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Abstract 

 

The use of statistics in pharmaceuticals is increasing with advanced statistical methods being 

widely incorporated by the medical researchers and pharmacologists. Statistics methodologies 

are pivotal to determine the quality and maintain consistency in pharmaceutical drugs. The 

dataset for our research consists of weight measures for a pharmaceutical drug for different 

dosages. To maintain the consistency of the drug during production stage, a coefficient of 

variation range is obtained that can be treated as the standard during drug production stage. 

 

We observe that the inverse of the coefficient of variation of this dataset has a non-central t 

distribution and aim to obtain a confidence interval for this inverse coefficient of variation by 

employing the model of generalized t-distribution. The parameters for the generalized t-

distribution being utilized are obtained by applying method of moments and optimized to 

obtain the narrowest confidence interval for the inverse of coefficient of variation. We then 

make use of this confidence interval for the inverse coefficient of variation to acquire 

confidence interval for the population coefficient of variation. 

 

The developed model is then validated by comparing it with classic McKay approximation 

method for normal and Gamma distributions to monitor how the model performs in 

comparison to an existing model. 
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Chapter 1 

Introduction 

1.1 Background 
 

Pharmacologists make use of statistics all the time, especially during the initial stages of the 

development of a new medicine.  They use descriptive statistics to outline the data with 

respect to measures like median or mean or variance. Statistics plays a crucial role in 

hypothesis testing as well for example when a pharmaceutical company need to prove that a 

new drug is more effective than an existing drug in the market. Also, it can be utilized to 

monitor the uniformity in the drugs that are produced from a pharmaceutical company. Thus, 

to maintain the quality and the consistency of these pharmaceutical drugs/products, statistical 

parameters are utilized to measure critical quality attributes with coefficient of variation (CV) 

being one of them. 

 

The coefficient of variation gives a measure of variance relative to mean. It provides dispersion 

estimate in a data set and is often used in the experiments to understand the effect of specific 

components on properties. Its advantageous to calculate the error in the property due to the 

introduction or removal of these specific components. So, in such kind of experiments the CV 

should be as low as possible. A high CV is unfavorable for studying the precision of a variable. 

So, the higher the CV, the worst the result. So, the variable will be more precise when the CV is 

in a lower range.  

 

Calculating the coefficient of variation is not a concern but rather understanding the result of 

such a calculation. Only in the case where the data is of ratio type the CV can be 

advantageous. That means continuous data should be used to calculate CV and it should have 

a meaningful zero [23]. The CV can be calculated for data that is not on ratio scale also, but the 

results will probably not be useful. 
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In pharmaceutical research, calculating population CV is not quite straightforward because 

generally population data is not available but rather data from randomly drawn samples from 

the population. Thus, the aim is to deduce inference about CV of the underlying population 

based on values from this sample which are known as ‘sample statistics’ and this process is 

called ‘statistical inference’ .The values that are procured for the underlying population are 

called ‘population parameters’ ,one of them being population CV [13]. 

 

But based on the random sample data we cannot simply supply exact population CV which is 

why a confidence interval (CI) comes into the picture. CI is calculated from the sample 

statistics of the concerned population parameter. A range for the population CV can be 

proposed which is the CI for CV which can be two sided or one sided. Also, this CI has a 

confidence level associated with it which we will discuss further in chapter 2 [5]. 

1.2  Motivation 

There are two main motivations for choosing this research problem. Firstly, there is a lack of 

statistical packages to calculate CI for the coefficient of variation for different distributions in 

data science focused languages like R and Python. On top of this, the few statistical functions 

available in other languages do not provide significant support for generalized distributions 

hence missing factors like accuracy and robustness. 

 

Secondly, in many real life scenarios, variance and standard deviation are used as the 

parameters to test variability without keeping other factors in mind. While this approach may 

work in most of the scenarios but in some instances a more accurate methodology is required, 

and pharmaceutical drugs testing is one such case. Even a minor difference in weight of the 

drug can affect a patient’s condition drastically and that is why we want to approach this 

problem with respect to coefficient of variation and not standard deviation or variance. 
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The coefficient of variation gives us a relative measure of a quantity instead of an absolute 

measure like standard deviation or variance. Coefficient of variation which reports relativity 

with respect to mean gives more accurate results and that is why is used widely across 

academic and scientific institutions. 

 

  If we see below in figure 1.1, the target variable depicted in red color at the center is 

dependent on both the bias and the variance. On the right hand side , we observe that the 

values are widespread from the target ,of course because the variance is high in both cases on 

the right and hence a huge distance from the target but by looking at the left side it is evident 

that only low variance alone cannot guarantee values closer to the target. In our case of a 

pharmaceutical drug study, if the mean bias i.e. the difference between the drugs expected 

value and the observed mean is high then even with low variance the results obtained will not 

be satisfactory and that is why both a low mean bias and low variance is required to obtain the 

desired results which goes on to show that both mean and standard deviation needs to be 

taken into consideration when studying the variability for the drug and hence , that is why for 

our study ,we have opted to utilize coefficient of variation which is standard deviation divided 

by mean. More background on it will be discussed in chapter 2. 

 

Figure 1.1 : Graphical illustration of Bias and variance [31] 
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1.3 Research question 

 

How to get confidence interval for the population coefficient of variation based on sample 

data? 

 

1.4 Research objective 

 

1. Using generalized t-distribution to create a model for the inverse of the coefficient of 

variation  

2. Calculating the parameters of the obtained model with the help of method of moments 

based on our dataset 

3. Calculating and optimizing the confidence interval for the inverse coefficient of 

variation derived from this model 

4. Computing the confidence interval for the population coefficient of variation with the 

calculated CI for inverse of the coefficient of variation.  

5. Validating the derived generalized model by comparing with established model for 

various distributions.  

 

1.5 Thesis overview 

 

The generalized t distribution gives a better estimate for cases where the distribution of a 

random variable is not symmetrical about center. The precision in the results acquired with 

generalized t-distribution is higher as compared to either the usual Student’s t-distribution or 

normal distribution. 

