

2. Choose the value of K, nearest data points, which could be a random value.

3. For every value in the test data, distance is calculated from the training data points using any one

of the three functions: Euclidean distance, Manhattan distance or Hamming Distance. However,

euclidean distance is the most commonly used function.

di st (A,B) =
√
Σm

i=2(xi − yi)2

4. Then, points are sorted in ascending order based on the distance values.

5. Top K rows are selected from the sorted list and finally, the most frequent class is assigned to

the test value.

Figure 3.1: Graphical Representation of K-Nearest Neighbour [18]

Selecting the value of K is the most important part of this algorithm as success of classification

depends on it. The simplest way of choosing the value of K is by running the algorithm multiple times

with different values of K and then, selecting the best performing one. In this research, the default

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 28/55

value of K, that is, 5 was the best performing one. However, there is a drawback with KNN algorithm,

that is, all the computation take place at classification time rather than when the training examples are

first encountered which makes its classification cost high [16].

3.1.2 Decision Tree Classifier

Decision Tree is a flow chart like tree structure in which each internal node denotes a test on an

attribute, each branch represents the outcome of test and every leaf is the class label [37]. It consists

of two categories:

• Classification Trees - In this, target variable consists of discrete values.

• Regression Trees - In this, target variable contains continuous values.

Figure 3.2: Decision Tree [45]

The algorithm for Decision Tree is as follows:

1. The best attribute of the dataset is considered to be the root node.

2. Training data is divided into subset containing similar values for an attribute.

3. Repeating above steps for every subset until we get a branches of trees with leaf nodes.

4. After the tree is generated, firstly, the test value is compared to the root value and the next node

is selected on the basis of the comparison.

5. It keeps on comparing the test value with every internal nodes until it reaches a leaf node with

predicted class.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 29/55

It follows Sum of Product representation which is also known as Disjunctive Normal Form, that is, from

root to leaf node with same class is calculated using product and the different branches that ends in

that class is formed using addition. One of the main challenges in decision tree algorithm is selecting

the root node which is done by using either of the two criteria:

• Information Gain - For this, variables are considered categorical and entropy measure is cal-

culated using which information gain can be calculated.

H(X) = EX [I (x)] =−Σp(x)log p(x)

• Gini Index - For this, variables are considered continuous and it measures the occurrence of

incorrectly chosen element so the lower index is preferred.

Some of the many advantages of using Decision Tree algorithm include its implementation does not

require any domain knowledge , it can handle hidimensional data, is simple, fast and understandable

and have good accuracy [37].

3.1.3 Random Forest Classifier

Random Forest is an ensemble classification algorithm in machine learning. It generates multiple

decision trees and applies majority voting to combine the outcomes of these trees [7] [27]. The ran-

domization in this algorithm is done is two ways: sampling of data is done randomly for bootstrap

samples and input variables are selected randomly for generation of individually decision tree [7] [27].

Decision trees in this algorithm can be generated by following steps:

1. The records are randomly sampled with replacement from the original data which is called boot-

strap sampling. This is the training set used to generate trees.

2. From this data,m variables are selected randomly which is kept constant until tree is grown fully

and the best split is used to the split the node.

3. The number of trees generated and the depth of the trees can be controlled using parameters

Ntree and node size, respectively.

Once the forest of decision trees is generated, test data is ran through all of them giving the

classification for it. The results from each tree are combined and the classification with majority votes

is assigned to the test data. At the time of bootstrap sampling, some data is left out which is known

as out-of-bag data and is used to estimate error of individual tree. The formula for this is as follows:

PE∗ = Px,y (mg (X ,Y)) < 0

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 30/55

Figure 3.3: Representation of Random Forest Algorithm [43]

The formula for margin function is as follows:

mg (X ,Y) = avk I (hk (X) = Y)−max j 6=Y avk I (hk (X) = j)

The formula for calculating strength of Random Forest is as follows:

S = EX ,Y (mg (X ,Y))

Some of the advantages of this algorithm is that it can handle large input of data, generates unbiased

generalization error estimate, estimate missing data effectively and maintains accuracy efficiently [7]

[27].

3.1.4 Stochastic Gradient Descent Classifier

Stochastic Gradient Descent (SGD) Classifier is one of the learning algorithms in machine learning

which helps in mapping the data point to one of the classes. As mentioned earlier, the aim of the

machine learning algorithms is to minimize the loss function which gives the inaccuracy of the predic-

tions. Gradient Descent is a straight forward algorithm which performs different coefficient values and

the cost function estimates their cost by comparing the predicted results with the actual results [8].

The algorithm tries different coefficient values to find the lower value which is updated using learning

rate. However, GD is highly expensive as the cost is computed for entire training dataset for each

iteration [8]. Therefore, SGD was introduced which updates the coefficient in several mini-batches of

training set rather than taking the whole dataset at once, Figure 3.4. Hence, this algorithm helps in

regularizing various machine learning models such as Support Vector Machine, Logistic Regression,

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 31/55

etc., that is, a penalty is added to the loss function using Euclidean norm (L2) or absolute norm (L1)

to shrink the parameters of the model towards zero vector. The SGD algorithm is as follows:

θ j = θ j −α(ŷ i − y i)xi
j

Figure 3.4: Stochastic Gradient Descent [23]

Linear Classifiers like Support Vector Machine and Logistic Regression with SGD training are SGD

Classifier. The parameter loss changes its value according to these linear classifiers i.e. for Linear

SVM, loss is set to hinge whereas for Logistic Regression, loss is set to log. The hyper-parameters

used in this classifier for this research are max iter, that is, maximum number of epochs over the

training data is taken as 1000 and tol, the stopping criterion of the training, is taken as 1e −3.

