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Medical imaging is a rapidly developing field and is complemented by the enhance-
ment in image processing techniques including image enhancement, recognition, and
analysis. The images taken provides insight into the inner structure of the body which
can be used for medical as well as a scientific study, disorder identification, and treat-
ment. Apart from its useful applications they have several other benefits like faster and
economical processing, easier storage and transfer of data, and allowing enhanced ma-
nipulation of data. Advancements made in medical imaging over the last two decades
have created unprecedented opportunities for new diagnostic approaches by utilizing
the interdisciplinary field of medical image processing. In this work, various medical
images of different types, acquired from different sources, are analyzed using an arti-
ficial neural network that utilizes a global image representation technique to denoise
the confounded image data and provide a set of the image feature vector for analysis.
The system makes use of clustering to provide a visualization of this similarly arranged
data. The approach taken provides a generic solution that can be applied to an even
wider medical image dataset. The practical application of this work is in the field of
pathology where it can be used to provide a preliminary analysis of the dataset or give
a second opinion to pathologists. The system was tested using 3 datasets of different
sizes and dimensions achieving a minimum accuracy of 76%. This work showcases the
potential that machine learning can have in the field of medical imaging and analysis.



Summary

Image processing techniques are used to extract some useful information or to just

enhance the quality of images being analyzed by performing various operations. These

operations are a type of signal processing step where the input is an image and the

extracted features or characteristics associated with the image is the calculated output.

The complete process can basically be divided into three steps:

• Using Image acquisition to import image datasets.

• Manipulate and analyze the chosen image dataset.

• Present image analysis report or the altered image dataset as part of the output.

The use of image processing has been increasing exponentially over the last decade and

has seen some tremendous growth. However, the growth in medical image processing,

which is part of image processing, hasn’t been that extreme due to the limitations

associated with acquiring medical image data. Although where possible, the medical

image processing techniques have made clinical diagnosis treatment and protocols more

accurate and quite efficient.

In this work, a similar goal of finding an efficient way of classifying these medical im-

ages for diagnosis purpose is intended. To achieve this, the approach can broadly be

divided into the steps mentioned above, where the process begins with image acquisi-

tion (in this case approx. 1650 images), detailing the information on images acquired

and challenges associated with them. The second step of analysis is further broken
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down into multiple steps of pre-processing, representation, and clustering, as these

medical images are quite complex and require a well analyzed technique to gather the

relevant information while ignoring any noise. A set of up to 12 input vectors are

extracted and passed for analysis where images get clustered based on their similarity

with neighboring nodes. Finally, this network of nodes is analyzed using test data to

generate the analysis report that finds the accuracy of the system and visualize the

output to know the distance between the various clusters.

The approach described is implemented using tools, such as Zen Lite and CITU, and

technologies, like python and MATLAB. The overall architecture is described in a

pipeline diagram that explains the flow of data and the evaluation method used. Fur-

thermore, this work is conducted with inputs, suggestions, and subjective evaluation

by subject matter experts from the medical domain to verify the produced results and

provide comparison with the current state of the art approach for such medical images

analysis.
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Chapter 1

Introduction

In this fast growing world of data, digital image technology is a rapidly emerging, mul-

tidisciplinary technology that can utilize the information from various fields to create

a system, which has the potential to help humans in their field of work, for example

in engineering, security, chemistry, biology, medicine, industrial automation, etc. The

complete process of digital image technology can be categorized into the task of im-

age acquisition, image digitization (which means the transformation of an image into

digital form), image processing, and image analysis. An example of such a system

could be ImageJ [4], which is an open source image processing program created for

scientific multidimensional images. The advantages of such a system could be (a) we

can infer large volumes of quantitative data in just a fraction of the time that manual

image analysis would require, (b) it would reduce the human error giving consistent

performance over time, (c) less human labor required making them free for more ad-

vanced work and (d) bring down the cost of analysis as multi-task will be possible. In

regard to building such a system, Figure 1.1 shows various general steps involved in

digital image technology. Any process requiring decision making based on qualitative

or quantitative data extracted from images can use this technology to gain knowledge.

A similar decision making process is required when pathologists analyze tissue samples

in glass slides or doctors look at the digital images of the endoscopy process, where they

analyze various features of the sample medical image to diagnose the disease based on

their years of experience of handling different types of samples. Overall, the medical

image classification can be separated in the following three steps. First, gathering a

1



Figure 1.1: The set of steps involved in digital image technology used for decision
making by processing and analyzing features of an image. [2, Figure 1]

good quality medical image. Second, extracting the relevant features from the images

and third is building a model using these features to classify the dataset.

In the past few decades, the field of medical science has used image analysis benefiting

significantly from the precise, fast, repeatable, and objective measurements made by

computational resources. These quantitative measurements contribute to the analysis

of structure and function in normal and abnormal cases by addressing many aspects of

the data, such as tissue shape, size, texture, and density; musculoskeletal angle, kine-

matics, and stress; as well as ventricular motion, myocardial strain, and blood flow.

The shape of tissue structures or organs is of particular interest in the visual interpre-

tation of images, and automated techniques provide many quantitative measures that

can contribute to the examination. The smoothness or homogeneity of the tissue is
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also often used in visual examination to assess the state of the tissue. However, these

are not the first steps in diagnosis, except in case of urgency or severe health concerns.

Usually, a patient describes their symptoms based on their experience and discomfort

to a medical doctor. Upon further analysis and considering the patient data and their

family history a doctor does a second set of checks with stethoscope or blood pressure

measurements. A more detailed diagnosis is gathered using maybe a blood or urine

sample. Only when these reports raise a suspicion of a particular disease is when a

doctor would suggest a medical image data which would further be examined to check

whether the suspicion can be confirmed or excluded. These image data along with

the detailed information collected during diagnosis is stored and recorded in some of

the hospitals. This is mostly done to keep the records available for different purposes.

But more efficient use of this data is when it is processed to find new techniques and

innovations in the field of science. One such innovation is the image analysis. We can

see the growing trend in the use of image analysis techniques by graph in Figure 1.2

showing the number of publications over the years in this field.

Due to this advancement in technology of image processing and storage, it has now

Figure 1.2: Rise in the number of articles per year retrieved from Web of Science and
Scopus using the keyword ’cell image identification’.[3]

become easier and economical to have digital management of these medical samples,

store detailed reports and pathology orders. So much so that now there is the digiti-

zation of histopathology slides and even the use of computer vision to observe these

samples, which in the future aims to replace the current use of the optical microscope as

the primary tool used by pathologists. Today medical systems produce a large number

of digital images that contain a wealth of information. However, not all of this infor-

3



mation is relevant for the task at hand, most of the time the relevant data is hidden in

the pixels along with a lot of additional noise. For instance, different medical images

can be obtained from different sources having varied focusing regions, contrast, and

white balance. Moreover, medical images have a different texture and pixel density

based on their inner structure. Using a traditional set of features to classify medical

images would lead to the inefficient characterization of certain classes [5]. Before deep

architecture arrived, most of the studies have used models relying on the shape, color,

and/or texture features as well as their combinations [6],[7]. These models have shown

some good results. However, the biggest challenge that lies with these models is their

lack of generalization due to the use of low-level features that fail to represent high-

level problem domain concepts. In contrast, deep structured learning [8],[9] has shown

huge success in a very short time for the non-medical image field. Although there

still are studies using medical images with deep structure learning, they have shown

relatively lesser success in providing a generic approach. Therefore, in this work, an

artificial neural network (shown in Figure 1.3) is applied to find a generic approach of

diagnosing confounded medical images using the high-level features extracted from the

corresponding images.

Figure 1.3: Generic flow of the medical image analysis using artificial neural network
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1.1 Problem Definition

The previous section introduces the concept of digital image technology and how it can

be used in the field of medical science. There are many challenges at each step starting

from image acquisition (which could even decide the direction of research) to optimiza-

tion, storage, and other related steps. Such challenges are addressed in this research

and provide a basis for a good solution. However, looking at the big picture, the more

important question would be how can we effectively distinguish between healthy and

sick images?

Unlike the images of cats and dogs which have shown huge success in neural networks,

the medical images are more complicated, involving various small parts that are moving

and evolving with time. Another difference between them would be the requirement of

a higher success rate in classification due to their dependency on saving human lives.

Therefore, when it comes to classifying medical images there are two significant chal-

lenges that need to be addressed.

1. How can we extract effective features from a medical image dataset?

2. How to quickly and efficiently separate this dataset into related images?

Thinking of the feature extraction part, it seems logical to formulate the idea of seg-

menting the image into the region of interest, such as cell nuclei, glands, lobule for-

mation, etc., that contains relevant information and create a large feature vector out

of features like edges, corner, ridge, etc. This approach might work for one type of

medical data but is not sufficient to cover different types of medical data or provide a

generic solution. Table 1.1 provides a list of such implementation for different medical

images. Using this technique would require the implementation of a broad range of

image segmentation algorithms.

For medical images, the choice of a classifier is also a very important factor. Using

these classifiers over the extracted features can efficiently separate the chosen dataset

into related images. However, deciding the classifier to use can be challenging as each

has its own advantages and shortcomings. As we discussed, deep learning has shown

huge success in dealing with image and learning on its own. But this learning can be

supervised, semi-supervised, and unsupervised. How to decide which one to choose

5



Table 1.1: Different algorithms for medical image analysis.

Authors, Year of
Publications

Organ
Method for Classification and Seg-
mentation

Elaine Yu et al. 2011 Breast
Color Gradient Active Contour, Hier-
archical Normalized cut.[10]

Andrew Janowczyk et
al. 2010

Prostate Geodesic Active Contour.[11]

Hiroyuki Shimada et
al. 2009

Follicular Lym-
phoma

Self Organizing Maps, Texture Clas-
sification using Non Linear color
Quantization.[12]

Omar S. 2010
Meningioma Tu-
mor

Texture Classification using fractal
features.[13]

Melih Kandemir et al.
2010

Colon Glands
Segmentation using Object graph
approach.[14]

Jyotirmoy Chatterjee
et al. 2009

Oral Mucosa SVM [15]

Metin Gurcan et al.
2011

Follicular Lym-
phoma

Color Texture cell Segmentation.[16]

Metin N. et al. 2011 Breast
Gaussian Mixture Model based seg-
mentation [17]

6



from these? Well, in the majority of cases the medical images are unlabeled due to

manual challenges and limited medical experts. Moreover, deciding labels will reduce

the scalability the of target function. This logical decision making helps in narrowing

the options and finding a rational solution.

1.2 Contributions

The key contribution of this work is the presentation and analysis of a broad medical

image clustering approach which can be used in helping pathologist and doctors to

diagnose different medical images. The most noticeable features of the classification of

medical images approach taken in this research are as follows:

• The approach isn’t limited to any specific image used in medical science. Rather,

it can be expanded to more than the 3 different types of images taken in this

research. This is possible by using a model that utilized a global set of features

rather than using image specific segmentation techniques.

