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Archived AVL/GPS data using Machine Learning
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Supervisor: Dr. Michael Brady

With a surge in the number of vehicles, traffic congestion has increased at an
alarming rate. This has led to increase in travel times and decreased accessibility
and mobility. One viable solution to mitigate this issue is to promote the use of
public transport. Buses are considered one of the important means of public transport.
However, to encourage the use of buses, there is a need to provide reliable bus travel
time and arrival information to the commuters. In this study, we propose and develop
predictive models to predict bus journey and arrival times based on historical AVL/GPS
data and prior bus routes and stops information. There were two parts to this study.
The first was to predict overall journey times and the second was to predict bus arrival
times at bus stops.

To estimate total bus journey times, three models are developed using Linear Re-
gression, Artificial Neural Network (ANN) and Long Short Term Memory Network
(LSTM). Evaluation results on ground-truth dataset show that LSTM outperformed
the Linear Regression model and its performance was comparable to that of ANN.

To predict bus arrival times at bus stops, three different models, namely Histori-
cal Averaging, Linear Regression and Gradient Boosting are proposed. Experimental
results show that the Gradient Boosting outperformed the other models and is more
robust in predicting arrival times.



Our study also reveals that it is possible to predict bus journey time with reasonable
accuracy by using only GPS observations and bus routes information. This can be
particularly useful in situations where data regarding other external features affecting
travel time are not available.
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Chapter 1

Introduction

1.1 Background

Over recent years, traffic congestion has increased at an alarming rate and has be-

come a global phenomenon (1). This surge is attributed to increases in motorization,

urbanisation and population growth. Congestion creates burdens on transportation

infrastructure, increases travel time, fuel consumption and pollution, and reduces ac-

cessibility and mobility. A way to mitigate this issue is by increasing the capacity of

transport infrastructure by building more roads, highways, separate lanes etc. This

option is not viable because of its own limitations. A more economical option is to

encourage the use of public transport by the public and efficiently manage the existing

resources using Intelligent Transportation Systems (ITS).

Buses are considered one of the important means of public transport owing to

their coverage and accessibility by mass people. Buses are available all year long, are

more economical and eco-friendly (2) than private vehicles. Moreover, in some cities

buses have their own dedicated lanes which makes them faster than cars and help

reduce travel times in heavy traffic conditions during peak hours. But to motivate

and encourage usage of buses, providing commuters with reliable bus travel time and

arrival information is essential. Advanced Public Transportation System (APTS) is an

integral component of Intelligent transportation systems. With the advent of intelligent

transport systems in cities, buses are fitted with GPS enabled in-vehicle navigation

systems as part of urban planing. This tracking system integrated in buses generates
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automatic vehicle location (AVL) data which can be used to provide accurate bus

arrival information to passengers waiting at the bus stops, leading to a decrease in

waiting times. It increases the satisfaction of commuters by enabling them to plan

their travel ahead of time and also attracts additional ridership.

Predicting accurate bus travel and arrival time is not an easy task because it de-

pends on many external factors such as passenger load, passenger boarding/alighting

time, number of signalised intersections, traffic congestion and weather. Moreover, it is

not guaranteed to have information about all the above factors to predict bus journey

times. Hence there is a need to develop intelligent models which can estimate reliable

journey and arrival times using minimal features for situations where all features are

not available.

1.2 Research Objectives

As discussed earlier, bus transit planning has an important role to play as part of

urban transportation planning and providing passengers with accurate and reliable

travel information is very important to increase additional bus ridership. In cities,

bus transit times are difficult to estimate because travel times on links, dwell times at

stops, and delays at intersections fluctuate spatially and temporally (3). It becomes

even more challenging when we do not have much information/data about the external

factors which influence the travel time.

The main objective of the thesis is to develop and compare models to predict bus

journey and arrival times using archived/historical GPS-based AVL data along with

prior bus routes information and stops information.

1.3 Thesis Structure

This thesis contains nine chapters including the introduction chapter. The chapters

are described as follows:

• Chapter 2 presents literature review of research studies conducted for bus travel

time prediction.
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• Chapter 3 explains the dataset used for this study and the processes of data

cleaning and pre-processing.

• Chapter 4 defines the evaluation metrics used for assessing the performance of

the predictive models developed.

• Chapter 5 presents an analysis of bus journey times from the data.

• Chapter 6 discusses and presents models to predict total bus journey times and

evaluation of their performances.

• Chapter 7 outlines concepts about a proposed model – LSTM and how it can

predict bus journey times and its future trends.

• Chapter 8 presents and discusses models to predict bus arrival times and provides

their in depth evaluation and comparison.

• Chapter 9 concludes the whole research with a reflection of the results obtained

and provides future work recommendations.
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Chapter 2

Related Works

Bus travel and arrival time prediction has been an active area of research for past

decades. Researchers have explored and applied various approaches and techniques for

accurate bus arrival time prediction. In general, those approaches/techniques can be

grouped into four broad categories – historical data based approaches, statistical meth-

ods, machine learning techniques (neural networks, support vector machines, LSTM)

and model based approaches (Kalman Filtering).

The history-based approach predicts the travel time of a future trip from observed

historical bus travel time data of past journeys completed in the same daily time

period over different days. It requires less computation and works well if the traffic

conditions are stable over time. However, the model gives large prediction errors for

any unexpected delay or congestion.

Statistical methods such as regression models are conventional approaches to pre-

dict a dependent variable based on a function formed by the independent variables.

They model linear relationships between travel time and factors affecting travel time

such as dwell times at stops, passenger load, number of traffic signal, etc. They simul-

taneously measure how much each independent factor affects the journey time. Since

variables in transportation systems are correlated, accuracy depends on identifying

truly independent variables and incorporating them in the model.

Machine learning techniques, especially Artificial Neural Networks (ANN) have

been popular among researchers in the recent past and have been commonly used

in many studies because of their ability to capture complex non linear relationships
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between dependent and independent variables and deal with noisy data. Other machine

learning techniques which have been used in this domain are Support Vector Machines

(SVM), K-Nearest Neighbors (KNN) and Long Short Term Memory (LSTM).

Kalman filtering is a model based approach used to predict the future state of a de-

pendent variable. Kalman filtering models have elegant mathematical representations

(e.g. linear statespace equation) which can adequately accommodate traffic fluctua-

tions with their time-dependent parameters. There are many previous studies which

have utilised Kalman filtering-based algorithms in travel time prediction models and

have found the models’ performance robust and promising.

Some of the research studies using the above techniques are summarized below.

In a paper presented at ITSC 04’, Jeong et al. (4) presented an ANN model to

estimate bus arrival times using automatic vehicle location. In addition to the past

journey data, the proposed ANN model incorporated bus dwell times at stops and

traffic information. In their study, the authors also developed a historic data based

model and multiple linear regression models and compared their performance with

the ANN model. The models were then tested on a transit route in Houston, Texas.

