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An Automated Approach towards Analysing a

Good Balanced Horse from a 2D Equine Image

Prateek Tulsyan, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Dr. Ciaran Mc Goldrick

The calculation of conformation traits by a horse breeder is an important part of
selection before buying any breeding stallion or purchasing a racing horse. These
conformation traits involve calculating joint angles and body length ratio, thus giving
a measure of the health and performance. The lack of studies available for automatic
calculation of conformation traits of a horse motivates building a piece of software
which takes in a 2D equine image as input and provides the quality of the horse, thus
reducing the need to pay an expert and ascertaining whether or not the horse was worth
buying. Since, evaluation of front, back, and top of the horse were not possible using
the 2D equine image, the research focuses on evaluating Good Balance: Body Length
Ratio (11 traits) and Angular Proportions (12 traits). The process involves four steps:
Foreground Extraction, Colour and Texture Analysis, Contour and Corner Detection
and Novel Algorithm to detect the Points of Interest and calculate proportions, angles
and slopes using these points to determine the quality of the horse. The conformation
trait obtained were rated based on the learning from the conformation documents.
The result showed slight displacement in Point of Interest around the hip and hind leg
region in a few images. With the availability of large labelled dataset from a horse
breeder, the work could be carried forward to use CNN technique to plot Points of
Interest.
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Chapter 1

Introduction

Conformation is the blueprint of a horse as directed basically by its bone and muscle

structures which is not only about having straight legs but also about the length of the

bones, the angle of the joints, and the proportions and overall balance of the horse [1].

It involves numerous traits that depict explicit pieces of the body (e.g., head and neck,

forehand, chest, back, or rump), the limb morphology (carpal, fetlock, smother, and

hawk joints), or the overall proportion (e.g., type and amicability). Traits like the slope

of the shoulder and croup, the elbow, carpal, stifle, hock, fetlock joint (pastern) angles,

and the shape and angulation of the hoof, is associated with performance, life span and

lameness prevalence across different breeds and disciplines [2]. When inspecting horses

for conformation, either while thinking about a buy or contending in horse passing

judgment on challenges, it is critical to separate things into key standards to abstain

from turning out to be overpowered when assembling the general picture. There are

five fundamental standards to assess while evaluating a horses conformation: Balance,

Structural Correctness, Way of Going, Muscling, and Breed/sex character [3]. Since

the later four criteria are not possible to identify from the 2D image, therefore in this

study we are going to focus on evaluating the Good Balance: Body Length Ratio (11

traits) and Angular Proportions (12 traits) [4] [5] of a horse. Balance refers to equal

distribution of weight from front to back and from top to bottom of a horse and is

determined by the bone structure of the horse. It is the most critical aspect and is

necessary for movement and performance [3] [6] [7] [8].
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An overview of the horse morphology is presented in Figure 1.1 [7] [9] [10] [11] which

consists of all the traits that are further used for calculating joint angles and slopes for

evaluating horse conformation.

Figure 1.1: Points of Horse Conformation. Image Source: [9]

Based on the study by [3] [4] [6] [7] [8] [11], some conformation traits are hard to be

measured using a 2D equine image like hoof angles are difficult to analyse due to grass

in the image which leads to improper extraction of hoof area from the image. Traits

like hind leg stance are difficult due to tail which leads to improper hind leg outlining

and traits from back and front of the horse due to lack of image. Traits like muscle mass

are difficult to analyse as it requires viewing the horse from a different angle in order

to get the proper shape for muscle. According to [9], a horse when viewed from the

front must show a prominent ’V’ shape in the front muscling with a large circumference

around the forearm. Therefore, in order to analyse and determine whether a horse is

Good Balanced, the following conformation traits Angular Proportions (Table 1.1) and

Body Length Ratio (Table 1.2) are being measured in the research.
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Angle
Name

x centre y

Shoulder
slope

Wither Shoulder 90◦ Neck Vertical
line

Poll joint Muzzle Poll Top point of wither

Wither joint Poll Wither Point of Shoulder

Shoulder-
Elbow Joint

Top point of wither Shoulder Elbow joint

Elbow joint Shoulder Elbow joint Cannon

Buttock joint Hip Buttock Stifle

Stifle-Hock
joint

Buttock Stifle Hock

Stifle-Hip
joint

Buttock Stifle Hip

Hip joint Buttock Hip Stifle

Wither Upper
joint

Shoulder Peak of Wither Wither upper point

Wither Lower
joint

Shoulder Peak of Wither Wither lower point

Shoulder
joint

Peak of wither Shoulder Shoulder Point
Horizontal Straight
Line

Table 1.1: Conformation Traits (Angular Proportions) Measured for a Good
Balanced Horse. Here x, y, centre denotes the three points and centre is the

point of intersection of these points for which the angle is calculated for.
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Conformation Trait Condition

Body Shape Length of Neck = Shoulder = Back =
Hip

Body Direction Length of TopLine < UnderLine

Body Capacity Depth of Hearth Girth > Depth of
Flank
Depth of Hearth Girth = Forearm to
Fetlock
Wither Height from Ground = Buttock
to Shoulder

Length of Top and Bottom Neck Ratio 2*Bottom = Top

Distance from Poll to Throatlatch and
Poll to Muzzle

Poll to Throatlatch < Poll to Muzzle

Length of Neck Length of Neck = 1.5*Poll to Muzzle
Length of Neck = 1/3*Length of Horse
Length of Neck = Elbow to Hoof

Wither and Hip Height from Ground Wither Height = Hip Height

Table 1.2: Conformation Traits (Body Length Ratio) Measured for a Good
Balanced Horse. The conditions tab indicate the measurements based on which

the conformation scoring is done.

The points mentioned in Table 1.2 determines whether a horse is good balanced

or not i.e. whether the horse has an equal distribution of weight from front to back,

from top to bottom and from side to side. This means that a horse can be light-

bodied but also well balanced if it has a proper distribution of bones and proportions

for balancing the weight. Proper balance gives the horse more power and smoother

movement [3]. The internal body capacity of a horse indicates the space available for

the proper functioning of heart and lungs i.e. with more lung capacity, the horse can

take in more air after each step making it’s movement powerful [9]. The angles such

as shoulder slope greatly influence the stride length and smoothness.
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1.1 Motivation

With the advancement in the field of image processing and computer vision, few schol-

ars [6] [7] have started using these domains to analyse horse conformation. Both these

scholars have used traditional OpenCV [12] Grabcut algorithm [13] directly for extract-

ing horse from the background of a given image. This extraction leads to a change in

parameters every time for a different image. They have also used traditional Canny

Edge Detection [14] and Harris Corner Detector [15] to initially locate the points and

then finally select the key points manually for conformation scoring. These methods

again require a change of parameters every time to detect the edge and corners for

different images. Few other scholars [16], have used the statistical technique for anal-

ysis of shape and equine conformation. The same set of scholars in there next study

[17] used image analysis and geometric morphometrics to generate shape-correlated

two-dimensional coordinates of the horse to evaluate the conformation. However, most

of these research’s require some manual intervention or change of parameters between

different images. The dearth of research in this field motivates analysing the horse

conformation traits automatically and predict the calibre of the horse.

According to [18], the Horse racing industry is expected to be a Billion dollar indus-

try by 2026. The global horse trade industry generates almost $122 billion employing

almost 1.74 million people just in the United States which generates almost $79 billion

in salaries [19]. This requires a lot of horse breeders to be employed and get proper

horse conformation before buying or betting on a horse. A market that is this huge

could be targeted to analyse horse conformation automatically within seconds with the

use of a mobile application which captures the horse image which is then passed onto

the horse conformation scoring model deployed on some cloud service like AWS. This

also brings an opportunity to create a product-based application which in future can

also be used for analysing the conformation of camels (another huge racing industry in

the Arabian Market).
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1.2 Research Objective

The primary objective of the research is to create a novel algorithm which automatically

detects key points located around the edge of the horse for automatic calculation of

conformation traits. These key points are detected using the horse’s centre of gravity,

extreme left, extreme right and extreme bottom point [20].

The secondary objective that were also a part of this research are:

1. Automated foreground extraction i.e. segregating horse from the background

of the image. The research demonstrates the use of a Deep Learning based

pre-trained object detection and mask generating model [21] along with Image

Segmentation using colour spaces [22] and then finally extracting the horse using

Grabcut algorithm [13].

2. Automated Edge/Contour Detection of the horse. The research here demon-

strates the use of a Deep Learning based pre-trained model for Holistically-Nested

Edge Detection [23].

3. Another important aspect covered in the research is the use of Colour [24] and

Texture Analysis [25] technique on the horse image to determine whether the

conformation of joint angles detected show some change in colour or texture

around that area.

