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Recent advances in Virtual reality (VR) technology have caused omnidirectional videos
(ODVs) to emerge as an increasingly important vehicle for the delivery of immersive content
provision. Unlike traditional videos, with the support of head-mounted displays (HMDs), the
ODVs would bring a deeper sense of immersion to users. Ambisonics, which refers to a com-
plete three-dimensional spherical audio scene, is used to present ODVs’ audio content. The
ODVs allow audience attention to be directed concurrently by both audio and visual stimuli.
As a result, understanding how audio-visual information affects user behaviors is significant
to improve the quality of experience of ODVs for VR applications. Thus far, research in this
area is limited, a situation which this dissertation seeks to remedy. With this aim, we col-
lected an audio-visual dataset containing trajectories and conducted a quantitative statistical
analysis of the user navigation patterns. This analysis included visualization of viewport cen-
ter trajectories and head-motion analysis while users were watching omnidirectional videos
under ambisonics, mono, and mute. It was observed that there were variations in user be-
haviours when watching ODVs, which correlated with the three different audio modalities.
We believe that this research contributes to the existing literature on the audio-visual percep-
tion of ODVs.
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1 Introduction

1.1 Background

Virtual reality (VR) technology has made significant progress in academia and industry.
The popularity of VR has shifted people’s attention from traditional language narration
to visual presentation. Users can see the real-time rendering of different 360-degree
images by wearing a head-mounted display (HMD), and they can replicate real-world
movement, such as walking and gaming, and decide in which direction to view the
surrounding scenes. Scene simulation in the virtual world allows users to experience
the invisible external world and immerse themselves in the virtual environment.

Essential to VR technology are 360-degree videos, also known as spherical videos
or omnidirectional videos (ODVs). While wearing an HMD, the user can choose which
portion of the spherical video content to watch. The portion of spherical surface con-
tent displayed is projected to a segment of plane, called the viewport. The audio
and visual representation of ODVs is completely different from that of traditional 2D
videos. At present, 360-degree videos are shot by a collection of cameras or an om-
nidirectional camera. Image-stitching technology is used to seamlessly stitch together
multiple images, thus forming a clear and complete omnidirectional video utilizing com-
pression coding and network-transmission technology.

Compared with traditional videos, ODVs can capture more scene information, and
they usually need to be compressed before transmission. They are mostly stored in
the equirectangular projection (ERP) format, which is the most widely used projection
format for representing 360-degree video on a 2D plane. In this format, the longitude
of a sphere is taken as the X coordinate and the latitude as the y coordinate of the
projection. Specifically, ERP expands the sphere and stretches it into a rectangle.
The longitude (horizontal axis) is in the range [0, 2 π], the latitude (vertical axis) is in
the range [0, π], and where π is the ratio of a circle’s circumference to its diameter.
According to the relationship of the latitude and longitude, the length-width ratio of the
plane after ERP is 2:1; it can subsequently be expressed in the range 360◦ × 180◦.
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The audio representation of ODVs is fully spherical (i.e., ambisonics), which im-
proves users’ sense of immersion by enabling them to experience the loudness and
direction of sound sources. The technology of ambisonics can record the sound field
information of the whole spherical space centered on the listener or microphone, and
transform the information into the ambisonics B-format, which can be saved and played
back accurately. The audio track of the ambisonics format does not correspond to the
actual speaker channel but is an independently encoded signal that contains sound-
field direction information. A microphone encodes the most common ambisonics for-
mat, called the first-order ambisonics format, with four diaphragms picking up the
sound-field information simultaneously. It has four channels, W, X, Y, Z, which cap-
ture omnidirectional sound information: front and rear, left and right, and height sound
information. Thus, ambisonics satisfies the sound requirements of ODVs and provides
a sense of spatialization and immersion.

Omnidirectional videos are widely used in entertainment, medicine, education, and
film and television. In recent years, technology giants such as Facebook and YouTube
have offered platforms for 360-degree video content. They use deep learning to de-
velop and deploy technologies, thus optimizing the way users make 360-degree video
content. Omnidirectional video technology has attracted increasing amounts of at-
tention, and so it is necessary to explore users’ behavior and navigation patterns. A
better understanding of users’ behavior would benefit the design and optimization of
VR functions such as rendering and streaming, thus improving user experience.

1.2 Motivation

As the demand for ODV technology in VR applications has increased, many studies
have investigated users’ behavior and predicted their visual attention. The human vi-
sual attention mechanism embodies a selective attention ability; that is, when faced
with a scene, humans automatically process regions of interest and selectively ignore
regions of non-interest. Therefore, it is necessary to detect the saliency of the infor-
mation in ODVs to reduce redundant visual information.

Xu et al. [2] have reviewed a number of recent studies that have used saliency maps
to analyze how users navigate and explore ODV content for VR. These studies are
limited, however, because they ignore audio cues and pay too much attention to visual
cues, despite the fact that the audio part plays as important a role as the visual part in
the virtual reality experience. Evidence exists regarding the correlation between audio
and visual cues and their joint contribution to visual attention [3]. Thus, studying how
audio and visual cues affect ODV viewing behavior patterns is particularly important for
optimizing VR systems, especially for video post production, coding, and streaming.
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The present research tries to fill this research gap and contribute to the research of
audio-visual attention for ODV.

1.3 Research Objective

The objective of this research is to study how audio and visual cues influence users’
navigation patterns while watching 360-degree video. For this purpose, a dataset was
developed containing viewpoint center trajectories (VCTs) information of 45 users and
12 videos with three audio modalities: ambisonics, mono and mute. These audio
modalities provide users with different audio-visual experiences. The main difference
is that, when watching video in mono, users can detect only the loudness of the sound;
they cannot judge the direction of the sound. In contrast, when watching video in am-
bisonics, users can judge the direction of the sound source according to hints provided
by the audio. (For the mute modality, users see the visual content without any sound.)

User behavior while watching 360-degree video in these three audio modalities has
not been fully investigated. This dissertation presents a comprehensive analysis of
the user navigation traces and head motion statistics (e.g., angular distance, angular
velocity, and attendance cumulative density functions) to explore the user behavior
while watching 360-degree video in ambisonics, mono, and mute.