The results showed that the ANN performed considerably better than the historical

data based model and regression models in terms of mean absolute percentage error

(MAPE).

In a journal paper published in IJTST 15’, Fan et al. (5) developed and compared

Historical Average, Kalman Filtering and ANN models for predicting bus travel times

using GPS data. The models were evaluated for a bus route in Macae city, Brazil.

Experimental results suggested that the ANN outperformed the other models in pre-

diction accuracy. The proposed ANN performed best when observed travel times were

in a range 20 to 50 minutes but gave large prediction errors for very short and long

trips. The study also revealed that it is possible to predict bus travel times using only

arrival and departure time information at stops even in the absence of traffic related

data.

In another study, Chen et al. (6) used automatic passenger counters (APC) to

predict bus arrival times for a specific bus route in New Jersey. The authors developed

an ANN based model for prediction which takes APC data features as input in addition

to weather information during the same time period considered for analysis. It was

observed that precipitation had a strong impact on bus delays. The authors also
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performed sensitivity analysis to determine which input features had greater influence

in estimating bus arrival times (BAT).

On the other hand, Liu et al. (7) presented a modified KNN method using principal

component analysis to predict bus arrival times for a bus route in Beijing. The idea

was to identify the most similar past sequences of trips to predict the BAT of the

current trip. GPS data points were pre-processed to obtain arrival times, dwell times

and departure time at bus stops. To evaluate the performance of the KNN model,

the authors did an ANN model analysis and found that the proposed KNN performed

better than the ANN.

Shalaby and Farhan (8) used AVL and APC data from bus route 5 of Toronto to

predict bus arrival times taking into account the effect of dwell times. In their study,

bus dwell time was not included in the link travel time. Instead, the authors proposed

a model based on two Kalman filtering algorithms – one for modelling link travel time

and other for predicting bus dwell times. Bus dwell time was calculated as a function

of number of passengers boarding and alighting at a bus stop, which was obtained

using APC data. The authors claim that, as the proposed model takes the effect of

dwell times on bus arrival times into account, it outperformed the regression and neural

network models and is more robust. The proposed model also showed promising results

when tested on simulated scenarios representing a passenger surge and lane closure.

In another study by Chien et al. (9), two artificial neural networks were trained

using link-based and stop-based data to estimate transit arrival times for bus route

39 of New Jersey. The data used for training the model comprised bus journeys of

route 39 completed in the morning peak time (7:30–9:30 AM). The authors used the

microscopic simulation model – CORSIM (10) to simulate bus operations and generate

real time AVLS data for the specific route in the absence of GPS based AVL data. To

further enhance the prediction accuracy, the authors introduced an adaptive algorithm

and integrated it with the ANN models to take care of the prediction errors in real

time.

He et al. (11) investigated predicting total travel times for passengers using multiple

bus trips. LSTM is used to predict bus riding times for multiple trips whereas waiting

times at transfer points were estimated using an interval based historical averaging

method.

Reddy et al. (12) developed a support vector machine (SVM) model with a linear
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kernel function to predict bus arrival time/travel time under Indian traffic conditions,

which are said to be prone to high variability due to lack of lane discipline and have

heterogeneous vehicle profiles. The proposed SVM model was compared with a Kalman

filtering based model. It was observed that the models’ performance were comparable

for trips completed during non-peak hours. However, for peak trips SVM showed lower

level of prediction errors and was better able to capture the travel time variations.

Several studies have used hybrid models – combining two or more models to predict

bus arrival times. In one such study Zaki et al. (13) proposed a model in which neural

network is used along with Kalman filtering. The ANN predicts the time based on

historical trips data and the Kalman filtering adjusts the predictions made based on

real time GPS information of the bus. In another study, Yu et al. (14) presented a

hybrid model in which SVM is used to predict the baseline travel times on the basic of

historical trips whereas Kalman filtering based dynamic algorithm uses the latest bus

arrival information to compute unexpected delays. Both combined together predicts

the bus predict arrival times for the next stops. To evaluate the performance of the

hybrid model, the authors built a ANN-based model using the same dataset. Test

results showed that the hybrid model outperformed the ANN-based model. A similar

approach is used by Seng et al. (15) who used a combination of static algorithm

(SVM) and dynamic algorithm (Kalman filtering) for bus arrival time prediction. SVM

provided a temporary prediction based on historical data and then Kalman filtering

made a dynamic correction to it and predicted the final travel time. The authors claim

that the proposed model is more stable and can make accurate predictions even for

unexpected situations. However, a more comprehensive analysis and comparison with

other models such as ANN could have been performed to strengthen the claim.
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Chapter 3

Data

3.1 Dataset Used and its Features

We used a dataset provided by Dublin City Council which was acquired from Smart

Dublin (16). It is a collection of global positioning system (GPS) points for buses in

Dublin, Ireland from 6th November 2012 to 30th November 2012.

It contains ≈ 35 million rows and 15 features as explained below. Each row corresponds

to a GPS observation and includes the following feature variables:

• Timestamp - UNIX time at which the observation was made

• Line ID - bus route number

• Direction - whether the bus is going upstream or downstream

• Journey Pattern ID - unique identifier for the route to which the observation was

logged

• Production TimeFrame - the start date of the production time table

• Vehicle Journey ID – a given run on the journey pattern

• Operator - bus operator name

• Congestion - road congestion at time of observation

• Long - longitude of bus at a particular observation
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• Lat - latitude of bus at a particular observation

• Delay - delay in seconds

• Block ID - a section ID of the journey pattern

• Vehicle ID - ID of the bus whose observation is made

• Stop ID - ID of the nearest stop at time of observation

• At Stop - tells whether the bus is located at a stop at time of observation

3.2 Cleaning and Pre-processing of Raw Data

Data is cleaned and pre-processed before building the models in the following manner:

1. Removing null values and changing data-types

Rows containing null values for any of the columns – ‘Line ID’,‘Lat’,‘Long’,‘Stop

ID’ are dropped.

The ‘Stop ID’ column datatype is changed from object type to integer whereas

the ‘Line ID’ is changed to string type to accommodate alphanumeric characters.

2. Converting Unix Timestamp to Date-Time format

The Timestamp in the dataset is UNIX time based. Therefore to extract exact

date and time (hours, minutes) information it is converted to YYYY-MM-DD

hh:mm:ss date-time format.

3. Eliminating uninformative features

The features – ‘Direction’ and ‘Congestion’ have values of 0 throughout the

dataset and are removed from the data to be used for building the models.

4. Deriving new features

New features — ‘day of week’, ‘hour’ are extracted from the converted Date-Time

format for each of the observations.

A feature – ‘distance from city centre’ which denotes the distance of a bus from

the Dublin City Centre for an observation is created. For this purpose, a point

on O’Connell Street was designated the centre of the city. The Haversine formula

9



(17) is used to calculate the distance between the designated centre point and

the GPS coordinates of the bus.