• Due to the techniques used, this solution is scalable in terms of both medical

image representation and clustering requirements. This would allow the user

to find an optimal solution based on the problem at hand, giving them more

flexibility and control over the program.

• The results presented using this approach are easily understood and interpreted

with help of simple visualization. As humans can easily grasp more complex

information with simplicity using visualization. This would allow pathologist to

make easier and faster decisions.

Apart from these core implementations of the approach taken, this research work has

contributed in terms of knowledge required while analyzing some of these medical

images. By using the adequate techniques to gather and represent knowledge, this

research work contributes towards the identification of methods and their purpose for

medical image analysis by taking inputs from medical experts in their respective fields

7



of research. Furthermore, this dissertation has possibility for publishing results in

scientific and medical journals.

1.3 Structure of the Dissertation

The remainder of the dissertation is divided into the following four chapters. Chapter

2 explains the motivation to pursue this research along with the literature review that

covers the important concepts referred to in this dissertation, existing solutions, and

the learning techniques used. The pipeline design for the chosen approach, knowledge

and data acquisition details, and description of the algorithms used are explained in

chapter 3. The implementation detailing the system architecture, dataset description,

and the technologies used are elaborated in Chapter 4. This chapter also provides a set

of case studies for evaluation of the approach, system design, and performance achieved

when running under various scenarios. The limitation of this work, conclusion, and

the scope for future work are later discussed in chapter 5. The details on conversations

with medical experts are given in the appendix section of the dissertation.

8



Chapter 2

Motivation and Literature Review

The following chapter discusses the motivation (see section 2.1) behind the work in-

troduced in Chapter 1. It also provides the literature review (see section 2.2) for the

concepts used in this dissertation, a concise review of related work in this area, and a

comprehensive review of the dataset and evaluation techniques used.

2.1 Motivation

The human brain is unparalleled when it comes to 2D image understanding and analy-

sis. This is supported by the fact that half of the brain is devoted to the interpretation

and processing of all visual data received through our eyes. However, what it’s not good

at is analyzing high dimensional images, like the ones used in the field of medicine. Our

brains find it hard to in quantifying all the information available in a complex image

and require training to do so. Although even if it could, it can’t reconstruct images

to enhance specific features. These are some general problems that a digital imaging

system is really good at handling. If designed well, such a system takes the complex

image part and reduce them into more manageable tasks that human can easily do

while providing a standard to complete method.

Moreover, when trying to diagnose a disease like cancer one of the most common clin-

ical use techniques involve biomarker testing. Biomarkers provide information about

a disease beyond the standard clinical parameters using molecules for detection or

evaluation [18]. Biomarkers can be DNA, RNA transcripts, metabolites, proteins,

9



Table 2.1: FDA Qualified Biomarkers and Supporting Information [1] shared by
Dr.Aamir.

Qualified
Biomarker(s)

Abbreviated
Biomarker De-
scription

Abbreviated COU

Albumin, β2-
Microglobu-
lin, Clusterin,
Cystatin C,
KIM-1, Total
Protein, and
Trefoil factor-3

Urinary nephrotoxic-
ity biomarkers as as-
sessed by immunoas-
says

Safety biomarker to be used with tra-
ditional indicators to indicate renal in-
jury in rat

Clusterin,
Renal Papil-
lary Antigen
(RPA-1)

Urinary nephrotoxic-
ity biomarkers as as-
sessed by immunoas-
says

Safety biomarker to be used with tra-
ditional indicators to indicate renal in-
jury in rat

Cardiac tro-
ponins T
(cTnT) and I
(cTnI)

Serum/plasma car-
diotoxicity biomarkers
as assessed by im-
munoassay

Safety biomarker to indicate cardiotox-
icity in rats, dogs or monkeys when
testing known cardiotoxic drugs and
may be used to help estimate non-toxic
human dose

Galactomannan

Serum/broncho-
alveolar lavage fluid
biomarker: as as-
sessed by immunoas-
say

Diagnostic biomarker used with other
clinical and host factors to identify pa-
tients with Invasive Aspergillosis

Fibrinogen
Plasma biomarker
as assessed by im-
munoassay

Prognostic biomarker used with other
characteristics to enrich for COPD ex-
acerbations

Total Kidney
Volume (TKV)

TKV as assessed by
MRI, CT and US

Prognostic biomarker with patient age
and baseline glomerular filtration rate
for Autosomal Dominant Polycystic
Kidney Disease

10



or epigenetic modifications of DNA, etc. Table 2.1 provides a list of FDA approved

biomarkers.

These biomarkers are effective, but the cost associated with them are high. The cost

can vary from country to country and laboratory to laboratory, but overall, the mea-

surement of environmental chemicals in the body could be very expensive. Sometimes

there could be more than one biomarker involved in finding a better result, this in-

creases the cost of the test even further. Compared to this the process of taking images

of the tissue samples is much cheaper and even more cost effective in terms of storage.

It also has a long-term benefit of being used as training or testing data to find new

techniques of diagnosis using the field of computer vision.

Therefore, the cheaper and effective use of images along with a better analysis of these

images using computers makes an effective argument for the need of a system that can

process such information rich images and extract meaning out of them which can make

the task of humans easier and faster.

2.2 Literature Review

This section presents the details of studies performed in various techniques used in

research showing key challenges faced and their advantages, which act as motivation

for this work. The literature review has been categorized into subsections based on the

similarity of studies and techniques being discussed.

2.2.1 Imaging in Histopathology

Before reviewing the literature on the representation and analysis techniques, let’s see

an overview of the imaging process for histopathology images used in this paper. In

a usual setup, tissue samples are sent to pathology labs for analysis after performing

biopsies in operation rooms. In [19], the process of imaging from tissues is detailed.

The first step includes formalin fixation and embedding in paraffin. Then a section of

thickness from 3 to 5 µm is sliced, using a high precision tool called microtome, from

the paraffin blocks and are placed on glass slides. The nuclei and cytoplasm, area of

interest in tissue, cannot usually be seen on the mounted sections. Hence, they required

to be highlighted using dyeing with stains.
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Hematoxylin-Eosin (H&E) staining is one of the most commonly used methods in

this process [20][21], specifically in the analysis of tumor tissue microscopic images.

Hematoxylin makes the nuclei blue/purple by binding to DNA and eosin dyes other

parts (cytoplasm, stroma, etc.) to pink by binding to the protein. After this process,

the slides are sent to pathologists for examination. Eventually, as digital pathology

became common, the slide digitization was added as an extra stage to this workflow

[22]. The initial process of taking still images using digital cameras attached to the

microscope was replaced by a WSI scanner, which higher throughput at a lower cost.

Also, they are capable of handling the entire scanning process automatically, including

loading of slides, detection of relevant regions, taking images, storing, etc. Imaging is

actually an important part of the complete process and any issues like out of focus or

overlapping of parts can have a downside effect in the complete process of evaluation.

2.2.2 Image Feature Vectors

In [23], the author discusses different image features for building Content-based image

retrieval (CBIR). It classifies features into low-level or high-level features. The low-

level features are helpful in removing the sensory gap between the information in a

description derived from an image and the object in the real world [24]. These could

include features that reflect shape [24], color [25], texture [26], etc. While the high-level

features are referred to as semantic features and use useful in removing the semantic

gap between the interpretation of the same data and the information extracted from

the visual data. However, due to visual data understanding inconsistency between

different users, it’s difficult to eliminate the semantic gap.

Using color moment invariants [27] implements an image retrieval system. In that, the

color representations are calculated from each image rather than being limited in a

given color space. This allows the feature set to be compact and accurate. Moreover,

by taking advantage of a two-stage clustering method it adapts itself to the context

of the image. In [28], the author presents an effective image similarity calculating

approach by representing the image as a graph. In this, the image colors are first

quantized and for each color, a histogram is created. Then a weighted undirected

graph is created for different colors of the database image and query image. Finally,

to find the distance between two images it sums all the colors and calculates minimum
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cost matching for each graph. The method is both rotation and translation invariant

making the technique quite robust.

2.2.3 Image representation using moments

In [29], the comparison between global and local features are mentioned when it comes

to medical image analysis, where local features fail to capture the gross view of an

image a global feature like Zernike moment is a more effective and robust solution

for the biomedical image. Zhang and Lu in [30] describe various moments and their

use. Their evaluation on the counter-based method and global region-based method

shows how global features like moments, that extract statistical distribution of region

pixels, make effective use of all the pixel information within the region. However,

moments like geometric and complex moments can be sensitive towards noise and even

contain redundant information [31]. This is mostly because of the reason that the

kernel polynomials are not orthogonal. Zernike moment, an orthogonal moment, is

less sensitive towards noise and has been used in various applications like prostate

ultrasound [32], scanning brain tumor [33], cell image retrieval [34], etc.

2.2.4 Learning technique in medical images

There are many papers published in recent years that have used a neural network

to learn a function for medical image analysis. In [35], to classify breast histology

images into four classes- benign lesion, invasive carcinoma, in situ carcinoma, and

normal tissue, the authors used a convoluted neural network(CNN) to extract a set

of features from the image while training the model using support vector machines

(SVM). In [36], the output of a mid-layer pre-trained network for prostate cancer is

fed into random forest and SVM classifiers. A patch-wise accuracy of 81% and an

image-wise accuracy of 89% is achieved using 10-fold cross validation. In [37], authors

have used technique requiring a few labeled samples. In this work classification of colon

histopathology images is performed using a multiple instance learning framework. The

author compares the performance of a weakly labeled approach to a supervised learning

approach with 94.52% and 93.56% accuracy respectively
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2.3 Conclusion

The above sections discuss literature about the various components that are part of

this research to find the strength and weaknesses of work done in a similar field of

study. Moreover, it provides an insight into the decision-making process while working

with medical image processing. This work takes advantage of the literature discussed

to get ideas that enable the chosen design and implementation. Table 2.2 is a brief

summarization to evaluate the approach and results of similar studies using prostate

histopathology images.
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Table 2.2: Relates work for prostate histopathology image analysis and their results.

Authors Data
Classification
Type

Evaluation Results

Karimi et
al. 2018 [38]

231 Patients,
333 cores &
1600 patches,

Gleason grade
3, 4 and 5

Patient-
based cross-
validation

Benign vs Cancer:
accuracy 90.2%,
Gleason grade 3 vs
grade 4& 5: accuracy
76.6%.

Tomaszewski
et al. 2010
[39]

20 Patients &
40 slides,

Benign vs Can-
cer

Slide-based
cross-
validation

Sensitivity 0.87 and
specificity 0.90.

Madabhushi
et al. 2012
[40]

58 Patients &
100 slides,

Benign vs Can-
cer

Slide-based
and patient-
based

Image accuracies
0.69, 0.7 0.87 and
0.69; Patient accura-
cies: 0.74, 0.66 and
0.57.