 

The data that we have used for this dissertation is a pharmaceutical data consisting of 3 

datasets containing the weight measures of low , medium and high dosage of a 

pharmaceutical drug. The focus is on the medium dosage dataset as it has the highest number 
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of records.  

 

An approach based on the non-central generalized t-distribution and method of moments is 

developed to obtain the confidence interval for the coefficient of variation and further it is 

compared with a simulation study performed with the existing methodologies in statistics to 

monitor the performance for this new developed approach. 

   

1.6 Thesis structure 

 

Chapter 1 gives a brief introduction about the research and provides the research question. 

Then it discusses the research objectives for this thesis. Chapter 2 gives the background and an 

intensive literature review which is very crucial for our research for all the measures related to 

the calculation of confidence interval of coefficient of variation. 

 

Followed by Chapter 3, which provides details about the data used for this research. The initial 

data analysis and exploratory steps are discussed in this section. Then in Chapter 4, we discuss 

in detail about the methodology that we have incorporated to obtain the results for our thesis 

and make use of coding language R to reproduce this methodology. 

 

Chapter 5 outlines the results obtained from the methodology obtained in Chapter 4 and also 

compares it with previous simulation study done in Chapter 3.  

 

The conclusion of the thesis is detailed out in Chapter 6 along with the limitations and 

challenges that were faced during the research. Chapter 6 also discusses the future work 

based on the results obtained in Chapter 5. 
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Chapter 2 

Background and related work 

 

2.1 Basic terminologies 

 

The arithmetic mean is the average value of sum of all the observations x1, x2, ..., xN  in a 

dataset also called as expected value. In the case where the observations are that of a 

population the mean is called the population mean and represented by μ and to best estimate 

the population mean we use sample  mean which is the average of  the observations from a 

sample obtained from the population and it is represented by  �̅�  and both these mean can be 

calculated as follows 

 

𝜇 =
∑ 𝑥𝑖
1𝑁
𝑖=1

𝑁
 

 

�̅� =
𝛴𝑖=1
𝑛 𝑥𝑖
𝑛

 

Where N is the total number of observations in a population and n is the total number of 

observations in a sample [14]. 

 

We can identify the variability/dispersion of a population by obtaining the lower and upper 

limit measurements, but it would not convey information about how the data distribution with 

respect to the mean looks like. So, to achieve this a better measurement is to note how the 

data varies in relation to mean and hence variance represented by σ2 is a good measure for 

this purpose and can be calculated as follows 

 

𝜎2 =
𝛴𝑖=1
𝑁 (𝑥𝑖 − 𝜇)

2

𝑁
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Standard deviation is another measure which can identify the dispersion of a set of 

observations. It is the square root of the variance and a low value means that the observations 

are dispersed more around mean while a higher value means they are spread out over wider 

value range. [10] 

 

The population standard deviation σ and sample standard deviation s are defined as  

 

𝜎 = √
𝛴𝑖=1
𝑁 (𝑥𝑖 − 𝜇)

2

𝑁
 

 

𝑠 = √
𝛴𝑖=1
𝑛 (𝑥𝑖 − �̅�)

2

𝑛 − 1
 

 

Also, a probability density function (PDF) is used to express the probability distribution for a 

random variable. The graphic curve of a PDF has the area of 1 i.e. the probability of the 

occurrence of this random variable [32]. 

 

2.2 Coefficient of variation  

 

Coefficient of variation has been used by various organizations for research and variability 

comparison.  Coefficient of variation for a population is defined as given below: 

γ =  
𝜎

𝜇
 

where σ is the standard deviation and μ is mean. 

 

While for a sample, the coefficient of variation c, is given as  

c =  
𝒔

𝒙
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Where s is the standard deviation and �̅�  is the mean such that 𝒙 ̅ ≠  𝟎.  

Thus, c indicates how big of a difference between the data for a variable tend to be with 

respect to its average magnitude.[9] 

 

In [12], the author also presents his case in support of coefficient of variation over standard 

deviation over which we had a discussion in chapter 1 as well. The author says that a 

continuous variable heterogeneity can be measured with variance or standard deviation about 

mean μ. The variance (or standard deviation) is sensitive to the scale which is used for 

measuring the variable. So, if a constant ‘b’ is multiplied with all data for the variable then the 

variance will also increase by a factor of ‘b’. Coefficient of variation in this case can be the 

solution because the scaling factor ‘b’ would be present in both the numerator as well as the 

denominator and hence making coefficient of variation scale insensitive. 

 

2.2.1 McKay’s approximation of coefficient of variation 

 

In [1], McKay first defined the density for �̅� ∕ �̅�    where �̅� = √
(𝑛−1)𝑠2

𝑛
   . After this, McKay re-

expressed this provided density in terms of a contour integral and went on to apply an 

approximation like the saddle point method to obtain an approximation for the density. 

 

The McKay’s approximation is given as 

 

𝐾𝑛 = (1 +
1

𝛾2
)

(𝑛 − 1)𝑐2

1 + (𝑛 − 1)𝑐2 ∕ 𝑛
 

 

McKay also notes in his paper that the above approximation is valid only in the case where the 

sample CV is less than 0.33 and the sample is not small and hence the results would not be 

meaningful for small sample size. 

This limitation is overcome by a modification to the McKay approximation which was provided 

by Vangel and we will be discussing the same in the next section. 
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In [3], Forkman and Verrill prove that the McKay’s approximation which was proven to be 

approximately chi square distributed in [2] is in fact type II noncentral beta distributed. The 

authors rewrite the above approximation in terms of P and Q which are random variables 

where P is central 𝜒2 distributed and Q is  noncentral  𝜒2   distributed with non-centrality 

parameter λ and compare it with a type II noncentral beta distribution to prove their claim. 