1.4 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 introduces related work.
Chapter 3 explains the methodologies and implementation of the experiments. The
results are discussed in Chapter 4. Chapter 5 and 6 present the overall conclusion
and recommendations for future work, respectively.
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2 Literature Review

2.1 Omnidirectional Video

As VR (Virtual Reality) technology has attracted tremendous attention from academia
and industry, the value of the VR industry has been experiencing explosive growth in
recent years. ODVs are used to present VR contents with the help of head-mounted
displays (HMDs) in VR technology [4]. Due to the immersion sense created by ODVs,
VR technology is applied in many scenarios, such as game development, education
and film production.

With an increasing demand for VR technology, a lot of famous companies, includ-
ing Oculus, HTC and Sony, have launched VR headsets and equipment. On the other
hand, ODVs have seen a significant increase in popularity. Facebook introduced the
function of viewing 360-degree videos and supported playback across all platforms,
including real-time 360-degree video streaming; YouTube also launched 360-degree
video playback and uploads, and the combination of them enables a much wider audi-
ence to engage in this format than ever before[5].

Unlike the rectangular capture for traditional videography, ODVs is a technology
which utilizes the omnidirectional cameras to seize different perspectives of space
and then stitches together into a spherical video, thus bringing the users a deeper
immersion sense. The viewer could wear HMDs to observe the surrounding scenes
and control the navigation from all viewing directions. This enables the users to keep
in the center of the viewing sphere, thus placing users within the context of an event
or scene instead of presenting them as an external observer. The following section
introduces the processing of 360-degree video, which is presented in Figure 2.1.
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Figure 2.1: The procedure of a 360-degree video transmission chain[1]

Figure 2.2: The viewport of a 360-degree video

The multiple lens panoramic camera has a 360-degree angle of view in both hori-
zontal and vertical directions, which can cover all spherical environment centered on
the shooting point. Therefore, it could be used to obtain multiple angle images or
videos. After stitching images or videos, the 360-degree video obtained will be pro-
jected onto the 2D plane using a planar representation (e.g. Equi-rectangular pro-
jection (ERP)) [1]. Once the ERP is turned on, the transformed ERP picture will be
encoded. After decoding, a planar representation 360-degree video will be converted
back to a sphere by inverse mapping. When omnidirectional videos are rendered
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through HMDs, only a part of the spherical viewing could be displayed and presented
at a time, which is called viewport(see Figure 2.2). Finally, HMDs will be used to track
and record the users’ head movements to generate the corresponding viewport.

The visual presentation form of ODVs is consistent with the visual physiological
and psychological characteristics of human viewing external objects. Due to the lim-
ited range of human visual angle, the human eye could only focus on a narrow visual
range at a certain time. More specifically, during head-up viewing, the human eye
could only see the region near the equator of the spherical video, rather than its polar
region. Therefore, no matter what kind of media equipment is used to play ODVs, the
information that the human eye could accept at a certain time is about the one-twelfth
sector of the total visual information. In other words, users will only focus on a certain
area of the screen when watching the ODVs. For film-producers and game develop-
ment companies, it’s important to present more attractive omnidirectional audio-visual
content for users within the limited time and conditions. It’s very necessary to research
users’ navigation patterns when watching 360-degree videos, thus finding what kind
of content will attract users’ attention, arranging the content reasonably and improving
the quality of experience (QoE) of ODVs.

2.2 Ambisonics

Ambisonics is a method invented in the 1970s to record, mix, and play back fully
spherical audio. With the rapid development of the VR industry, which demands 360-
degree audio solutions, ambisonics technology was gradually commercialized. The
basic method of ambisonics is to regard an audio scene as a sphere of sound coming
from various directions around the center point (the location of the microphone during
recording).

From a recording perspective, ambisonics can be understood as a 3D expansion
of a mid-side stereo recording system. It uses multiple microphone head arrays com-
bined in such a way as to record multi-track sound signals with height and depth in-
formation. It finally forms an omnidirectional sound field. The most widely used and
mature technology is first-order ambisonics, which uses four channels. The first-order
ambisonics microphone consists of four microphone heads with a heart-shaped pick-
up pattern, pointing to front left, back left, front right, and back right. The original
picked-up signal is called the A-format. B-format [6], which is the most popular am-
bisonics format today and widely used in VR and 360-degree video, can be obtained
through the superposition or inverse superposition of the four channels (see Figure
2.3).
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Figure 2.3: The convertion from the first-order ambisonics A-format to B-format

In first-order B format, there are four channels, called W, X, Y and Z. Each channel
can be regarded as a different microphone polar pattern pointing in a specific direction,
and the four channels are conjoined at the center point of the 360-degree sphere:

• W, as an omnidirectional polar pattern, contains all sounds coming from different
directions at equal gain and phase in the 360-degree sphere;

• X, Y and Z, which are all figure-8 bi-directional polar patterns, point forward, left
and up, respectively.

Each figure-8 microphone has two sides: a positive side and a negative (inverse
phase) side. For example, the figure-8 polar pattern of the X channel points forward,
and the negative side points backwards. The audio signal generated on the X channel
includes all the sounds in the front of the sphere with positive phase and all the sounds
from the back of the sphere with negative phase. Moreover, the gain picked up in
figure-8 microphones for each direction is different. Specifically, full gain will be picked
up for the audio signal in front or behind, but when the user leaves the bi-directional
axis, the gain will decrease gradually until it is exactly 90 degrees from figure-8, and
the gain will be zero. While the Y channel picks up the left side of the 360-degree
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sphere with the positive phase and the right side with a negative phase, the Z channel
picks up the bottom of the 360-degree sphere with a negative phase and the top with
the positive phase. In this way, the combination of the four channels represents the
three dimensions (i.e., a 360-degree sphere of sound) through the differential gain and
phase relationships [7].

Ambisonics technology has been used to deliver 360 audio for omnidirectional
videos, gaming and virtual reality experiences in the VR industry. Usually, the au-
dio is experienced by the end user via headphones and an HMD. It has apparent
advantages in the performance of 3D space and the positioning of sound elements
and better resolution in height positioning.