3.1.5 Multi-Layer Perceptron Classifier

Multi-layer perceptron is the most used neural network in machine learning. It has two types of net-

works: feed forward and feed-back. A feed forward multi-layer network is the one in which the signals

are transmitted in one direction within the network, that is, from input to output [44] [20] [39] Figure

3.5. This type of multi-layer architecture does not consist of any loops and the output of each neuron

does not affect the neuron itself [44] [20] [39]. Whereas, feed-back network can transmit signals in

both directions and are powerful as well as complicated. The complexity of decision region can be

increased by introduction of several layers in the network. A one layer architecture generates decision

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 32/55

region in the form of semi planes, a two layer network generates convex regions and a three layer per-

ceptron generates an arbitrary decision region [44] [20] [39]. A non linear activation function is used

to power up a multi-layer perceptron. The most common activation functions are:

• Logistic Sigmoid - f (s) = 1/(1+e−s)

• Bipolar Sigmoid - f (s) = (1−e−a∗s)/(1+e−a∗s)

In multi-layer perceptron, the units are formed by adding the weighted sums of the inputs and then

added to a constant. Then, the value is passed through the activation function.

Figure 3.5: Structure of Neural Network [2]

Backpropogation Algorithm

Backpropogation is a learning algorithm in machine learning which uses gradient descent. The main

idea is to minimize the error between network outputs and desired output [44] [20] [39]. The algorithm

is as follows:

1. Initialization - This step includes the initialization of weights in the network with random values.

The initial values should be small to avoid saturation which makes the learning slow.

2. Training of the data - In this, the weights are memorized and adjusted after each model in the

training set and the end of the epoch of training, the weights will be changed only one time [44]

[20] [39].

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 33/55

3. Forward Propogation of the signals - The formulas for outputs of neuron from the hidden

layer, the output of the network and the error per epoch are as follows:

y j (p) = f (Σm
i=1xi (p).wi j −θ j)

yk (p) = f (Σm
i=1x j k (p).w j k (p)−θk)

E = E + (ek (p))2/2

Where n is the number of inputs for the neuron j in the hidden layer, f is the sigmoid function and m is

the number of inputs of the neuron in the outer layer.

4. Backward Propogation of the errors - The errors of the neuron in the outer layer, weights

between hidden and outer layer, errors of the neuron in the hidden layer and weights between the

input and the hidden layer can be calculated as follows:

δk (p) = f ′.ek (p)

∆w j k (p) =∆w j k (p)+ y j (p).δk (p)

δ j (p) = y j (p).(1− y j (p)).Σl
k=1δk (p).w j k (p)

∆wi j (p) =∆wi j (p)+xi (p).δ j (p)

where f’ is the derived activation function and l is the number of outputs of the network.

5. New Iteration - When the epoch ends, if it satisfies the termination criterion, algorithm ends

otherwise it goes back to step 2. The formula for updating the weights is:

wi j = wi j +η.∆wi j

where η is learning rate.

3.1.6 Linear Discriminant Analysis Classifier

Linear Discriminant Analysis works best on the data in which within-class frequencies are unequal.

This method guarantees maximum separability by maximizing the between class variance to within

class variance in any data set as shown in Figure 3.6. There are two ways in which dataset can be

transformed and classified using LDA [24] [4]:

• Class-dependent transformation - In this approach, main aim is to maximize the ratio of be-

tween class variance to within class variance to get the adequate class separability.

• Class-independent transformation - In this, each class is considered to be a separate class

and maximizes the ratio of overall variance to within class variance.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 34/55

Figure 3.6: Graphical Representation of LDA [32]

The LDA classification algorithm is as follows [24] [4]:

1. The training data (set1) and the test data (set2) are generated.

2. The mean is computed for each of the datasets individually as well for the entire dataset.

µ3 = p1 ∗µ1 +p2 ∗µ2

where p1 and p2 are the probabilities of the classes and µ1, µ2 and µ3 are the mean of classes.

3. The class separability is done using within class and between class scatter which can be calcu-

lated using following formulas:

Sw =Σ j p j ∗ (cov)

where cov is covariance matrix with formula, cov j = (x j −µ j)(x j −µ j)T

Sb =Σ j (µ j −µ3)(µ j −µ3)T

For class dependent transformation, optimizing factor is calculated using:

cr i ter i on j = i nv(cov j)∗Sb

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 35/55

And for class independent is:

cr i ter i on = i nv(Sw)∗Sb

4. After all the transformations are completed, Euclidean distance is calculated to classify data

points.

di stn = (tr ans f or mnspec)T ∗x −µntr ans

where µntr ans is the mean of the transformed data, n is the index of the class and x is the test set.

5. The smallest euclidean distance is considered to be the classification of test data.

3.2 Code Metrics Dataset

In machine learning, datasets are a collection of data instances, represented by rows that are sharing a

common attribute, represented by columns. For learning of data by machine learning models, training

data is fed into algorithms and is validated using the testing data which ensures the accuracy of the

predictions. The larger the training data is, the faster the model learns and improves. The four types

of data primarily used in machine learning are:

• Numerical Data - This is a type of measurable and quantitative data like length, height, cost, etc.