 

2.2.2 Vangel approximation of coefficient of variation 

 

In [2], Vangel takes set of approximate pivotal quantities for a normal CV and compares these 

for four approximation methods namely McKay, the naïve approach, David and a method 

introduced by Vangel which is a modified version of the original McKay approximation. He 

makes use of a series for e(t), which is the difference between the cumulative distribution 

functions of the approximate pivot and the reference distribution. 

Vangel shows that McKay, the naïve approach and David approximation have e(t) = 𝑂(𝑘2), but 

his method has e(t) = O(𝑘4). He also shows that in all the cases McKay’s approximation 

definitely performs the best when compared to naïve approach and David but less than 

Vangel’s modified McKay approximation which is also valid in the case of small samples. 

 

In [3], the authors also contend that McKay’s 𝜒2  approximation is asymptotically normal 

having a variance of  2(n-1)(1+2γ2)/(1 + γ2)2   and mean n-1 where γ is population coefficient 

of variation as opposed to what vangel in [2] provided i.e. 2(n-1) 

 

2.2.3 Estimation of coefficient of variation 

 

In [4], Forkman discusses the methodology to estimate the coefficient of variation γ that is 

shared by P populations. The author first expresses the joint probability distributions for the 

observations from the P populations and with the help of this distribution delivers the below 

expression T which is an estimator of population coefficient of variation γ 
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𝑇 = √𝑤 

where 

𝑊 =
1

𝛴𝑖=1
𝑘 (𝑛𝑖 − 1)

 ∑∑
(𝑥𝑖𝑗 −𝑚𝑖)

2

𝑚𝑖

𝑛𝑖

𝑗=1

𝑘

𝑖=1

=
∑ (𝑛𝑖 − 1)𝑐𝑖

2𝑘
𝑖=1

∑ (𝑛𝑖 − 1)
𝑘
𝑖=1

 

 

and 𝑥𝑖𝑗 =  µ𝑖𝑗 + 𝑑𝑖𝑗 , where 𝑑𝑖𝑗 represents independently distributed N(0 ,𝜎𝑖
2 ), i = 

1,2,……..k and j = 1,2,…… 𝑛𝑖 , with common population CV  γ =
𝜎𝑖

𝜇𝑖
 

The author then proceeds to find a bias correction for the small samples case and the 

corrected estimator is as given below: 

𝛾 = (1 −
1

4𝛴𝑖=1
𝑘 (𝑛𝑖 − 1)

)

−1

√
∑ (𝑛𝑖 − 1)𝑐𝑖

2𝑘
𝑖=1

∑ (𝑛𝑖 − 1)
𝑘
𝑖=1

 

 

We also then conducted a simulation study based on both of the estimates provided above 

similar to [4].  Three samples namely n1 ,n2 ,n3  were generated 20,000 times from a normal 

distribution whose mean was 100, 1000 and 10,000 respectively and they had a common 

population coefficient of variation γ . Total 18 combinations for n1, n2, n2 and γ were selected 

for the simulation and the values for T i.e. the original estimator and the bias adjusted 

estimator 𝛾 along with their standard deviation are then obtained. The full code for the 

simulation is provided in Appendix B. 

 

The results obtained from the simulation are given in the table below. We observe that the 

simulation results match well with the results reported in the original paper [4]. Based on the 

above results we can infer that the bias adjusted estimator performs good for coefficient of 

variation below 0.2 and would be a good choice in a case of suppose a pharmaceutical drug as 

a low coefficient of variation is expected in these cases.  
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CV n1 n2 n3 mean(T) mean(BAE) SD 

0.05 2 2 2 0.046731 0.050979 0.003004 

0.05 3 4 5 0.048708 0.0501 0.000984 

0.05 10 10 10 0.049292 0.049753 0.000326 

0.1 2 2 2 0.092094 0.100466 0.00592 

0.1 3 4 5 0.098201 0.101007 0.001984 

0.1 10 10 10 0.099324 0.100252 0.000656 

0.15 2 2 2 0.144774 0.147026 0.008664 

0.15 3 4 5 0.146394 0.150576 0.002958 

0.15 10 10 10 0.149294 0.150689 0.000987 

0.2 2 2 2 0.190247 0.207543 0.01223 

0.2 3 4 5 0.194775 0.20034 0.003935 

0.2 10 10 10 0.19745 0.199295 0.001305 

0.25 2 2 2 0.241909 0.263901 0.015551 

0.25 3 4 5 0.246891 0.253945 0.004988 

0.25 10 10 10 0.24202 0.244282 0.001599 

0.3 2 2 2 0.293296 0.319959 0.018854 

0.3 3 4 5 0.29354 0.301927 0.00593 

0.3 10 10 10 0.293815 0.296561 0.001942 

 

Table 2.1: Simulation results for estimation of common CV 

 

2.3 Confidence interval of cv 

 

In most of the cases generally, we are aware only of sample data and not population data. In 

this scenario, to infer population parameters it’s possible to take advantage of sample data 

statistics and error estimations to provide a range for the population statistics with some 

degree of uncertainty. This range is called confidence interval.  

 

This interval does not necessarily include the exact value of the populations parameter but are 
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constructed with a confidence limit , for example 95% confidence level means that if we were 

to estimate repeatedly with random samples obtained from the same population, then 95% of 

values would be contained in the calculated confidence intervals. Different confidence levels 

can be used such as 99%, 90% but 95% is the most used one. 95% CI is also the most preferred 

for pharmaceutical drugs research. 

 

Confidence intervals are either one sided or two sided. The two-sided confidence interval 

considers the population statistic from both lower and the upper bound while the one sided 

confidence interval considers either from lower bound or from upper bound. Also, although, 

the P value is utilized for finding any difference in probability terms, the confidence interval 

reports the actual difference and hence provides true estimates. Unlike P value, they also can 

confirm the reliability of our data and the narrower the confidence interval the more precise 

results for the particular population parameter [5]. 

 

In [7], the author discusses the McKay’s and modified McKay’s confidence intervals with two 

new techniques and compares their results. We will be discussing their details below and we 

also conducted simulation study on these methods with our dataset to enquire which method 

works best. 

