
A Framework for Distributed Simulation of

Intelligent Transportation Systems

Amrish Arunachalam Kulasekaran

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (FNS)

Supervisor: Professor Vinny Cahill

Septemper 2020

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Amrish Arunachalam Kulasekaran

September 14, 2020

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Amrish Arunachalam Kulasekaran

September 14, 2020

Acknowledgments

I would like to thank Professor Vinny Cahill for his support and guidance throughout

this dissertation. The regular meetings, consistent advice helped me to stay on the

right course.

I would also like to thank the IT team of the School of Computer Science and Statistics

for their help to set up the remote server for this dissertation.

Finally, I would like to say a heartfelt thanks to my family and friends, especially my

mom and dad, for backing me every step of the way. I am eternally grateful for every

opportunity you have afforded me in life.

Amrish Arunachalam Kulasekaran

University of Dublin, Trinity College

Septemper 2020

iii

A Framework for Distributed Simulation of

Intelligent Transportation Systems

Amrish Arunachalam Kulasekaran, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Professor Vinny Cahill

Around the world, lots of countries and people face economical, social and environ-
mental impacts due to traffic congestion. The main reason for the congestion is the
increase in traffic demand and over traffic flow in a road network. An effective and
efficient solution against congestion is to utilize the road infrastructure to its full ca-
pacity. Intelligent Transportation helps (ITS) us to address congestion by continuously
monitoring and regulating the traffic flow. It achieves this by establishing cooperation
and coordination among the vehicles. These systems must be tested and evaluated in
a realistic simulation environment before real-world deployment.

The ITS simulation framework current present is purely based on vehicular network
simulation, and they lack to address distributed and real-time characteristics of ITS.
This dissertation introduces a framework consisting of only Carla simulator to perform
distributed ITS simulation. The feasibility of the proposed approach is evaluated by
simulating customised ITS application created by extending the designed framework.

Contents

Acknowledgments iii

Abstract iv

List of Figures viii

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Project Overview . 3

1.2.1 Intelligent Transportation System 3

1.2.2 Approach . 3

1.2.3 Research Aims . 4

1.2.4 Project Scope . 5

1.2.5 Benefits of this Research . 5

1.2.6 Road Map . 5

Chapter 2 Background 6

2.1 Intelligent Transportation System . 6

2.1.1 Architecture . 7

2.1.2 Vehicular Communication . 9

2.1.3 Cooperative Awareness Message (CAM) 11

2.1.4 Decentralized Environmental Notification Message

(DENM) . 11

2.2 Current State of the Art in ITS Simulation 11

2.2.1 Veins . 12

v

2.2.2 Extending Veins for ITS Application Simulation 13

2.3 Tools . 13

2.3.1 CARLA . 15

2.3.2 CARLAVIZ . 17

Chapter 3 Design 19

3.1 Design Decisions . 19

3.1.1 Limitations of previous work . 19

3.1.2 Requirements . 21

3.2 Proposed Design . 21

3.2.1 Why Carla . 21

3.2.2 Design of ITS Subsystem . 22

3.2.3 Design of Communication Component 22

3.2.4 ITS Simulation Performed by the Framework 23

Chapter 4 Implementation 26

4.1 Framework . 26

4.1.1 Configuring the Framework . 26

4.1.2 Component Architecture . 27

4.2 Extending the framework . 29

4.2.1 Vehicle Behaviour . 29

4.2.2 Roadside Infrastructure Behaviour 30

4.2.3 Adding Message Handler . 30

Chapter 5 Evaluation 31

5.1 Test Setup . 31

5.2 Scenario . 32

5.2.1 CAM Exchange . 32

5.2.2 DENM Exchange . 33

5.3 Discussion . 34

Chapter 6 Conclusion 35

6.1 Conclusion and Limitations . 35

6.2 Future work . 36

vi

Bibliography 37

Appendices 39

vii

List of Figures

1.1 Simulation Environment . 1

2.1 C-ITS Environment [1] . 7

2.2 ITS Station Reference Architecture . 8

2.3 European ITS communication sub-systems 10

2.4 Vehicular Communication Modes [2] 10

2.5 Flow Diagram of the simulation [3] . 14

2.6 Sequence diagram of messages exchanged between simulators [3] 14

2.7 class of TMC and CarApps [3] . 15

2.8 Carla Architecture [4] . 16

2.9 Configuration Modes Provided by Carla [4] 17

2.10 CarlaVIZ Visualisation Screenshot . 18

3.1 Design of Vehicle ITS Subsystem . 22

3.2 Design of Roadside ITS Subsystem . 23

3.3 Broadcast function code snippet . 24

3.4 Sequence diagram: Simulation Performed by the Framework 25

4.1 Component Architecture . 27

4.2 Code Snippet to Initialise The Framework 28

5.1 Test Setup . 32

1 Class Diagram of Helper Component 40

2 Class Diagram of Setup, Control and Communication Components . . . 41

3 Class Diagram of Vehicle Control Class 42

viii

4 Code Snippet of DEN Message Handler 43

5 Code Snippet of DEN Vehicle Behaviour 44

6 Code Snippet of DEN RSU Behaviour 45

7 Scene 1: initially moves in lane ’-7’ . 46

8 Scene 2: initiates lane change . 46

9 Scene 3: Changes the lane . 47

10 Scene 4: Reduces the speed . 47

ix

Chapter 1

Introduction

The dissertation presents a simulation framework for Intelligent Transportation System