3.3 Creating a Dictionary of Bus Stops using Dublin

Bus GTFS Information

Each observation in the dataset is associated with a Stop ID closest to the actual

position of the bus at that particular instant. The ‘At Stop’ feature of the dataset

indicates whether the bus is standing at the stop at the time of observation. However,

there are many instances in the dataset for which the values of ‘Lat’ and ‘Long’ were

different for observations with the same Stop ID and an ‘At Stop’ value of 1. This

suggests that if a bus is within a certain threshold distance from a bus stop, the value

of ‘At Stop’ is set to 1. But it also means that it is not possible to derive the true

latitude and longitude of the stops entirely from the dataset. Therefore, Dublin bus

General Transit Feed Specification (GTFS) information (18) is used. GTFS (19) is

an open data format for public transportation schedules and associated geographic

information. It provides information about bus stops, bus routes, stop times etc.

Unique bus Stop IDs from the dataset are extracted and searched against bus Stop IDs

present in GTFS data. For every matched Stop ID, its information – latitude, longitude

and name of the stop – is stored in a Python dictionary data structure. This dictionary

is used later in the study when we build models for predicting segment-of-route journey

time.

Figure 3.1 shows various bus route trajectories in Dublin obtained by plotting in-

dividual GPS observations after cleaning the data. MapBox (20) is used for rendering

the map.
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Figure 3.1: Bus routes obtained by plotting individual GPS observations after data
cleaning and pre-processing
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Chapter 4

Evaluation Metrics

In this chapter, we define the evaluation metrics which have been used to measure and

compare the performance of our predictive models.

Let there be N test samples. Ypredicted[i] and Yactual[i] denote the predicted journey

times and actual journey times ∀ i ∈ N .

• The Maximum Absolute Error (MaxAE) measures the maximum deviation

of predicted journey time from actual journey time.

MaxME = max |Yactual[i]− Ypredicted[i]| (4.1)

• The Mean Absolute Error (MAE) measures the average magnitude of the

individual prediction errors for test data, without considering their direction.

MAE =
1

N

N∑
i=1

|Yactual[i]− Ypredicted[i]| (4.2)

• The Mean Absolute Percentage Error (MAPE) measures the average per-

centage deviation of predicted journey time from actual journey time.

MAPE =
1

N

N∑
i=1

|Yactual[i]− Ypredicted[i]|
Yactual[i]

(4.3)
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• The Maximum Absolute Percentage Error (MaxAPE) measures the max-

imum percentage deviation of predicted journey time from actual journey time.

MaxAPE = max{|Yactual[i]− Ypredicted[i]|
Yactual[i]

} (4.4)

• The Root Mean Squared Error (RMSE) measures the standard deviation

of the residuals (difference between predicted and actual values). Compared to

Mean Absolute Error, RMSE puts a large weight on large errors.

RMSE =

√∑N
i=1 (Yactual[n]− Ypredicted[n])2

N
(4.5)
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Chapter 5

Analysing Total Bus Journey Times

After the data is cleaned and pre-processed, we analyse the bus journey times from

source to destination for some specific bus routes. By total journey time we mean the

time taken by the bus to traverse the whole route i.e. from its start stop to end stop.

From the data, it is found that for routes (Line IDs) - 40, 46 and 145, maximum GPS

data observations are recorded. Hence these three bus routes (40, 46 and 145) are

considered for our analysis as we are able to extract significant number of trips from

these particular routes.

5.1 Determining Source and Destination Stops for

Routes

A bus trip is uniquely identified by a combination of Date, Line ID and Vehicle Journey

ID features. Firstly, trips are segregated using Line ID which denotes a particular bus

route. Then for each bus route, unique trips are extracted from the data. Thereafter,

for each route we iterate over all of its trips. For each trip we store its start and end

stop pair and increment its count. The pair for which the count is maximum is chosen

as the source and destination stop for that route. It also helps in selecting those stops

as the source and destination for which maximum trips are available for analysis.
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5.2 Calculating Total Journey Time for Routes

Once the source and destination stops are determined for each bus route, the total

journey time of each of the trips is calculated using the timestamp information recorded

at the source and the destination stops. There are instances for which multiple GPS

observations are recorded at source and destination bus stops. This indicates the bus

is either waiting at the source bus stop to start its journey or it has reached the

destination and waiting to start its onward journey. In such a case, the timestamp of

the last observation made at the source stop for which ‘At Stop’ = 1 is considered to

be the journey start time. Similarly, the the timestamp of first observation made at

the destination stop for which ‘At Stop’ = 1 is considered to be the journey end time.

The total journey time is the difference between the chosen timestamps recorded at

the destination stop and source stop for each bus trip.

5.3 Analysing Total Journey Time Graphs for Routes

Total journey times for routes 40 and 46 are are calculated over a time period from

6th November to 30th November 2012 and plotted in chronological order in Figures 5.1

and 5.2 .

Figure 5.1: Total bus journey times for bus route 40
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Figure 5.2: Total bus journey times for bus route 46

Both the plots reveal that the bus journey times follow a certain pattern. Journey

times over weekdays are somewhat similar but higher than for journeys completed at

weekends. Sudden drops in peaks for Saturdays and Sundays account for this feature.

It may be because of fewer vehicles on the road leading to less traffic and low passenger

demand on Saturdays and Sundays which are not working days in Dublin.

Some unusually high journey times can also be seen in the plots. These observations,

called outliers, can be due to inconsistencies in readings of the GPS transmitter installed

in the bus or due to accidents or bus breakdowns.

To further analyse the variation in journey times for a particular day, we plot the

journey times of trips completed on 6th November 2012 (Tuesday) for route 46. It can

be observed from Figure 5.3 that journey times tend to be longer in morning time

(07:00 – 09:00) and evening time (16:00 – 17:00) than in the afternoon owing to traffic

congestion because of people going or returning from work.
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Figure 5.3: Total bus journey times for bus route 46 on 6th November 2012
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Chapter 6

Total Bus Journey Time Prediction

After pre-processing the data and analysing journey trips for most observed bus routes,

we try to build predictive models to predict journey times for bus trips based on relevant

journey features. For this purpose, models are built using Linear Regression and Neural

Networks. We build models for specific bus routes as well as generalised models for

multiple bus routes. Metrics such as Maximum Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE) and Root Mean Square Error (RMSE) are used to compare

and evaluate the performance and robustness of the models.

6.1 Removing Outliers

Outliers are observations that are significantly different from other data points. They

adversely affect the training process of the machine learning models resulting in less

accurate models and poor predictions. So it is important to detect and remove outliers

from data before it is being fed to the models. In our case, outliers are journeys which

took unusually long times to complete. This may have several causes – bus involved

in an accident, bus had to diverge from its route or other special event.

We use a Z-score to identify and remove outliers from the data. A Z-score is

a measure of how many standard deviations an observation is away from the group

mean. The Z-Score for any observation/data point x is given by:

Z − Score =
x− µ
σ

(6.1)

18



where µ is the mean of the data points and σ is the standard deviation of the data

points.