Monaural sound (mono) uses only one channel of audio, which means that there
is no difference in the information received by the left and right ears, and the auditory
system does not allow for psychoacoustic localization (i.e., only the loudness of the
audio, not the direction, can be detected) [8]. With ambisonics, however, users are able
to position sounds in three dimensions—like a sphere around the listening position. In
other words, an ODV with ambisonics not only provides auditory cues but also enables
the direction of sound sources to be detected, whereas in mono, only the magnitude
of auditory cues can be detected.

2.3 Equirectangular Projection

As mentioned before, projecting a spherical 360-degree video onto 2D planes is an
important process to generate ODVs. Equirectangular Projection, which is the most
widely used format for representing 360-degree images and videos, maps meridi-
ans(latitudes) and circles(longitudes) to the vertical and horizontal axes, respectively,
by spacing them equally on the 2D plane. The north pole and south pole, located in the
upper and lower edge of the whole plane respectively, are stretched across the entire
frame width [9, 10]. The following Figure 2.4 shows the Equirectangular perspective
and flattening.
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Figure 2.4: The Equirectangular perspective and flattening

The longitude (θ) and latitude (Φ) are used to describe the sphere coordinates
(θ,Φ). The range of the longitude is [0, 2π], while the latitude is in the range [0, π],
where is the ratio of a circle’s circumference to its diameter. The sphere coordinates
(θ,Φ) could be transformed to planar coordinates (u, v) in a 2D plane coordinate sys-
tem, referred as the uv plane. In the uv plane, u and v are in the range [0, 1]. Thus, the
longitude and latitude (θ,Φ) in the sphere can be calculated from (u, v) using Equation
1, 2:

θ = (u − 0.5) × 2π (1)

Φ = (0.5 − v ) × π (2)

In addition, the three-dimensional geometry of projection format representation is
described with 3D Cartesian coordinate system. Starting from the center of the sphere,
X axis points toward the front of the sphere, Y axis points toward the top of the sphere,
and Z axis points toward the right of the sphere. The formula, which could convert
longitude and latitude (θ,Φ) to 3D Cartesian coordinates (x, y, z), is defined as follows:

x = cos(Φ) cos(θ) (3)

y = sin(Φ) (4)

z = − cos(Φ) cos(θ) (5)

Inversely, the longitude and latitude (θ,Φ) can be obtained from (x, y, z) coordinates
using 6, 7.

θ = arctan(−z
x

) (6)

Φ = arcsin
y√

x2 + y2 + z2
(7)
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For the transformation from 2D to 3D, (θ,Φ)could be firstly calculated by using 1, 2.
Then, the formula 3, 4, 5 are used to evaluate 3D coordinates (x, y, z) [11].

2.4 Related Work

ODVs play an important part in providing users with a high quality of experience (QoE)
in VR applications. HMDs allow viewers to explore the scene and control their navi-
gation by simply rotating their heads. However, the limitations of HMD and ODV bring
new challenges and requirements to the design of visual and audio content in VR.
Exploring and understanding viewers’ behaviors and navigation patterns when watch-
ing ODVs is significant for content producers of VR applications. A lot of researches
about users’ behavior analysis and navigation patterns have been investigated in re-
cent years. Generally speaking, most of studies involved are predicting users’ visual
attention using different kinds of datasets and modelling approaches.

Saliency maps, which are two-dimensional probability distributions, represent the
probability that the user is likely to fixate on a given region. It could be used to com-
pute and present analysis outcome of users’ behavior based on head datasets and
eye movements datasets [12, 13, 14]. Sitzmann et al. [12] captured and analyzed
gaze and head orientation datasets from 169 users. In their work, they conducted sta-
tistical analysis about similar behaviors between users for each of the scenes tested
and the existence of a particular fixation bias using saliency maps and metrics related.
Also, the work in Ozcinar and Smolic [13] analyzed the performance of standard video
saliency detection methods using six ODVs rendered by an HMD. The results reveal
that the quantity of fixations depends on motion complexity of ODV. The head and eye
movements dataset from 51 participants dataset when watching 360-degree videos
has been proposed in David et al. [14] to explore how the VR content influence the
users’ visual attention using saliency maps. Furthermore, to evaluate the performance
of different saliency models when using saliency maps as inputs, evaluation metrics
are introduced. Bylinskii et al. [15] presented a comprehensive analysis of eight differ-
ent evaluation metrics and their properties.

Apart from saliency maps, there are also some studies regarding additional quan-
titative analysis based on viewport traces, such as the average angular velocity, fre-
quency of fixation, and mean exploration angles [16, 17, 18]. Wu et al. [16] presented
a dataset containing 18 omnidirectional videos with five categories, such as sports,
performance, etc. They recruited 48 participants in two experiments: in the first ex-
periment, participants were asked to watch the VR Spherical Videos; in the second
experiment, participants were asked specific questions about the video content after
each session. They also showed the analysis of user behavior patterns through the
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experiments. Duanmu et al. [17] presented a dataset of view center traces gathered
from over 50 viewers watching 360-degree videos on the computer. Also, they con-
ducted the statistical analysis over the user navigation patterns and compared the
differences of user behaviors between the head-mounted display (HMD) and com-
puter viewing sessions. The authors in [18] presented a comprehensive analysis of
user navigation patterns for watching VR videos across different contents and viewing
devices(i.e. HMD, tablet and laptop) through the dataset of users’ navigation trajecto-
ries. Also, an optimization of the user-centric server was proposed based on previous
analysis consequences.In [19], a dataset of head movements from 59 users watch-
ing 360-degree videos on HMDs is introduced, and some examples of statistics for a
content-dependent analysis of users’ navigation patterns are shown.

To further predict visual scan paths, Rossi et al. [20] proposed a graph-based
method for classifying users who pay attention to the same regions of the scene for
a long time over ODVs. Furthermore, Nasrabadi et al. [21] proposed an improved
clustering approach which increases the viewport prediction accuracy.