The research also presents in detail about what techniques or algorithms worked and

what did not work during the analysis of the above objectives. The use of pre-trained

models was done because of the lack of horse image dataset.

1.3 Dissertation Overview

To achieve the objective of this research, the most popular Artificial Intelligence library

OpenCV [12] is used. It is the most popular library used for image processing and

solving computer vision problems.

As a first step, the image is first resized to a scale factor set to width 800 and then

passed onto a Deep Learning based pre-trained object detection and mask generating
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model [21] for detecting whether the image contains a horse or not and if it does

then it generates a mask for the same. The output of this step is then used for image

segmentation using the colour spaces [22] generated by the mask. The output generated

by the image segmentation and the original resized image is then used passed onto the

Grabcut Algorithm [13] to extract the horse from the image.

The output generated by the first step is then Denoised to remove any extra noise

from the image for better edge detection. This is achieved using Median Blur algo-

rithm [26]. This denoised image is then used to perform colour analysis using Kmeans

clustering technique [24], texture analysis using Local Binary Pattern [25] and Edge

Detection using a Deep Learning based pre-trained, Holistically-Nested Edge Detection

technique [23].

In the next step, the edge detected image is then used for detecting all the corner

points around the edge using Shi-Tomasi Algorithm [27].

The output generated by corner detection is then used to locate extreme left, right,

top and bottom points [20]. These extreme points are then used to create a novel

algorithm to detect all the key points of horse conformation. Once the key points

are located, then they are used to measure different conformation traits which include

body length ratio (11) and angular proportions (12).

The measurement of these conformation traits are then used for evaluating whether

the horse is Good Balanced or not. The horse is evaluated by giving a +1 score for

every conformation trait it has and based on the score, the horse’s quality is accessed.

Since the calculation of exact length and angle is tricky, therefore a range of ± 30

pixels is considered for body length ratio and a range of ± 5◦ for angular proportions.

On evaluation, the horse is rated based one of the three qualities: Poor, Average and

Good Balanced.

Finally the entire piece of software was tested on a total of 30 horse images collected

from Google Images (5) and Stallion Selection for Horse Sport Ireland 2019 and earlier

(25) [28].

Apart from above steps, the dissertation also presents what techniques and algo-

rithms did not work or gave an expected result like Rectangular coordinates used for

foreground extraction in Grabcut algorithm [13], Gaussian Blur [26] and Bilateral Fil-

ter [26] algorithms used for image denoising, Harris Corner algorithm [15] used for

corner detection.

7



1.4 Dissertation Structure

The layout of the dissertation is orchestrated as following:

Chapter 2 State of the Art focuses on studies that have been carried out for

analysing horse shape and its conformation along with different conformation scoring

techniques.

• First section deals with the studies that tell us about the importance of horse

conformation and how it influences the selection of a horse.

• Second section presents the studies that have been carried out so far for the

analysis of horse shape and scoring of conformation traits.

• Third section tells us about the challenges faced by the existing research that has

been done so far on horse shape analysis.

• The last section presents all the studies that had different research objectives but

that have been used as a part of this research.

Chapter 3 Methodology outlines the overall main research methodology. It includes

two modules:

• System Design: This section highlights the overall architecture of the software

• Horse Conformation Evaluation: This section evaluates all the conformation

traits required for rating the horse as good balanced.

Chapter 4 Results and Discussion outlines the results obtained from the research.

It also outlines the limitations of the research and possible solutions for the same.

Chapter 5 Conclusion and Future Work sums up the primary result of this re-

search and proposes manners by which the result can be improved in future.
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Chapter 2

State of the Art

This chapter focuses on the related work that has been carried out for analysing horse

conformation along with different conformation scoring techniques. The first section

explains the importance of horse conformation. The second section explains the studies

that have been carried out so far for analysis of horse conformation, conformation

scoring techniques, extraction of horse image from the background and different shape

analysis methods. This section also provides in detail the challenges faced by these

approaches. The last section presents how all the available studies used for different

objectives can be used to address the challenges faced in analysis horse conformation.

This section also presents use case of colour and texture analysis over a horse image

which has mostly been used in the past for forgery detection and pattern recognition.

2.1 Importance of Conformation

A horse’s effective performance is closely connected to its conformation. A horse that

isn’t appropriately conformed for a specific discipline will have lesser chance to succeed

in that discipline. This will result in the horse being trained for more number of

hours with less satisfactory results. In general, a horse with poor conformation will

have more chances of getting an injury along with a tendency towards lameness [29]

[30] [31]. There are many opinions on what makes a good horse like, breed, genetics,

structure, attitude or training but the most important aspect is conformation which

tells how a horse’s body part is put together. Even if the horse belongs to the most
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popular horse breed, but if it does not have the proper conformation for the discipline

it has been selected, then it won’t be able to perform [32].

2.2 Traditional Approach

The complications involved with the horse conformation has led to various methods

that are being investigated in this domain. Various studies have been conducted, each

with different objectives.

In the year 2015, Druml T. and his team members [17] used geometric morphomet-

rics methods by merging with regression analysis to map a rating on the horse image

and then analyse the horse shape of 44 Lipizzan mares and further use empirical judge-

ments for the association of conformation traits with the horse image. Through this,

they could find the normalized horse shape data which was utilized to further explain

the trait influence of horse shape. Figure 2.1 below explains the same.

Figure 2.1: The left image shows the scaled and aligned configuration of 44 horse
and the right image shows the mean of the same. Image Source: [17]

In the year 2016, Druml T. again with the same set of scholars [16] used the previous

horse shape analysis to rate score for 102 Lipizzan horses using eight inter raters. The

conformational scoring was based on a valuating scale which is the most commonly used

scoring method for Lipizzan horses. Again in the year 2018, Druml T. with another

set of scholars [2], studied how genetic background of horses affect the joint angles of
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the horse. To improve the evaluation of conformation traits of horses, Druml T. with

few other team members [5] in the year 2019, extracted the joint angle of horses using

landmark triplets and further assessed the consistency and repeatability of the same

using Procrustes analysis. They also introduced another subjective scoring technique

to classify the posture of the horse.

Another study by. Thorvaldur K. and his colleagues [33] used statistical analysis on

Icelandic horses to study the genetic relationship between the association of different

conformation traits and the riding ability of the horse. The results from the study

show that a combination of conformation traits used for scoring a horse are better

performance indicators than measuring single conformation traits. There was a study

done by Hadi G. and his colleagues [34] on Iranian Turkoman Horses which shows

how the genetic factors (gene frequency) and non-genetic factors (sex, age and horse

management) affect the conformation traits of these horses. The main result obtained

from there study was that these factors do affect a horse’s conformation and must

be considered while evaluating horse conformation trait for a particular discipline like

sport, trekking, etc.

While the previous studies are mostly based on a statistical analysis of horse shape,

but now, with the advancement in the field of image processing and new computer

vision libraries like OpenCV [12], both the Scholars [6] and [7] used these libraries to

successfully extract the horse from the image and present an outline of the same for

trait analysis using the landmark points. Scholar [6] used the technique of extracting

the horse from the image that required a change of parameters for each image. The key

points for conformations traits as shown in Figure 1.1 were then calculated manually

and then conformation was evaluated by giving a +1 score for each trait that fall in the

good range. Figure 2.2 shows the results obtained. However, on the other hand, Scholar

[7] provided a manual interface for selecting the rectangular coordinates to extract the

horse image. The key points are located from a range of key points previously stored

in the database and in case of failure i.e. point misplacement, provides an interface to

select the key points manually. The research uses a Linear profiling technique is used

to evaluate the conformation, movement and athleticism of the horse which describes

where a horse lies between the biological extremes for any given trait [35] [16]. An

example of the Linear profiling technique scoring form can be seen in Figure A.1.
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(a) (b) (c)

Figure 2.2: The extracted shape of horse and points selected. (a) shows the
extracted and denoised image from the original image. (b) shows the outline of

the horse obtained. (c) the blue dot shows all the corner points detected and the
red dot shows the key points selected manually. Image Source: [6]

2.2.1 Challenges in Traditional Approach

• Foreground Extraction: The extraction of horse from the image requires

change of parameters for different image or some sort of manual intervention.

• Edge Detection: The outline of the horse detection misses the edge near place

between the tail and the hind leg, elbow and forearm region.

• Corner Detection: The detection of corner require a change of threshold values

between different image.

• Manual Key Point Selection: The selection of key points out of all the de-

tected corners needs manual intervention.