It can be used for calculations by mathematical operations such as average, addition, sorting,

etc. Discrete data is the one which consists of whole numbers and the numbers in a given range

are continuous data.

• Categorical Data - This type of data defines the characteristics such as address, workplace,

gender, name, nationality, etc. It helps in data analysis of large groups which share similar

attributes.

• Time Series Data - Data that are indexed at a point in time are called time series data. It includes

data of weeks, months and years. It can be distinguished from numerical data in a way that it

has starting and ending points whereas numerical data does not.

• Text Data - It consists of different words, sentences, etc which can be analysed by machine

learning models using various techniques such as text classification, word frequency, etc.

There are various platforms from where we can get machine learning data such as Google, Mi-

crosoft, Amazon Web Services, etc. However, for this dissertation, I collected the data myself and

manually annotated it into a comma separated file that could be read by programming languages such

as Python, R, etc. This dataset consists of code metrics generated from Verilog assignments of 18

students with 15 files per student. These assignments are collected from students of Trinity College

Dublin who were in their second semester studying Verilog Hardware Description Language (VHDL).

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 36/55

3.2.1 Generating Code Metrics

Code metrics are nothing but a set of tokens extracted from the source code files, in this case, the

verilog assignments submitted by the students. These tokens represent the characteristics of the

programs written by a programmer and measures its effectiveness, style, system costs, reliability ,

flexibility and structure [21] [11]. There are various tools and techniques introduced to extract these

code metrics including:

• N-Grams - These are the sequence of n items extracted from a text corpus such as words,

letters, etc. In this method, documents are divided into list of substrings of length n with their fre-

quencies [10]. It is a concept of Natural Processing Language. For example, United Kingdoms

is a 2-gram.

• TF-IDF - It stands for Term Frequency-Inverse Document Frequency. It assigns weights to the

words in a document and measures its importance in the corpus. It is mostly used for text mining

and information retrieval.

• ANTLR - It is a parser generator which helps in reading and processing of programming lan-

guages. It also extracts words and syntax which is helpful in understanding the structure of the

source codes.

However, the above mentioned tools and techniques either extract only words or do not work on

Verilog programs but Java, Fortran, C, C++, etc. Moreover, in this research, besides identifiers and

keywords, several other code metrics are needed to know the characteristics of the source codes such

as spaces, tabs, number of words in a line, length of line, etc. Therefore, I used regex and many more

libraries in Python programming language to write programs which extract these code metrics. Figure

3.7 shows the list of metrics that are used in this research with their description and tokens. Tokens

are used to represent selected metrics which calculates the counts in one source code line such as

Line Length, Line Words, Indent Space and Inline Space.

3.2.2 Training Dataset

Training dataset is the one which is used to build up machine learning models and run calculations

to determine various coefficients. After fitting the training data into the models, they learn the pattern

of the data which further helps in predicting or classifying the validation data (hidden data). In this

dissertation, the dataset consists of a combination of code metrics and its frequencies, that is, the

number of occurrences of each metric in every source code. The dataset has been annotated man-

ually and contains source codes written by 18 students with 15 assignments per student. To build

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 37/55

Figure 3.7: List of Source Code Metrics used for Plagiarism Detection in VHDL

the dataset, firstly, I counted the frequency of each code metric in an assignment and then, combined

these tokens and frequencies that were labeled in a spreadsheet according with the metrics name.

Table 3.1 shows an example of Line Length metrics with its frequencies in a program.

3.2.3 Validation Dataset

Validation data is a hidden dataset, excluded from the training set, used to check how well the pre-

dictions and classifications perform on wider set of data and gives the sense of false positives and

false negatives which further helps in comparison of models. Although the validation set is similar

to the training set, it does not contain the target values which has to be predicted or classified. In

this case, validation set consists of 63 anonymous verilog assignments of the students. The overall

sample structure of both datasets combined is shown in Figure 3.8.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 38/55

Tokens Token Frequencies

LL_5 10

LL_8 7

LL_15 6

LL_20 12

LL_28 1

LL_37 9

LL_46 11

LL_48 3

Table 3.1: An Example of Line Length Tokens and Frequencies

Figure 3.8: Sample Structure of Dataset

Figure 3.9: Architecture Diagram of the System

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 39/55

3.3 Implementation

Figure 3.9 shows the high level architecture of the plagiarism detection system being discussed in this

dissertation. Each of the components mentioned in the figure is written using python programming

language except for the source codes which are VHDL programs. Source codes are the raw data,

that is, VHDL assignments collected from students. Metrics represent the tokens extracted out of the

VHDL source codes such as line length, line words, etc. The code metrics generated are annotated

into a spreadsheet which is then divided into two subsets, training and testing. Dataset represents

the combination of all the code metrics with a target variable as programmer that has to be fed in

into classifier. The classifier learns the pattern of the training data and build it into a machine learning

model which is shown as algorithm. Utilities show the evaluation and testing of model using the testing

data. The algorithms are evaluated on the basis of the classifications and where ever the classification

is incorrect, it is considered to be a plagiarism between two files.