If the value of the Z-score is greater than 3 or less than -3 , then that observation

is identified as an outlier. This is illustrated in Figure 6.1 below.

Figure 6.1: Outlier Detection using Z-score
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6.2 Predictive Models for a Single Bus Route

6.2.1 Linear Regression Model

Overview

Linear regression (21) is a very simple and useful approach in supervised learning to

predict a quantitative response. It models linear relationships between dependent and

independent variables and helps to determine how strong those relationships are.

Suppose we have N data samples and m feature variables such that the ith sample

is represented as (Y (i),X
(i)
1 ,X

(i)
2 ,..., X

(i)
m ).

The predictor variable Y (i) is modelled using feature variables X
(i)
1 ,X

(i)
2 ,..., X

(i)
m as

follows:

Y
(i)
pred ≈ θ0 + θ1X

(i)
1 + θ2X

(i)
2 + · · ·+ θmX

(i)
m (6.2)

where θ0 is the intercept and represents the value of Y when X(i) = 0 and θi are

the regression coefficients where i = 1 to N.

The value of θi denotes the change in predictor variable Y on changing the feature

variable X(i) by 1 unit.

The values of θi are chosen such that they minimize the loss function J(θ) given as:

J(θ) =

∑N
i=1

(
Y (i) − Y (i)

pred

)2
N

(6.3)

We start with random values of θ and then use gradient descent to update the

values of θ in the direction which decreases the loss function for each iteration. We

stop iterating once θ assumes the value of θoptimal as shown in Figure 6.2.
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Figure 6.2: Gradient descent for optimal θ

Features Used

We use the features ‘day of week’, ‘hour’ and ‘delay’ to build the model. Therefore

these are the independent variables whereas ‘journey time’ is the dependent variable

which the model will predict.

Training and Test Data

A total of 1989 journeys of bus route 46 are used of which 80% are used for training

and the remaining 20% for testing the model.

Figures 6.3 and 6.4 show the actual journey times vs. predicted journey times for

journeys done by bus number 46.
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Figure 6.3: LR: Actual vs Predicted Journey time for the first 30 test journeys

Figure 6.4: LR: Actual vs Predicted Journey time for all test journeys
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6.2.2 Artificial Neural Network Model

Overview

Artificial Neural Networks (ANN) (22) are a powerful technique for capturing and

modelling non linear complex relationships between inputs and outputs. They are

inspired by the way a human nervous system works such as how the brain processes

information and are able to recognize relationships and patterns in the environment.

Typically an ANN consists of three layers – Input, Hidden and Output. The input

layer takes the inputs, the hidden layer processes the inputs, and the output layer

produces the final desired output. Essentially, each layer tries to learn certain weights

when they process the training samples using the back propagation technique (23).

Figure 6.5 shows a a general architecture of multilayer feed-forward ANN, where xi is

the ith input to the input layer and wi , wk are the weights of the connections from

input to hidden layer and from hidden layer to output layer respectively. Finally, T

represents the output which the ANN predicts.

Activation functions form the core of the ANN. They introduce non linearity in

neural networks and help the ANN to learn complex relationships between inputs and

output. Each neuron in the network calculates a weighted sum of its input, adds a

bias (constant) and then the activation function defined for it determines whether the

neuron should be activated or not. So for any neuron its output Y is defined as:

Y = f(
∑

(weights ∗ input) + bias) (6.4)

where f is the activation function, which can be a step function, or a sigmoid function

or a tanh function.

For a step-based activation function if Y > 0, the neuron will be activated and will

output 1 else the output will be 0. Therefore, the inputs determine which neurons get

activated or deactivated.

For the jth neuron in the hidden layer, its output is given as:

yj = f
(∑

xiwi + bj

)
(6.5)

where
∑
xiwi represents the sum of weighted input from the input layer to the jth

node of the hidden layer and bj is the bias.
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Figure 6.5: Artificial Neural Network

Similarly, the final model output T̃n is given as:

T̃n = f
(∑

yjwk + bo

)
(6.6)

where wk represents the weight of the connections from hidden nodes to the output

node and bo is the bias.

As mentioned in Chapter 2, Artificial Neural Networks have been a popular choice

among the researchers for travel time prediction (5) (6) (13). They can identify re-

lationships and patterns in datasets and can approximate any arbitary input-output

mapping. However, neural networks require much more data than traditional machine

learning algorithms to generalize well and to make better predictions (24).
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Features Used

We use the same set of features as used in the Linear Regression evaluation. Therefore

features used are ‘day of week’, ‘hour’ and ‘delay’. One-hot encoding (25) is applied to

‘day of week’ and ‘hour’ before being fed into the model.

Model Architecture

We use a four layered feed-forward neural network (Figure 6.6) which consists of an

input layer, two dense hidden layers and an output layer. The features are fed into

the network through input layer which has 24 neurons. The hidden layers consist of 25

neurons each with each neuron in one hidden layer connected to other neurons in the

next layer. Hidden layer neurons are activated by a Rectified Linear Unit (ReLu) (26)

activation function. Finally, the output layer consists of one node with linear activation

function which gives the predicted journey time. Biases are included in hidden and

output layers.

A regularisation technique - Dropout (27) with value of 0.3 is applied to the hid-

den layers. It reduces the interdependence between neurons thus prevents the neural

network model from overfitting and making it robust to various unseen inputs.

To stabilize the learning and make the neural networks converge faster Batch Nor-

malisation (28) is applied to the outputs of each hidden layer. It standardizes the inputs

to a layer for each mini-batch and thus significantly reduces the number of training

epochs required to train the network.
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Figure 6.6: ANN: Model Structure

Hyperparameter Tuning

A Hyperparameter is a parameter whose value is used to control the learning process

in a machine learning model. Hyperparameter tuning is the process of choosing a set

of optimal hyperparameters for a learning algorithm. A neural network takes lots of

hyperparameters which need to be set correctly before the training process commences

so that the model produces results with the highest accuracy. We use scikit-learn’s

RandomizedSearchCV method (29) (30) for hyperparameter tuning to obtain the best
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combination of values of the hyperparameters for our model. Table 6.1 summarizes the

grid of hyperparameter ranges we provided to RandomizedSearchCV and the optimal

values determined by it.

Table 6.1: Hyperparameters for ANN

Hyperparamter Parameter values Optimal value

init mode glorot uniform, uniform uniform

batches 10,20,30,50,90,128,512 50

epochs 10,30,50,200 50

lr 1e-2, 1e-3, 1e-4 1e-2

decay 1e-6,1e-9,0 1e-9

activation ReLu, sigmoid ReLu

dropout 0, 0.1, 0.2, 0.3 0.3

Training, Validation and Test data

The model is trained using 1591 bus trips and the network is validated over 200 trips

of bus route 46 with a batch size of 50 for 50 epochs. ReLu activation functions are

used in hidden layers. An Adam optimiser is used to update network weights with a

learning rate of 0.01.