2.3 Techniques Studied to Address Challenges in

Traditional Approach

In recent years, Deep Learning and Convolutional Neural Networks (CNN) have rev-

olutionized the future of artificial intelligence (AI). It belongs to a broader family of

machine learning with the power of representation learning. It has evolved in the

field of object detection and recognition, image segmentation and edge detection. The

deep learning models are fast, accurate and simple to integrate than the traditional

approaches for above-mentioned tasks.
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Ross G. with his colleagues [36] [37], combined regional proposals with CNN for

object detection (R-CNN). Few Google scholars [38], proposed another very interesting

architecture for object detection in the year 2017, called as the MobileNets. This

architecture used depthwise separable convolutions for building neural networks. The

architecture also provides two parameters for a trade-off between latency and accuracy.

Another study [39] used a custom modified CNN’s SegNet architecture for instance

segmentation [40] of objects from the image which is segregating the outline of the

object from the image and determining which pixel belongs to each object. Figure 2.3

below illustrates the difference between object detection and instance segmentation.

Figure 2.3: The image in the left (object detection) shows a box drawn around
the individual objects whereas the image in the right (instance segmentation)

determines which pixels belong to each object. Image Source: [40]

A study by Facebook Research team [41] built a deep learning based state-of-the-

art architecture for instance segmentation with a feature for changing colours along

with the use of opacity function for each colour, called as Detectron. This model has

been further used by [21], to obtain both object detection and instance segmentation

for an object in an image. The model also detects the type of object along with the

confidence score for that object detection i.e. how confident the model is in predicting

the type of that object. An example for the same is illustrated in Figure 2.4. This is

the model that has been used in the thesis for the first stage of foreground extraction

i.e. determining if the image contains a horse and segment if from the rest of the image.
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Figure 2.4: An example illustration of both object detection with boundaries and
instance segmentation with opacity 0.5. The text on the top of each object shows

the type and confidence score of each detected object. Image Source: [21]

The traditional approaches like Canny Edge Detector [14] for edge detection of an

object from an image lacks semantic understanding i.e. understanding the content of

the image and has limited accuracy. This has been overcome with deep learning archi-

tectures. Some of the studies [42] [43] [44] [45] show that deep learning based trained

models are able to find more acute and precise edges than pre-existing techniques. One

of the deep-learning based methods called as the Holistically-Nested Edge Detection

(HED) architecture by Saining X. [46] has now been included in the OpenCV’s DNN

module for edge detection because it is better than other deep learning models in terms

of accuracy and speed, as it uses the side outputs generated by each CNN layer for the

prediction. [23] depicts the prediction of HED model as compared to the traditional

approach like Canny edge detection. Figure 2.5 shows the different outputs obtained

with different thresholds for HED and Canny Edge Detector on the same image.

14



Figure 2.5: A comparison of the HED model prediction with respect to the
traditional Canny Edge Detector. (a) & (b) shows the original image and ground

truth respectively. (c), (d), (e), (f) shows the output for HED model for
different threshold. (g), (h), (i) shows the output for Canny Edge Detector for

different threshold. Image Source: [23]

All the current research motioned above are based on the analysis of the horse

shape from the outline and calculation of traits from those outline points even in the

case of joints. But none of the research currently shows if these points which depict the

joint angles can be verified by the colour and texture analysis over the horse image as

if seen clearly, the horse image clearly shows some darker shade of colour around the

joins like the hip region, elbow and forearm region, hock and cannon region in the legs.

There are several colour analysis algorithms with the cluster-based colour segmenta-

tion technique (Kmeans algorithm) being the most common one. This technique has

been previously used in satellite imagery for updating geographical information [47],
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analysis of colour spaces of an image [48] and measuring the performance of different

colour channels of an image [49]. On the other hand, texture analysis has been used for

forgery detection, classification and identification of textures and patterns in images.

One such algorithm is Local Binary Pattern [50] [51].

The research above indicates that there is a dearth of study available in the filed of

automatic evaluation of horse conformation from a 2D equine image. This provides

a source of inspiration to design a system that automatically calculates conformation

traits of a horse. The study has been inspired from the previous studies done by [6] [7].

The evaluation of the system is based on the learning developed from the conformation

documents [1] [3] [4] [8] [9] [10] [11] . The research also adds the learning developed

from [36] [37] [38] [39] [40] [42] [43] [44] [45] [48] [50] in order to better decompose the

horse for analysis of conformation traits.
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Chapter 3

Research Methodology

The research fabricates onto the work done by Megan R. (2019) [6] and Chun-Hung C.

(2019) [7]. Specific parts of the methodology in this examination have been inspired by

the decisions these scholars have made. This is on the grounds that their methodology

has ended up being a decent beginning advance in tending to the research objective. It

also allows for a better comparison of the results. The research addresses the challenges

faced by these scholars and introduction of some other new technology that can be

used to answer the research objective. Differences in the methodology include the

introduction of new foreground extraction technique, Contour and Corner detection,

Colour and Texture Analysis and a Novel algorithm to detect key points around the

horse.

3.1 Overview

The research uses 2D images of horses for analysing and calculating the conformation

traits of a horse. Analysing and calculating the conformation of each point of the horse

as seen in Figure 1.1 is very tricky because of the shape of certain parts of a horse like

the hind legs, or the hoof area. This is because it is extremely difficult to extract the

hoof of a horse if it is standing on grassy area.

So to avoid the complications that are involved in analysing the conformation traits

of a horse, the research is focused on analysing only those traits of a horse which can

be used to classify the horse as Good Balanced [3]. Figure 3.1 highlights the same.
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These traits are then used to calculate the length of different body parts and the angle

of joints. The lengths which are recorded are then used to calculate proportions of a

certain trait (as seen in Figure 3.2). These proportions are further used to classify the

quality of the horse. This has been done to avoid the problem of comparison of lengths

in between images which may arise due to different scale and size of horses in different

images.

Figure 3.1: Points of Interest of the horse analysed.

Figure 3.2: An example of what proportions mean. The ration of the white
topline to the underline is 2:1. Image Source: [3]
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3.2 Architecture

The goal of the research is to create a piece of algorithm that can effectively analyse

horse conformation and determine the quality of the horse. Figure 3.3 lists down all

the steps involved in the process of analysis of horse conformation traits. The images

also list down the best algorithm selected for the purpose of that feature. The bottom

right part of the figure lists down the icon of all the tools, technologies and libraries

used for the purpose of this research.

• Image pre-processing: Resize the original image to the scale factor set to

width 800.

• Foreground Extraction: An algorithm to extract the horse from within the

image by removing all the unnecessary background. This process involves three

steps: instance segmentation for pixel wise separation of horse image, black and

white mask generation and using the resized image and black and white mask

generated to extract the horse image.

• Denoising: An effective algorithm to remove any extra noise from the extracted

image. This smoothens and sharpens the edges of the image.

• Colour and Texture Analysis: Perform colour and texture analysis over the

foreground extracted image in order to verify visual verification of the calculated

joint angles.

• Contour Detection: An algorithm to detect the edge from the foreground

extracted image and then from that image identify all the corners around the

edges.

• Corner Detection: An effective algorithm to detect all the corners around the

edges of the image.

• Novel algorithm for Key Point Selection: An algorithm to detect all the

key points for analysis of conformation traits.

• Balancing aspect Analysis and Conformation Scoring: Calculation of

body length ratio and joint angles for the analysis of different body traits. Finally

after scoring these traits the quality of the horse is determined.
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Figure 3.3: Architecture of the Horse Conformation Analysis
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3.3 Workflow

This section presents the workflow of the algorithm in detail along with what algorithms

or processes worked and gave good results for a particular feature and what algorithms

did not give proper results.

3.3.1 Image Pre-processing

As a first step, the image is resized to a scale factor set to width 800. This is being

achieved by using OpenCV’s ”cv2.resize” command [12].

3.3.2 Foreground Extraction

This section takes in the resized image from Section 3.3.1 as input and extracts the

horse from within the image by removing unnecessary background from the image.

3.3.2.1 Approach that gave Good Results?

3.3.2.1.1 Instance Segmentation

Instance Segmentation is the generation of a pixel wise mask of the object that has

been detected in the image [40], thereby segmenting the foreground object from the

background. The study uses the Mask R-CNN (Region Based Convolution Network)

architecture being proposed by Kaiming H. et al. [41] which has been built on top

of previous object detection work being done by Ross G. et al. [52] [53] [54]. The

advantage of using Mask R-CNN architecture is that it not only works for object

detection but can also perform instance segmentation.

The study uses a Matterport’s [55] implementation of Mask R-CNN model is used

which is pre-trained on COCO dataset (One of largest object detection and segmenta-

tion dataset backed by Facebook) [56] and consists of 80 class labels out of which 1 is

horse [21].