3.4 Evaluation

Machine learning models are able to provide prediction with high accuracy to be used as a real value

by organizations. Although the main step is to train the model properly, generalizing on hidden data

is another important aspect for models in machine learning pipeline. Various model performance

evaluation techniques such as hold-out, cross validation, etc. as well as metrics to quantify their

performances such as accuracy, confusion matrix, etc. have been introduced to handle this issue.The

evaluation techniques and metrics which I have used to evaluate and compare the machine learning

model in this dissertation are:

3.4.1 Model Evaluation Technique

Cross Validation is a method which evaluates the generalization ability of predictive models and pre-

vents overfitting. It works on Monte Carlo Methods. There are two major challenges that have to be

handled while training the data using machine learning, overfitting and underfitting. Overfitting hap-

pens when model learns the details and noise in the data which negatively impacts the performance

of the model and underfitting occurs when the model does not capture well the relation between the

variables [6] [26]. There are various techniques to handle these issues. However, the one which I

have used while training my model is:

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 40/55

K-Fold Cross Validation

Cross validation is basically re-sampling of data in which no two test sets overlap [6] [26]. In k-fold

cross-validation, the training data is divided into k disjoint subsets of equal sizes. This partitioning is

done by sampling the data randomly without replacement. From these subsets, k−1 subsets are used

as a training data and the k th set is used as a validation set to measure the performance of the model

as shown in Figure 3.10. This method repeats until each of the k subsets serve as a validation set.

The cross validated performance can be measured by taking the average of all the k performance

measurements.

êcv =Σn
i=1(yi , f̂ −k(xi))/n

Moreover, in some cases, cross validation is repeated with different k-fold subsets to reduce the vari-

ance of the performance measure [6] [26].

Figure 3.10: K-Fold Cross Validation [30]

3.4.2 Model Evaluation Metrics

These metrics are used to quantify the performance of the models and their choice depends on the

machine learning tasks at hand. Some metrics like Precision and Recall can be used for multiple

tasks. The metrics which I used to evaluate the models are:

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 41/55

Classification Accuracy

It is the most common evaluation metric for classification problems. Accuracy can be defined as the

ratio of number of correct predictions and all the predictions made.

Accur ac y = Number o f Cor r ectPr edi ct i ons/Tot al Number o f Pr edi ct i ons

For binary classification, the formula for accuracy is as follows:

Accur ac y = T P +T N /T P +T N +F P +F N

where TP - True Positives, TN - True Negatives, FP - False Positives and FN - False Negatives.

However, in case of imbalanced classes, it is not a fair measure to be optimized as it can be quite

high, that is, it favours majority classes while ignores minority classes.

Confusion Matrix

Confusion matrix is one of the most informative performance measures a multi-class learning system

can rely on [25] [14]. It provides information about the accuracy of classifier on one class and the

confusion among classes, that is, the mistakes in classification of each class for other ones. They cal-

culate the error measure according to class based costs of each misclassification. The interpretation

of a confusion matrix involves diagonal elements representing the true predicted labels whereas all

other values are the mislabeled classifications. The higher the diagonal values the better and more

correct predictions. Moreover, confusion matrix are the most common tools for estimating goodness

of a classifier in the imbalanced classes [25] [14]. However, in this research, confusion matrix is used

as the criterion to determine the plagiarized files in the dataset.

F-Measure

F- Measure measures the accuracy of the test data and computes the score by considering the pre-

cision and the recall. It basically works according to Figure 3.11 where TP - True Positives, TN - True

Negatives, FP - False Positives and FN - False Negatives.

Precision can be defined as the number of true positive results divided by total positive predictions.

p = T P/T P +F P

On the other hand, recall is the number of true predictions divided by total actual positives.

r = T P/T P +F N

Taking the weighted average of precision and recall leads to the F-Score [15].

F = 2∗ ((pr eci si on ∗ r ecal l)/(pr eci si on + r ecal l))

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 42/55

Figure 3.11: Representation of True Positive, False Positive, True Negative and False Negative [28]

Area Under Curve (AUC)

AUC, Area Under ROC Curve, is used to measure the classifier’s ability for positive and negative

class discrimination. AUC can be interpreted as a probability of a positive prediction ranked higher

than the negative predictions. Its value ranges from 0 to 1 with 0 representing all wrong predictions

and 1 represents all right predictions. AUC is one of the desirable performance metrics because [13]:

• Rather calculating the absolute values, it gives information about the ranking of the predictions.

• It does not varies with the classification threshold and calculates the quality of prediction of

model.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 43/55

Chapter 4

Results and Discussion

As this research focuses on two problem statements, this chapter includes, first, the results for best

performing algorithm and then based on that algorithm, the results of detection of plagiarized files are

shown.

4.1 Comparison of Trained Models

There are various techniques in machine learning which can be used to compare the performances

of the trained models. However, the techniques which I am using in this dissertation are Accuracy,

Precision, Recall, F-Score and AUC values. The test dataset consists of 63 anonymous verilog

programs which are to be classified and their results were used to compute four major parameters

which helped in finding the values of chosen evaluation metrics:

• True Positives - These are the positive files classified correctly by the model.

• True Negatives - Negative files which are classified correctly by the model.

• False Positives - Positive files incorrectly classified by the model.

• False Negatives - Negative files incorrectly classified by the model.

These outcomes help in evaluating various metrics like precision, recall, accuracy, etc. Accuracy is

one of the most common evaluation metrics which gives us the percentage of correct classification

made by a model. In this case, the accuracy of each algorithm came out to be as mentioned in Table

4.1.