Gaed et al.
2013 [41]

15 Patients,
50 slides &
991 patches,

Benign vs Can-
cer; high-grade
vs low-grade

Patch-
based cross-
validation

Benign vs Cancer:
accuracy 0.90 and
high-grade vs low-
grade: accuracy 0.85.

Sarkar et al.
2014 [42]

29 Patients &
317 patches,

Benign, Glea-
son grade 3 &
Gleason grade
4

Patch-based
10 fold cross-
validation

Gleason 3 vs 4: 0.87.

Fricker et al.
2018 [43]

886 Patients,
Gleason grade
3, 4& 5

Patient-based
Recall on test set:
58%.
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Chapter 3

Method

3.1 Introduction

There has been a significant advancement in image analysis over the last two decades,

especially in the field of medical imaging and computerized medical analysis. These

advancements have led researchers to look for more advanced ways for the diagnosis

and treatment of various evolving diseases. At the same time, the success of machine

learning algorithms at image recognition tasks provided a direction for exploring new

ways of analyzing these electronic medical records and diagnostic imaging.

This overlapping success of machine learning algorithms in computer vision with that

of medical image digitization has opened up opportunities in all fields of medicine,

starting from the discovery of drugs to clinical diagnosing, potentially changing the

way the current medical system works. We can see this trend in electronic health

records (EHR) of US that grew 4 times between 2007 to 2012 for office-based physi-

cians [17]. Similarly, there are transformations in pathology labs to turn towards a

completely digital workflow [22]. In addition to digitally storing these tissue samples,

which requires digitization of histopathology slides and using computer monitors for

analysis, pathologists are now replacing the optical microscope as the primary tool.

Furthermore, due to the prevalent nature of these disease, there is a large number of

samples being analyzed each day by the pathologist, which sometimes can be tedious

and are affected by observer variability [44], [45]. The change of digitizing medical

images has more benefits than just advantages in speed and objectiveness compared to
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manual approaches. One such benefit compared to glass slides or other physical sam-

ples is that these digital images allows the possibility of doing quantitative automatic

image analysis using various available techniques and can utilize image enhancement

techniques that are not possible with normal slides.

Figure 3.1 shows the steps performed in the ‘Medical Image Analysis’ algorithm pro-

posed in this research and explained in the later section of this chapter.

Figure 3.1: The pipeline diagram for the proposed method.

The input image data is explained in section 3.2 along with the different types

of images and their source. Pre-processing techniques used in this implementation are

explained in section 3.3 following details of the data representation technique in section
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3.4. Section 3.5 will talk about the classification algorithm used. Finally, ending this

chapter with a brief conclusion in section 3.6 and the rest implementation details will

be described in the next chapters.

3.2 Knowledge and Data Acquisition

While working with medical images it matters what the source of the image is? What

is the purpose this image was generated for? And lastly, gathering knowledge on what

are the important features in the image being used? To tackle all these challenges this

research refers to various sources of medical images, from open source to gathering

images from medical institutes, to analyze the success of the algorithm and talk with

medical experts to validate the approach taken.

3.2.1 Knowledge Acquisition

Kim and Courtney define knowledge acquisition as ”the process of gathering knowl-

edge about a domain, usually from an expert, and incorporating it into a computer

program” [46]. Although it’s possible to gather this knowledge from various other

sources like textbooks, articles, and journals. It often considered a bottleneck in the

process of development due to the time and complexity involved in the process. The

complexity in this work is mostly due to the involvement of an interdisciplinary field

that requires expert advice and provide a more reliable result.

Hence, for this research, we consulted experts to gain knowledge about data and un-

derstanding the challenges involved in processing such information by a human mind.

There are various existing approaches for knowledge acquisition like commentary, in-

terviews, observation, etc. Fortunately, to support this research two medical experts

agreed to provide their invaluable time to help understand the analysis technique and

provide medical images discussed in the later sections.

Dr. Aamir Ahmed, who is the head of the stem cell and prostate cancer group at

King’s College London, has been working with a wide range of molecular biological,

histochemical, biochemical, live cell imaging and high throughput (genomic, proteomic,

electrophysiological, and tissue imaging) techniques to address fundamental questions

regarding Wnt signaling and how this knowledge could be translated into better thera-
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pies and quantitative biomarkers of cancer. He has written several papers, [47][48][49],

as part of his research in biomarkers for prostate cancer diagnosis. In meetings with Dr.

Aamir we discussed a few of the fundamentals of Hematoxylin and eosin stain(H&E)

prostate cancer tissue, which is one of the principal stains used in histology [50][51][52],

and how the diagnostics analyze these images under a microscope. Furthermore, Dr.

Aamir has also provided H&E stained prostate tissue samples that have been used in

this research.

Rui Henrique, Professor at the Department of Pathology and Molecular Immunology of

ICBAS-UP and appointed Chairman of the Board of Directors of IPO Porto, has years

of experience and expertise in research and diagnostics focused in Hematopathology

and Uropathology, and is devoted to the understanding of the role of epigenetic alter-

ations in tumorigenesis, as well as the development of novel cancer biomarkers based

on the epigenetic and genetic characterization of tumors. Rui has published several

papers, [53][54], related to prostate cancer and use of biomarkers. During the interview

with Rui, he explained the structure of prostate tissue, color due to Hematoxylin and

eosin staining, Gleason score, and few other challenges faced by a pathologist. Below

is a brief summary of overall interviews conducted.

• Analysis of H&E tissues by pathologists is mostly intuitive due to years of practice

of looking at H&E images. However, there are key structures to look for. Such

as:

– Small glands in front of large glands.

– Haphazard distribution.

– The higher density of nuclei and larger nuclei (nucleomegaly).

– Presence of prominent nucleoli.

• Pathologists usually use 40x zoom under a microscope and sometimes require up

to 400x to be certain.

• Sometimes (¡5%) Immunohistochemistry (IHC) is used in diagnosis to confirm

borderline cases. However, it’s not always accurate. It works due to the presence

(or absence) of basal cells, detected by specific antibodies against it combined

with racemase expression in luminal epithelial cells.
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• Gleason score (shown in figure 3.2) is based on how much cancer looks similar

to small benign glands when viewed under a microscope. Based on how the

cancer cells are arranged a score on a scale of 3 to 5 is assigned (patterns); due

to morphological heterogeneity, in many cases more than one pattern is present.

Depending on the proportion, predominance and potential aggressiveness, as well

as whether grading is performed on prostate biopsy or surgical specimen, the

final grade combines two figures: e.g. 3+4=7 (grade group 2); if only one pattern

present, then, the pattern is doubled: e.g., 3+3=6 (grade group 1).

• In H&E staining Hematoxylin colors the nuclei of cells blue or dark-purple and

Eosin stains the cytoplasm and some other structures including extracellular

matrix such as collagen in up to five shades of pink. In cancer glands there is

usually a blue-tinged secretion in the lumen and, sometimes, pink crystal-like

structures (crystalloids).

Find the questionnaire and minutes of meeting attached at the end of dissertation.

Figure 3.2: Different grades of cancer prevalent in prostate cancer.

20



3.2.2 Data Acquisition

As discussed, there has been a boom in medical image analysis. However, it has certain

challenges when it comes to the acquisition of such medical data. For instance, in just

the last few years the size of medical image data has gone from Kilobytes to Terabytes.

Even though this means that we have a better quality of image data, it comes with a

significant cost in processing and storing this data. Another major challenge that comes

with using human medical imaging data and their corresponding meta-information is

the concern with privacy and ethical aspects of data access. Fortunately, in this research

no human tissues were used, only anonymized images were taken with just healthy or

sick image labels. Hence not requiring any ethics approval for their analysis.

Table 3.1: Details of data acquisition from different sources.

Field Source Type Purpose Sample

Endoscopy Medical Journal Gastrointestinal
image

Pedagogical

Breast Cancer Open source
dataset

H&E stained whole
slide images of lymph

node sections

Digital
pathology

Prostate Cancer Kings College
Prostate Cancer
Research Centre

H&E stained whole
slide images of
prostate tissue

Digital
pathology

Table 3.1 shows the details of medical image data used in this research in order

of research progression. It includes data from 3 different sources, types, and fields of

study, along with their intended purpose for creation. This variability in data shows

how the approach taken in this research is generic and is applicable to various kinds

of medical image data. However, it must be noted that the intended purpose for en-

doscopy images used was pedagogical as it was published in medical journals from

where it was scanned and used in this analysis. Such images essentially are low pixel

density. Although it provides analysis results, its not the gold standard for medical

image analysis. In contrast, the rest two categories of images are taken by experts in

labs and are considered the gold standard for medical image analysis in their respective
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fields. The prostate tissue images used were taken using slides at 40x magnification

and with the help of a high-definition scanner, i.e. Nanozoomer slide scanner (Ham-

mamatsu Photonics UK Ltd, Welwyn Garden City, UK) [55], the image are converted

into a digital format. This high definition image capture technology helps to digitally

give a resolution of up to 60X, hence the high pixel density and large file size.

These images are later used for classification by implementing machine learning tech-

niques. But there are many major challenges that are faced when gathering and han-

dling such medical images. Table 3.2 shows various papers that present solutions to

known challenges when dealing with histopathology medical images which are applica-

ble to other source of medical images too.

Table 3.2: Summary of papers involving problems and solutions for histopathology
image analysis.

Problem Solution Reference

Very Large Im-
ages

Object level classification or
case level classification sum-
marizing patch

Bag of Words of local structure
[56], Markov Random Field [57]
and random forest [58]

Insufficient
labeled images

Active learning
Hypothesis space reduction [59],
Uncertainly sampling [60], and
variance reduction [61]

Multiple instance learning
deep weak supervision [62] and
Boosting-based [63]

Semi-supervised learning Manifold learning [64]

Variation in
magnification
levels

Multiscale analysis
Texture features [65] and CNN
[66]

Color variation
and artifacts

Removal of color variation
effect

Color augmentation [67] and color
normalization [68]

Artifact detection Tissue-folds [69]

The table 3.2 gives a glimpse of the kind of challenges that researchers come by
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when dealing with these images. These challenges don’t just cause problems in the

input image but also impact the complete end to end implementation. Problems like

dealing with storage and processing capabilities to handle large images, find the right

set of learning techniques for the unlabeled data, and sometimes even dealing with

insufficient labels. Therefore, even though the medical image data has been increasing

and can now be used in digital analysis, there still is some room for improvement for

problems that are being tracked and new improved solutions are being implemented

with time.

3.3 Preprocessing of Images

Pre-processing these images is an important step in complete medical image analysis.

It aims to remove or suppress the unwanted distortions in images and to enhance some

of the relevant features that are crucial for further processing.

All these medical images mentioned in the last section are taken using various dif-

ferent approaches. For instance, endoscopy images are taken using endoscopes that

are swallowed by patients and includes a tiny camera. This camera transmits several

images to the receiver over the course of the journey through the digestive tract. The

flashlight, present in the camera, is used to show reflection in presence of moisture on

the surface of the digestive tract. These reflections are hard to detect as their shape

and color change in different images. Therefore, a minor change in external lighting

(such as pale shadows, etc.) can cause a huge variation in RGB values thus changing

the results significantly. To overcome this, Hue-Saturation value/Intensity (HSV/HSI)

color coding is more informative in the detection of such specular reflection [70].