To perform instance segmentation the model first detects whether the object de-

tected in the image belongs to class ’horse’ and has a ’confidence score > 0.9’. The

confidence score indicates the confidence the model has in predicting the class of object

detected. After this, the model generates the pixel wise mask of the horse detected,
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which has been modified to generate a mask larger than the size of the horse for better

extraction of the horse image. Figure 3.4 below illustrates the same.

(a) (b) (c)

Figure 3.4: Instance Segmentation of the horse. (a) is the resized image input
image. (b) shows the detected horse via a rectangular bounding box and the
label on top of the same indicates the confidence score = 1.0 of the detected

horse. (c) Output image: shows the pixel wise separation of the horse image from
the background.

3.3.2.1.2 Colour Segmentation

This step involves the segmentation of image using their colour spaces [22] and takes

in the image generated in Section 3.3.2.1.1 as input.

The most common colour space is RGB which is represented in terms of red, blue

and green components of an image. Another common colour space is HSV (Hue,

Saturation, value/luminance) which basically is used for identifying contrast in images.

It is the most used colour space in web designing and colour selection tools.

In this process the input image is first separated into RGB and HSV colour space.

Figure 3.5 below shows the colour distribution of image pixels in a 3D plot where

each axis represents the different channels in the color space. The left image is the

separation in RGB colour space and right is the separation in HSV colour space.

It is evident from the Figure 3.5a that the pink part of the image spans over the

entire range of RGB values, so it is difficult to separate the pink colour range from the

RGB colour space. However, in the Figure 3.5b, the pink colour is more localized and

is visually separable. The saturation and value does differ but it located in a small

range. By visually analysing the range of pink values across HSV colour space, two

colour values are selected, light pink (159, 50, 50) (Figure 3.6b) and dark pink (179,

255, 255) (Figure 3.6c) shown in Figure 3.6b and Figure 3.6c respectively.
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(a) (b)

Figure 3.5: Separation of Instance segmented horse image into (a) RGB Colour
Space and (b) HSV Colour Space.

The range of pink colours found from HSV space are further used as threshold for

the input image. The function ’cv2.inRange(input image, lower colour range, upper

colour range)’ is used to generate a binary mask (array of 1’s and 0’s). The value 1

here represents the values within the range of colours selected and 0 represents outside

the range. This array is then passed onto the function ’cv2.bitwise and(input image,

input image, binary mask)’. This function keeps all the pixel values corresponding to 1

and ignores the rest. The 1 values are replaced with white colour and rest with black.

Figure 3.6 below shows how the output image (Figure 3.6d) is segmented using the the

range of colours light pink (159, 50, 50) (Figure 3.6b) and dark pink (179, 255, 255)

(Figure 3.6c) from the input image (Figure 3.6a).

(a) (b) (c) (d)

Figure 3.6: Image segmentation using Colour Spaces. (a) is the input image. (b)
& (c) are the range of light and dark pink colours generated from the HSV

colour space of input image. (d) is the output image obtained by thresholding
the range of colours from the input image.
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3.3.2.1.3 Horse Extraction

This step involves the extraction of horse image by removing all the unnecessary back-

ground from the image. It takes in the resized image from Section 3.3.1 and the output

image mask from Section 3.3.2.1.2 as input.

The study uses OpenCV’s Grabcut [13] method for foreground segmentation and

extraction of the horse image. The reason for selecting Grabcut algorithm for the same

is the study provided by Carsten R. et al. [57], which shows a comparison of different

algorithms used for foreground extraction. Figure 3.7 below indicates that Grabcut

algorithm performed much better than compared to other algorithms.

Figure 3.7: A comparison of methods for performing foreground extraction. (f)
clearly shows that the output of Grabcut algorithm is higher in quality then

compared to other algorithms. Image Source: [57]

The Grabcut algorithm provides two approaches for foreground extraction, one is

with the initialization of bounding boxes i.e. by passing on the rectangular coordinates

for the object that we want to segment (this process did not give good results and

will be seen in detail in the Section 3.3.2.2) and other with the initialization of mask

approximation i.e. passing a black and white mask similar to the shape of the object

that needs to be segmented. The Grabcut algorithm then recursively applies the graph

cuts to improve the segmentation from the approximate mask that is provided as the

input [58]. In the mask initialization process the foreground is extracted using the

resized image from Section 3.3.1 and the output image mask from Section 3.3.2.1.2 as

input and passed onto the OpenCV function ’cv2.grabCut(image, mask)’. Figure 3.8

below depicts the same.
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(a) (b) (c)

Figure 3.8: Foreground extraction of horse using mask approximation. (a) is the
resized image from which the horse needs to be extracted. (b) is the approximate

mask generated for the horse. (c) is the output image.

3.3.2.2 Approach that gave Poor Results?

3.3.2.2.1 Object Detection

The study uses the same model as used in Section 3.3.2.1.1 for object detection which

is a bounding box around the object that is detected. This can be seen in Figure 3.4b.

The coordinates for the rectangular box around the horse is (50, 40, 750, 560).

3.3.2.2.2 Horse Extraction

This step takes in the resized image from Section 3.3.1 and rectangular coordinates of

the horse detected in Section 3.3.2.2.1. These values are then passed onto OpenCV’s

Grabcut function ’cv2.grabCut(image, (50, 40, 750, 560)’. Figure 3.9 below depicts the

poor extraction results. This process yields poor results because coordinates need to be

tuned/changed until the horse is properly extracted and requires manual intervention.

(a) (b) (c)

Figure 3.9: Foreground extraction of horse using bounding box approximation.
(a) is the resized image from which the horse needs to be extracted. (b) provides

the rectangular coordinates for the detected horse (50, 40, 750, 560). (c) is the
poorly extracted output image.
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3.3.3 Denoising

It is the process of removing high spatial frequency noise from an image. This is needed

for better edge detection of the horse outline as it sharpens and smoothens the edges.

This step takes in the output image from Figure 3.8c as input.

There are many algorithms available for denoising an image but the selection of

these algorithms mostly depends on the type of noise an image contains. The image

that the study processes mostly needs reduction of noise around the edges for proper

edge detection. This type of noise is called salt-and-pepper noise. A study conducted

by Pawan P. et al. [59] shows that Median filtering method is highly effective in

removing salt-and-pepper noise.

Median filter takes in each image pixel and compares it with its neighbourhood

pixel to decide whether the pixel is similar to its surrounding or not and if it is not

similar then it replaces that pixel by the median values of the neighbourhood pixels

[60]. An example of this can be seen in the below Figure 3.10.

Figure 3.10: Median Filtering Technique. Image Source: [60]

From the image it can be seen that the central pixel value of 150 is not similar to its

surroundings and so it is replaced by the median of its surrounding value 124. Larger

the surrounding, better the noise reduction.

For the purpose of this research, OpenCV’s Median Filtering [26] method is used

for noise reduction ’cv2.medianBlur(image, kernel size)’. The second parameter used

is the kernel size which must be a positive odd integer and represents the size of the

neighbourhood which needs to be considered. Kernel Size value 5 yielded the best

results on visual comparison. The output of this process can be seen in Figure 3.11
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(a) (b)

Figure 3.11: Denoising of the horse image. (a) is the foreground extracted horse
image. (b) is the output received after applying median filtering.

3.3.4 Colour and Texture Analysis

Most of the research currently focuses on horse shape analysis using the outline land-

mark points around the horse. Colour and texture analysis is used for visual verification

of angular proportions of the horse around the hip region because that is the most ev-

ident region where this analysis could be performed. When seen from the naked eye,

the joints around the horse shows some darker shade and this existence of joints could

be verified by using colour and texture analysis over the denoised horse image from

Section 3.3.3.

The research uses Kmeans clustering algorithm for colour analysis of the image [48]

[61] [49] [47]. Clustering is a technique of dividing data points into groups such that

each group contains similar data points. These groups are known as clusters. In cluster

based colour analysis the clusters are represented by colours. The reason for selecting

Kmeans algorithm for colour analysis is because it works really good for small datasets.

It looks at all the output generated at each iteration and so the output is slow but the

results obtained is pretty good [62].

OpenCV’s Kmeans clustering method [24] was used for the purpose of this research.

It involves following steps:

• First of all the three-dimensional shape (800, 588, 3) of the image is converted

into two-dimensional shape (470400, 3). Here the number 3 represents the RGB

channels of the image.
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• In the next step the two-dimensional array is fit into the Kmeans algorithm ’labels,

(centers) = cv2.kmeans(array, k’. Here, labels consist of the label for each pixel

i.e. which cluster does this pixel belong to, centers consists of the cluster centers

and k represents the total number of clusters.

• In the final step, all the image pixels are converted to the cluster colour they

belong to and finally the image is reshaped to original shape.

The algorithm performed best for 5 number of clusters based on the visual comparison

among different cluster numbers (3, 4, 5, 6) as seen from Figure 3.12.