The loss model is set to Mean Squared Error (MSE) which the model tries to

minimize while training :

Loss =

∑N
i=1 (Yactual[n]− Ypredicted[n])2

N
(6.7)

To prevent the overfitting, we use the early stopping mechanism to stop the training

process once the value of loss function for validation set stops decreasing.

The loss curve for the same is shown in Figure 6.7. It can be observed that both

the train and validation loss decrease with each epoch and then stabilize.
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Figure 6.7: ANN: Training and Validation Loss

Once the network is trained, it is tested against 398 trips that are not part of the

training set. Figures 6.8 and 6.9 represent the actual journey times and predicted

journey times by the ANN for the test journeys.
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Figure 6.8: ANN: Actual vs Predicted Journey time for first 30 test journeys

Figure 6.9: ANN: Actual vs Predicted Journey time for all test journeys
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6.2.3 Results and Evaluation

To visually compare the performance of the two models for predicting total journey

time, we plot their corresponding predictions on the same graph as shown in Figure

6.10. It can be observed that the ANN performs better than Linear Regression for

almost all the journeys. In particular, for journeys which have lower travel times, the

ANN’s predictions are closest to the actual travel time.

Figure 6.10: Comparison: Linear Regression vs ANN

Figure 6.11 shows the absolute error of both models for the test journeys. We can

clearly see that the peaks in the graph are mostly dominated by the Linear Regression

model. The graph also reveals that the ANN makes much lower prediction errors than

the Linear Regression model.
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Figure 6.11: MAE for Linear Regression and ANN

To further strengthen the argument, evaluation metrics are calculated for both mod-

els and are summarized in Table 6.2. It can be observed that the ANN outperformed

the Linear Regression model for all the three evaluation metrics. The MAE signifies

that on average Linear Regression predicts total journey times deviating 7.6 minutes

from the actual time whereas ANN predictions have a deviation of only 4.3 minutes.

Table 6.2: Results Obtained

Model MAE (mins) MAPE (%) RMSE (mins)

Linear Regression 7.6130 7.2406 10.0342

Artificial Neural Network 4.3491 4.8364 6.7541

A RMSE of 6.75 minutes is observed for ANN which is an improvement of 28% over

the Linear Regression model of 10 minutes. This suggests there exists some non-linear
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relationships between the dependent variable (journey times) and independent features

which could not be captured by the Linear Regression model.

However, both models make large prediction errors for some trips with longer travel

times. It may be that those trips were completed during rush hour and thus models

could not make reliable predictions due to lack of traffic congestion information in the

dataset.
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6.3 Linear Regression Model to Predict Total Jour-

ney Times for Multiple Routes

Both models discussed above make journey time predictions for a single bus route. In

this section, we experiment and develop a Linear Regression model to predict total

bus journey for multiple routes. Bus routes 40, 46 and 145 which have most GPS

observations in the data is used as input.

Features Used

We use the features – ‘day of week’, ‘hour’ and ‘delay’ which were also used in the

models for single route. In addition, new features – ‘distance of source stop from city

centre’, ‘distance of destination stop from city centre’ and ‘route length’ for each of the

routes are computed and used.

Training and Test Data

Input data consists of a total of 4807 journeys for bus routes 40, 46 and 145. It is

divided into a training set (80%) and a test set (20%). Breakdown for the training and

and test data route-wise is given in Table 6.3.

Table 6.3: Training and Test Data

Bus Route Route Length (km) Training Trajectories Testing Trajectories

40 8.64 1002 237

46 17.53 1616 386

145 22.25 1201 332

Results and Evaluation

Figure 6.12 shows the actual journey times and predicted journey times for all test

journeys comprising bus route numbers 40, 46 and 145.

Figure 6.13 shows the predictions made by the model by individual routes.
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Figure 6.12: Actual vs Predicted Journey times for bus routes 46, 40 and 145

(a) Route 40 (b) Route 46

(c) Route 145

Figure 6.13: Actual vs Predicted Journey times for individual bus routes
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An overall MAE of 6.793 minutes, MAPE of 7.29% and RMSE of 9.30 minutes is

recorded for the test data. In general, the model’s overall performance is reasonably

good for journeys with average and low journey times. However it fails to accurately

predict journey times for the bus journeys which actually took longer to complete

(journeys during peak hour) as observed from Figures 6.12 and 6.13.

Evaluation metrics are also calculated by route and shown in Table 6.4. It is

observed that the model’s performance for a shorter route (route 40) is comparatively

better than for a longer route (route 46, route 145). It suggests that with increasing

route length, the external factors affecting travel times become more prominent and

unpredictable, thus making it harder for the model to make accurate predictions.

Table 6.4: Evaluation metrics calculated for each route

Bus Route MAE (mins) MAPE (%) RMSE (mins)

40 5.497 6.110 7.204

46 6.355 6.865 8.942

145 6.902 7.067 9.663
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Chapter 7

Predicting Overall Journey Time

Trends using LSTM

7.1 LSTM Overview

Long Short Term Memory (LSTM) networks (31) are a variant of Recurrent Neural

Networks (RNNs) which are suitable for processing long sequence of inputs and predict-

ing time series whereas RNNs suffer from the short term memory. For long sequences,

RNN is unable to capture dependency between earlier time steps and the current time

step. This is due to the vanishing gradient problem (32). During the back propaga-

tion, gradients are calculated which are used to update the neural networks weights.

In the vanishing gradient problem, the gradient shrinks as it back propagates through

time. As the gradient value becomes extremely small, it does not contribute to much

learning of the network. This results in earlier layers of the network stopping to learn

and therefore RNN tends to forget the longer sequence of input data which might be

useful in predicting the current state.

LSTM overcomes the problem of the vanishing gradient faced by RNNs through its

internal mechanism of gates. Its various gates regulate the information and enables the

network learn which data in a sequence is important to keep or discard for predicting

the current output. By doing that, it passes useful information down the long chain of

sequences to make predictions.

Figure 7.1 shows a LSTM network where xt denotes the input and ht denotes the
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hidden state for tth time step.

Figure 7.1: LSTM network 1

The functionalities of the gates are described below:

1. Forget gate

Forget gate (Figure 7.2) determines which information to throw away or to hold.

Information from the previous hidden state is passed and information from the

current input through the sigmoid function. Values range from 0 to 1. The closest

to 0 means forgetting and the closest to 1 means holding off.

Figure 7.2: Forget gate 1

2. Input gate

The input gate is used to the update cell state. First, the previous hidden state

and current input are passed into a sigmoid activation function. This determines

1Image source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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which values are modified by converting the values between 0 and 1. 0 means

insignificant and 1 denotes it is important. The hidden state and current input

are also fed into the tanh function to suppress its values between -1 and 1 to

help regulate the network. Then the tanh output is multiplied with the sigmoid

output. The sigmoid output will determine which information is important to

keep from the tanh output. This is illustrated in Figure 7.3.