In the case of H&E scanned images, there can be issues that are completely unrelated

to the actual tissue. For instance, there could be wrinkles in images due to the bend-

ing of tissue slices when placed on the slide; some segments could be blurred due to

different thicknesses of some tissue regions; and sometimes there could be marking on

images (Figure 3.3). These issues are present in the current chosen dataset as well.

Due to such abnormalities, that can adversely affect the performance of the algorithm,

we can apply techniques like color augmentation to provide better contrast between
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Figure 3.3: Figure showing issues with H&E images like tear and use of marker (top),
blurred image(bottom-left) and folded tissue section (bottom right).
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various regions using substantial color distribution provided by HSV color coding.

Figure 3.4: RGB to HSV color conversion for gastrointestinal image(top), lymph node
image(middle) and prostate tissue image (bottom).

Furthermore, many of the common enhancement techniques based on contrasting

are limited by the setting of parameters and application-based specifications. In color

image processing, color distortions occur frequently due to the high correlation between

the primary three colors, namely red, blue, and green. So, to avoid these distortions

many have tried to convert this RGB image to an image with separate chrominance and

luminance color space. Blotta et al. [71] studied the enhancement in RGB color im-

ages captured using an electron microscope and endoscope to Hue-Saturation-Intensity

(HSI) image. The findings point the advantage in using HSV over RGB in terms of

separating the intensity of the intrinsic color information, which is important when

there is a change in lighting over the image taken. Figure 3.4 shows a sample of each

image type when RGB to HSV conversion is applied.
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3.4 Represent Image Using Moments

Medical images contain a large number of features such as color, texture, shape, and

spatial layout. These features need to be represented in form of numerical attributes

that can be extracted from images for purpose of representation and classification.

However, considering a large amount of medical image data the conventional analysis

list might not be long. For example, the Histopathology images used in this research

vary from hundred to thousands of megabytes. Even if we consider a large storage

system, it would be a partial answer to a larger problem. The available technique

of using wavelets for image analysis has a known weakness for representation and

detection of the contours of image objects. To overcome such challenges, new ways

of image representation have been proposed which are based on theory of moments.

Moments are already being utilized in medical image analysis since they provide a

generic representation of any object, with both complex and simple shapes, that can

be segmented in an image. Moments calculated from images can have more geometric

and intuitive meanings compared to the low-level features like color, shape, or texture.

3.4.1 Image Moments

In the field of computer vision, an image moment can be defined as the weighted

average of the image pixel intensities. Moments were first introduced by Hu in 1962

[72] and have since been used in various applications such as pattern matching, image

normalization, contour shape estimation [73]. These moments compromise of nonlinear

functions which are scale, translation, and rotation invariant. Meaning that the letter

S in each block of figure 3.5 will give similar moment values. However, letter K will

have a very different moment value from the rest of them. They also capture global

information about the image and therefore do not require close boundaries like the

Fourier descriptors.

Regular moments can be defined in form of projection of f(x, y) function onto the

monomial xpyq. Here is the function to define regular moments.

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (3.1)

26



Figure 3.5: Letter S, having similar moment, in left 3 blocks showing change in image
scale and rotation. Letter K, in right, will have different moment value.

Where mpq is the (p+ q)th order moment of the continuous image function f(x, y). In

the case of digital images, their integrals are changed to summations making mpq as

shown in equation 3.1.

mpq =
∑
x

∑
y

xpyqf(x, y) (3.2)

However, the regular moments are not orthogonal. The orthogonality makes the recon-

struction of the original image from moments simplified and computationally easier.

It also means that any two different polynomials in the sequence will be orthogonal

to each other. Therefore, an absence of orthogonality implies the information content

might have a certain level of redundancy.

To overcome this challenge associated with regular moments Teague [74] has recom-

mended the use of orthogonal moments, which are based on the theory of orthogonal

polynomials, like Zernike moments. Although there are other orthogonal moments

available, the advantage of Zernike moments comes from its useful rotation invariant

property. Meaning that rotating the image does not change value of Zernike moments

and can be really helpful when applying to medical images such as that of gastroin-

testinal images.

3.4.2 Zernike Moments

Zernike moment is a kind of orthogonal complex moments and its kernel is a set of

Zernike complete orthogonal polynomials defined over the interior of unit disc in the

polar coordinates space [75]. These moments are named after the optical physicist
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Frits Zernike, also awarded Nobel prize in 1953 for the invention of phase-contrast

microscopy.

Figure 3.6: An image being mapped entirely within the unit circular disk known as
Outer circle mapping.

The following function defines Zernike moment of order n with repetition m for a

continuous image function f(x, y) over the interior of the unit circle, i.e. x2 + y2 = 1,

as shown in equation 3.3.

Anm =
n+ 1

π

∫ ∫
x2+y2≤1

V ∗nm(ρ, θ)dxdy (3.3)

where

n Positive integer or zero.

m Positive and negative integers subject to constraints n− |m| even, |m| ≤ n.

ρ Length of the vector from the origin to (x,y) pixel.

θ The angle between x-axis and the vector ρ in a counterclockwise direction.

For digital images, their integrals are changed to summations making Anm as shown
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in equation 3.4.

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)V ∗nm(ρ, θ), x2 + y2 ≤ 1 (3.4)

Zernike moment for a given image is computed by taking the center of the image as the

origin and mapping the pixel coordinates to the range of unit circle, i.e. x2+y2 ≤ 1 (seen

in figure 3.6). Pixels that fall outside the unit circle are not considered in computation

pointing to the known limitation of using Zernike moments.

Table 3.3: Some Zernike moments physical explanation

Moment Explanation

Z00 Area

z11 xy-tilt

z20 Defocus

z22 Astigmatism

z31 Coma

z33 Trefoil

Medical Images such as histopathology or endoscopy images contain important

structures, textures, and shape features. Zernike moments are very good at capturing

such features as shown by Zhang and Lu [76]. This is mostly due to the orthogonal

property of Zernike moments which allows it to have almost zero redundancy in the

computed set of Zernike moment coefficients(seen in figure 3.7). Therefore, these mo-

ment values represent unique and independent characteristics of an image at different

orders. They also describe a global feature set as they treat an image as a whole and

gather the statistical distribution of the pixel intensities of the image, which is less
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likely to be impacted by the changes in shape. As seen from equation 3.4, Zernike

moments are computed using the summation process, making any noise introduced in

the magnitude of Zernike moment coefficients negligible.

Table 3.4: List of Zernike moment coefficients (Zpq) at each order p up to 5.

Order p Repetition q p-q Zp,q
0 0 0(even) Z0,0

1 1 0(even) Z1,1

2 0 2(even) Z2,0

1 1(odd) -
2 0(even) Z2,2

3 0 3(odd) -
1 2(even) Z3,1

2 1(odd) -
3 0(even) Z3,3

4 0 4(even) Z4,0

1 3(odd) -
2 2(even) Z4,2

3 1(odd) -
4 0(even) Z4,4

5 0 5(odd) -
1 4(even) Z5,1

2 3(odd) -
3 2(even) Z5,3

4 1(odd) -
5 0(even) Z5,5

Moreover, these moments are both scale and rotation invariant. Meaning, if the anal-

ysis image is the rotated, up-scaled, or down-scaled version of an already analyzed

image then using Zernike moment would allow us to accurately identify and match

those images. Table 3.3 shows the physical meaning of some of these moments.

In this research approach, only low order Zernike moments have been calculated for

analysis. The reason being the low order Zernike moments are more efficient in de-

scribing the complete information content in an image, unlike the high order moments

that are more vulnerable towards noise [77][78]. Similar results have been seen in other

applications that have used Zernike moments such as face recognition and image-based
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Figure 3.7: The first 21 Zernike polynomials, ordered horizontally by azimuthal degree
and vertically by radial degree
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retrieval system [79][80], pattern matching [78], etc. In [78], authors took images from

noisy as well as noise free English alphabet characters to check the efficiency of noise

resilience property of Zernike moments. In [79][80], authors have used an image-based

retrieval system to compare the performance of many local and global descriptors (in-

cluding Zernike moments). In these applications, authors have shown that using low

order Zernike moment coefficients there is improved performance on the noisy image

as compared to the noise free image. Thus, in this research of medical image analysis,

we have used up to 12 low order Zernike moment coefficients, which corresponds to a

maximum of 5 orders of moments for retrieval of histopathology and endoscopy images.

Table 3.4 shows the list of Zernike moments calculated at each order p (up to 5) and

repetition q.

The ‘-‘ sign in the above table suggests that Zernike moment coefficient zpq does not

exist for the corresponding value of order(p) and repetition(q) whose difference, which

is p-q, is an odd number.

Overall, Zernike moments, due to its various advantages like compact features, good

accuracy, low computational cost, and robust feature retrieval, has been successfully

used in various applications and shows an advantage in representing texture and shape

features of these medical images.

3.5 Classification and Evaluation Methods

Diagnosing medical images is one of the main challenges of pathologists, with steps

involving both acquiring quality images and good image diagnosis. For analyzing these

images humans are limited to the number of images/ data that they can process, phys-

ical quality of the original image, presence of noise, incomplete visual search pattern

and complex disease state. Therefore, various Computer Aided Diagnosis (CAD) sys-

tems have been commercialized over the last decade and have since been in clinical use.

However, there is no fit for all systems available. Each of these computerized image

analysis systems requires changes specific to the job and the imaging modality. Once

the analysis is complete the results are shared with pathologists, which helps them in

their task decision making while acting as assistance or a second opinion.

Machine learning (ML) over the years have shown some promising results in achieving

similar tasks. The machine learning approach is based on using a set of methods that
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can automatically find the pattern in the information given and later utilize this dis-

covered pattern to predict future information or help in the process of decision making

under various conditions. The most interesting aspect of machine learning is its data

driven approach and figuring out results without much human intervention. Artifi-

cial Neural Network (ANN), shown in figure 3.8, is a part of machine learning that

can resemble the multilayered human cognition system has proven ability in pattern

recognition that can be utilized in such medical images. These systems are designed

after the biological brain and are great at learning to perform new tasks by considering

example data without being specially programmed to do such tasks.

Figure 3.8: An interconnected group of circular nodes (artificial neuron) representing
artificial neural network.
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Although the Artificial Neural Network was introduced back in 1950, it hasn’t gained

popularity until recently due to various challenges faced like lack of computational

power, absence of enough data to train the system, overfitting problems, and vanish-

ing gradients. However, with advancements such as higher computing power after the

introduction of graphical processing units (GPU) and the evolution of big data, these

challenges no more hinder the unlimited possibilities offered by ANN. Advantages of

ANNs, including Self Organizing Maps, are as follows:

• It can be used where other approaches must give up.