(a) (b)

(c) (d)

Figure 3.12: Colour Analysis over horse image for analysing visual verification for
angular proportions using Kmeans clustering. (a), (b), (c), (d) are the output
for (3, 4, 5, 6) clusters respectively. Cluster 5 gives best result and it can be seen

in (c) that the circles (left, right, bottom) show the change of shade around
buttock, hip and stifle joints region respectively.
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The study uses the algorithm Local Binary Pattern (LBP) which is a textual de-

scriptor made popular by the work of Ojala T. et al. [51] for texture analysis of the

denoised horse image. The reason for selecting this algorithm is because it provides

extremely fine grained details of the image [25] and has also been integrated with both

OpenCV [12] and Scikit-Image [63] libraries.

LBPs compute a local representation of texture by comparing each pixel with its

surrounding neighbourhood pixels. The LBP value for the center pixel is calculated

and stored in an array of the same size as of input array.

The first step towards calculating a LBP value is to select a pixel and threshold the

neighbouring pixels around it into binary form. Figure 3.13 show that for pixel value

4, all the neighbouring pixels that are greater than equal to center pixel are set to 0

and others are set to 1.

Figure 3.13: Calculating the LBP value of the center pixel 4. The first step is to
threshold the neighbouring pixels in binary form. Image Source: [25]

The next step is to calculate the LBP value of the center pixel by selecting any

neighbouring pixel and move in clockwise and anti-clockwise direction to create an

array of string which is then converted into decimal form. Figure 3.14 illustrates the

same. The above process is repeated until all the pixels in the array generate a LBP

value for itself.

Figure 3.14: Converting the neighbouring pixels into decimal form to get the LBP
value of the center pixel. Image Source: [25]
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Scikit-image’s implementation of LBP was preferred for the purpose of this research

over OpenCV because OpenCV’s LBP implementation works strictly for facial recog-

nition and moreover, the scikit-image’s implementation of the same provides grayscale

invariance and rotation improvements for the image. For this implementation the de-

noised image from Section 3.3.3 is first converted into grayscale and the resulting array

is passed onto the LBP function which in turn returns the new array with LBP values.

Figure 3.15 below shows the result obtained. It can seen that circle numbered 1, 2, 3

shows the difference in shade, slight darker patch around the hip, buttock and stifle

joints respectively. Similarly circle numbered 4, 5, 6 shows a slight dark patch around

the hind leg knee joint, foreleg knee joint and elbow respectively.

Figure 3.15: Texture Analysis over horse image for analysing visual verification
for angular proportions using Local Binary Pattern.

Based on the colour and texture analysis results obtained above, it would be verified

against the key points of the horse detected in later Section 3.3.7. It would be seen if

the location of dark patches that denote bone joints and the key joints detected via

the algorithm match with each other or not.
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3.3.5 Contour Detection

It is the process of detecting the outline and edges of the horse. These outline will

further be used to detect the corners and points of interest. This step takes in the

denoised horse image from Section 3.3.3 as input. Contour/Edge Detection requires

denoised image instead of original image because denoising of images sharpens and

smoothens the edge of the image along with removing the extra noise which might

result in wrong edge detection.

3.3.5.1 Approach that gave Good Results?

This study uses the Holistically-Nested Edge Detection (HED) architecture proposed

by Saining X. et al. [46]. It is a deep neural network based architecture which takes in a

RGB image as input and produces the edge map of that image as an output. The reason

for selecting HED for the scope of this study was because it is the most popular deep

learning framework with maximum accuracy and speed available as compared to other

deep learning based architectures like [42] [43] [44] [45]. The HED model has also been

included in the OpenCV’s DNN module for edge detection which requires OpenCV

version 3.4.3 or higher [64]. HED architecture uses convolutional neural network for

prediction of edges and the output generated by each layer is used as a side output by

next layer and finally all these outputs are fused together to generate final edge map.

The architecture of HED model can be seen in [46] [64].

For the purpose of this study, a pre-trained HED model is used for edge detection

[23]. This model has been trained on NYU Depth Dataset [65] and Berkley Dataset

[66]. The reason for selecting this model was because it gave state-of-the-art results on

both these datasets. Figure 3.16b below shows the result for HED model. It is evident

from the output that the edge detection gave good results even in difficult areas like

the ear and hind legs.
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(a) (b)

Figure 3.16: Edge Detection using Holistically-Nested Edge Detection CNN
model. (a) is the denoised horse image. (b) is the output image obtained.

3.3.5.2 Approach that gave Poor Results?

Another approach that was tried for edge detection of the horse image is the use

of OpenCV’s Canny Edge Detector (CED) [14] method which has been the go-to-

method for edge detection before the development of deep learning based models.

CED detects edges based on the change in intensity. CED uses three parameters

for edge detection ’cv2.Canny(image, minThresholdValue, maxThresholdValue)’, where

minThresholdValue is the lower threshold value selected in a way that any pixel having

gradient value below this value is not an edge and maxThresholdValue is the higher

threshold value selected in a way that any pixel having gradient value higher than this

value is an edge. Figure 3.17b below shows the output of Canny Edge Detection. The

reason why CED did not give good results are:

• CED focuses only on the local changes i.e. it lack semantic understanding of the

content in the image.

• The setting of lower and upper threshold values is a manual process and needs

to be changed for different image.

• The thresholding works differently for different image with varying lighting con-

ditions.
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(a) (b)

Figure 3.17: Edge Detection performed using Canny Edge Detector Algorithm.
(a) is the denoised horse image. (b) is the poorly edge detected output image

obtained.

3.3.6 Corner Detection

Feature detection and matching is the most important part of a Computer Vision

application, which requires finding the correspondence between features within images.

A corner, which is a special point in an image, is a type of feature. The local feature

of a corner is called a ”key feature point” or ”point of interest” or ”corner point”

[67]. This step takes in the edge detected image generated in Figure 3.16b as input for

corner detection. These corners then detected are used to select key points of interest

for horse conformation analysis.

There are many corner detector algorithms available with the most common one

being OpenCV’s Harris Corner [15] method and Shi-Tomasi [27] method. This study

used Shi-Tomasi Corner Detector method proposed by Shi et al. [68] for detecting

corners around the edge detected image. The Shi-Tomasi algorithm is an improvement

of the Harris algorithm and the difference just lies in the way the value of R score is

calculated for comparison of corner intensity.

The Harris corner method has a selection criteria for determining corners. It first

calculates the score of pixel using two eigenvalues which are passed to a mathematical

function to get the score. If this score is above a threshold value then it is marked as

a corner. However, Shi-Tomasi just made a minor change in the way the score was
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calculated by directly using the eigenvalues to determine if the pixel was a corner or not.

It has been demonstrated by the study in [69] [70], that Shi-Tomasi performs better

in corner detection than Harris Corner. This was the reason for selecting Shi-Tomasi

over Harris Corner detection.

Another advantage of selecting Shi-Tomasi over Harris is that it also provides the

ability to select only the top corners through a parameter value. Harris corner algorithm

also requires the change in the threshold value until the corners are detected properly

which needs to be changed for every image.

For the purpose of this study, OpenCV’s Shi-Tomasi method was used with follow-

ing parameters, ’cv2.goodFeaturesToTrack(image, maxCorners=200, qualityLevel=0.02,

minDistance=20)’, where maxCorners defines the total number of corners selected,

qualityLevel defines the minimum quality of corners that need to be selected and

minDistance defines the the minimum distance between these corners in pixels. Figure

3.18 shows the output obtained for both the algorithms.

(a) (b)

Figure 3.18: Corner Detection performed on the Edge detected image. The green
dots in the image represents the corners detected. (a) is the result obtained after
applying Shi-Tomasi Algorithm. (b) is the result obtained after applying Harris

Corner Detection Algorithm.

It is evident from the above Figure 3.18 that Shi-Tomasi algorithm performed better

in corner detection (Figure 3.18a) than Harris Corner (Figure 3.18b). Harris corner

detector missed most of the corners around the hind leg region, hip region and underline

region of the horse.
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3.3.7 Novel Algorithm to Detect Key Points of Interest

This step detects all the key points of interest from the corners detected via Shi-

Tomasi algorithm (as seen in Figure 3.18a). The study proposes a novel algorithm

for the purpose of key points detection using the extreme left, right, top and bottom

points around the edge of the horse along with finding out the center of gravity of the

horse. These key points detected would be used for horse conformation evaluation and

scoring. The detection of key points proceeds in two steps:

3.3.7.1 Extreme Points Detection

The first step is to detect the extreme left, right, top and bottom points around the

edge of the horse image along with finding out the center of gravity of the horse. Figure

3.19 below depicts the same. The yellow circles around the edge of the horse shows

extreme points detected. The yellow circle in the center of the horse shows the center

of gravity. These extreme points are calculated using the argmin & argmax function

provided by Python which takes array of coordinates as input [20] and the center of

gravity is calculated using the OpenCV’s Moments function which takes the horse

contour as input [71].