However, the feature of studies above is only focusing on visual cues. In recent
times, the academic community is more and more interested in the aspects of the
audio-visual perception for ODV. For example, Rana et al. [22] proposed a novel audio-
visual video dataset of 265 videos and used different modeling approaches to generate
ambisonics for ODV. Also, In [23], an unsupervised algorithm was presented to ad-
dress the problem of localizing sound sources in visual scenes. ’DAVE’ was proposed
to study the applicability of audio cues in conjunction with visual ones in predicting
saliency maps using deep neural networks [24]. Furthermore, in Chao et al. [25] work,
a statistical analysis using saliency maps to study the audio-visual perception of ODVs
was presented. Both of them illustrate audio and visual information contributes to
affecting user navigation patterns and behaviors when watching 360-degree videos in
VR applications. As a result, it’s significant to further focus on researching audio-visual
perception analysis for ODVs in VR applications.
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3 Methodology

3.1 Data Collection

This chapter describes the dataset and technical details of the subjective experiment.
The dataset comprises Viewport Center Trajectories (VCTs) from 45 participants across
three audio modalities (ambisonics, mono, and mute) in three categories (Conversa-
tion, Music, and Environment).

3.1.1 Material

Fifteen ODVs were selected from YouTube, all of which were captured using a single-
lens camera (i.e., they produced mono-scopic 360-degree videos). When viewed from
an HMD, a mono-scopic ODV is immersive but appears a little flat. The audio modali-
ties of the videos used in this experiment include ambisonics, mono, and mute. ODVs
with first-order B-format ambisonics have four channels, called X, Y, Z and W, and
ODVs in mono have only one channel, which can be distributed equally in the left and
right headphones, thus allowing the user to detect the loudness of the audio but not
the direction. The mute ODVs had all audio channels removed.

For this study, it was necessary that the audio-visual be as diverse as possible.
Thus, the selected ODVs cover three representative categories of content: conver-
sation, music, and environment. Videos in the category conversation consist of one
person or several people talking, and those in the category music involve people play-
ing instruments or singing. Videos in the category environment contain various back-
ground sounds such as vehicle engines and horns, the noise of crowds, and the sound
of trains passing.

The source ODVs were all downloaded with the maximum available resolution and
bitrate, which was 3840× 1920 in the ERP format. A representative segment of 25 s
duration for each ODV was extracted and stored. The choice of segment was based
on audio-visual cues in a pilot test with two experts. The 25 s duration is long enough
for viewers to engage with the content and yet short enough to allow for a sufficient
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number of experiments. To study the effect of audio-visual cues on the trajectories,
the 15 ODVs were divided into 3 training ODVs and 12 testing ODVs. Figure 3.1
summarizes the main features of the ODVs used in the dataset. In the figure, “Training
Material” denotes the training set in each category. Figure 3.2 presents a random
selection of frames from the ODVs. The first ODV from each category was used as
training material for the participants to familiarize themselves with the setup of the
HMD.

Figure 3.1: Description of the ODVs used in the subjective experiment
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(a) ODV 01 (b) ODV 02 (c) ODV 03

(d) ODV 04 (e) ODV 05 (f) ODV 06

(g) ODV 07 (h) ODV 08 (i) ODV 09

(j) ODV 10 (k) ODV 11 (l) ODV 12

Figure 3.2: ODV dataset used in the subjective experiment

3.1.2 Design of Apparatus

A test-bed was developed in which the participants could use an omnidirectional video
player to watch a set of 360-degree videos in the three categories and under the three
audio modalities. As they watched the videos, the participants’ VCTs were recorded
along with the current time-stamp, the ODV name, and its corresponding audio modal-
ity. The test-bed was implemented using JavaScript based on three APIs: three.js [26],
WebVR [27], and JSAmbisonics [28]. These libraries enable users to watch a set of
360-degree videos via an HMD and provide a fully immersive experience through a
web browser. The following technology was used in the experiment: a consumer ver-
sion of the Oculus Rift as the HMD, Bose QuietComfort noise-cancelling headphones,
and Firefox Nightly as the web browser.
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Figure 3.3: The schematic diagram of the designed test-bed

First, a given set of ODVs was loaded as the playlist file. While a given video was
playing, the recorded data were transferred to the test-bed’s server at the refresh rate
of the device’s graphics card. A schematic diagram of the test-bed for this experiment
is shown in Figure 3.3. An Apache webserver with the MySQL database was used
to implement the HTTP server. The audio-related (e.g., mute, mono, and ambison-
ics), sensor-related (e.g., viewing direction), and user-related (e.g., user ID, age, and
gender) data were recorded and stored in the database.

3.1.3 Participants

Table 3.1 presents the demographic profile of the participants. The sample consisted
of 45 participants, aged from 22 to 40 years, with an average age of 27 years. Fifteen
(33%) are female, and eighteen (40%) are 20 to 24 years old. Eight of the partici-
pants (about 18%) were already familiar with VR technology and ODVs; the others
had heard of VR before but had never used such technology. Twenty-four participants
(around 55%) wore glasses during the experiment, and all of them were screened and
reported having normal or corrected-to-normal visual acuity. Figures 3.4 and 3.5 show
the distribution of the participants’ demographic information such as age and gender.
Fifteen participants could watch each ODV per audio modality, and each participant
watched each ODV content only once.
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Age Number
20-24 18
25-30 16
>30 11

(a) Age

Gender Number
Male 30

Female 15

(b) Gender

VR Experience Number
Not Familiar 37

Familiar 8

(c) VR Experience

Glasses Number
Yes 24
No 19

(d) Glasses

Table 3.1: Participants’ demographic profile

(a) Pie chart of age distribution

(b) Pie chart of gender distribution

Figure 3.4: Statistic on the profile of participants
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(a) Pie chart of VR experience distribution

(b) Pie chart of wearing glasses distribution

Figure 3.5: Statistic on the profile of participants

3.1.4 Procedure

To avoid the memory bias effect, which may have affected the navigation trajectories, it
was necessary to ensure that each participant watched each ODV content only once.
Moreover, to balance the number of VCTs per audio modality for each ODV, three
playlists were prepared. Each playlist contained a training ODV and four test ODVs
per audio modality. Thus, there were 3 training ODVs and 12 ODVs for testing. The
ODVs using the three audio modalities and the three content categories were allocated
to the three playlists, and equal numbers of participants were assigned to the three
playlists. Before the start of the subjective experiment, the test ODVs in each playlist
were displayed in a random order while the VCTs of the participants were recorded.