• They are easier to apply.

• Provides good evidence of the certainty due to the use of a test set.

• It is also applicable on heterogeneous data set.

• Data set can be used in a near-optimum way with ANNs.

ANN’s also have a few disadvantages that can be summarized in the following points:

• Unless the algorithms are developed or a hybrid between ANN and a normal

model is applied, there is no causality.

• The accuracy of predictions provided are sometimes limited in this approach.

The sudden rise in the use of machine learning and artificial intelligence requires medical

experts to have an understanding of the technology, in order to know the abilities of

these technologies and the impact and influence it will have in the future of the medical

field. It’s clear that in near future the adoption of such a system will happen, but in no

means, it is a replacement of our medical experts. Rather it will be it will complement

and enhance the work that our medical experts do. In this section, we will discuss

details of the machine learning approach taken and also mention the reasoning behind

the approach chosen. Finally, we also need to evaluate the machine learning algorithm

to show the performance of the approach taken and can also be used to compare the

results with any other implementation or system that is similar to this. The confusion

matrix is used to evaluate the results and the details are discussed below.
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3.5.1 Learning Approach for Medical Image Analysis

In order to help medical experts in their process of diagnosing the medical images

acquired through the process of digitization, we need to choose a technique that can

evaluate the important features of the image and classify them into different categories

based on the requirement. Both the image features and the classification techniques

matter here, as changing either would vary the results. For training such algorithms,

the machine learning method can be categorized into a supervised learning approach

and an unsupervised learning approach. The supervised machine learning approach

uses some function that reproduces output by inferring from labeled training data.

The data passed to this function is a numerical or nominal vector the contains the

properties of input training data and their corresponding output values. If there is a

continuous value in the chosen output data, then the process is categorized as regres-

sion. But if this output value is of categorical form then the process is categorized as

classification. In contrast to the supervised learning approach, the unsupervised ma-

chine learning approach isn’t based on the value of output data, rather it infers some

method that can capture the hidden structure of the unlabeled input data. As the data

passed to unsupervised learning is unlabeled, there usually is no objective evaluation

of such a method. However, there are still some techniques that can be used to infer

the performance of the system. Unsupervised learning is also considered similar to

clustering in statistics, even though it encompasses various different solutions relating

to summarization and key feature explanation, and points to the manner that relates

to vector space representing the hidden structure, including clustering and dimension-

ality reduction.

Both supervised and unsupervised learning have shown promising results in the field

of image analysis and medical imaging. However, in this approach, we have considered

using unsupervised learning, which unlike the supervised approach is unbiased on how

data is being analyzed and requires no manual effort of pathologists to create a large

amount of label for the algorithm to work.

Based on the input images the pattern can be captured using simple two or three di-

mensional visualizations such as distribution curves, surface plots, and scatter plots

[81][82][83]. However, if these descriptors are large in number then it becomes really

hard to visualize these features. Again, the unsupervised clustering approach can be
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Figure 3.9: Various categories of machine learning with decision making approach.

useful here for reducing the features before visualization. Self-organizing maps, Hi-

erarchical clustering, and k-means are some of the common techniques that are used

in medical imaging to achieve such visualized clustering. Self-organizing maps have

been employed in various techniques like patient stratification[84], interpretation[85],

visualization and segmentation [82][86][87] in systems using medical images. Similarly,

Hierarchical clustering is used in visualization and patient stratification [88][89]. K-

Means on the other hand is mostly required for image and color classification, as well

as visualization as part of the bag-of-features representation. For this research, we have

chosen self-organizing maps for feature reduction and visualization over a 2-dimensional

map.

3.5.2 Self Organizing Map

The Self-Organizing Map(SOM) is a clustering algorithm which is from the field of Ar-

tificial Neural Networks [90] and is trained using an unsupervised learning approach to

reduce high n-dimensionality features into low dimensional (usually two-dimensional),

discretized visualization of the input space of the training samples, known as a map.

Also known as Kohonen map or network, the artificial neural network introduced by

a Finnish professor Teuvo Kohonen in the 1980s. Although the dimensionality of the

36



space is reduced, the SOM is subject to a topological ordering constraint, thereby re-

taining the underlying structure of the input space [91].

Figure 3.10 shows an example RGB color coded image mapped over the output layer

Figure 3.10: Two-layer structure of the SOM training.

using red, blue and green values of the image as the input vector. However, any other

color model such as HSV or CMY could be used. Not just color but other relevant

features that can be useful in representing the data that is being analyzed can used in

form of input vector.

Wi = [wi1, wi2, wi3]
T denotes the weighted average associated with the neurons in the

output layer. Their values are randomly assigned initially where 0 ≤ i ≤ M ≤ N

(i.e., the size of the output layer). SOM works iteratively, where in each iteration the

best matching unit (BMU) or the neuron with the most similar weight vector can be

found for an input vector. Additionally, the neighboring unit of the BMU are involved

in a training process by pulling them close to the input vector. This is done using a
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function that can be described by an exponential decay on time t as follows.

σ(t) = σ0exp(
−t
η

) (3.5)

where σ0 is the initial value of neighboring length and η is the time constant. Fur-

thermore, as described by a Gaussian function δ(t), as we move away from BMU to

the edge of the whole neighborhood the effect of learning gradually decreases. Also, as

the learning process converges, the learning rate L(t) also decreases over time. Con-

sequently, the weight vector of every neuron in the neighborhood of the BMU gets

adjusted as per equation 3.6.

Wi(t+ 1) = Wi(t) + δi(t)L(t)(V (t)−Wi(t)), if ‖ i−BMU ‖≤ σ(t) (3.6)

where δi(t) = exp(−−‖i−BMU‖2
2σ2(t)

) , and L(t) = L0exp(− t
η
). V (t) represents the input

vector, ‖ i − BMU ‖ stands for the distance of the neuron i to the BMU, and the

initial learning rate is L0. To better understand how training in SOM works here is a

brief summary of steps involved:

1. The weight for each node’s are initialized.

2. From the set of training data, a vector is chosen at random.

3. Every node is examined to find the weights closest to the input vector. The

winning node is known as the Best Matching Unit (BMU).

4. Calculate the neighborhood of the BMU. The number of neighbors would decrease

over time.

5. The winning weight is rewarded with becoming more like the sample vector. The

neighbors also get closer to the sample vector. Lastly, weights of the nodes closer

to BMU get altered based on their closeness and the nodes that are farther away

from BMU learns lesser.

6. Repeat step 2 for the chosen number of iterations.
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After a number of iterations, the learning process starts to converge, and then the

output neurons can be considered as representative of all the input vectors preserving

the topology. As can be imagined this typical implementation of SOM can be utilized

to reduce the colors to a few representative ones. However, it’s not usually as simple

since many medical images contain large amounts of noise in terms of various tissue,

cells, nuclei, or glands, which may not be relevant for the problem being solved. SOM

does provide a huge advantage in terms of easy interpretation and understanding of

large amounts of data, which in this case is the confounded medical images. In addition,

the grid clustering and reduction of dimensionality makes it easy to observe similarities

in data.

3.5.3 Evaluation of Self Organizing Map

As discussed, Self-Organizing Map allows for a graphical representation of output data

in form of clusters that are created by reducing the dimensionality of input data on a

resulting map. However, we need to make sure that these models are indeed a repre-

sentation of the input data passed. To do so we need to evaluate the quality of these

models which are represented in form of maps.

This quality of the Self-Organizing Map is generally measured using topology preserva-

tion and quantization precision. The latter is usually calculated as the squared quan-

tization error, namely, the average distance between input vectors and corresponding

best-matching units. It considers map to be better trained on given data based on how

small the quantization error is. The former is based on the topology error, which is

defined by the number of inputs to which the best-matching unit and the next best-

matching unit are not adjacent on the map grid.

Although, if the true category of clusters is known then the confusion matrix serves

as the most appropriate and commonly used technique for cluster evaluation. The

confusion matrix helps in providing a more detailed evaluation of correct and incorrect

classifications for each category. It detects the closeness of the composition of obtained

clusters to that of the actual partition structure. Since neurons are more than actual

clusters, a set of sub-clusters can be obtained while using SOM. In that case, the pu-

rity of the cluster is relevant for the resultant cluster, where the neurons of sub-cluster

always belong to the member of the summarization cluster. Hence, each cluster is
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identified as the dominating class label or the majority vote of its Voronoi set, while

instances of other class is considered as error.

3.6 Conclusion

The above chapter has explained the various steps (shown in Figure 3.1) involved in

the classification of medical data gathered from different sources while explaining the

reasoning behind each step taken during the process. The list of sections starts by

elaborating on the process involved in gathering knowledge from various sources and

conducting interviews (see section 3.1) with experts in the medical field.

Furthermore, the details of various images including type, quality, and description are

explained in data acquisition (see section 3.2). Pre-processing steps (see section 3.3)

goes on to explains the steps involved in denoising the image by enhancing the relevant

features that will be useful in later steps.

Section 3.4 explained the distinct methods, detailed algorithms, and provides illustra-

tions of techniques used in representing these images. Finally, this chapter explained

the classification and evaluation (see section 3.5) steps involved in analyzing the images

and evaluating the results. There are multiple subsections providing the technical de-

tails and rationale for research progression. The implementation of the above discussed

method and approach, along with different case studies to evaluate the performance is

explained in chapter 4.
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Chapter 4

Implementation and Case Studies

4.1 Introduction

This chapter provides a clear understanding of the classification of the medical image

analysis system whose method was discussed in chapter 3. The sections in this chapter

will provide details about the dataset used (see section 4.2). Include information on

technical implementation of the system while showing the flow of data (see section 4.3).

The section also explains the tools used, their system design, and specifications along

with the information on the user interface. It also details the purpose and limitations of

the tools used. In the later part of this chapter, we discuss the various case studies (see

section 4.4), in which various different medical images were analyzed and their results

are evaluated using the previously mentioned techniques. The system performance is

discussed in the following section (see section 4.5) detailing the time taken for analysis

and any related challenges that caused performance overhead. Finally, in the last

chapter we discuss topic highlighting security and privacy concerns (see section 4.6)

regarding the chosen implementation of this research and provide a brief conclusion in

section 4.7.

4.2 Dataset Description

The details about the type of data and their sources have already been discussed in

the above section 3.2.2. From that, it is already clear that the data includes a wide
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variety of images that can be used in this implementation to evaluate the performance

of the system for different case scenarios.

Even though there are various challenges in collecting medical images like unavailability,

large size, privacy issues, etc. For the purpose of this research, we have collected data

for 220 gastrointestinal images taken through the procedure of endoscopy. Out of these

220 images of endoscopy, there are 100 healthy gastrointestinal images (seen on top-left

in figure 4.1) and 120 unhealthy gastrointestinal images (seen on top-right in figure 4.1)

showing red spots that signifies bleeding region. These images are 256 x 256 pixels and

as seen contain varying noise in form of food particles and body fluid.