According to Table 4.1, Stochastic Gradient Descent classifier is the best performing classifier

among all the six models compared with 82.3% accuracy. However, for detection of plagiarized files,

calculating accuracies is not enough to identify the best performing classifier so I further used AUC

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 44/55

Classifiers Accuracies

SGDC 82.3%

MLPC 77.77%

Random Forest 74.6%

Decision Tress 57.14%

KNN 57.14%

LDA 49%

Table 4.1: Accuracy Table

metrics as the basis of comparison. This metric tells us the probability of positive classification ranked

higher than the negative classification. The computed AUC values for all the classifiers are shown

below:

Classifiers AUC Values

SGDC 90%

MLPC 86.4%

Random Forest 86.46%

Decision Tree 77.8%

LDA 65.2%

KNN 53.24%

Table 4.2: AUC Table

Table 4.2 confirms that the Stochastic Gradient Descent Classifier has the best performance

amongst all the classifiers used in this research. Moreover, precision, recall and f-score are the

metrics which further helped in verifying outcome of the above metrics, that is, SGDC is the most

accurate classifier. In the context of plagiarism detection, C. Arwin [3] mentioned in his research that

precision represents the number of plagiarized files at some point in the classified list. As the preci-

sion increases, the detection becomes more accurate with fewer false positives. On the other hand,

recall represents the number of plagiarized files out of all the plagiarized files in total. As the recall

increases, there are less chances of plagiarized files escaping detection, that is, fewer false nega-

tives. Furthermore, the classifiers with f-score closer to 1 is considered to have better accuracy than

the classifiers with f-score closer to 0.

The Figures 4.1, 4.2 and 4.3 shows the average precision, recall and f-score for all the classifiers

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 45/55

Figure 4.1: Precision Graph

Figure 4.2: Recall Graph

and verifies that the Stochastic Gradient Descent Classifier has the best performance among all the

six algorithms.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 46/55

Figure 4.3: F-Score Graph

4.2 Detection of Plagiarized Programs

The main problem which has been focused in this dissertation is plagiarism detection in VHDL pro-

grams using machine learning. There are various ongoing as well as completed researches in this

domain. However, most of them are either without using machine learning or are tested using other

programming languages such as C, C++, Java, Fortran, etc. Therefore, I decided to come up with a

machine learning technique which can be used to detect plagiarism in verilog hardware description

language. I used confusion matrix as my evaluation metrics which helped me in knowing which files

are similar to each other. For this problem, I have considered the results of only Stochastic Gradient

Descent classifier as it performed the best i.e. the most accurate model among all the algorithms

compared in this research. Figure 4.4 and 4.5 shows the confusion and the F-measure table, both

generated using SGDC classifier.

The confusion matrix shown in Figure 4.4 is arranged in the same order as shown in the F-measure

table. It shows the classification results of 63 anonymous assignments, four or three for each student.

All the diagonal values shows the number of assignments correctly classified for each programmer

whereas the column values show the predicted programmers and row values show the actual pro-

grammer. According to the Figure 4.4, first and second row show that all programs are classified

correctly for Programmer 10 and 11, respectively. However, third row represents Prog 12 which con-

sists of four source codes to be tested. Among those four source codes, three were classified correctly

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 47/55

Figure 4.4: Confusion Matrix

Figure 4.5: F-Measure Table

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 48/55

whereas one seemed to be classified as Prog 3. This makes the code of programmer 12 suspicious

to be similar to programmer 3. Once the similarity analysis is done and our algorithm gave the names

of programmers who have some similarity in their programs, then I further inspected the suspicious

files to determine the plagiarism in them.

Figure 4.6: Source Code - Programmer 12

Figure 4.7: Source Code - Programmer 3

Figure 4.6 and 4.7 shows the verilog programs written by programmers 12 and 3, respectively.

As both the programs came out to be similar except for the differences in spaces and brackets, it

proves that the plagiarism occurred while writing this assignment. Likewise, there are many instances

of plagiarism in the test data found by this technique introduced in this dissertation.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 49/55

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this dissertation, I discussed a machine learning technique using the best performing algorithm

among six machine learning models that can be used for detecting plagiarism in verilog hardware

description language programs. The two major problem statements focused in this research are how

can we use machine learning for detecting plagiarism in verilog programs and which is the most accu-

rate machine learning algorithm to detect plagiarism. The training and testing datasets generated for

these problems consist of code metrics which were generated using python programming language.

These code metrics include various features which helped in determining the structure of the verilog

programs which, in turn, helped in finding programmers with similar files among all the programs.

The machine learning algorithms which were compared to find the most accurate model for pla-

giarism detection were K-Nearest Neighbour, Random Forest, Decision Tree, Stochastic Gradient De-

scent, Linear Discriminant Analysis and Multi-layer Perceptron. Among all these classifiers, Stochas-

tic Gradient Descent Classifier came out to be themost accurate for plagiarism detection with 82.3%

accuracy and 90% AUC value. For plagiarism detection, I used the results of Multi-layer Perceptron

as it was the most accurate of all. Among 63 verilog assignments that were tested, 12 were confirmed

as plagiarized and one of the instances is shown above in which programmer 12 and 3 have similar

verilog codes with some differences in spaces and brackets.