Each test was performed as a task-free viewing session, and each participant was
asked to look at each ODV naturally. During the experiment, participants were seated
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in a rolling chair, which enabled them to turn freely in any direction. Moreover, they
were asked to watch the ODVs alone in the laboratory to avoid the presence of the
instructor influencing the results.

Before the experiment began, the procedure was explained to the participants, and
they were informed that their VCTs were going to be recorded. The starting position
of each viewing was fixed at the center point (θ = 180◦ and Φ = 90◦) at the beginning
of every ODV. Each participant was informed about the presence of a training video,
which was displayed at the beginning of each playlist, so that they could familiarize
themselves with the 360-degree viewing experience and adjust the HMD calibration.
This was followed by a viewing session of 10 minutes in which the videos were dis-
played sequentially, separated by a gray screen. The screen was inserted to avoid
motion sickness and eye fatigue and was shown for 5s between videos.

3.2 Statistical Analysis

3.2.1 Data Post-Processing

While users were watching the VR content with the HMD, only a portion of the ODV
(i.e., the viewport) could be displayed at any given time. Since users’ eyes tend to look
straight ahead, with their heads following their eye movements to maintain the resting
position of their eyes, it was decided to use the dynamicity of viewport center points
to estimate the trajectories of users’ gazes. VCTs in longitude (0◦ ≤ θ ≤ 360◦) and
latitude (0◦ ≤ Φ ≤ 180◦) coordinates were recorded during the experiment. To analyze
the collected VCTs, the interpolation was used to resample the collected data based
on the frame rate of the corresponding video. In this way, each user is enabled to have
a single value in longitude and latitude coordinates for a fair comparison in each frame
of the ODV, thus ensuring the validity of the analysis, as shown below.

3.2.2 Data Analysis

To conduct the user behavior analysis, metrics were adopted such as the spatial dis-
tribution of the viewport center trajectories and the angular velocity:

• First, the areas that the participants were interested in are detected by analyzing
the distributions of their viewport center traces in the longitudinal and latitudinal
planes for various videos at different times;

• Second, the angular distance is used to evaluate the distance the viewer could
travel over the sphere during the duration of an ODV segment. Here, the maxi-
mum angular distances of all viewers over different segment lengths for different
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videos are calculated and presented in the cumulative density function (CDF)
graphs;

• Finally, the angular velocities were calculated for all videos in all the categories
and audio modalities. The purpose of this analysis is to reveal the change in
users’ navigation patterns and evaluate how fast they move their heads when
watching a given ODV. The CDF of angular speed and mean angular velocity is
used to show how the audio-visual information affects the user navigation pat-
terns.
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4 Results

To understand how users explore different ODV content, this chapter presents the anal-
ysis of user behavior using the gathered navigation viewport center trajectories across
the three audio modalities (mute, mono, and ambisonics) and in the three content
categories (conversation, music, and environment). Section 4.1 presents the analy-
sis of the viewport center traces visualization. Section 4.2 presents the head motion
statistics.

4.1 Viewport Center Traces Visualization

This section describes how the viewport center locations were detected for each partic-
ipant in the different video categories and audio modalities. Their fixation distributions
over different videos at different scenes (i.e., different times) are analyzed. In addition,
the sequence-level user fixation distributions are presented in heatmaps along with the
longitude and latitude directions. In the fixation distributions, the green dots indicate
participants’ fixations; in the heatmaps, the color bars on the right show the intensity
of the fixation distribution, and the yellow areas represent the high-density areas. 2D
and 3D graphs are also plotted to analyze the traces over different videos.

4.1.1 Analysis of Fixation Distributions

Throughout the Interview (02) video from the category conversation (Figure 4.1), there
are only slight changes in the fixation distributions under the three audio modalities.
The fixation distributions for Scenes 1 and 2 under ambisonics, mono, and mute are
similar. The focuses are almost on the area of three human faces which are in the
central region of the ODV, as users’ attention is driven by the salient visual and au-
dio information (i.e., human faces and their sounds). The high-density areas in the
heatmaps under the three audio modalities are all located on the center of the whole
map, which is consistent with the previous observations of fixation distributions.
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(a) Scene 1:02(ambisonics) (b) Scene 2:02(ambisonics) (c) 02(ambisonics)

(d) Scene 1:02(mono) (e) Scene 2:02(mono) (f) 02(mono)

(g) Scene 1:02(mute) (h) Scene 2:02(mute) (i) 02(mute)

Figure 4.1: Fixation distributions and heatmaps over Interview(02);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

The Animation (10) video belonging to the category environment depicts a series
of rapidly changing background scenes captured by fast-moving cameras. Figure 4.2
shows that in Scene 2 a racing car appears at high speed from the right, which catches
the attention of some viewers, leading to greater dispersion of fixations than in Scene
1 under the three audio modalities. There is no difference between three heatmaps
for the Animation video under the three audio modalities. The fixation distributions are
more easily influenced by the salient visual cues (i.e., the fast-moving cameras) than
the audio cues.
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(a) Scene 1:10(ambisonics) (b) Scene 2:10(ambisonics) (c) 10(ambisonics)

(d) Scene 1:10(mono) (e) Scene 2:10(mono) (f) 10(mono)

(g) Scene 1:10(mute) (h) Scene 2:10(mute) (i) 10(mute)

Figure 4.2: Fixation distributions and heatmaps over Animation(10);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

For the Philharmonic (05) video in the category music, viewers mainly focused on
the music director in Scene 1 under all three audio modalities (Figure 4.3). In Scene
2, the pianist outside the center of the field of view starts to play the piano. However,
viewers’ attention did not shift to the direction of the piano’s sound in either ambisonics
or mono. Moreover, in the heatmaps, the high-density areas under the three audio
modalities are all in the center of the orchestra. It can be concluded that the moving
objects (e.g., the conductor) have a more significant impact on users’ attention than
audio cues.
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(a) Scene 1:05(ambisonics) (b) Scene 2:05(ambisonics) (c) 05(ambisonics)

(d) Scene 1:05(mono) (e) Scene 2:05(mono) (f) 05(mono)

(g) Scene 1:05(mute) (h) Scene 2:05(mute) (i) 05(mute)

Figure 4.3: Fixation distributions and heatmaps over Philharmonic(05);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

For the BigBellTemple (08) video, all of the fixation distributions for the same scenes
and heatmaps under the three audio modalities are similar to one another (Figure
4.4). The similarity in the fixation distributions is due to the subdued sound produced
by the people playing musical instruments. Furthermore, there are no salient objects
in this video, and so the areas of high-density in the heatmaps are concentrated on
the central region of the view.