The second set of images, taken from open source data provided by the Camelyon16

Figure 4.1: Healthy(on left) and Unhealthy(on right) images of endoscopy, lymph node
tissue and prostate tissue in sequence from top to bottom.
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challenge [92], consist of 1192 images cropped from the 400 whole slide images (WSIs) of

the sentinel lymph node. The ratio of healthy to unhealthy images is 1:1 (i.e. there are

596 normal images and 596 images containing metastases). There are high resolution

images with 1280 x 1280 pixel size. Lastly, the third set of images cropped from

tissue samples taken at the Department of Pathology, Portuguese Oncology Institute,

Porto, Portugal, Department of Pathology and Molecular Immunology, Abel Salazar

Institute of Biomedical Sciences, University of Porto, Porto, Portugal, by Professor

Rui Henrique. These include a total of 239 images of prostate tissue samples with 121

healthy samples and the remaining 118 images contain metastasis. The prostate tissue

dataset was taken in two different settings and therefore include images with either

2000 x 2000 pixels or 5500 x 5500 pixels.

4.3 Technical Implementation and System Design

In this section, the system architecture is discussed along with details of various tools

used to provide end to end implementation. It also includes details of technical stack,

programming languages, and the description of the user interface of systems that were

utilized in this research.

4.3.1 System Architecture

The system architecture of this implementation consists of multiple separate compo-

nents between which the data is passed for processing, which is required in that step.

A detailed diagram of system architecture is shown using figure 4.2. As it can be seen

from the figure there are multiple components involved in the overall processing and

starts with the dataset that is described earlier in section 4.2.

The details of other components such as Pre-processing script, Zen lite Application,

CITU system and Matlab SOM are discussed below.

4.3.2 Technical Stack

This section provides details and working of various script, tools, and technologies

mentioned in system design architecture. It will cover the design, working, limitations,

and functionalities of technologies used in this work.
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Figure 4.2: System Implementation Design for Medical Image Analysis.
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Pre-processing Script

This pre-processing script is used to resize the image into the required dimension of the

same height and width. This step is very important in terms of how the data will be

processed in later steps of image representation. This representation technique utilized

the Zernike moments which defines a set of polynomials over the interior of the unit

disc. The term ‘unit disc’ is important to note here. Due to this aspect of Zernike

moment, the image is converted to the same length and width dimension for utilizing

maximum area of analysis, therefore creating the requirement for this small script.

This script is written in Python language, which is a dynamic programming language

that supports an extensive and powerful standard library with automated storage and

realistic functionality. One such Python Imaging Library is called PIL, implemented by

Fredrik Lundh and Contributors. This library contains an Image module that provides

various functionalities including the option to resize the image. Using this option, the

code iterates over the input folder location and parses over the list of all files available

in that folder, while resizing them into the desired dimension of equal length and width.

These files are saved in a new directory that is passed as a parameter to this code.

Zen Lite Application

Zen, which stands for ZEISS Efficient Navigation, Lite application is the basic free

version of the high-performance microscopy software ZEN. This system was created

by Zeiss, which is one of the leading technology companies operating in the fields of

optoelectronics and optics. This software solution works really well with the microscope

images in CZI format.

The CZI format, which is again developed by ZEISS, is a well-known file format in

microscope imaging as it stores imaging data along with all the relevant metadata in

one compact file. These microscope images contain a huge amount of data and are

usually large in size. So much so that normal image processing systems cannot even

load these files let alone doing processing on them. In such situations, systems like

Zen lite (shown in figure 4.3) can be really handy and act as a powerful tool for image

analysis. Here is a screenshot of the ZEN user interface.

The ZEN user interface is quite simple but powerful. For this research, ZEN tool

was used to analyze the large images (in size of gigabytes) of prostate tissue given

by Dr. Aamir from Kings College of London. This tool provided the functionality
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Figure 4.3: ZEISS ZEN lite software user interface.

of analyzing large size tissue images, by providing up to 20x zoom, and cropping the

region of interest to save as healthy or diseased part of tissue to be included as a dataset

image for later analysis.

CITU system

CITU (Computerized Image and Text Understanding) system, which was developed

at Trinity College Dublin under the supervision of Professor Khurshid Ahmad and

obtained for the purpose of research, is a Windows based Graphical User Interface

(GUI) application. The original intentions of developing this system was for text and

image processing and perform cross-modal retrieval.

It has various other features that include image segmentation using techniques like

Otsu thresholds, region growing techniques like the Watershed algorithm, and even

self-organizing maps. There are also noise filtering techniques like Law’s texture filter

and Median noise filtering for providing a better quality of image. For the processing of

text, there are functionalities available to compute frequency, TF-IDF, weirdness, and

compound words are included. Moreover, to learn and establish associations between
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Figure 4.4: CITU system cross-modal design architecture

image features and linguistic features of annotated image data, a state-of-the-art cross-

modal system is present as an option in Annotation tab of CITU. The architecture of

CITU’s cross-modal functionality is presented in Figure 4.4.

CITU was written using C++ and requires installation and setup of Visual Studio

and supporting packages for C++ project development. Apart from the linguistic

analysis, CITU also supports image analysis under the feature extraction option of the

Image tab. In Image analysis, CITU extracts the red, green, and blue channels from

each image passed for analysis and performs a color transformation before extracting

the Zernike feature of the passed color codes. In this case, the color transformation

happens from RGB color scheme to HSV. Figure 4.5 shows the user interface for the

CITU system.

The final results of extraction of RGB color, conversion to HSV and producing Zernike

moments is saved into a text file on user picked location. CITU is also capable of

processing multiple images at once by selecting the folder where all the images are

stored and starting the above analysis by iterating over each file and storing results

in the output file. CITU is a highly sophisticated system that supports many other
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Figure 4.5: CITU system cross-modal design architecture.

features for text and image analysis which was not fully utilized here. However, in the

future if the dataset is annotated or has linguistic features then CITU can perform an

even more powerful analysis.

MATLAB SOM

MATLAB, which stands for matrix laboratory, is a proprietary programming language

that helps in the implementation of algorithms, plotting of functions and data, cre-

ation of user interfaces, matrix manipulation, and interfacing with programs written in

other languages. This software was developed by MathWorks, which is an American

privately held corporation. Its built-in graphics and ease of visualization makes it easy

to gain insight from data. The version of software used for this research is MATLAB

version 9.7 and its release name is R2019b.

MATLAB comes with various built-in apps amongst which is the Neural Network

Clustering app (shown in figure 4.6) and can be seen under the apps tab, under Ma-

chine Learning. It can also be accessed using MATLAB command prompt, by typing

the command nctool (to use the Neural Network GUI user can type nnstart). The

app version used in this research is Deep Learning Toolbox version 13.0. This neural

net clustering app uses a self-organizing map to solves the challenges in the clustering
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Figure 4.6: The GUI for Neural Network Clustering app in MATLAB.

problem. It allows user to choose their data, or even use one of their example datasets,

and train the SOM network after configuring settings. Afterward one can even analyze

the results using various visualization tools available, and if results are not satisfactory

then even retrain the complete network with either updated settings or provide a larger

dataset.

To start the analysis, we need to define the clustering problem. For this we can simply

arrange the Q input vectors that needs to be clustered in a form of a matrix. For

instance, if you have 10 two-element vectors then the input vector could be something

like this.

inputs = [7 0 6 2 6 5 6 1 0 1; 6 2 5 0 7 5 5 1 2 2]

Matlab offers two types of algorithms for performing SOM, namely Sequential incre-

mental SOM (the traditionally used method), and batch SOM. In the case of Sequential
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incremental SOM, every input data vector is associated with the map unit, and using

incremental training, with a learning rate factor, the map units converge towards the

input data. While in the case of batch method, map units move closer to the data

using Voronoi tessellation and, for this case, there is no learning rate that needs to be

specified. By trying both the algorithm in [93] William et al. clearly indicated that

the batch algorithm is faster by an order of magnitude. Moreover, it is also seen that

the batch algorithm always results in the same solution with a specified set of param-

eters. But it is not the case with a sequential incremental SOM algorithm, as it tends

to behave like a batch algorithm solution when the number of iterations is increased.

However, repeated sequential algorithms do not result in the same solution every time.

Because of this speed and reliability, it makes sense to use a batch algorithm for all the

SOM analysis. Traditionally, the neural map, or network, has either a hexagonal, i.e.

a honeycomb like structure, or a rectangular topology, i.e. trellis grid structure (seen

in figure 4.7).

As can be seen in Figure 4.7, these topologies have different properties. In the case

Figure 4.7: Represents the Topology structure of the Self-Organizing map grid, which
traditionally is hexagonal or rectangular.

of hexagonal topology, Figure 4.7(a), there are six neighboring neurons for all the in-

ternal neurons. While for the rectangular topology, Figure 4.7(b), there are only four
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neighboring neurons for all the internal neurons. However, the hexagonal topology

is usually preferred because of its better visual effect [94] and its greater variance in

neighborhood size. Another important factor is of network size while initializing Mat-

lab SOM. The decision of finding the number of neurons to be used in the SOM must

be made by the researcher and is usually the function of both size of the dataset and

the purpose of application for which SOM is being used. But a basic thumb rule could

be to use fewer neurons for applications requiring clustering of the dataset while using

a larger number of neurons for visualization of high-dimensional datasets. To choose

the number of iterations is also a required criterion for running Matlab SOM. This

usually depends on convergence where a good map is one that is well converged and

is representative of input data. It is usually done by running multiple tests on data

to the find best results. However, it is important to point out that the neighborhood

function, which in this case is the link distance function, strongly affect the number of

iterations. So, fewer iterations might be required if the neighboring function is strong

and the SOM becomes stable faster due to smoothing.

4.4 Case Studies and Discussion

The below section discusses about the analysis done on different medical images,

namely endoscopy images, prostate tissue images and lymph node images. The de-

tailed analysis is provided along with information on decisions made while choosing

parameters and the impact of these decisions on overall evaluation.

4.4.1 Evaluation of Endoscopy Images

Analysis and evaluation of endoscopy images, discussed in section 4.2, collected from

medical journals are provided in this section. Initially, the research started with finding

a statistical relationship between the Zernike moments used to represent healthy and

bleeding images. To do so Z-score of each moment for both categories(i.e. healthy

and bleeding) of images was utilized. A Z-score is a numerical measurement that can

be described as the input relationship to the mean of a group of values. It is a mea-

surement in terms of standard deviations from the mean. Figure 4.8 below shows the

comparison of these z-score values for healthy and bleeding endoscopy images in form
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of histogram charts for different Zernike moments.

Observing these moments closely reveals that most of this data have a normal dis-

Figure 4.8: Graph showing z-score value values for z00 moment for healthy and bleeding
endoscopy images.

tribution with values mostly lying up to 3 to 4 standard deviation from the mean.