5.2 Future Work

In this research, I have proposed a machine learning technique which helps in finding the similar

verilog programs that have the possibility to be plagiarized as well as suggested the most accurate

algorithm among six for detecting plagiarism. However, this research has a scope to be improved in

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 50/55

many aspects by including following things:

1. For now, this technique can be considered only as a tool for providing assistance to the instruc-

tors. It becomes difficult for machine learning algorithms to set absolute detection limits as there

are many features in programs that influence plagiarism. Hence, it is important to have a man-

ual evaluation of the suspicious programs by the instructors to sort their pairs. To make manual

evaluation to minimal, more program features can be included in the training dataset.

2. In this research, the best accuracy is calculated for the multi-layer perceptron classifier, that is,

82.3%. However, this can be improved so that it gives us more accurate pairs of plagiarized files.

3. As this is still a prototype for the plagiarism detection technique, it can be developed for more

real world use.

4. The dataset used in this research is manually annotated and due to time constraint, it consists of

data of only 18 students. So, dataset can be increased both by adding the data of more students

as well as increasing the code metrics such as text based and language dependent, which

gives us the characteristics of programs more precisely. This can, in turn, help in increasing the

accuracy of the algorithm.

5. This method can further be improved by usingmachine learning algorithms which provide us with

the ranking of pairs of programs on the basis of similarity. For now, the algorithm is giving the

result of comparison of two programs with maximum similarity. So, using alternate algorithms

would help in the comparison of one file with all the other files.

6. This method does not capture the similarities of the programs if students have used any coding

standards to write them. So, this issue can be considered and improved in the future.

Hence, these measures can be useful and help in improving this technique and use it for real world

purposes.

School of Computer Science & Statistics Trinity College Dublin, Ireland

©Anusha Gupta September 6, 2020 Page 51/55

Bibliography

[1] Giovanni Acampora and Georgina Cosma. “A Fuzzy-based Approach to Programming Lan-

guage Independent Source-Code Plagiarism Detection”. In: School of Science and Technology,

Nottingham Trent University, Nottingham, U.K. ().

[2] Artificial Neural Networks – Part 2: MLP Implementation for XOr. 2018. url: https://www.

mlopt.com/?tag=multilayer-perceptron.

[3] Christian Arwin and S.M.M. Tahaghoghi. “PlagiarismDetection across Programming Languages”.

In: Twenty-Ninth Australasian Computer Science Conference (ACSC2006) 48 (2006).

[4] S. Balakrishnama and A. Ganapathiraju. “LINEAR DISCRIMINANT ANALYSIS - A BRIEF TU-

TORIAL”. In: INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING ().

[5] Upul Bandara and Gamini Wijayarathna. “A Machine Learning Based Tool for Source Code

Plagiarism Detection”. In: International Journal of Machine Learning and Computing 1.4 (Oct.

2011), pp. 337–343.

[6] Daniel Berrar. “Cross-validation”. In: Encyclopedia of Bioinformatics and Computational Biology

1 (2018), pp. 542–545.

[7] Gerard Biau. “Analysis of a Random Forests Model”. In: Journal of Machine Learning Research

13 (Apr. 2012), pp. 1063–1095.

[8] Shadi Diab. “Optimizing Stochastic Gradient Descent in Text Classification Based on Fine-

Tuning Hyper-Parameters Approach. A Case Study on Automatic Classification of Global Ter-

rorist Attacks.” In: International Journal of Computer Science and Information Security (IJCSIS)

16.12 (Dec. 2018).

[9] Draw a program dependence graph with graphviz. 2017. url: https://stackoverflow.com/

questions/46872521/draw-a-program-dependence-graph-with-graphviz.

[10] Michal Ďuračíka, Emil Kršáka*, and Patrik Hrkúta. “Current trends in source code analysis,

plagiarism detection and issues of analysis big datasets”. In: International scientific conference

on sustainable, modern and safe transport (2017), pp. 136–141.

School of Computer Science & Statistics Trinity College Dublin, Ireland

https://www.mlopt.com/?tag=multilayer-perceptron
https://www.mlopt.com/?tag=multilayer-perceptron
https://stackoverflow.com/questions/46872521/draw-a-program-dependence-graph-with-graphviz
https://stackoverflow.com/questions/46872521/draw-a-program-dependence-graph-with-graphviz

©Anusha Gupta September 6, 2020 Page 52/55

[11] Matt G. Ellis and Claude W. Anderson. “Plagiarism Detection in Computer Code”. In: (Mar.

2005).

[12] J. A. W. FAIDHI and S. K. ROBIMOX. “AN EMPIRICAL APPROACH FOR DETECTING PRO-

GRAM SIMILARITY AND PLAGIARISMWITHIN A UNIVERSITY PROGRAMMING ENVIRON-

MENT”. In: Pergamon Journals Ltd 11.1 (Mar. 1987), pp. 11–19.

[13] Peter Flach, Jose Hernandez-Orallo, and Cesar Ferri. “A Coherent Interpretation of AUC as a

Measure of Aggregated Classification Performance”. In: Proceedings of the 28th International

Conference on Machine Learning (2011).

[14] Garillos-Manliguez. “Generalized Confusion Matrix for Multiple Classes”. In: (Nov. 2016).

[15] Cyril Goutte and Eric Gaussier. “A Probabilistic Interpretation of Precision, Recall and F-score,

with Implication for Evaluation”. In: Proceedings of the European Colloquium on IR Resarch

(ECIR’05) (), pp. 345–359.