Based on the analysis of the Interview (02), Animation (10), and Philharmonic (05)
videos, it was found that the salient visual cues, such as human faces, moving objects,
and fast-moving camera motions, attract the user’s attention more when presented
along with audio information. In particular, the interaction of human voices (Interview)
and salient visual objects catch more of the user’s attention compared with the other
two videos. Moreover, the comparison of the two category music videos, Philharmonic
(05) and BigBellTemple (08), shows that users pay more attention to the louder sound
produced by the instruments.
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(a) Scene 1:08(ambisonics) (b) Scene 2:08(ambisonics) (c) 08(ambisonics)

(d) Scene 1:08(mono) (e) Scene 2:08(mono) (f) 08(mono)

(g) Scene 1:08(mute) (h) Scene 2:08(mute) (i) 08(mute)

Figure 4.4: Fixation distributions and heatmaps over BigBellTemple(08);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

In the CoronationDay (04) video of the category conversation, several people are
talking at the back of the view area. At the beginning of the video (Scene 1), users
tend to explore the environment more actively, which causes scattered fixations under
the three audio modalities (Figure 4.5). In Scene 2, the four people standing in the
back side of the viewing region start to talk, thereby catching more visual attention
(i.e., more fixations) in ambisonics case, whereas in mono, viewers could only per-
ceive the loudness of the audio. Thus, the number of fixations in mono is less than in
ambisonics. The distribution of fixations in mute is relatively scattered throughout the
video playback. These distributions are also shown in the heatmaps. The high-density
areas are mainly concentrated on the talking persons in ambisonics. In contrast, in
mono and mute, the high-density areas are more concentrated on the center field of
the viewing area.
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(a) Scene 1:04(ambisonics) (b) Scene 2:04(ambisonics) (c) 04(ambisonics)

(d) Scene 1:04(mono) (e) Scene 2:04(mono) (f) 04(mono)

(g) Scene 1:04(mute) (h) Scene 2:04(mute) (i) 04(mute)

Figure 4.5: Fixation distributions and heatmaps over CoronationDay (04);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

In Scene 1 of the GospelChoir (06) video in the category music, viewers focus their
attention on the two human faces in all three audio modalities (Figure 4.6). Under
ambisonics and mono, as a woman appears at the front and starts to sing, viewers’
gazes gather on the position of the woman. In contrast, the distribution of fixations
is more scattered in the mute modality. From the heatmaps, it can be observe that,
under the three audio modalities, the high-density areas are much larger than those
in the CoronationDay (04) video. This corresponds to that the fact that this video has
multiple regions of interest. Besides, it confirms that the interaction of salient visual
information (i.e., human faces) and audio information can attract more attention than
visual cues alone.
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(a) Scene 1:06(ambisonics) (b) Scene 2:06(ambisonics) (c) 06(ambisonics)

(d) Scene 1:06(mono) (e) Scene 2:06(mono) (f) 06(mono)

(g) Scene 1:06(mute) (h) Scene 2:06(mute) (i) 06(mute)

Figure 4.6: Fixation distributions and heatmaps over GospelChoir (06);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

Compared with the CoronationDay (04) video (conversation category) and the Gospel-
Choir (06) video (music category), the fixation distributions of the BigBang (12) video
(environment category) under the three audio modalities are more scattered (Figure
4.7). In ambisonics and mono, users’ gazes gathered on the sound direction of the
vehicle engines. Moreover, from the heatmaps, it was found that the high-density ar-
eas in the mute modality are more scattered and much larger than in the ambisonics
or mono modalities. This is due to the fact that moving objects such as pedestrians
and vehicles on the streets attract viewers’ more attention. These differences illustrate
that the salient audio cues contribute to guiding the user’s visual attention regardless
of the loudness and direction of the sound.
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(a) Scene 1:12(ambisonics) (b) Scene 2:12(ambisonics) (c) 12(ambisonics)

(d) Scene 1:12(mono) (e) Scene 2:12(mono) (f) 12(mono)

(g) Scene 1:12(mute) (h) Scene 2:12(mute) (i) 12(mute)

Figure 4.7: Fixation distributions and heatmaps over BigBang (12);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

For the BusyStreets (11) video, the fixation distributions for the three audio modal-
ities are similar to those of the BigBang (12) video. In the BusyStreets video, there
is an ambulance siren, which makes the high-density area in the ambisonics modality
(i.e. the direction of the ambulance siren) larger than those in the mono and mute
modalities (see Figure 4.8).
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(a) Scene 1:11(ambisonics) (b) Scene 2:11(ambisonics) (c) 11(ambisonics)

(d) Scene 1:11(mono) (e) Scene 2:11(mono) (f) 11(mono)

(g) Scene 1:11(mute) (h) Scene 2:11(mute) (i) 11(mute)

Figure 4.8: Fixation distributions and heatmaps over BusyStreets (11);
First and Second Columns: Viewer fixations at different scenes;

Third Column: Viewer trajectories heatmaps

Based on the analysis above, the following conclusions can be drawn:

• First, the fixation distributions under the three audio modalities are different. In
the mute modality, users’ attention is more distracted than in the other modalities.
Users’ fixation distributions have a lower dispersion in the mono and ambisonics
modalities. The loudness and direction of audio information help people track
and find objects, even though the objects are not located in the current viewing
area;

• Second, when both salient audio information, such as human voices and ambu-
lance sirens, and visual information are presented, the audio information has a
more significant influence on attracting users’ visual attention compared with if
only the visual information is presented;

• Third, there are also some differences in user behavior between the three cat-
egories. Users are more likely to follow audio information (e.g., human voices
and the sound of a musical instrument) in the conversation and music categories
than they are in the environment category, with the exception of clear audio in-
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structions such as an ambulance siren. In videos in the environment category,
users tend to explore the environment regardless of the audio information;

• Fourth, for different videos with three audio modalities and different video play-
back time, the users’ fixation distributions are often different. Users’ attention is
mostly focused on the central region rather than the polar region, as can be seen
from the heatmaps.