Figure 7.3: Input gate 1

3. Cell State

Now we have enough information to calculate the cell state. We multiply the

previous cell state with the forget vector. If the forget vector value is close to 0,

there is a possibility of dropping values in the cell state. Then we do pointwise

addition of the above resultant value with the output of the input gate. This

gives us the value of the next cell state as shown in Figure 7.4.

4. Output state

The output gate determines the value of the next hidden state. As the current

output depends on previous hidden state (previous inputs), the previous hidden

state and the current input is passed into the sigmoid function. Then the com-

puted value of the next cell state is passed into tanh function and its resultant

value is multiplied with the above output of sigmoid function to determine what

information the next hidden state should retain. This gives us the value of the

1Image source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 7.4: Cell State 1

next hidden state which is carried to the next time step along with the new cell

state (Figure 7.5).

Figure 7.5: Output gate 1

7.2 Prediction using LSTM

In recent times, studies have used LSTM to predict travel times for public transport

(33) (34). As we have total bus-journey times sequential data spanning from 6th Novem-

ber 2012 to 30th November 2012, we leverage LSTM to predict the future journey times

based on past journey times sequence. This can also be helpful in predicting the future

trends in bus travel times.

1Image source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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7.2.1 Model Architecture

The LSTM model used has one input layer, two dense LSTM layers and an output

layer. It is a double stacked LSTM with the output from the first LSTM layer at each

time step being fed to the second LSTM layer. The output of the second LSTM layer

goes into a dense layer, which is a fully connected neural network. Finally, the dense

layer consists of one node on which tanh activation is applied and gives the predicted

journey time. An important model parameter – look back which denotes the number

of past journey times to use as input variables to predict the next journey time – is

set to 15. The inputs are normalised before being fed into the network. In addition,

dropout of 0.2 is applied to LSTM layers to prevent overfitting. The model structure

is shown in Figure 7.6.
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Figure 7.6: LSTM: Model Structure

7.2.2 Features Used

Unlike previous models, our univariate LSTM model takes in only one feature – past

sequence of ‘Journey times’ as input. The LSTM model learns a function that maps a

sequence of past journey times as input to an output observation. One major difference

between ANN and LSTM is that during the training process the ANN assumes that the

data samples are independent of each other whereas the LSTM assumes each sample
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is dependent on the previous samples.

7.2.3 Hyperparameter Tuning

Hyperparameter tuning for finding the optimal set of hyperparameters for the LSTM

model is performed using scikit-learn’s RandomizedSearchCV method. The range of

value of hyperparameters searched for and the optimal values obtained are summarized

in Table 7.1.

Table 7.1: Hyperparameters for LSTM

Hyperparameter Parameter values Optimal value

init mode glorot uniform, uniform glorot uniform

batches 10,20,30,50,90,128,512 50

epochs 10,30,50,200 200

lr 1e-2, 1e-3, 1e-4 1e-2

decay 1e-6,1e-9,0 1e-6

activation ReLu, tanh, sigmoid ReLu

dropout 0, 0.1, 0.2, 0.3 0.3

look back 3,5,10,15,50,100 15

7.2.4 Training and Test Data

The model is trained on a training set consisting of journeys of bus route number 46

from 6th November 2012 to 25th November 2012. It is then tested to predict journey

times for the same bus route from 26th November 2012 to 30th November 2012. The

training set consists of 1609 journeys and the test set comprises 402 journeys.

The model is trained with a batch size of 50 samples for 200 iterations. During

training, the model tries to minimize the loss function which is set to Mean Squared

Error (MSE):

Loss =

∑N
i=1 (Yactual[i]− Ypredicted[i])2

N
(7.1)
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ReLu activation functions are used in the LSTM layers. An Adam optimiser is used

to update network weights with a learning rate of 0.01 and a decay of 1e-6 .

7.2.5 Results and Evaluation

Figure 7.7 represents the actual and the predicted total journey times for bus journeys

of route 46 completed from 6th November to 30th November 2012 in chronological order.

As mentioned earlier, the model, after being trained on the previous 1609 consecutive

trips, predicts the journey times for the next 402 trips.

It can be observed that the model is able to predict the peaks and drops in journey

times much better than the Linear Regression model and its performance is comparable

to that of the ANN we discussed earlier. It reveals that the time taken to complete a

future journey depends on the previous sequence of journeys completed. An MAE of

4.28 minutes for LSTM is an improvement of around 43% over the Linear Regression.

Values of other evaluation metrics – MAPE of 4.7312 % and RMSE of 6.78 minutes

are recorded for the test data.

Figure 7.7: LSTM: Actual vs Predicted Journey Time and Future Trends for bus route
46
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One key observation to note is that the LSTM model gives much lower prediction

errors especially for journeys completed during the rush hours in comparison to Linear

Regression and ANN . Even without taking traffic and time-related features such as

‘day of week’, ‘hour’, ‘delay’ as input, it is able to distinguish between peak hours

and non peak hours, and also differentiate between weekdays and weekends for which

journey times follow different patterns. It suggests that LSTM derives some intrinsic

traffic information from the past journey times sequence, memorizes it, retains the

information and uses it for future predictions.
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Chapter 8

Journey Time Prediction of Route

Segments

In the prior chapters, we developed various models to predict the journey time a bus

takes to traverse the whole route. Besides this, it is also useful to predict bus journey

times for segments of a route. A segment of a bus route is a section of route between

any two bus stops. If we can predict how much time a bus takes to travel from Stop

A to Stop B, it would provide bus arrival information to a passenger waiting at Stop

B and potentially reduce waiting time for passengers at the stop. To accomplish this

task, individual bus journeys for route 46 are extracted, cleaned and analysed from the

dataset. The data is then fed into machine learning models to predict the travel time

between stops for future bus trips.

8.1 Bus Arrival Time Prediction Using Predicted

Route Segment Travel Time

Figure 8.1 shows a part of a route having three bus stops – A, B, C and two segments

– S1, S2. Let the predicted travel times for the bus to traverse the segments S1, S2 are

t1 and t2 respectively. Then to predict when the bus at Stop A will arrive at Stop C,

we can just add the predicted segment travel times for S1 and S2 to the time at which

the bus was located at Stop A.
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Predicted arrival time at C = Time at which bus located at A+ t1 + t2 (8.1)

Figure 8.1: Bus Arrival Time

Ideally bus dwell times at Stop A and Stop B should also be accumulated to estimate

the arrival time at Stop C. But in our study, we assume that the dwell times are included

in the segment travel time, so we do not consider them explicitly.

In the following sections, we develop predictive models to estimate bus travel time

between two adjacent stops. Once we have those predicted values, they can be used to

calculate travel time for any route segment and can be used to derive the bus arrival

time at a stop.