[16] Gongde Guo et al. “KNN Model-Based Approach in Classification”. In: School of Computing

and Mathematics, University of Ulster, Newtownabbey, BT37 0QB, Northern Ireland, UK ().

[17] Daniël Heres. “Source Code Plagiarism Detection using Machine”. In: (Aug. 2017).

[18] How can we use KNN, Machine Learning for classification of cars? 2017. url: https://www.

quora.com/How-can-we-use-KNN-Machine-Learning-for-classification-of-cars.

[19] Introduction to Programming Languages/Parsing. 2020. url: https://en.wikibooks.org/

wiki/Introduction_to_Programming_Languages/Parsing.

[20] Alexander Iversen, Nicholas K. Taylor, and Keith E. Brown. “Classification and Verification through

the Combination of the Multi-Layer Perceptron and Auto-Association Neural Networks”. In: Pro-

ceedings of International Joint Conference on Neural Networks, Montreal, Canada, (July 2005),

pp. 1166–1171.

[21] Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. “A Source Code Linearization Technique for

Detecting Plagiarized Programs”. In: ITiCSE’07, Dundee, Scotland, United Kingdom (June 2007),

pp. 73–77.

[22] Mark C. Johnson et al. “Gene Sequence Inspired Design Plagiarism Screening”. In: American

Society for Engineering Education Annual Conference Exposition (2004).

[23] Divakar Kapil. Stochastic vs Batch Gradient Descent. 2019. url: https://www.quora.com/How-

can-we-use-KNN-Machine-Learning-for-classification-of-cars.

School of Computer Science & Statistics Trinity College Dublin, Ireland

https://www.quora.com/How-can-we-use-KNN-Machine-Learning-for-classification-of-cars
https://www.quora.com/How-can-we-use-KNN-Machine-Learning-for-classification-of-cars
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Parsing
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Parsing
https://www.quora.com/How-can-we-use-KNN-Machine-Learning-for-classification-of-cars
https://www.quora.com/How-can-we-use-KNN-Machine-Learning-for-classification-of-cars

©Anusha Gupta September 6, 2020 Page 53/55

[24] Kang Soo Kim et al. “Comparison of k-nearest neighbor, quadratic discriminant and linear dis-

criminant analysis in classification of electromyogram signals based on the wrist-motion direc-

tions”. In: www.elsevier.com/locate/cap (2011), pp. 740–745.

[25] Sokol Koco and Cecile Capponi. “On multi-class classication through the minimization of the

confusion matrix norm”. In: JMLR: Workshop and Conference Proceedings (2013), pp. 277–

292.

[26] Ron Kohavi. “A Study of Cross-alidation and Bootstrap for Accuracy Estimation and Model Se-

lection”. In: International Joint Conference on Artificial Intelligence (1995).

[27] Vrushali Y Kulkarni and Pradeep K Sinha. “Effective Learning and Classification using Random

Forest Algorithm”. In: International Journal of Engineering and Innovative Technology (IJEIT)

3.11 (May 2014), pp. 267–273.

[28] Chris L. Evaluating ML Models: Precision, Recall, F1 and Accuracy. 2019. url: https : / /

medium . com / analytics - vidhya / evaluating - ml - models - precision - recall - f1 - and -

accuracy-f734e9fcc0d3.

[29] Robert Lange and Spiros Mancoridis. “Using Code Metric Histograms and Genetic Algorithms

to Perform Author Identification for Software Forensics”. In: GECCO’07 (July 2007).

[30] Mingchao Li. Tectonic discrimination of olivine in basalt using data mining techniques based

on major elements: a comparative study from multiple perspectives. 2019. url: https://www.

researchgate.net/figure/K-fold-cross-validation-method_fig2_331209203.

[31] Chao Liu et al. “GPLAG: Detection of Software Plagiarism by Program Dependence Graph

Analysis”. In: KDD, Philadelphia, Pennsylvania, USA (Aug. 2006).

[32] Sambit Mahapatra. (Linear Discriminant Analysis) using Python. 2018. url: https://medium.

com/journey-2-artificial-intelligence/lda-linear-discriminant-analysis-using-

python-2155cf5b6398.

[33] Raphael Njuguna. “A Survey of FPGA Benchmarks”. In: ().

[34] MATIJA NOVAK, MIKE JOY, and DRAGUTIN KERMEK. “Source-code Similarity Detection and

Detection Tools Used in Academia: A Systematic Review”. In: ACM Trans. Comput. Educ 19.3

(May 2019).

[35] Karl J . Ottenstein. “AN ALGORITHMIC APPROACH TO THEDETECTION AND PREVENTION

OF PLAGIARISM”. In: CSD-TR 200 (Aug. 1976), pp. 30–41.

[36] Alan Parker and James O. Hamblen. “Computer Algorithms for Plagiarism Detection”. In: IEEE

TRANSACTIONS ON EDUCATION 32.2 (May 1989), pp. 337–343.