4.1.2 Analysis of View Traces

In the category conversation, the TelephoneTech (01) video shows a person talking on
the phone in the center of the view area, and in the category environment the Train
(09) video shows trains with engine noises driving at high speed from one side to the
other. The 2D plots in Figure 4.9 show that, for these two videos, there is a significant
difference between the longitudes of the user trajectories. Specifically, in ambisonics
and mono, the users’ trajectories for the Train (09) video, which includes salient visual
and audio information (i.e., fast-moving objects and loud engine noises), fluctuate in a
wide range; in contrast, the trajectories for the TelephoneTech (01) video, which does
not include such salient visual and audio cues, vary within a smaller range. It should
be noted that the trajectories for both of these videos are more dynamic in the mute
modality than in mono or ambisonics. In the absence of any audio cues, such as
loudness and direction, users tend to explore the environment more.
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(a) 01(ambisonics) (b) 01(mono) (c) 01(mute)

(d) 09(ambisonics) (e) 09(mono) (f) 09(mute)

Figure 4.9: Viewport Center Trajectories 2D Plot in the longitude direction over
TelephoneTech(01) and Train(09);

Each color represents a participant.

By comparing Figure 4.9 and 4.10, it can be seen that users’ movements in the
longitudinal direction are more predominant than those in the latitudinal direction when
watching ODVs under the three audio modalities in all categories. This finding confirms
the analyses presented in previous studies [18].
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(a) 01(ambisonics) (b) 01(mono) (c) 01(mute)

(d) 09(ambisonics) (e) 09(mono) (f) 09(mute)

Figure 4.10: Viewport Center Trajectories 2D Plot in the latitude direction over
TelephoneTech(01) and Train(09);

Each color represents a participant.

Finally, Figure 4.11 presents the VCTs in 3D space of the GymClass (03) video
from the category conversation and the Riptide (07) video from the category music.
The first video includes scenes of several people talking while participating in gym
classes, and the second video shows people singing in the center of the viewing area.
Overall, it can be seen that for different videos with the three audio modalities in differ-
ent categories, the users’ viewport trajectories are often different.

31



(a) 03(ambisonics) (b) 03(mono) (c) 03(mute)

(d) 07(ambisonics) (e) 07(mono) (f) 07(mute)

Figure 4.11: Viewport Center Trajectories 3D Plot over GymClass(03) and
Riptide(07);

Each color represents a participant.

4.2 Head Motion Statistics

To determine the users’ movement statistics, the metrics of angular distance and an-
gular velocity were adopted. First, the maximum angular distance that the users could
view over the sphere was calculated for each video under the three audio modalities
and for different segment lengths. In addition, to reveal the change in users’ naviga-
tion patterns and evaluate how fast the participants move their heads when watching
a given ODV, the users’ behavior was analyzed using the cumulative density function
(CDF) of angular speed and the mean angular velocity for each user for different audio
modalities and video categories.

4.2.1 Maximum Angular Distance

Figure 4.12 shows the CDF of the maximum angular distance within a time window
of 2s for each video under the three audio modalities. There are differences between
the distribution of all the videos with ambisonics, mono, and mute. For example, in
ambisonics, over 70% of users move their heads no more than π/2 radians from the
starting position within a time window of 2s. In mono and mute, this proportion is
around 78%. The reason is that the audio information gives users a deeper feeling of
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immersion.

The average angular distances for each video under the three audio modalities
were also calculated and are shown in the legends of Figure 4.12. The average an-
gular distance of the BigBang (12) video in ambisonics is the highest (0.44π), while
the value of the average angular distance of the Interview (02) video in ambisonics is
0.13π, which is the minimum. As suggested in [19], different segment lengths of 1 s, 2
s, 3 s, and 5 s were used to calculate the head motion statistics.

(a) Ambisonics (b) Mono (c) Mute

Figure 4.12: CDF of the maximum angular distance for each ODV under three audio
modalities. Average angular distance for each video is also shown in the legend.

Figure 4.13 shows the CDFs of the maximum angular distances during time win-
dows of 1 s, 2 s, 3 s, and 5 s for the BigBang(12) and Interview(02) videos under
the three audio modalities. Under ambisonics, 90% of users who watch the Inter-
view video do not move beyond π/2 within a 2 s time window, whereas over 30% of
users who watch the BigBang video move beyond π/2 within the same duration. Un-
der mono modality, the proportion of the users who move less than π/2 while watching
Interview(91%) video is similar to the proportion who move less than π/2 while watch-
ing BigBang (85%) video within a 2-second time window. Moreover, within a segment
duration of 5s, in the BigBang video, over 50% of users move more than π/2, whereas
in the Interview video, around 70% of users move less than π/2 within the same dura-
tion. Furthermore, in mute modality, the proportion of the users who move less than
π/2 while watching the Interview video is 90%, whereas for the BigBang video this
proportion is around 78%.
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(a) 12(ambisonics) (b) 12(mono) (c) 12(mute)

(d) 02(ambisonics) (e) 02(mono) (f) 02(mute)

Figure 4.13: CDF of the maximum angular distance over different segment lengths;
Top: BigBang (12); Bottom: Interview (02)

The analysis above confirms that the Interview video manages to drive users’ vi-
sual attention toward the salient subject in the viewing area, which is consistent with
the analysis in Section 4.1.1. More specifically, the Interview video contains salient
visual and audio information (i.e., human faces and voices), which leads to a high
level of consistency among users and lower angular distances than for the BigBang
video. In contrast, the BigBang video, which belongs to the environment category,
includes crowds, moving cars, and audio information from the surroundings, which
causes users to tend to look around (i.e., the angular distances are higher).