Figure 3.19: The yellow circle around the edge denotes the extreme left, right, top
and bottom points. The yellow circle in the center of the horse denotes the center

of gravity of the horse.
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3.3.7.2 Image Flipping

For the purpose of identifying the key points, the algorithm needs all the horses to

be aligned/standing in the same direction i.e. the head of the horse should be on the

right side of the image. This step takes the extreme points detected in Figure 3.19 as

input. The extreme top point helps in identifying the alignment of the horse. If the

x-coordinate of the extreme top point is greater than the half of the width of the image

then the horse is standing with its head on the right and if the extreme top point is

less than the half of the width of the image then the horse is standing with its head on

the left of the image. In this scenario the image is flipped, along with all the previous

images of the horse obtained in earlier steps. Figure 3.20 depicts. In the below Figure

3.20a, the x-coordinate of the extreme top point of the horse is 100 which is less than

the half of the width of the image 400. Therefore the image is flipped as seen in Figure

3.20b.

(a) (b)

Figure 3.20: Image flipping performed to align all the horses to be standing with
its head on the right of the image. (a) The x-coordinate for the extreme top

point in the image is less than half of the width of the image. (b) Flipped image.

3.3.7.3 Key Points of Interest Detection

This is final step towards detecting the key points of interest from the corners, extreme

points and center of gravity of the horse obtained. Since, the horse image is first of

all resized to a scale factor set to width 800, therefore, for the detection of key points
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a certain range in pixel is used from these points. This new coordinate looks for the

closest corner in around this point by calculating the distance between the each of the

corners available. Figure 3.21 below shows the flow of key points detection using these

yellow circled points.

Figure 3.21: Detection of key points of interest using the extreme left, right, top,
bottom and center of gravity points. The red dots in the image are the key points
of interest detected. The blue arrow shows the flow of point detection along the

influence of coordinates on selection of a particular point.

From the Figure 3.21 above it can be seen that each yellow circle point derives the

selection of a particular point which in turn influences the selection of other points.

• The center of gravity derives the algorithm to locate these point directly (Hip,

Wither, Stifle, Point of Shoulder, Elbow and Point of Buttock).

• The extreme right points helps in detection of Muzzle.

• The extreme top point helps in detection of Poll which in turn influences the

detection of Throatlatch, Neck Joint.

• The extreme bottom point helps in locating the coordinate for the bottom part

of the horse which in turn help in calculating the height of the horse from Wither

to Ground and from Hip to Ground.
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Chapter 4

Horse Conformation Evaluation

In order to achieve the research objective, the final step is to analyse the Good Balanc-

ing traits of a horse. Balance is arguably the most important criteria for evaluating the

calibre of a horse in terms of both quality and performance. It refers to proper blending

of all the horse’s body parts and muscling. The muscling must have proper evenness

and must present a pleasing picture of the horse. Proper balance gives the horse more

power and smoother movement [3]. The internal body capacity of a horse indicates the

space available for the proper functioning of heart and lungs i.e. with more lung ca-

pacity, the horse can take in more air after each step making it the movement powerful

[9].

The traits which are going to analysed are mentioned in Table 1.1 for measuring

angular proportion and Table 1.2 for measuring body length proportion. The body

length is calculated in pixels.

4.1 Body Length Proportion

For evaluating the body length proportion the distance between two points was calcu-

lated the using formula [72], √
(X2 −X1)2 + (Y2 − Y1)2

where (X1, Y1)&(X2, Y2) are two coordinates.
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4.1.1 Trait: Body Shape

The most important aspect when determining the balance of the horse is whether the

horse is carrying equal weight on its front end and back end. The horses skeletal

structure helps in determining the correct proportion of horse’s body parts. The length

of Neck, Shoulder, Back and Hip should be approximately equal [3] [7]. Figure 4.1 shows

the length of different parts obtained which are approximately equal to each other.

Figure 4.1: Length from (A) to (D): (190, 197, 172, 166). An example
illustration of (Trait: Body Shape) shows that the length of different body parts
calculated are approximately equal to each other A = B = C = D. This depicts

that the horse carries equal weight from front to the back.

4.1.2 Trait: Body Direction

This is one of the most important criteria to be considered while evaluating the balance

of a horse. The topline (measured from wither to the point of hip) must be shorter

than the underline (measured from point under the belly to stifle). A longer topline

indicates that the horse has a long and weak back which makes the movement of the

horse difficult [3] [7]. It also makes it difficult for the horse to bring its hind legs under

the body which is the source of power for a horse to move forward. From the Figure

4.2 below it can seen that the horse has a shorter topline than underline.
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Another important criteria considered here is that the height of the hip must be

equal to the height of the wither. If the wither is lower than hip height, then the horse

is a downhill horse which means that the horse would carry a lot of weight on its

forehand and would lack driving power and maneuverability. Also, if the horse carries

to much weight on its forehand, then it would lead to lameness. However, if the wither

height is higher than hip height then the horse is a uphill horse and often uphill horses

are not penalised during conformation evaluation [3]. From the Figure 4.2 below it can

been seen that the horse is a downhill horse. The pink line in the image denotes the

same.

Figure 4.2: Length from (A) to (B): (172, 258). An example illustration of
(Trait: Body Direction) shows that the topline (A) is shorter than the underline

(B) and the pink line denotes that the horse is a downhill horse. This depicts
that the although the horse has ideal topline to underline ratio but it carries more

weight of forehand because it is a downhill horse.

4.1.3 Trait: Body Capacity

The body capacity of the horse determines whether a horse has enough room for the

proper functioning of heart and lungs. With larger lung capacity, the horse can take in

more air with every step, making it more powerful with the increase in stamina. The

body capacity also determines the possibility of large broodmare to convey a large foal
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[9]. From the Figure 4.3 below three conditions needs to be satisfied to measure the

body capacity of a horse:

• The depth of heart girth (measured from wither to chest floor) (Length A) must

be equal to length from chest floor to fetlock point (Length B).

• The depth of heart girth (measured from wither to chest floor) (Length A) must

be greater than depth of flank (measured from hip to stifle) (Length D)

• The length of depth of heart girth (Length A) + length from chest floor to fetlock

point (Length B) + length from fetlock point to ground (Length C) should be

equal to length from point of buttock to point of shoulder (Length E).

Figure 4.3: Length from (A) to (E): (207, 182, 49, 182, 438). An example
illustration of (Trait: Body Capacity) shows that the depth of heart girth (A) is
approx. equal to the length from chest floor to fetlock (B), the depth of heart
girth (A) is greater than the depth of flank (D) and the height from wither to

ground (A+B+C) is equal to length from buttock to shoulder (E). All these ideal
conditions depict that the horse has good depth of heart for proper functioning of

the vital organs.

4.1.4 Trait: Ratio of Length of Top and Bottom Neck

Another very important ratio that needs to be considered while evaluating the confor-

mation of a horse is the ratio of the topline of the neck to the underline of the neck.
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The topline of the neck is measured from poll to the wither whereas the underline is

measured from throatlatch to the point of shoulder. The ideal ratio of the topline to

the underline should be 2:1.

The ideal ratio of the neck allows the horse to have a proper sloped shoulder because

the wither is well behind the point of shoulder. This gives the horse the ability to flex

at the poll keeping the neck in slight arch. A horse that has longer underline will have

straight shoulders reducing the ability of the horse to flex and lower its head. This

type of a horse is called ’ewe necked’ horse [3]. Figure 4.4 below shows the ratio of

topline to the underline obtained. The ratio obtained shows that the horse has an ideal

topline to underline ratio having a proper sloped shoulder.

Figure 4.4: Length from (A) to (B): (217, 98). An example illustration of
(Trait: Ratio of Length of Top and Bottom Neck) shows that the length of topline
(A) (measured from poll to wither) is approx. twice the length of the underline

(B) (measured from throatlatch to point of shoulder). This depicts that the horse
has an ideal range of topline to underline ratio thus, giving the horse an ability to

flex at the poll.

4.1.5 Trait: Distance from Poll to Throatlatch and Poll to

Muzzle

The ratio of the length measured from poll to throatlatch (windpipe) with respect to

the length measured from Poll to Muzzle is another important trait to be considered

42



for evaluating the conformation of a horse. The length from poll to throatlatch should

be roughly half the length from poll to muzzle [3].