 

2.3.1 McKay, McKay with bootstrap and McKay with Jack-knife 

 

The McKay’s confidence interval is provided with the following upper and lower bound  

 

𝐶𝐼𝑚𝑐𝑘𝑎𝑦=[    
𝑐

√𝑡1(𝜃1𝑐2 + 1) − 𝑐2
 ,

𝑐

√𝑡2(𝜃1𝑐2 + 1) − 𝑐2
  ] 

where  

𝜃 =
𝜈

(𝜈 + 1)
 

and   

                                            𝑡1 =
𝑥
𝜈,1−𝛼 2⁄
2

𝜈
   and 𝑡2 =

𝑥𝜈,𝛼 2⁄
2

𝜈
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For the McKay with bootstrap method, we first take multiple small samples from our dataset 

and get the average of coefficient of variation estimates from these samples to estimate the 

sample coefficient of variation which is then in turn utilized as the c i.e. the sample CV in the 

above McKay confidence limits provided 

 

For the McKay with Jack knife method,  we first leave one record out of our sample dataset 

and repeat the action to get the average of coefficient of variation estimates from these steps 

to estimate the sample coefficient of variation which is then in turn utilized  as the c in the 

above McKay confidence limits provided 

 

2.3.2 Modified McKay , Modified McKay with bootstrap and Modified 

McKay with Jack-knife 

 

The modified McKay confidence interval upper and lower bound are as follows 

  

𝐶𝐼𝑚𝑜𝑑𝑚𝑐𝑘𝑎𝑦=[    
𝑐

√𝑡1(𝜃1𝑐
2 + 1) − 𝑐2

 ,
𝑐

√𝑡2(𝜃1𝑐
2 + 1) − 𝑐2

  ] 

where 

𝜃 =
𝜈

(𝜈 + 1)
[
2

𝑥𝜈,𝛼2
+ 1] 

and   

                                            𝑡1 =
𝑥
𝜈,1−𝛼 2⁄
2

𝜈
   and 𝑡2 =

𝑥𝜈,𝛼 2⁄
2

𝜈
    

 

For the modified McKay with bootstrap method, we first take multiple small samples from our 

dataset and get the average of coefficient of variation estimates from these samples to 

estimate the sample coefficient of variation which is then in turn utilized  as the c i.e. the 

sample CV in the above modified McKay confidence limits provided 
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For the modified  McKay with Jack knife method,  we first leave one record out of our dataset 

and repeat the action to get the average of coefficient of variation estimates from these steps 

to estimate the sample coefficient of variation which is then in turn utilized in as the c in the 

above modified McKay confidence limits provided 

 

We have three datasets namely LD (Low Dose), MD (Medium Dose) and HD(High Dose) of the 

weights of a drug with different sizes available with us, we will be discussing in detail about it 

in chapter 3 .So, we compare the results on all three of these dataset samples. The code for 

the simulation study of above methods is provided in Appendix B. 

 

The results obtained are provided below: 

 

Method Lower bound Upper bound Interval length 

McKay 0.0158768 0.0158768 0.01093419 

McKay with bootstrap  0.01565252 0.01565252 0.01077872 

McKay with Jack knife 0.01647693 0.01647693 0.01135068 

Modified McKay 0.01587618 0.01587618 0.01093375 

Modified McKay with 
bootstrap 0.01565385 0.01565385 0.01077963 

Modified McKay with Jack 
knife 0.01647611 0.01647611 0.0113501 

 

Table 2.2   CI for CV simulation study results for MD dataset 
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Method Lower bound Upper bound Interval length 

McKay 0.01828677 0.03088881 0.01260204 

McKay with bootstrap  0.01795054 0.0303171 0.01236656 

McKay with Jack knife 0.01913553 0.03233364 0.01319811 

Modified McKay 0.01828561 0.03088683 0.01260122 

Modified McKay with 
bootstrap 0.01796252 0.03033825 0.01237573 

Modified McKay with Jack 
knife 0.01913373 0.03233047 0.01319674 

 

Table 2.3 CI for CV simulation study results for LD dataset 

 

 

Method Lower bound Upper bound Interval length 

McKay 0.01901763 0.0321175 0.01309987 

McKay with bootstrap  0.01875226 0.03166815 0.01291589 

McKay with Jack knife 0.01972127 0.03330938 0.01358811 

Modified McKay 0.01901674 0.03211599 0.01309925 

Modified McKay with 
bootstrap 0.01876259 0.03168559 0.012923 

Modified McKay with Jack 
knife 0.01972016 0.03330748 0.01358732 

 

Table 2.4 CI for CV simulation study results for HD dataset 

 

 

We can observe from the results that in cases of all the datasets i.e. MD, LD and HD the best 

performing method is the McKay with bootstrap and Modified McKay with bootstrap with only 

negligible difference in their interval length. The second best performing are the original 

Modified McKay and McKay approximation methods but the author claims that the modified 
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methods with bootstrap and jack-knife both perform better than the established McKay and 

modified McKay method, but our simulation study suggests better results only for the 

bootstrap approach. 

 

2.4 t-distribution  

 

2.4.1 Student’s t-distribution  

 

The Student’s t-distribution or simply called the t-distribution was first obtained by Helmert 

and Luroth in 1876 but was utilized with significant contribution in a 1908 paper by William 

Gosset under the pen name “Student”. It is obtained from a normal probability distribution. 