4.2.2 Angular Velocity

Figure 4.14 presents the CDFs of the angular velocities of participants’ head move-
ments while watching all the ODVs in the three content categories under ambisonics,
mono, and mute. In ambisonics, the angular velocity for the ODVs in the category
environment is higher than those in categories conversation and music. For example,
for ambisonics ODVs in the category environment, around 20% of the angular velocity
values are beyond 50 degrees/second, whereas the proportions for ambisonics ODVs
in the categories conversation and music are both about 15% (see Figure 4.14a).

Similarly, the proportion of users who have a high navigation speed in the cate-
gory environment is higher than those in the categories conversation and music under
mono and mute. This confirms that due to the lack of a main focus of attention in the
ODVs in the category environment, the participants tend to change their navigation
patterns more frequently and look around more than they do for ODVs in the cate-
gories conversation and music, without any influence of audio modalities.
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Moreover, for the mute modality, there are clear differences between the distri-
butions of the CDFs of the angular velocities of the three categories; whereas the
distributions for the mono and ambisonics modalities are similar to each other. This
shows that the audio information has a great effect on users’ navigation patterns when
watching different ODVs from different content categories.

(a) Ambisonics (b) Mono (c) Mute

Figure 4.14: CDF of the angular velocity of all the ODVs under ambisonics, mono,
and mute in three content categories

Figure 4.15 shows the mean angular velocity for each video, and Figure 4.16
shows the standard deviation. This analysis illustrates the dynamicity of users’ behav-
ior. The higher values indicate that users change their viewing direction more quickly.
For example, the BigBang video in ambisonics has the highest mean angular speed,
about 76 degrees/second, and the Interview video in mono has the lowest, 18 degrees/
second (see Figure 4.15). From both figures, it can be seen that under the three au-
dio modalities, the GymClass (3) video in the category conversation, the Philharmonic
(05) video in the category music, and the BigBang (12) video in the category environ-
ment have larger mean angular speed and standard deviation values than the other
ODVs, leading to more scattered navigation paths and more frequent viewing speed
adjustment. In contrast, for the Interview (02) video in the category conversation, the
BigBellTemple (08) video in the category music, and the Animation (10) video in the
category environment, participants tend to follow and immerse themselves in the VR
content, and thus the frequency of changes in the viewpoint center trajectories is lower.

Another observation is that, in the mute modality, each video has a higher mean
angular speed and standard deviation, which confirms that in this modality the par-
ticipants tend to explore the environment more and adjust the viewing speed more
frequently. The analysis above corresponds to the previous analysis in Section 4.1.1.
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Figure 4.15: Mean velocity for all videos with ambisonics, mono, mute.

Figure 4.16: Standard deviation of speed for all videos with ambisonics, mono, mute.

The overall distribution of users’ mean angular velocity for each video under the
three audio modalities is shown in Figure 4.17,4.18,4.19. It is worth noting that the
distributions of mean speed per user in the category conversation under ambisonics
and mono are more dispersed than under the mute modality. This shows that users
present more varied mean speeds when watching ODVs in the category conversation
in mute, which means that the participants exhibit a wider variety of navigation patterns
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than they do in mono and ambisonics. In contrast, there are no clear differences in the
distributions of users’ mean speed while watching ODVs in the categories music and
environment in the three audio modalities.

(a) Ambisonics (b) Mono (c) Mute

Figure 4.17: Boxplots per audio modality (ambisonics, mono, and mute) of mean
angular speed for each video in the category conversation

(a) Ambisonics (b) Mono (c) Mute

Figure 4.18: Boxplots per audio modality (ambisonics, mono, and mute) of mean
angular speed for each video in the category music

(a) Ambisonics (b) Mono (c) Mute

Figure 4.19: Boxplots per audio modality (ambisonics, mono, and mute) of mean
angular speed for each video in the category environment
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Here, two conclusions could be drawn:

• First, audio information, including audio direction and loudness, can influence
the consistency of users’ navigation patterns and behavior. More specifically,
more users tend to change the viewing direction at a similar speed in mono and
ambisonics than in mute – especially for ODVs in the category conversation,
most of the users adjust their viewing navigation patterns at a similar velocity in
mono and ambisonics. This finding illustrates that users are more sensitive to
human voices than to sounds produced by instruments(i.e., category music) or
vehicles(i.e., category environment);

• Second, users’ navigation patterns or behaviors are often different for different
kinds of video with different audio and visual information.
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5 Conclusion

The aim of this study is to examine how audio-visual information affects users’ behav-
ior while watching 360-degree videos in three audio modalities (mute, mono, and am-
bisonics) in three different content categories. An audio-visual dataset was collected
containing the VCTs from 45 participants and 12 ODVs. A comprehensive statistical
analysis was performed using several metrics to analyze the users’ behavior. From the
results, three main conclusions can be drawn:

• First, salient audio cues help attract users’ attention. The loudness and direction
of audio information help users track and find objects, even if the objects are not
located in the current viewing area. Moreover, salient visual cues attract users’
attention to the regions in which they are located;

• Second, the viewport center distributions of users under the mute, mono, and
ambisonics modalities are different from one another. In mute, the distribution
of users’ viewport center traces is more dispersed; in mono and ambisonics the
navigation paths of users are more concentrated. This shows that, in the ab-
sence of sound, users tend to be more dynamic than they are in the presence of
audio cues (loudness or direction);

• Third, differences in user behavior were also observed between the three cate-
gories (conversation, music, and environment). In ODVs in the category environ-
ment, users tend to look around and continuously change the viewing direction,
regardless of the audio information.
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6 Future Work

This dissertation contributes to the existing literature on the audio-visual perception of
ODVs. The research tries to answer the research question in detail and leaves out
room for further investigation.

Due to the limited time, there is room for further improvement in future work:

• The first thing could be improved is to design and conduct a new subjective
experiment, for example, more participants would be recruited in this experiment,
as is well known, more samples will help improve the accuracy of the analysis
results;

• The second part that can be improved is to develop an algorithm to explore and
predict the users’ navigation patterns.
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