8.2 Cleaning and Extracting Bus Trips

Bus journey trips of route number 46 are considered for analysis. The following steps

are performed for cleaning and pre-processing the data to obtain the required valid bus

trips to be used in our models.

1. Segregating individual bus trips

A bus trip is uniquely identified by a combination of Date, Line ID and Vehicle

Journey ID features. A total of 1569 trips are identified and stored in a Python

based dictionary data structure.
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2. Mapping observed GPS points to closest bus stop

For each GPS observation, the distance between the point of observation and

each bus stop is calculated. If the distance is less than a threshold of 50 metres,

the observation is mapped to the corresponding bus stop and it is assumed that

at that particular instant the bus was at that particular stop. Simultaneously,

the value of the feature ‘At Stop’ is set to 1.

3. Determining most frequently marked bus stops

A stop is said to be a marked stop if a GPS observation was recorded at the

time when the bus was present at that particular bus stop. In other words, for

a marked stop, value of ‘At Stop’ should be equal to 1 for a GPS observation.

From all the bus trips of route 46 considered, most frequently marked stops are

calculated. Stop number and its count is stored in a hashed map.

4. Trade-off between number of bus stops and total number of journeys

There is a trade-off between number of bus stops and total number of journeys.

Not all bus trips would contain the same sequence of marked bus stops. For

example, for one bus trip, say stops 1,3,4,5,8 are marked whereas for other two

trips stops 1,5,6,7 and stops 1,2,4,5,8 are marked respectively. So we can observe,

even if the count of stops 1 and 5 is three measured across all the three trips but

the longest most frequent matching sequence 1,5,8 has count of two. Now if

we consider only two stops 1 and 5, the most frequent matching sequence 1,5

has count of three . So it implies the more stops we consider in all trips the

less the number of trips we obtain for analysis. Though it is beneficial to select

the maximum number of stops for better prediction information, the maximum

number of journeys data is also desirable for reliable prediction of travel times.

Therefore, to maximize the number of stops in the matching sequence and to avoid

losing out on journey information, the optimal number of stops to be considered

is found to be 20 as shown in Figure 8.2.

Figure 8.3 shows the route for Line ID 46 and the position of such stops marked

on the map of Dublin city.
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Figure 8.2: Number of Journeys vs Number of Stops

Figure 8.3: Bus Route 46 with 20 most frequent marked stops obtained after cleaning
the trips. The road from Cornelscourt to Clonskeagh is a relatively fast urban dual
carriageway, so not many GPS observations were recorded within 50 metres from the
bus stops.
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Stops information and distance between the stops in shown in Table 8.1

Table 8.1: Stops Information

Stop No Distance from previous stop (km) Distance from City Centre (km)

0 0 10.814

1 0.235 10.553

2 0.272 10.298

3 0.633933 10.345

4 0.715 10.737

5 0.703 10.460

6 0.605 10.416

7 0.800 10.385407

8 4.898693 5.513

9 2.066 3.524

10 0.820 2.788

11 0.408 2.469

12 0.510 2.000

13 1.175 0.844

14 0.800 0.391

15 0.544 0.762

16 0.419 1.100

17 0.328 1.393

18 0.9344 2.026

19 0.680 2.503

49



8.3 Predictive Models for Bus Route Segment Travel

Time/Arrival Time

Three predictive models are studied and evaluated.

8.3.1 Historical Averaging Model

The Historical Averaging model predicts the travel time of a future trip from observed

historical bus travel time data of past journeys completed in the same daily time period

over different days. It is a simple model which does not take any explicit parameters

as input. It assumes the traffic conditions in the current time to be same as in the past

while making predictions. Analysing the previous trends in bus journey times, a day

has been divided into four time periods: period-1 (06:00 — 10:00), period-2 (10:00 —

14:00 ), period-3 (14:00 – 18:00), period-4 (18:00 — 22:00). Now suppose we have N

past bus trips data completed during period-1 such that tia,b represents the time taken

by the bus to travel from stop a to b in the ith trip where i= 1 to N, a < b and a,b ∈
k. So for a current bus trip c operating during period-1, the historical averaging model

predicts the time the bus will take to travel from stop a to stop b is given as:

tca,b =

∑N
i=1 t

i
a,b

N
(8.2)

8.3.2 Linear Regression Model

Overview

The Linear Regression model (as discussed in section 6.2) which captures linear rela-

tionships between dependent and independent variables is used to predict the travel

times between the stops. Moreover, they also measure the impact that independent

variables have over the dependent variables.

Features Used

The model takes in input the features – ‘distance between the stops’, ‘distance of source

stop from city centre’, ‘distance of destination stop from city centre’, ‘day of week’,
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‘hour of day’ and ‘delay’. It outputs the time taken to travel between the source stop

and the destination stop.

8.3.3 Gradient Boosting Model

Overview

Gradient Boosting (35) is a machine learning technique in which models are created

and trained in a gradual, additive and sequential manner. Each model learns from

the mistakes of previous models to minimize the error. The key principle behind the

gradient boosting algorithm is to find a new sub-model to compensate for the residual

error created by the previous submodel (36) as shown in Figure 8.4. The term gradient

signifies that the residual errors are minimised using gradient descent such that the

each new model takes a step in the direction that minimizes prediction error. For

implementation purposes, we used the XGBoost (37) library of Python which is an

efficient and scalable implementation of gradient boosting framework. Since the model

keeps improving as it evolves, gradient boosting model show good results in non linear

dependencies as well as making use of regularization parameters that help against

overfitting.

Figure 8.4: Schematic diagram of Gradient Boosting algorithm

Features Used

The same set of feature variables as used in the Linear Regression model are fed to the

Gradient Boosting model to predict the bus travel times between adjacent stops.
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8.4 Training and Test Data

By considering the 20 most frequently marked stops, a total of 459 bus trips having the

same sequence of 20 marked stops are obtained for the period between 6th November

and 30th November 2012. Of these, 369 trips took place from 6th to 26th November

2012. We considered it as our training set. The remaining 90 trips made between 27th

and 30th November 2012 comprises our test set for which we make the predictions.

8.5 Results and Evaluation

The prediction of the three models and the actual arrival times are shown in Figure 8.5

which represents the predicted and the actual travel time between two adjacent stops

for one of the test journeys.

Figure 8.5: Predicted and Actual travel times from the previous stop

Figure 8.6 below represents the absolute deviation, that is, the absolute difference

between the predicted and actual travel time between stops for the particular bus trip

shown in Figure 8.5.
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Figure 8.6: Absolute Deviation between Predicted and Actual travel times from the
previous stop

It is evident from the above plots that the Gradient Boosting (XGBoost) gives

better predictions, more closely approximates the actual travel times and outperforms

the other two models. To reinforce this claim and further assess the performance of

the models, evaluation metrics – MaxAE, MAE, RMSE are calculated for each model

and listed in Table 8.2.