Let 𝑋1, 𝑋2,⋯𝑋𝑛 be independent and identical normally distributed with N(µ,𝜎2) random 

variable then the mean of sample and its variance can be calculated as follows [6] 

 

�̅� =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

and 

𝑆2 =
1

𝑛 − 1
∑(𝑋𝑖 − �̅�)

2

𝑛

𝑖=1

 

 

then the equation  

�̅� − 𝜇

𝑆/√𝑛
 

 

represents the Student’s t-distribution having n-1 degrees of freedom  

 

 

The probability density function (PDF) for Student’s t distribution is given by 
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𝑓(𝑡) =
𝛤 (
𝜈 + 1
2

)

√𝜈𝜋𝛤 (
𝑣
2
)
(1 +

𝑡2

𝑣
)

−
𝜈+1
2

 

 

Where 𝜈 represents the degree of freedom and 𝛤(. ) is the gamma function represented as  

[16]  

𝛤(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥 𝑑𝑥

∞

0

 

 

The pdf of the t distribution is symmetric about mean and has a bell-shaped distribution 

similar to a normal distribution but having wider tail as compared to a normal distribution.  

In fact, when the degrees of freedom keep increasing a t distribution starts resembling a 

normal distribution which is evident in figure 2.2 [17] 

 

 

Figure 2.1 PDF for t-distribution for different degrees of freedom [6] 

 

2.4.2 Generalized t distribution  

 

The generalized t-distribution is flexible to handle various peak shapes and tail distributions 
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and hence due to its flexibility have an edge over the usual student t-distribution because the 

student t-distribution doesn’t completely satisfy the specification of such cases. The 

generalized t-distribution also converges to a normal distribution as the observations tend to 

∞. Thus, the robustness of the generalized t-distribution has increased its relevance in the 

research field. [22] 

 

More and more generalizations of the t-distribution have been presented recently and the 

students t distribution along with these proposed generalizations is coming handy in various 

biomedical, stock and economic data research.  Hence, we will be reviewing a few of these 

generalizations and Koepf and Jamei generalization which is the base generalization for our 

research methodology. 

 

2.4.2.1 McDonald and Newey generalized t distribution 

 

The generalized t-distribution first appeared in [23], the authors introduced it to provide 

“partial adaptive estimate of regression models”.  The PDF of this generalized t distribution is 

given as 

𝑓(𝑥) =
𝑢

2𝑣1∕𝑢𝐵𝑒 (
1
𝑢
, 𝑣)

(1 +
|𝑥|𝑢

𝑣
)

−𝑣−
1
𝑢

 

 

Where −∞ < 𝑥 < ∞ and u and v are greater than zero shape parameters while B(.) is the beta 

function as defined above. 

  

2.4.2.2 Lange and Harvey’s generalized t distribution 

 

In [22], the authors introduce a generalization of t-distribution pdf where y has unit scale and 

symmetrical about zero with α and ν shape parameters as given below 
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𝑓(𝑦) = 𝐾(𝜈, 𝛼) (1 +
1

𝜈
|𝑦|𝛼)

−
𝜈+1

𝛼
   

with 

𝑘(𝜈, 𝛼) =
𝛼

2𝜈1∕𝛼𝐵𝑒 (
𝜈
𝛼
,
1
𝛼
)

 

 

Where Be(.) is the beta function calculated as  

𝐵𝑒(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡

1

0

 

The students t distribution is a special case of this generalization when we take ν as 2. 

 

2.4.2.3 Tawn and Papastathopoulos generalized t distribution 

 

In [19], authors introduced a generalization of the t distribution whose PDF is as follows 

𝑓𝑥(𝑥) =
√|𝜉|

𝜎𝐵𝑒 {
1
2
,
𝜉 − (𝜉 − 2) sign(𝜉)

4𝜉
}
{1 + 𝜉 (

𝑥 − 𝜇

𝜎
)
2

}
+

−
1+𝜉
2𝜉

 

 

 

Where X is a random variable with shape 𝜉, location 𝜇 and scale 𝜎 parameters. When 𝜉 >0 

we obtain the Student’s t distribution while in the case of  𝜉 → 0 the normal distribution is 

obtained. 

The Be(.) is the beta function as provided in section 2.4.2.2 and the sign(.) is the sign function 

given as 

sign(x)= {

+1,   𝑖𝑓 𝑥 > 0 ,
−1,   𝑖𝑓 𝑥 < 0,
0,   𝑖𝑓 𝑥 = 0 ;
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2.4.2.4 alpha beta skew generalized t-distribution 

 

In [18], the authors derive a PDF for generalized t-distribution based on alpha skew logistic and 

alpha beta skew normal distribution. If a randomly generated variable z follows the alpha beta 

skew t distribution with p and q shape parameters then this new derived distribution has a 

pdf 𝑔𝐴𝐵𝑆𝐺𝑇(𝑧; 𝛼, 𝛽, 𝑝, 𝑞)  given as 

 

 

 

 

2.4.2.5 Koepf and Jamei generalized t-distribution 

 

We have used the Koepf and Jamei generalization for t-distribution [8] as the base of 

calculations for our research. The authors make use of Student t-distribution PDF and Cauchy 

integral to propose a generalized t-distribution whose PDF is  
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𝑇(𝑡,𝑚, 𝑞, 𝜆1, 𝜆2) =
𝛤((1 +𝑚 + 𝑖𝑞) 2⁄ )𝛤((1 + 𝑚 − 𝑖𝑞) 2⁄ )

(𝜆1 + 𝜆2)√𝑚2
1−𝑚𝛤(𝑚)𝜋

 (1 +
𝑡2

𝑚
)

−((𝑚+1) 2⁄ )

 

 

∗  (𝜆1𝑒
(𝑞 𝑎𝑡𝑎𝑛

𝑡

√𝑚
)
+ 𝜆2𝑒

(−𝑞 𝑎𝑡𝑎𝑛
𝑡

√𝑚
)
) 

where m, q, 𝜆1 and 𝜆2 are free parameters and then they define the first and second moment 

of this distribution  

 

The first moment i.e. expected value  is 

 

𝐸[𝑇] = (
𝜆1 − 𝜆2
𝜆1 + 𝜆2

)
𝑞√𝑚

𝑚 − 1
 

 

The second moment i.e.  variance is  

𝑉𝑎𝑟[𝑇] = 𝐸[𝑇2] − 𝐸2[𝑇] =
𝑚(𝑞2 +𝑚 − 1)

(𝑚 − 2)(𝑚 − 1)
− (

𝜆1 − 𝜆2
𝜆1 + 𝜆2

)

2

(
𝑚𝑞2

(𝑚 − 1)2
) 

 

The authors also discuss some special cases of this distribution by assigning values to the free 

parameters. 