However, the curve is similar for each of the Zernike moment, suggesting that the data

from mean shows the similar distribution. Seeing as the mean are also close for these

moments of healthy and sick images it becomes really challenging to separate these

data just based on the statistical analysis. Therefore, we resolve to more sophisticated

methods of machine learning, which in this case is SOM.

With endoscopy image data, we divided the dataset into the ratio of 80-20 for training

and test purpose. It is to be noted that while training no parameters were passed sug-

gesting the category of data, only raw Zernike moments were utilized. After training

the SOM with 80 healthy and 96 bleeding images over 1500 iteration the data is well

distributed, except a higher concentration in the middle right, and shows the number

of data points that are associated with each neuron (seen in Figure 4.9).

Another useful figure provided by Matlab SOM to analyze this training map is by

using SOM Neighbor Distance figure (seen in figure 4.10). This figure allows us to

understand the distances between neighboring neurons.

Color coding used in below figure is as follows:
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Figure 4.9: A 4x4 SOM sample hit map for endoscopy image dataset.
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• Neurons are represented using the blue hexagons.

• Neighboring neurons are connected using the red lines between them.

• The distances between neurons is indicated by the colors in the regions containing

the red lines.

• Larger distances are seen with a darker color.

• Smaller distance is shown using a lighter color representation.

Based on the above color-coding description we can analyze the Figure 4.10 showing

a group of light segments appear in the middle-right region, bounded by some darker

segments. This sort of grouping suggests that the map has clustered the given input

data into groups. The similar grouping can be seen in Figure 4.9. The lower-left region

in that figure also contains a group of tightly clustered data points. Their correspond-

ing weights are also close in that region, as can be seen from the lighter color between

neurons in neighbor weight distance figure. The region in the lower-right segment of

the neighbor weight distance figure are darker than the ones on the middle left. This

change in color also indicates that these regions are further apart.

Lastly, Matlab provides SOM weight planes to visualize the weight of input vectors

using the weight plane figures. Figure 4.11 shows the weight planes for each of the

input vector element, which in this case is 9 Zernike moments. These show the visu-

alization of the weights that connect each input to the respective neuron. The value

of weights is relative to the lighter and darker color of hexagon, where lighter suggests

larger weights and darker color means smaller weights. They also show correlations

between input variables that are very similar by presenting a very similar connection

pattern. In this case, input 2 and input 5 show such correlation based on a similar

color pattern. However, the rest of the inputs show a difference in weights and provide

more knowledge.

Once the training is finished, we can test the remaining 20% data (i.e. 44 images)

for finding the cluster positions based on the trained network. This test data is also

passed as input vector and SOM returns an output vector which gives the position

of the image in the cluster. The complete process to train and test this data took 5
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Figure 4.10: A 4x4 SOM neighbor weight distance graph for endoscopy image dataset.
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Figure 4.11: SOM weight planes for Endoscopy image data.

seconds using the mentioned approach.

Even though the data passed to SOM is unlabeled (as it uses unsupervised learning),

we can utilize the evaluation technique, mentioned in section 3.5.3, to use the health

condition labels available with images to assign these clusters as healthy or sick. Fol-

lowing this rule, the results of SOM network can be evaluated using a confusion matrix.

In the case of endoscopy images, the resultant confusion matrix (as seen in Table 4.1)

has a TP value of 17, FP is 1, FN is 7, and TN as 19. These terms, which are whole

numbers, can be defined as:

• True positives (TP): These define the number which we predicted yes (they show

the disease), and they do show the disease.

• True negatives (TN): Number of images predicted no, and they don’t show the

disease.

• False positives (FP): Number of images predicted yes, but they don’t actually
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have the disease.

• False negatives (FN): Number of images predicted no, but they actually do have

the disease.

Table 4.1: Confusion matrix for cluster formed by endoscopy image dataset.

True Condition

Predicted

Images Sick Healthy Total

Sick 17 1 18

Healthy 7 19 26

Total 24 20 44

Using the confusion matrix, it is possible to calculate various other evaluation factors,

one of which is accuracy. Accuracy can be defined as (TP+TN)/total number of

images. The accuracy of endoscopy images using the above approach is 81%. Finally,

Matlab can be used to visualize SOM sample hits on the test data. This visualization

is on the same map that is used to train the network.

From the sample hit map shown in figure 4.12, we can clearly see the separation of

two clusters, which also suggests a large distance between these two clusters of healthy

and sick images. These clusters can be represented as holding healthy or sick images

with few incorrectly assigned images that leads to false cases.

4.4.2 Evaluation of Lymph Node Images

The analysis and evaluation techniques followed for lymph node images of breast can-

cer patients are discussed in this section and shows similar approach as taken in above

section 4.4.1. It starts with representing images using Zernike moments after applying

HSV color coding. For this analysis, the moments are taken up to order 5, which gives

a total of 12 moments, for getting better results. However, it causes an increase in time

taken for analysis. In this dataset, the time taken for complete evaluation is 12 second

which is a 2x increase from the previous dataset. But there is also a large difference in
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Figure 4.12: 4x4 test data SOM sample hit map for endoscopy image dataset.
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the count of images used for analysis compared to the endoscopy dataset. Figure 4.13

shows the (a) SOM sample hit and (b) SOM neighbor weight distance visualization for

the lymph node images.

In this case also we can observe a similar distribution of regions (one on left and

Figure 4.13: Represents a 7x7 (a) SOM sample hit and (b) SOM neighbor weight
distance graph for the Lymph node image dataset.

the other on right) based on distance between the neighboring neurons (seen in figure

4.13b) and the color difference between them. Also, the overall spread in each neuron

suggests a good distribution of data. SOM weight planes are shown using figure 4.14a

below. Like before this distribution of weight planes have few similarities. However,

the overall correlation is not very high, and each element of the vector can provide new

knowledge. In this case study, the training dataset of 1192 images is divided into 80%

training and 20% test data. The training is done using 1500 iterations and a learning

rate of 0.9. The lymph node dataset is larger than the endoscopy one and shows a

better convergence with a larger map size of 7x7. After training the test dataset shows

the following results, using a confusion matrix, based on the cluster formed.

For the case of lymph node images, the resultant confusion matrix (as seen in Table

4.2) has TP value of 97, FP is 34, FN is 22, and TN as 85. This leads to an overall

accuracy of 76% for lymph node images. Finally, figure 4.14b, shows the SOM sample
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Figure 4.14: (a) SOM weight planes for 12 inputs of lymph node image train data. (b)
SOM sample hit for lymph node image test data

Table 4.2: Confusion matrix for cluster formed by lymph node image dataset.

True Condition

Predicted

Images Sick Healthy Total

Sick 97 34 131

Healthy 22 85 107

Total 119 119 238
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hit for lymph node test image dataset. Similar to the training map the test SOM

sample hit also has a separation between cluster on the left and right side suggesting

a clear boundary between healthy and sick images.

4.4.3 Evaluation of Prostate Tissue Images

Figure 4.15: Represents a 4x4 (a) Training data SOM sample hit, (b) Test data SOM
sample hit, and (c) SOM neighbor weight distance graph for Prostate tissue image
dataset.

With prostate tissue images also, the dataset was divided between training and
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testing in the ratio of 80-20, where 80% of data was used for training. The training

procedure is similar to the one discussed in the above sections with 1500 iterations and

a learning rate of 0.9. However, with prostate tissue images, there are two SOM map

results that are presented to show the changes that happen when changing the map

size. After representing the images using Zernike moment of order 4 the images are

first trained using a 4x4 dimension SOM.

In Figure 4.15, the maps shown has a visible grouping that indicates that the network

has clustered the data into two groups. The group on left side contains mostly healthy

images, while the group on right represents a cluster of sick images. These groups

are tightly coupled as visible from the neighbor weight distance graph. However, the

boundary between them shows darker shade suggesting a larger distance between the

neurons. The confusion matrix for this 4x4 dimension map is given in Table 4.3. Using

the values given the accuracy of 4x4 dimensional map is 81%.

Table 4.3: Confusion matrix for cluster formed by prostate tissue image dataset.

True Condition

Predicted

Images Sick Healthy Total

Sick 16 2 18

Healthy 7 23 30

Total 23 25 48

Next, considering the same dataset of prostate tissue images and the above discussed

process we train another map with a 5x5 dimension. Here the resulting maps are shown

in Figure 4.16. As expected, the resulting maps are quite similar to the results seen

in Figure 4.15 of the 4x4 dimension map. However, the boundary between the two

groupings, the left and right grouping, is more significant and clusters now have a

wider distance. Due to this increase in map size, there are more neurons and the

data can spread more widely resulting in a smaller sized clusters. For this case, the

grouping on left and right has completely separated the healthy and sick images with

no overlapping images.
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The weight plane graph below (seen in Figure 4.17) also shows a good relationship

Figure 4.16: Represents a 5x5 (a) Training data SOM sample hit, (b) Test data SOM
sample hit, and (c) SOM neighbor weight distance graph for Prostate tissue image
dataset.

between vectors on different side of the graph and suggest a clear separation with

others. Increasing the SOM map dimension from 5x5 to a 7x7 will separate the clusters

even more by finding differences between neurons. Although, due to less data, lower

differences, and large map size most of the neurons will be empty and the distribution
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would not be even anymore. Hence, increasing the cluster size to 7x7 will not be

recommended in this case.

Figure 4.17: SOM weight planes graph for 9 inputs of prostate tissue image train data.
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4.5 System Performance

In this research, the performance of the system varied based on the components de-

fined in architecture. Since there were different datasets with multiple file sizes, image

dimensions and the number of images, the system went through series of stress testing

giving an idea about the performance of the system in different scenarios.

The system used for this experiment was a 64-bit Windows platform running over the

Intel i7 processor with a 4.2 GHz processor. Based on these parameters the system

was able to process the neural network clustering on the chosen datasets within 12

seconds for worst case scenario of 1192 images with 12 feature vectors for each image.

The Zen Lite application was able to seamlessly load and process images with size up

to 5GB for each image while handling UI. However, manual cropping takes time and

has future scope for automation. Lastly, converting color code and calculating Zernike

moment takes a fraction of a second for even large images. But when put together a set

of thousands it could take up to a few hours to get numerical moments for all the images.

4.6 Security and Privacy Concerns

The analysis done in work deals with medical images of patients taken from various

sources and utilizes free and open source tools (FOSS), as well as libraries, to process

them. This leads to various concerns of security and privacy that we will discuss in

this section.

4.6.1 Security Concerns

The security concerns revolving around this approach aims to prevent data and the

code from being attacked or stolen. This could mostly be possible from any external

input to system, which in this case is image data, or through some third-party software

or library used in this system.

Concerns with input image

Any sort of input provides a gateway to the system and can be the weakest point in the
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system if not handled well. Usually, these inputs are text based and most vulnerable

to SQL injection type attacks. For this system, the input is an image file which can

also be used to run a malicious script or download trojans if not handled carefully by

the application.

In past there have been cases where simple PNG images contained malicious code that

ran using technique known as RunPE, where the malicious code is executed in the

context of another process. Similar other techniques have been used before and are

difficult to detect even by the anti-virus systems.