Table 8.2: Evaluation Metrics recorded for the models

Model MaxAE (mins) MAE (mins) RMSE (mins)

Historical Averaging 11.28 1.02 2.37

Linear Regression 10.58 0.93 1.45

Gradient Boosting (XGBoost) 9.62 0.80 1.16

It can be observed from the Table 8.2 that Gradient Boosting has the lowest values

for each of the metrics. On the other hand, Historical Averaging has the highest values
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for all metrics. However, we observe that for all three models the values of MAE are

small. This is due to the fact that bus stops in Dublin are quite close to each other

with most of them within the range of 300 metres (38). Hence, travel times between

adjacent stops are low. Therefore, even a small MAE can cause large deviation from

actual time and is undesirable. The observed value of MAE signifies that on average

Historical Averaging predicts the bus travel time between two adjacent stops deviating

1.02 minutes from the actual time, Linear Regression predictions have a deviation of

0.90 minutes whereas Gradient Boosting predictions have a deviation of 0.84 minutes.

Figure 8.7 shows the MAE values of the models for the test journeys.

Figure 8.7: Mean Absolute Error (MAE) for test journeys

The table also reveals that the RMSE for the Gradient Boosting is least among the

three models. This shows that the predictions by Gradient Boosting model are closer

to the actual values than Historical Averaging and Linear Regression.

Figure 8.8 shows the RMSE values calculated for each of the test journeys by each

of the three models discussed above.

It can be observed from the above plots that peaks of the graphs are mainly domi-

nated by Historical Averaging and Linear Regression. It signifies that Gradient Boost-
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Figure 8.8: Root Mean Squared Error (RMSE) for test journeys

ing (XGBoost) performs better and approximates travel times between the stops best

of all.

To further assess the performance and the robustness of the models in predicting

the segment travel time, three different segments shown in Table 8.3 are considered.

Table 8.3: Segments

Segments Start Stop Number End Stop Number Segment length (km)

Segment 1 0 7 3.96

Segment 2 0 9 10.927

Segment 3 0 19 17.54

The Mean Absolute Percentage Error (MAPE) is used as the measure of the mod-

els’ performance. Figure 8.9 shows the MAPE values of the three models for the three

segments. It can be observed that Historical Averaging has the highest MAPE, whereas
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Gradient Boosting (XGBoost) has the lowest MAPEs for all three segments. The re-

sults also reveal a decreasing trend in MAPE with increase in segment length for all

the models. Segment length decreases from segment 1 to segment 3. Since smaller seg-

ments has fewer bus stops, fewer traffic signals and fewer intersections, large variances

in traffic, bus dwell times and signal delays can be expected. For example, there may

be instances for short segments when buses don’t get stuck at traffic signals and reach

the stops ahead of their scheduled time. But there may be other instances when the

bus has to wait at every signal thus arriving late at the stops. Moreover, for short

segments, journey times are small, and even a small difference between actual times

and predicted times will lead to high MAPE. However, with the increase in segment

length, the average values of the above mentioned factors tend to be more stable, and

better prediction accuracy can be obtained.

Figure 8.9: Overall MAPE for segments

A lower MAPE value usually suggests that the model is good in making predictions.

However, a model with a small MAPE may occasionally yield a prediction with a large

deviation. This is undesirable as it may predict the arrival time very different from

the actual time. This might lead to passengers missing the buses. Therefore, it is
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critical to assess the robustness of the model to check if its maximum deviation is

within a certain range. Hence, we use MaxMAPE (Maximum Absolute Percentage

Error) which is defined as MaxMAPE = max{MAPE} of a segment, to measure the

robustness of the models. As it can be seen from Figure 8.10, the maximum MAPE

values of the Historical Averaging and Linear Regression models are greater than those

of Gradient Boosting for the three segments we considered for analysis. Therefore,

Gradient Boosting is found to be more robust than the other two models.

Figure 8.10: MaxMAPE for segments

A further point to be made is that, by looking at the modest performance of the

Historical Averaging model, it can be said that bus journey times in Dublin appeared

to be consistent over the observed time period back in 2012. The bus schedules ap-

peared to be followed in a relatively disciplined and reliable way. Perhaps, this can be

attributed to multiple factors such as – low traffic congestion, strict adherence to lane

rules and a small population as compared to other metropolitan areas such as Toronto,

Beijing, New York City on which similar studies haven been done.
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Chapter 9

Conclusion and Future Work

In this research study we proposed and developed various models to predict overall

bus journey times and arrival times using historical AVL/GPS data and prior routes

information. The models developed are evaluated on a ground-truth dataset of Dublin

buses and their performances are compared.

In the first half of our study, we developed Linear Regression and ANN models to

estimate total time a bus takes to traverse the whole route. It is found that the ANN

outperformed the Linear Regression model for all evaluation metrics. The RMSE

observed for ANN was an improvement of around 28% over the Linear Regression

model. This suggests there exists non-linear complex relationships between journey

times and factors affecting it which could not be captured by the Linear Regression

model.

We also proposed a univariate LSTM to predict the total bus journey times based

on the time-tagged history of previous journeys. Experimental results reveals that the

LSTM outperformed Linear Regression and its performance is comparable to that of

the ANN. This is despite the fact that the LSTM did not take into account time-

related features and traffic information for making the predictions. It is able to derive

embedded traffic information from the past journey times sequence and thus is also

able to differentiate between journeys which took place during rush hours and non rush

hours and journeys during weekdays and weekends.

The second half of our study explored techniques and methods to predict bus ar-

rival times at bus stops. From the experimental results obtained, it is found that

58



Gradient Boosting outperformed Historical Averaging and Linear Regression models

on prediction accuracy and robustness. Its strategy of building and combining models

in a sequential manner to minimize the errors made by the previous submodels helps

to obtain better prediction accuracy. To further assess the performance and robustness

of models, three route segments of varying lengths are considered. For each of the seg-

ments, Gradient Boosting gives the least MAPE and MaxMAPE of the three models

and is found to be more robust in making predictions.

To conclude, results obtained from the study are promising and the proposed Artifi-

cial Neural Network and Gradient Boosting models can be used in Intelligent Transport

Systems (ITS) to provide reliable real-time journey time and arrival time information

to passengers based on historical bus’ AVL/GPS data. It can help encourage people to

use public transport and enable transport authorities to efficiently manage the available

resources.

As part of future work, data regarding external factors such as traffic congestion,

weather could be gathered and incorporated into the models for better predictions.

One limitation of this study is that we assumed that the bus dwell times are included

in the segment travel time, so they are not considered explicitly. To overcome this,

some sophisticated techniques could be employed to derive the bus dwell times at stops

from the data we used for our research. It could also give a measure of passenger load

at the bus stops and might potentially improve bus arrival time predictions at down-

stream stops. Lastly, another interesting future work direction would be to develop

a hybrid prediction model combining ANN, LSTM and Gradient Boosting. It would

be interesting to see if the hybrid model could combine the individual strengths of the

models to overcome their weaknesses and make better predictions.
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