 

2.4.3 non-central t-distribution  

 

The non-central t-distribution is the distribution obtained for the t statistic when the null 

hypothesis for symmetry is rejected. With a non-centrality parameter in picture a non-central 

t-distribution generalizes the t-distribution. [20] 
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Figure 2.2 Noncentral t-distribution [20] 

 

A non-central parameter t having degrees of freedom 𝜈 and centrality parameter µ is given by 

[20]  

𝑇 =
𝑍 + 𝑢

√𝑉 ∕ 𝑣
 

where Z ~ N(0,1)  and V is 𝑥𝜈
2 . 

 

The PDF for this distribution is defined as 

 

𝑓(𝑥) =  
𝜈𝜈/2𝑒

(−
𝜈𝑢2

2(𝑥2+𝑣)
)

√𝜋𝛤 (
𝑣
2
)2

𝑣−1
2 (𝑥2 + 𝑣)

𝑣+1
2

∫ 𝑦𝑦𝑒
(−
1
2(𝑦−

𝑢𝑥

√𝑥2+𝑣
)

2

)𝑑𝑦
∞

0
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and the affiliated  𝑘th moment is given as 

 

𝐸[𝑇𝑘] =

{
 
 

 
 
(
𝑣

2
)

𝑘
2 𝛤 (

𝑣 − 𝑘
2 )

𝛤 (
𝑣
2)

𝑒
(−
𝑢2

2 )
𝑑𝑘

𝑑𝑢𝑘
𝑒
(
𝑢2

2 ),   𝑖𝑓 𝑣 > 𝑘;

𝐷𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 ,                                 𝑖𝑓 𝑣 ≤ 𝑘;

 

 

while the first two moments i.e. the expected value/mean and variance are  

 

𝐸[𝑇]= {
√
𝑣

2

𝑢 𝛤((𝑣−1)∕2)

𝛤(𝜈 2⁄ )
 , 𝑖𝑓 𝑣 > 1;

𝐷𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑖𝑓 𝑣 ≤ 1,

 

 

𝑉𝑎𝑟[𝑇] =  

{
 
 

 
 𝜈(1 + 𝜇2)

𝑣 − 2
−
𝜇2𝑣

2
(
𝛤 (
𝑣 − 1
2 )

𝛤 (
𝑣
2)

)

2

, 𝑖𝑓 𝑣 > 2;

𝐷𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡,                              𝑖𝑓 𝑣 ≤ 2 .
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Chapter 3 

Data  

 

The data used in this research belongs to a pharmaceutical company based in Iran. The data 

consists of drug dosage weight in mg. Each record provides the drug weight information of one 

pack that is provided to a patient for the month. The dataset has 3 sheets containing the data 

for different dosage levels i.e. low, medium and high. The low dose(LD) consisting of around 

4.3k records. The medium dose(MD) consisting of a little over 31k records and high dose(HD) 

consisting of 4.1k records.  

The focus in this research is on the medium dose drug as it has a higher production hence 

more amount of data. The other two dosages will be utilized for results comparison in the 

paper. The dataset consists of the ‘unit’ number of a pack, the ‘batch’ number, the ‘machine 

lane’ number and the weight of the drug for each day of the month. As 30 pills are provided to 

the patient for the whole month so the columns for the weight range from 1 to 30. 

 

3.1 Data pre-processing 

 

The dataset had no missing values and that is why no sort of data cleaning was required to be 

done but pre-processing on the data was done for it to contain only the most appropriate 

columns. As a result of this, the columns of batch number and the machine lane number were 

removed from the original dataset for it to only contain the unit number as a primary key and 

the weights of dosage ranging from day 1 to day 30. A column of mean is also added to the 

dataset which consists of mean of drug weights of each pack i.e. the mean of day 1 to day 30 

weights of each record and columns for CV and inverse of the CV  as well for further data 

analysis. 
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3.2 Data Analysis  

 

After the pre-processing of the data, we continue with initial data analysis to have a better 

understanding of the data.  We calculate the mean, median and mode for our MD dataset to 

get a better understanding of how the data is distributed.  

 

 

We observe that the mean and median are close in values but not same while there is a major 

difference with the mode value suggesting that the data is not exactly symmetrically 

distributed. We then go ahead and plot the histogram for this dataset in Tableau to visually 

understand how its distributed. We have also accompanied it with a custom probability 

distribution curve coloured in orange[21]  as shown in Figure 3.1. 

 

 

 

Figure 3.1 : MD dataset histogram with curve 
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As we could recognize previously from our mean, median and mode values that the data is not 

symmetrically distributed, the same is evident from the visualization as well. The data is 

skewed and hence we further calculated the skewness for our dataset which gave us a value of 

approximately 0.05 which means that our data is approximately symmetric but not exactly 

symmetric 

 

 

 

On further data exploration, we compute the individual records CV  and inverse of CV of our 

MD dataset and plot the histogram of both with Tableau  as shown in Figure 3.2 and Figure 3.3  

Below  

 

 

 

Figure 3.2 Coefficient of variation histogram of MD dataset 
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Figure 3.3 Inverse Coefficient of variation histogram of MD dataset 

 

It is evident from Figure 3.2, that coefficient of variation values are distributed approximately 

in a chi-squared distribution as stated by McKay in [1] , but another noticeable trait is that of 

the inverse CV plot which seems to resemble a non-central t-distribution. This resulting 

distribution of the inverse CV will serve as one of the crucial inputs for our methodology which 

will be discussed in Chapter 4. 
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Chapter 4 

Methodology  

 

As we discussed in Chapter 3, that the inverse of the CV of our MD dataset has a non-central t 

distribution. We know from section 2.4.2 that a generalized t-distribution is flexible to handle 

various peak shapes and tail distributions, and so we wish to obtain a model for this data that 

is robust enough to handle similar non central distributed data. By finding a model for the 

inverse CV, we can acquire a confidence interval for the inverse CV and then go ahead and 

calculate the confidence interval for the coefficient of variation from this. 