If the distance from poll to throatlatch is longer than the ideal length, then the

ability of the horse to flex around the poll decreases. It also creates a breathing

problem in the horses, when the horse moves its head towards the chest. Figure 4.5

below shows the ration of the length of throatlatch to the head. The ratio obtained

shows that the horse has an ideal length of the throatlatch with respect to the head.

Figure 4.5: Length from (A) to (B): (103, 181). An example illustration of
(Trait: Distance from Poll to Throatlatch and Poll to Muzzle) shows that the

length from Poll to Throatlatch (A) is approx. half the length from poll to the
muzzle (B). This depicts that the horse has an ideal ratio of length of throatlatch

to the length of head thus, the horse would have proper breathing patter.

4.1.6 Trait: Length of Neck

One of the most important factors to be considered while evaluating the horse confor-

mation is the length of the neck of the horse. The length of the neck contributes to

greater agility, freer movement and balance of the horse. It also helps in maintaining

the balance of the horse while the horse swings its head and neck, up and down and also

stretches forward and backward. Excessive long neck reduces the agility and balance

of the horse because the center of gravity of the horse moves too forward. With longer

43



neck the distance between the joints increases thus reducing the ability of the horse to

flex [4].

As seen from the Figure 4.6 below, in order to measure the ideal length of the

following conditions must be satisfied:

• The length of neck (B) (measured from poll to wither) must be approximately

one and half times of the length from poll to muzzle (A).

• The length of neck (B) must be approximately one-third of the total length of

the horse (C).

• The length of neck (B) must be approximately equal to the length from elbow to

hoof (D).

Figure 4.6: Length from (A) to (D): (181, 227, 595, 234). An example
illustration of (Trait: Length of Neck) shows that the length from Neck (B)

(measured from poll to wither) is approximately 1.5 times of length from poll to
muzzle, approximately 1/3 times of length of the horse and approximately equal

in length from elbow to hoof. This depicts that the horse has an ideal neck length
thus giving the horse greater agility and balance.
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4.1.7 Trait: Wither and Hip Height from Ground

This trait is similar to the trait Body Direction where the wither height was measured

to determine if the horse is a downhill or uphill horse [6]. The length of wither from

ground and the length of hip from ground must be equal is length. This determines

whether the horse has proper balance. The point on the ground is detected using the

extreme bottom point detected in earlier section. Figure 4.7 below illustrates the same.

Figure 4.7: Length from (A) to (B): (435, 449). An example illustration of
(Trait: Wither and Hip Height from Ground) shows that the wither height (A) is

approximately equal to the hip height from ground (B). This depicts that the
horse has proper balance.

4.2 Angular Proportions

For evaluating the angular proportion the angle between three points was calculated

using thw formula mentioned in the study [73]. The intersection of three points was

used to calculate the angle of the intersection point. In Table 1.1, the center column

represents the intersection point.

For the purpose of this study multiple joint angles were evaluated which influences

the balance the horse. The most important joint angle calculated was the shoulder

slope angle [3]. The shoulder slope is calculated by drawing a perpendicular line from
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the scapula to the ground and another line is drawn from the wither to the point of

shoulder. The intersection of the same should have an ideal angle of 45◦. The shoulder

slope of a horse influences the stride length and smoothness and a straighter shoulder

could make it difficult for a horse to extend its front legs. Figure 4.8 below depicts the

shoulder slope calculated.

Figure 4.8: Angle (A): (50◦). An example illustration of the (Shoulder slope)
shows that the horse has an approximately ideal angle thus having longer stride

and smoothness in its movement.

Joint angles around the shoulder and hip region govern how smooth a horse will be

in its movement. A good sloped shoulder acts as shock absorber. The sharper the angle

around the shoulder and hip region, the greater the range of motion in legs. Following

angular proportion are considered for a good sloped shoulder along with hip region [4].

As seen in Figure 4.9 below, following angular proportions must be satisfies for a good

sloped shoulder and hip region:

• Should have an ideal angle of 60◦ from the line of point of shoulder to the junction

of neck and wither (A).

• Should have an ideal angle of 40◦from the line of point of shoulder to the junction

of neck and back (B).

• The angle made by horizontal line drawn from point of shoulder and the line

drawn from point of shoulder to wither (C) must have an ideal angle of 50◦.
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• The angle formed by the line drawn from hip to stifle, stifle to point of buttock

and point of buttock to hip must form an equilateral triangle (D, E, F) i.e. it

must ideally have an angle of 60◦ each.

Figure 4.9: Angle (A) to (F): (68◦, 59◦, 45◦, 48◦, 72◦, 60◦). An example
illustration of the (Shoulder slope and hip region angles) shows that the horse

would have difficulty in motion due to greater shoulder and back junction slope
(B) and point of buttock angle (E).

A study presented by [5] shows the range of angles obtained for particular joints

in order to determine the good balance of the horse. To improve the conformation

traits, a range of angles was calculated by using 243 Franches-Montagnes stallions.

The repeatability and consistency of the extracted joint angles assessed to define an

ideal range which would further help in analysing the conformation of other horses.

Figure 4.10 below shows the calculation of some of the joint angles. The joint angles

around the fore and hind legs was not calculated because of the difficulty in extracting

the shape of the hoof region of the horse (horse standing in a grassy area). Table 4.1

below shows the range of angle for a particular joint and obtained result.
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Figure 4.10: Angle (A) to (F): (95◦, 73◦, 81◦, 101◦, 72◦, 82◦). An example
illustration of the (structural angles) shows that the horse would have difficulty in
motion due to greater shoulder and back junction slope (B) and point of buttock

angle (E).

Angle Name Min Max Angle Calcu-
lated

Poll joint (A) 92◦ 117◦ 95◦

Wither joint (B) 64◦ 99◦ 73◦

Shoulder-Elbow Joint
(C)

77◦ 122◦ 81◦

Elbow joint (D) 109◦ 146◦ 101◦

Buttock joint (E) 70◦ 88◦ 72◦

Stifle-Hock joint (F) 87◦ 122◦ 82◦

Table 4.1: The result obtained after calculating the structural angles. The source
of the range of angles (Min and Max) is [5]. The table depicts that most of the
structural angles of the horse lies in the ideal range thus giving a confidence for

the ideal balance of the horse.
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Chapter 5

Results and Discussion

For the purpose of determining the calibre of the horse, the overall conformation score

of a horse needs to be calculated. The angular proportions around the hip region

will also be visually verified by plotting the key points of interest over the colour and

texture analysis images generated. Apart from the conformation scoring and angular

proportion analysis, this section also presents the system verification, which was per-

formed on 30 horse images to determine how well did the algorithm work in analysis of

horse conformation. Finally the limitations of the system will highlight the potential

problems in the system along with suggesting some probable solutions for the same.

5.1 Evaluation

5.1.1 Conformation Scoring

The measurement the conformation traits calculated in Section 4.1 and Section 4.2 are

used for evaluating whether the horse is Good Balanced or not. The horse is evaluated

by giving a +1 score for every conformation trait it has and based on how high the

score was achieved, the horse’s quality is given. The total number of traits for Body

Length Ratio (11) are defined in Table 1.2 and for Angular Proportions (12) are defined

in Table 1.1.

Since the calculation of exact length and angle is tricky, therefore the algorithm has

been trained to consider a range of ± 30 pixels for body length ratio and a range of

± 5◦ for angular proportions. On evaluation, the horse is rated based one of the three
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qualities: Poor, Average and Good Balanced. Out of a total of 23 traits, if the score

obtained is less than 15/23, then the horse is Poor Balanced, if the score obtained is

in between 15/23 and 18/23, then the horse is Average Balanced and if the the score

obtained is greater than 18/23, then the horse is Good Balanced.

The horse image used in all the section in the thesis has been taken from Stallion

Selection for Horse Sport Ireland 2019 [28] and it scored 10/11 in Body Length Ratio

and 9/12 in angular proportion. The total score obtained is 19/23 which shows that it

is a Good Balanced horse.

The above rating and score of horse conformation traits is based on learning’s from

the Conformation Document [1] [3] [4] [6] [7] [8] [9] [10]. The Actual plan was to get

this verified by actual Horse Breeder and test it on some images captured personally or

collected through him, but could not get his verified due to Covid-19 conditions.

5.1.2 Visual Verification of Hip region points using Colour

and Texture Analysis

The joint angles obtained around the hip region (hip joint, stifle joint and buttock joint)

will be visually verified by merging the key points of interest over the Colour analysis

image (Figure 3.12c) and Texture analysis image (Figure 3.15). This visual verification

provides confidence about the existence of joints in correct place as identified by the

change in shade of those region.