School of Computer Science & Statistics Trinity College Dublin, Ireland

https://medium.com/analytics-vidhya/evaluating-ml-models-precision-recall-f1-and-accuracy-f734e9fcc0d3
https://medium.com/analytics-vidhya/evaluating-ml-models-precision-recall-f1-and-accuracy-f734e9fcc0d3
https://medium.com/analytics-vidhya/evaluating-ml-models-precision-recall-f1-and-accuracy-f734e9fcc0d3
https://www.researchgate.net/figure/K-fold-cross-validation-method_fig2_331209203
https://www.researchgate.net/figure/K-fold-cross-validation-method_fig2_331209203
https://medium.com/journey-2-artificial-intelligence/lda-linear-discriminant-analysis-using-python-2155cf5b6398
https://medium.com/journey-2-artificial-intelligence/lda-linear-discriminant-analysis-using-python-2155cf5b6398
https://medium.com/journey-2-artificial-intelligence/lda-linear-discriminant-analysis-using-python-2155cf5b6398

©Anusha Gupta September 6, 2020 Page 54/55

[37] Bhaskar N. Patel, Satish G. Prajapati, and Dr. Kamaljit I. Lakhtaria. “Efficient Classification of

Data Using Decision Tree”. In: Bonfring International Journal of Data Mining 2.1 (Mar. 2012).

[38] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine

Learning Research 12 (Oct. 2011), pp. 2825–2830.

[39] MARIUS-CONSTANTINPOPESCUet al. “Multilayer Perceptron andNeural Networks”. In: ISSN:

1109-2734 8.7 (July 2009), pp. 579–589.

[40] James F. Power and John Waldron. “Calibration and Analysis of Source Code Similarity Mea-

sures for Verilog Hardware Description Language Projects”. In: SIGCSE, Association for Com-

puting Machinery, Portland, OR, USA (Mar. 2020).

[41] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “Finding Plagiarisms among a Set of

Programs with JPlag”. In: Journal of Universal Computer Science 8.11 (Nov. 2002), pp. 1016–

1038.

[42] Thang Huynh Quyet. Rule-Based Techniques Using Abstract Syntax Tree for Code Optimiza-

tion and Secure Programming in Java. 2014. url: https://www.researchgate.net/figure/

Abstract-syntax-tree-of-Euclide-function_fig1_300802898.

[43] Abilash R. APPLYING RANDOM FOREST (CLASSIFICATION) — MACHINE LEARNING AL-

GORITHM FROM SCRATCH WITH REAL DATASETS. 2018. url: https : / / medium . com /

@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-

from-scratch-with-real-24ff198a1c57.

[44] Philippe Thomas. “Perceptron learning for classification problems”. In: IJCCI’15 7th International

Conference on Neural Computation Theory and Applications, NCTA (Nov. 2015).

[45] Jagrati Valecha. Building Blocks of Decision Tree. 2018. url: https://dimensionless.in/

building-blocks-of-decision-tree/.

[46] Min-Ling Zhang and Zhi-Hua Zhou. “A Review on Multi-Label Learning Algorithms”. In: ().

[47] Justin Zobel. ““Uni Cheats Racket”: A Case Study in Plagiarism Investigation”. In: Sixth Aus-

tralasian Computing Education Conference (ACE2004) 30 (2004), pp. 357–365.

School of Computer Science & Statistics Trinity College Dublin, Ireland

https://www.researchgate.net/figure/Abstract-syntax-tree-of-Euclide-function_fig1_300802898
https://www.researchgate.net/figure/Abstract-syntax-tree-of-Euclide-function_fig1_300802898
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from-scratch-with-real-24ff198a1c57
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from-scratch-with-real-24ff198a1c57
https://medium.com/@ar.ingenious/applying-random-forest-classification-machine-learning-algorithm-from-scratch-with-real-24ff198a1c57
https://dimensionless.in/building-blocks-of-decision-tree/
https://dimensionless.in/building-blocks-of-decision-tree/

©Anusha Gupta September 6, 2020 Page 55/55

Appendix A

Appendix

The code of this research has been uploaded on GITHUB and the link to it is: https://github.com/

agupta1994/Dissertation_Plagiarism-Detection-in-VHDL-Programs-using-Machine-Learning.

School of Computer Science & Statistics Trinity College Dublin, Ireland

https://github.com/agupta1994/Dissertation_Plagiarism-Detection-in-VHDL-Programs-using-Machine-Learning
https://github.com/agupta1994/Dissertation_Plagiarism-Detection-in-VHDL-Programs-using-Machine-Learning

©Anusha Gupta September 6, 2020 Page 56/55

School of Computer Science & Statistics Trinity College Dublin, Ireland

	Declaration
	Permission to Lend and/or Copy
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Verilog Hardware Description Language
	Machine Learning

	Objectives
	Overview of the Dissertation

	Literature Review
	Introduction
	GPlag
	XPlag
	Fuzzy-Based Approach
	Gene Sequence Inspired Approach
	Parse Tree Similarities
	Algorithm-Based Approach

	Current Trends in Plagiarism Detection
	Machine Learning in Plagiarism Detection
	Code Metrics
	Scikit-Learn

	Methodology
	Algorithms for Source Code Plagiarism Detection
	K-Nearest Neighbour Classifier
	Decision Tree Classifier
	Random Forest Classifier
	Stochastic Gradient Descent Classifier
	Multi-Layer Perceptron Classifier
	Linear Discriminant Analysis Classifier

	Code Metrics Dataset
	Generating Code Metrics
	Training Dataset
	Validation Dataset

	Implementation
	Evaluation
	Model Evaluation Technique
	Model Evaluation Metrics

	Results and Discussion
	Comparison of Trained Models
	Detection of Plagiarized Programs

	Conclusion and Future work
	Conclusion
	Future Work

	Bibliography
	Appendix