 

Going forward, we will be discussing the approach that we employed to build a model, 

optimize it and utilize it for confidence interval calculations. 

 

4.1 Model derivation 

We have used the Koepf and Jamei generalized t-distribution discussed in Section 2.4.2.5 . The 

equation for the same as discussed earlier is given as  

 

𝑇(𝑡,𝑚, 𝑞, 𝜆1, 𝜆2) =
𝛤((1 +𝑚 + 𝑖𝑞) 2⁄ )𝛤((1 + 𝑚 − 𝑖𝑞) 2⁄ )

(𝜆1 + 𝜆2)√𝑚2
1−𝑚𝛤(𝑚)𝜋

 (1 +
𝑡2

𝑚
)

−((𝑚+1) 2⁄ )

 

 

∗  (𝜆1𝑒
(𝑞 𝑎𝑡𝑎𝑛

𝑡

√𝑚
)
+ 𝜆2𝑒

(−𝑞 𝑎𝑡𝑎𝑛
𝑡

√𝑚
)
) 

 

It is evident that the above equation is a fairly complex equation having 4 free parameters to 

form the model. The author in [8] has provided this generalized t-distribution equation along 

with two moments of the distribution i.e. the mean and the variance calculated as provided in 

Section 2.4.2.5 
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 Now the issue is that we have 4 free parameters but only 2 equations i.e. the first moment 

and the second moment. 

So, to overcome the complexity of this equation , we decided to take special cases of the 

distribution by prior inputting the values of parameters 𝜆1 and 𝜆2 as suggested by Koepf and 

Jamei in [8] as well ,where they have taken a special case to obtain an equation for asymmetric  

generalization of t-distribution. With lots of trial and error and inputting values of parameters 

q and m obtained with method of moments we found that with 𝜆1 = 1 and 𝜆2 = 0 the model 

looks promising and the code snippet for the final derived model is given below. The complete 

code is  provided in Appendix B. 

 

 

Figure 4.1: non-central generalized t-distribution model 

 

4.2 Confidence interval for coefficient of variation calculation 

 

After deriving a non-central generalized t-distribution model, we wish to calculate the CI for CV 

and to calculate this we would require inverting the CI for inverse CV. So, the first step is to 

calculate the CI for inverse CV. 

 

We read the inverse CV from our MD dataset into a data frame and calculate the mean and 

variance for this data frame. Once calculated, these measures are used for comparison to the 

first and second moment of generalized t-distribution in [8] and the resulting parameters q 

and m are calculated after solving both the equations. 
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We then use these q and m values along with pre-defined values for parameter 𝜆1and 𝜆2 

to substitute in the generalized model derived in Section 4.1. After this the aim is to find the 

shortest confidence interval for inverse of CV from the model. To do this, we need to find 

limits ‘a’ and ‘(a+h)’ for the model equation such that h has the minimum possible value and 

the area of the integral of model equation with limits ‘a’ and ‘(a+h)’ should be equal to 0.95 as 

we are working with a 95% confidence interval throughout the whole thesis. 

 

An example figure explaining the same with a normal distribution probability density function 

is provided below: 

 

 

 

Figure 4.2     95% confidence interval [33] 

 

With bootstrapping process, we optimize the value for ‘a’ and ‘h’ and hence the optimized 

resulting values of ‘a’ and ‘h’ are the confidence interval for the inverse coefficient of variation. 

After this step, we calculate the reciprocal of ‘(a+h)’ giving us the lower limit of our CI for CV 

and the reciprocal of ‘a’ giving us the upper limit for the CI. Hence, we were able to obtain the 

CI for CV from generalized t-distribution model for our dataset MD. 



31  

4.3 Model validation  

 

To confirm the robustness and flexibility of our model, we need to validate it with other 

datasets whose population parameters are known and can be checked against the results 

obtained from our model. To achieve the same, we have utilized these two distributions 

 

1. A normal distribution which is a symmetrical distribution where most of the 

observations are towards the center. 

2. A gamma distribution which is a non-symmetrical distribution with shape parameter 𝛼  

and  scale parameter 𝛽   where µ= 𝛼 𝛽   and 𝜎2 = 𝛼𝛽2  and the PDF of the distribution 

is given as [36]  

 

𝑓(𝑥) =
1

𝜎𝛼𝛤(𝛼)
𝑥𝛼−1 + 𝑒−𝑥∕𝜎 

 

             Where 𝛤(. ) is the gamma function. 

 

 
Figure 4.3 PDF of Gamma distribution [35] 
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4.3.1 Simulation study   

We generate 5 sets of samples with mean = 200 and standard deviation ranging from 4 to 8 for 

each of these two distributions. We then calculate the confidence interval for population CV 

based on these samples with our generalized model and the McKay approximation as it is an 

established method for CI calculation. 

 

We know the population CV for these samples and hence the results obtained can be 

compared with actual population CV to test the accuracy of our derived model which will be 

discussed in Chapter 5. 
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Chapter 5 

Results 

 

We are working with a pharmaceutical dataset in this dissertation, and the aim from an 

industrial point of view for this dissertation is that the coefficient of variation of a drug batch 

coming from the production stage should not exceed a specified CV which is 5% CV i.e. 0.05 in 

our case according to the pharmaceutical company’s instruction . So eventually what would 

affect the production quality of a drug is the upper bound of the CI for CV. If the CV of the drug 

exceeds the specified CV then it would be harmful but a CV along the lower limit be it even 0, 

would not bother the company producing the drug. Hence, we would be focusing on the upper 

limit of our obtained CI and discussing the results based on the upper limit as the pivot 

measure. 