From the visual verification of texture analysis image (Figure 5.1a), it can be seen

that the hip joint, buttock joint and stifle joint are located around the black patch

inside the circle number 1, 2, and 3 respectively, thus, depicting that the joint angles

formed around these points are located correctly. Apart from this, the texture analysis

also indicates the knee point detected in circle numbered 4 and 6. The black patch in

circle numbered 5 also show the elbow point detected around that region. The dark

patches in the image shows the movement and presence of some sort of bone structure

around that area.

From the visual verification of colour analysis image (Figure 5.1b), it can be seen

that in this case also the change of shade to dark purple around the right, left, and

bottom circle shows the presence of hip, buttock and stifle points respectively. However,

the colour analysis technique does not show the presence of any other joint angles in
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the image. Thus, when compared, texture analysis over horse image appears to be a

better visual indicator of the bone structure of the horse.

(a) (b)

Figure 5.1: Visual Verification of Hip region points using Colour and Texture
Analysis. (a) & (b) is the texture analysis image and it clearly shows the

presence of hip, buttock and stifle joints in the circle number 1, 2, 3 respectively.
However, texture analysis over horse image appears to be a better visual indicator

of the bone structure of the horse.

5.2 System Verification

In order to verify that the algorithm detects the key points in a correct way to calculate

the proportions of the horse, it was tested on a total of 30 horse images collected from

Google Images (5) and Stallion Selection for Horse Sport Ireland 2019 and earlier (25)

[28]. The reason for selecting testing samples from two different places was because the

horse’s from Horse Sport Ireland was mostly used for sporting events, thus depicting

that they might have good conformation. So to get a variation in the results the horse

image from two different place were selected.

Another selection criteria for the horse image was the colour of the horses for

verifying the results of foreground extraction and colour and texture analysis. Horses

of colour white (6), black (6), brown (6), mixture of black and brown (6) and white

textured (6) were selected.
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The things that were noted while detecting the horse conformation over a sample

of 30 horse images are:

• Around 20/25 horses from Horse Sport Ireland score good conformation score and

were rated as Good Balanced, while the horse images (5/5) obtained from Google

Image scored average conformation score and were rated as Average Balanced.

• The detection of key points of interest is independent of the colour of the horse.

This can seen from a sample of good conformation results obtained in Figure B.1.

– Most of the horses scored higher point in Body Length Ratio Proportion.

– For Angular proportion most of the horses showed deviation from the ideal

range around the hip angle and wither angle region.

• Around 8/30 horses showed deviation in detection of the key points of interest,

although each one of them scored good conformation results and were rated as

Good Balanced by the algorithm. The measure of error displacement in key point

location can seen from Figure B.2.

– The region where most issues were noted are Hind leg, Hoof region and

Buttock. This may be due to the different hind leg standing position of the

horse.

– The displacement of key points noted was just the next point which was due

to algorithm looking for closest node around that particular node.

– The maximum number of displacements noted in an image was 6 out of the

20 corner points detected by the algorithm.

– However, since the displacement was very minor (around 20 pixels), there-

fore it did not affect much in the Evaluation of Body Length Proportion,

but it showed a slight deviation in the evaluation of angular proportions.

• Colour analysis on horse image for visual verification of angular proportions

around the hip shows that the it did not give proper results for white coloured

horse image. This maybe due to the insignificant change in colour shade around

the joint angle of the horse. However, it worked properly when texture analysis
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algorithm was applied to the same horse. This is one of the limitations of the

algorithm and will be discussed in detail under the Limitations section 5.3.

The result obtained by running the algorithm over a sample of 30 images gives a

positive confidence in the the output obtained which is very close in some cases if not

accurate. The results show that the algorithm worked as it was intended to work, but

shows some deviation in the detection of key points. Overall, the algorithm worked

well to assess the horse image in providing the quality of the horse, but it can surely

be improved and the same would be discussed in detail in the Future Work section 6.2.

5.3 Limitation

5.3.1 Stance and Shape of the Horse

The basic requirement of an horse image dataset is that all horse images must be similar

to each other in terms of standing position and shape of the horse. The hind and fore

legs must be clearly separated, the head of the horse must not face the camera but to

the side. This greatly influences the detection of key points around the hind leg region

(knee, hoof) and neck region (throatlatch).

(a) (b)

Figure 5.2: (a) Ideal key points detected of the horse. (b) it can be seen that the
gap between the hind legs leads to deviation in the detection of points in that

region. Another reason is the length of the horse which leads to wrong detection
of buttock point.
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From the Figure 5.2 above, it can seen how the stance of hind legs affects the

deviation in points detected around that region. Another reason is that the length

of the horse in the Figure 5.2a is smaller than that in the Figure 5.2b which leads to

deviation in the buttock point detection.

The possible solution for this is to create an algorithm to detect points based on

the length of the horse, which would help in better identifying the range that needs to

selected from the extreme points. Another possible solution for the above problem is

to train a deep learning based neural network [74] [75] [76] to detect the key points of

a horse. This would require a well labelled dataset of good conformation horses from

a horse breeder.

5.3.2 Colour of the Horse

The colour analysis of a horse as presented in the Section 3.3.4 uses Kmeans clustering

algorithm for segregating the colours of the horse. This helps in determining the

presence of joint angles because when seen from a naked eye, the area around joints

of the horse appears to be little darker in shade. This fails for white coloured horses

because of the insignificant difference in the colour shade around the joint angles.

Figure 5.3 shows that the horse image does not show any significant change in colour

around the joint angles.

Figure 5.3: The result of colour analysis performed over white coloured horse. It
does not show any significant finding for the joint angles around hip region.
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A possible solution for this is presented in the study [77] where colour based clus-

tering and segmentation is performed using Neural Networks. In this study both

supervised learning method and unsupervised learning method was used for colour

clustering.

55



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation explores the possibility of automated analysis of horse conformation

in order to determine the calibre of the horse. This would reduce the time and effort of

a horse buyer to get the conformation of horse analysed from a horse expert or breeder

before buying.

The results obtained in the Section 5.2 gives a confidence that the algorithm de-

veloped was capable in analysing the conformation of a horse and deciding whether

the horse is Good Balanced or not. While there were some deviations observed in

few images due to the varying shape and stance of the horse, the thesis lays a solid

foundation for further improving or fine tuning the algorithm.

The following conclusions were made based on the results obtained by this research:

• An algorithm could be created to segregate the horse image from the background.

This research uses a combination of Deep Learning based pre-trained model to

generate a mask of the horse, colour segment the mask using the HSV channels

and then finally extract the horse.

• Colour and Texture Analysis could be used for visual verification of the angular

proportions calculated.

• An algorithm could be created based on the extreme left, right, top, bottom and
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center of gravity points, to detect the key points located around the edges of the

horse.

The study of horse conformation is a vast research subject and the research shows some

of the limitations of the algorithm along with a possible solution for the same. To sum

up, the research has shown feasibility that it can be used on a 2D equine image to

automatically analyse the Good Balance of a horse.

6.2 Future Work

It is evident from the limitations of the research that there is a scope for improvement

in this. The study of horse conformation is a vast research subject and there are many

other aspects of a horse that could be analysed to better evaluate the conformation of

a horse.

• A larger dataset with conformation labelled via an expert can help in building

a CNN Fuzzy fusion or supervised machine learning approach for detecting the

points of interest on the horse.

• A larger horse image dataset could be used to create deep learning based R-CNN,

Faster-CNN model for foreground extraction, reducing the number of steps used

in the research, thus saving time and memory.

• Analysis of front and back profile of the horse, i.e. entire 3D structure of the horse

could also be carried out to determine the Structural correctness of a horse.

• Streamlining this project for future use would also allow for it to more easily be

converted to a mobile application by deploying the algorithm over some cloud

server like AWS, and then capturing a horse image from mobile and passing it

onto the algorithm could send the conformation score in response.

• The research methodologies could also help in building something similar for

Camel Conformation, which is another huge industry in the Arabian countries.

• The research could also be extended further to identify the muscle mass properties

and sex/breed characteristics of a cattle, which could be beneficial is analysing

the cattle’s value before importing/exporting them to/from third world countries.
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Appendix A

Figure A.1: Example of a Linear Scoring Form
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Appendix B

(a) (b)

(c) (d)

Figure B.1: An example illustration of good conformation results obtained
irrespective of the colour of the horse. The conformation score for these horses

are (a), (b), (c), (d) : (20/23, 18/23, 18/23, 19/23). The difference in the
height of the images is because the images were resized using the scale factor set

to width = 800.
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(a) (b)

(c)
(d)

Figure B.2: An example illustration of measure of error displacement if the key
point detection of the horse. The conformation score obtained for these horses are

(a), (b), (c), (d) : (21/23, 18/23, 20/23, 19/23). The difference in the
height of the images is because the images were resized using the scale factor set

to width = 800.
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