A simple way to defeat such attacks would be re-encode an image, which is actually

done in this approach. Taking the raw RGB values and then re-encoding those values

to a new image in the same format can perform a validity check on the image and at the

same time remove any junk code that might be attached to the image. However, there

is still a scope of attacks such as the possibility of the image being a decompression

bomb causing resource exhaustion DOS attacks. We can monitor the system resources

in this case to prevent a crash or run this application with limited RAM (supported

by CITU) so that application runs out of memory before crashing.

Concerns with third-party libraries

Almost all applications used third-party libraries to boost their development process.

While most of the critical vulnerabilities in third-party libraries are mentioned in the

Common Vulnerabilities and Exposures (CVEs), the reality is most applications using

these libraries do not handle these vulnerabilities well. Moreover, there could also be

possibilities of unidentified vulnerabilities in these libraries.

To start handling these vulnerabilities the first step would be to list all the third-party

software and libraries that are used while building the application. This information is

already present in section 4.3 for this research. The third-party software list will allow

us to find all the vulnerabilities available in these libraries along with their severity and

probability of occurrence. Such information will prepare the developer in creating a

plan to deal with known vulnerabilities. In this case, the third-party software used such

as Matlab and Zen are more matured software that over the years have found known

vulnerabilities and have released various security patches. However, the other compo-

nents such as the python script and CITU system have been written without keeping

security as a priority. To deal with their vulnerabilities there are code scanning tools,
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like Bandit for python, that can scan each code file to find any sort of vulnerabilities

that exists in these systems.

4.6.2 Privacy Concerns

As this system deals with various sort of medical image data, we will discuss in this

section about the privacy concerns related to these medical images. As mentioned ear-

lier, the images taken for endoscopy dataset are from published journals. Similarly, the

images taken for the lymph node dataset are open source anonymized images. Since

there is no personal information included on patients and the datasets are already pub-

lished there is no privacy issue or ethics approval required.

The prostate tissue samples were collected at the Department of Pathology, Portuguese

Oncology Institute, Porto, Portugal, Department of Pathology and Molecular Immunol-

ogy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal,

by Professor Rui Henrique. Institutional Review Board approved their use for research

purposes. Only anonymized images from hematoxylin and eosin stained slides were

used in this project. We did not use any ‘human tissue’, only images, so the ethical ap-

proval is not required. However, when using this system with non-anonymized medical

images it is recommended to remove any personal information that might be related

to the data. As this system only requires images and extracts data from it, there is no

need to add any personal information of patients. Also, if there is any sharing of data

over the network then a secure encryption technique should be utilized.

4.7 Summary

In the above chapter we discussed in detail about the dataset (see section 4.2) used

for analysis along with the architecture of the system (see section 4.3) that analyzes

this data. The details of tools and third-party libraries are also mentioned. To show

the viability of this system with real world data and having the potential to be used

in clinical practice, this research presents three case studies (see section 4.4) done on

multiple medical image datasets with promising results. The system performance is

also discussed in section 4.5 to address the scalability and limitation when it comes to

testing the checking system threshold. Lastly, the security and privacy concerns (see
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section 4.6) talks about the vulnerabilities and issues that could occur while using this

system in the real clinical scenarios. It also mentions the solutions for such problems.
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Chapter 5

Conclusion and Future Work

This chapter presents the conclusion of the undertaken work as part of this disserta-

tion. It includes the key take away of this work and some weaknesses when using this

approach. To fix some of these weaknesses the second subsection lists future works

that can be implemented to improve or extend this research.

5.1 Conclusion

Medical image processing is a complex technique comprising of interdisciplinary fields

like mathematics, computer science, medicine and physics. In this work, a medical im-

age analysis algorithm is designed and implemented to categories the medical images

into different clusters based on their characteristic visual features. This categoriza-

tion of medical images is performed by training an unsupervised network of Kohonen’s

self-organizing maps that leverages the similarity of input vector to produce a low di-

mensional representation of input space, called map. To achieve this the input given

to the system is required in form of numerical representation of these medical images.

After going through various available techniques of image representation, this work

takes advantage of Frits Zernike’s approach of using sequence of polynomial called

Zernike moments to capture the properties of an image. Since these polynomials are

orthogonal to each other, the information captured from these images using Zernike

moment is not redundant or has any overlapping information which may cause some

sort of bias in training. The presented work can contribute to the field of medical
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science by providing a technique capable of analyzing a large number of images in a

very short span of time without using any label on the input image dataset. However,

this system is not a replacement to human pathologists that analyze these images in

research labs, rather a complimenting tool that can predetermine the data to analyze,

categorize them into relevant sections, provide the second opinion or do a preliminary

analysis.

There are details about system architecture, algorithms used, and information on

Figure 5.1: A 3x3 Map showing clustering of healthy (marked with green) and sick
(marked with red) of prostate tissue samples.

various tools or languages used to implement this system. The advantages and short-

coming are also discussed when using these approaches. Few case studies are presented
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for running, testing, and evaluating the given approach with real world datasets. These

studies showcase the potential such systems have in the future of medical image pro-

cessing.

Using the mentioned implementation, the case studies are performed on 3 medical im-

age dataset of endoscopy images, lymph node images and prostate tissue images. After

the pre-processing and analysis, the endoscopy and prostate tissue images cluster into

sick and healthy image with an accuracy of 81%. While the lymph node image clus-

tering has 76% accuracy. However, the results may vary with map size and for a more

optimal approach, a Hierarchical SOM (HSOM) or Growing SOM (GSOM) could be

utilized. These maps also provide placement of images on a two-dimensional grid which

allows a view of the complete database in one image, as seen in Figure 5.1. Finally,

this work can be adapted to more than just the chosen medical image dataset as it’s

not based on any specific feature of tissue or sample structure.

5.2 Future Work

Analyzing the results and method of implementation there are few changes that could

have improved the results while others could have handled the limitations observed in

this work. These changes could be expanded to the way the data is handled and how

the processing on this data could be made more efficient. Future work for this system

can include the below changes by making an extension to the program that is more

enhanced and can handle more complex data.

1. One of the biggest challenges with the medical images is the large size of data.

Specially in case of whole slide images the data could reach into range of tens of

gigabytes. When processing this data, the system usually requires high RAM and

take enough time to process it. In this case, the CITU system and python script

have shown poor performance when going through such large images. To improve

this there could be few solutions like doing parallel processing with python script,

utilizing the map reduce framework of big data (require lot of code changes), or

consider cloud computing platform services. The third option of cloud computing

platform service like docker seems more suitable due to its capacity to scale (by

running more docker instance) based on requirement without need to write extra
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pieces of code.

2. The second challenge is like the above as it is due to large file size image but

deals with finding region of interest. Since the image file sizes are large, they

need to be cropped into smaller segments that are easier to process and analyze.

To achieve this, a manual process of finding the region of interest and cropping

is required. Usually done with tools like Zen lite that are capable of loading such

large files. However, a simple automation solution like a python code to split file

into required segments would work here. Although the changes made must be

done in a way that the code is able to handle such large file size.

3. The process of manually analyzing the SOM map size is inefficient. Even if the

best map size is found, the time take to achieve this is significant. However,

it does give a better understand on how the data reacts to different map sizes.

To this more effectively there are various available techniques like Hierarchical

self-organizing map (HSOM) or Growing self-organizing map (GSOM) which can

automatically analyze the more effective map size for the chosen dataset.

4. Medical image data are not always perfect and can even have problems due to

errors in image capturing process. In such cases it becomes challenging to capture

the features of image based on just the visual features of the image. In such cases

linguistic cues from experts can be added with images to provide extra set of

features that can help in identifying the image more accurately. Such a system

multi modal system can even be used in content-based image retrieval process.

The above suggested future work is based on limitations observed and are provided

with valid solutions. However, in future there is a possibility of more challenges being

discovered. Therefore, it’s important to note that while implementing any solution

there are few things that should be kept in mind like the system performance due

to changes, the security and privacy concerns it might have and to mention any new

limitations that the changes might introduce.
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Appendix

Summary of interview with Rui and Dr Aamir

Questionnaire

1. Brief introduction: About your work, experience and years dedicated, tissue

management and classification expertise.

2. Tell us more details on disease severity and current diagnosis techniques (includ-

ing accuracy).

3. What is the minimum image quality required to be classified correctly? Does it

matter on type of image?

4. What exactly do you look for in image? Boundary? Shape? Color?

5. Please describe naming convention of image shared (ex: JLTA1 x40 z0 A1 T)?

More specifically, details on slides and cores table used (going from A to J and 1

to 6) in naming.

Recorded minutes of meeting

• (Aamir) Manual Analysis is mostly intuitive due to years of practice of looking

at H&E images.

• (Rui) Pathologists usually use 40x zoom under microscope and sometimes require

up to 400x to be certain.

• (Aamir) Sometimes (¡5%) Immunohistochemistry (IHC) is used in diagnosis to

confirm borderline cases. However, it’s not always accurate.
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1. Works due to the presence (or absence) of basal cells, detected by specific an-

tibodies against it combined with racemase expression in luminal epithelial

cells.

• (Aamir & Rui) A brief discussion on embryonal carcinoma and yolk sac.

• (Rui) Prostate cancer diagnosis techniques in H&E images are:

1. Looking for small glands in front of large glands.

2. Haphazard distribution.

3. Higher density of nuclei and larger nuclei (nucleomegaly)

4. Presence of prominent nucleoli.

• (Aamir & Rui )Gleason score for grading prostate cancer.

1. This score is based on how much the cancer looks similar to small benign

glands when viewed under a microscope.

2. Based on how the cancer cells are arranged a score on a scale of 3 to 5 is

assigned (patterns); due to morphological heterogeneity, in many cases more

than one pattern is present. Depending on the proportion, predominance

and potential aggressiveness, as well as whether grading is performed on

prostate biopsy or surgical specimen, the final grade combines two figures:

e.g. 3+4=7 (grade group 2); if only one pattern present, then, the pattern

is doubled: e.g., 3+3=6 (grade group 1)

• (Rui) In H&E staining Hematoxylin colors the nuclei of cells blue or dark-purple

and Eosin stains the cytoplasm and some other structures including extracellular

matrix such as collagen in up to five shades of pink. In cancer glands there is

usually a blue-tinged secretion in the lumen and, sometimes, pink crystal-like

structures (crystalloids)

Approval to use prostate tissue images shared by Dr Aamir

Consent: Tissue samples were collected at the Department of Pathology, Portuguese

Oncology Institute, Porto, Portugal, Department of Pathology and Molecular Immunol-

ogy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal,
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by Professor Rui Henrique. Institutional Review Board approved their use for research

purposes. Only anonymized images from hematoxylin and eosin stained slides were

used in this project.

We have the REC (ethics committee approval in the UK) to use the tissue samples.

You did not use any ‘human tissue’ in your study, only images, so that does not apply.
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