 

5.1  Original dataset results 

 

The confidence interval obtained from our derived model for the MD dataset is given below 

 

 

Figure 5.1 Generalized model CI for population CV 

 

We obtain a value of a= 34.0587999 and h= 63.8416301 for the inverse CV of our dataset   

which gives us a narrow CI for population CV as (0.0102144597321993 , 0.0293609875549373) 

having 95% confidence limit. 
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5.2 Simulation study result 

 

The results obtained from the simulation study for samples generated from Normal and 

Gamma distribution are given below. Here, column SD is the standard deviation , CV is the 

original population CV while q and m are the parameters of the derived model and ‘a’ and 

‘a+h’ are the CI for the inverse CV. LL for model and UL for model is the upper and lower 

bound of the CI for CV calculated with derived model and LL for McKay and UL for McKay is the 

upper and lower bound of CI for CV calculated with McKay’s approximation. 

 

SD CV  q m a a + h 

LL for 

model 

UL for 

Model 

LL for 

McKay 

UL for 

McKay 

4 0.02 389.5551 57.44700654 35.0358 65 0.015385 0.028542 0.015492 0.026157 

5 0.025 304.7031 55.42304561 33.10686 84.84 0.011787 0.030205 0.01946 0.03286 

6 0.03 249.272 53.14 27.49562 43.7054 0.02288 0.036369 0.023304 0.039357 

7 0.035 229.5895 61.79476079 23.72735 44.9999 0.022222 0.042145 0.027286 0.046091 

8 0.04 192.9528 56.86492145 20.60366 57.3 0.017452 0.048535 0.031136 0.052607 

 

Table 5.1 Simulation results for normal distributed data 

 

In the case of normally distributed data, we can observe that the upper limit for model when 

the CV= 0.02 is under performing with a minor difference from the McKay distribution but for 

all the remaining cases where CV= 0.025, 0.03,0.035 and 0.04 we can see that the McKay’s 

approximation is giving upper bound farther from that given by our model for the population 

CV. 
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SD CV q m a a+h 

LL for 

model 

UL for 

Model 

LL for 

McKay 

UL for 

McKay 

4 0.02 388.0149 57.35439 40.82359 70.00056 0.014286 0.024496 0.015545 0.026245 

5 0.025 315.2309 58.47746 31.09878 53.00001 0.018868 0.032156 0.019322 0.032627 

6 0.03 261.8506 58.46474 27.76829 54.99715 0.018183 0.036012 0.02326 0.039284 

7 0.035 235.5356 64.52926 23.94583 54.61429 0.01831 0.041761 0.027184 0.045918 

8 0.04 206.5311 64.60764 20.9103 39.99293 0.025004 0.047823 0.031026 0.05242 

 

Table 5.2 Simulation results for Gamma distributed data 

 

In the case of gamma distributed data, it can be observed that for all the CV’s i.e. 0.02, 0.025, 

0.03, 0.035, 0.04 our model is giving upper bound results closer to the actual population CV 

and the McKay method is estimating higher values for the upper bound for all cases in the 

gamma distributed data. 
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Chapter 6  

Discussions and Conclusions 

 

6.1 Research contributions 

 

The research involved calculating the confidence interval for population coefficient of variation 

based on available sample data.  Noteworthy conclusions were obtained from this research. 

 

Primarily, on calculating the CI for CV with our derived model based on generalized t-

distribution approach for our non-central  data we could obtain impressive results. Further, in 

the simulation study when we studied the model for the symmetrical normal distribution and 

the non-symmetrical Gamma distribution and compared to the established McKay’s 

approximation method, we could observe that our model provided better results 90% of the 

time. Hence, the model provides significant contribution for calculating the CI for CV for 

samples originating from a t-distribution, a normal distribution as well as the gamma 

distribution. 

 

Secondly, when we compared the results to the McKay’s approximation method we could note 

that the McKay’s confidence interval for population CV was rather conservative and thus in our 

case the McKay’s approximation could lead to rejection of a good batch by over estimating the 

upper limit but our derived model gives CI closer to the population CV and hence has low 

probability of false rejection.   
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6.2 Limitations 

 

We have mentioned earlier in  Chapter 4, that the model equation is complex with 4 free 

parameters and only two moments equation were available for the generalized t-distribution. 

Hence, we had to calculate with trial and error the values for parameters 𝜆1 and 𝜆2 and 

assume these as input to the model to arrive at the results which is a limitation for our 

research. 

 

6.3 Challenges 

 

We are using the generalized t-distribution to obtain a probability density function for the 

inverse of coefficient of variation but the generalized t-distribution itself has a very complex 

form. The distribution has 4 parameters unlike other distributions like Poisson distribution or 

normal distribution, so it requires much more optimization to derive the model. 

 

The parameters are calculated with the method of moments instead of the maximum 

likelihood estimation method and after obtaining the final model  by inputting these 

parameters, we also had to develop the procedure for minimizing the confidence interval for 

our inverse coefficient of variation as there is no library method available for it. 

 

6.4 Future work 

 

The derived model in this thesis, as discussed earlier has been obtained by assuming the values 

of two parameters 𝜆1 and 𝜆2 and then calculating parameters q and m. In future, the  𝜆1 and 

𝜆2 parameters can also be optimized to achieve a better fitting model to improve our 

confidence interval of population CV. 
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Also, in our study we have found that this model can not only be utilized for just t-distribution 

but also for normal and Gamma distributions as well. Going forward, results from other 

distributions can also be tested for accuracy on this model. 

 

Finally, if all the four parameters of the model are optimized to achieve a more robust model 

then these methods for the model can be consolidated to form a library package for R or any 

other language. 
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Appendix A 

Abbreviations 

 

CV  Coefficient of variation 

CI Confidence limit 

ICV Inverse Coefficient of Variations 

LD Low Dose 

MD Medium Dose 

HD High Dose 

PDF Probability Density Function 
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Appendix B 

 

Code for derived model 
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Code for McKay and other related methods simulation study 
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Literature review simulation study code for estimation of 

common coefficient of variation 

 

 

 