(ITS). The novelty of the work is the framework distributes the computation of the

actor’s (vehicle and roadside infrastructure)mobility and behaviour models (i.e., the

actors involved in the simulation are distributed over the network) and establishes

communication via a socket. Carla [5], an autonomous driving simulator, serves as a

centralized simulation environment, and the actors are spawned in the simulation as

clients using the Application Programming Interface (API) provided by the framework.

Carla simulates the vehicle’s movement based on the vehicle control provided by its

mobility model. The distributed environment created by the framework looks similar

to figure 1.1.

.

Figure 1.1: Simulation Environment

1

1.1 Motivation

Transportation is essential for our economy and society. A country’s economic, social,

and political life depends upon an effective transport system. Transport is a cornerstone

of European integration and crucial for the free flow of citizens, services, and goods

to be served. It is also a significant contributor to the economy, accounting for about

664 billion Euros in Gross Value Added in 2017 (i.e. 5% of the total EU’s GVA) and

employed over 11 million people [6].

According to the “Statistical pocketbook 2019” of European Commission [6], 50.1% of

total freight transportation were made via roadways. Nearly 73% of passengers made

their journey through road and among them, almost 90% of them made the road trip by

car. These statistics help us to understand the importance of roadways. The increase

in traffic volume creates demand and eventually leads to traffic congestion across the

EU. Due to traffic congestion, a driver spends approximately 28 hours in traffic every

year. Additionally, it also creates environmental and economical impacts.

Traffic congestion usually occurs when traffic flow exceeds the road capacity. Many

factors can cause traffic congestion, but infrastructure stands at the top. A simple

traditional solution to reduce congestion is expanding the infrastructure. However,

this is not an effective or economically reasonable solution because one cannot keep on

extending as demand increases. Preferably, utilizing the infrastructure capacity to the

fullest is more efficient and rational.

ITS helps us to address congestion by continuously monitoring and regulating the

traffic flow. For instance, consider a junction with traffic signals that have fixed time

to switch signal. They are only effective for the ideal traffic flow, when the traffic flow

decreases the driver has to wait till green and the traffic signal creates congestion as the

traffic flow increases. On the other hand, ITS can help the traffic signals dynamically

adjust the switching time depending on the traffic flow.

ITS components are installed in the vehicles and along the roadside to collect traffic

data, guide and control the flow. Real-world traffic scenarios are complex, highly

dynamic. Because of these reasons, it must be tested and evaluated before real-world

deployment. Else, they may lead to a serious problem instead of avoiding congestion.

2

Including a simulator in the development cycle of ITS will help us to evaluate the

system in all possible scenarios by testing it in the simulation environment mirroring

real-world ITS. Using simulators to test and evaluate ITS is cost-effective and risk-free

compared to build a real-world test site.

1.2 Project Overview

1.2.1 Intelligent Transportation System

A set of different applications that use state-of-the-art technologies to monitor and

regulate the traffic flow are known as ITS. Throughout the world, many countries

have designed and developed ITS, and they have unique visions and goals to improve

infrastructure applying ITS. Despite counties having different perspective toward ITS,

they share the common goal to improve the current transportation infrastructure. This

dissertation follows the standards and architecture of ITS proposed by the European

Union [7].

1.2.2 Approach

To simulate the ITS, we need a road network, traffic infrastructure, mobility model to

control vehicle behaviour, traffic demand to generate traffic flow and network model to

create a communication infrastructure.

Traffic simulators like SUMO [8], PVT-Vissim [9], etc. can create road infrastructure

and simulate traffic flow based on demand and vehicle behaviour, but they do not

support communication between vehicles. On the other hand, network simulators like

ns3 [10], OMNET++ [11], etc. can create network infrastructure and simulated realistic

communication, but they do not support mobility. Therefore, traffic simulators and

network simulator should be coupled through a TCP link to create an ITS simulation

environment.

The above-mentioned simulators have to be extended for developing a customised TMS

like Cooperative Adaptive Cruise Control (CACC) [12], platooning, slot-based driving

[13], etc. For example, PLEXE [14] implemented a platooning application by extending

the Viens[3] framework (Viens is a vehicular network simulation framework created by

3

coupling SUMO and OMNET++). The framework to simulate the ITS environment

for developing TMS will be similar to the figure.

This framework performs space-continuous and time-discrete simulation (i.e. it up-

dates the simulation after every time step). After each time step, the traffic simulator

computes the behaviour of all vehicles based on the network simulation results to up-

date the vehicle states and generate movement trace. Then, it sends the movement

trace to network simulator. The network simulator updates the position of all nodes

based on the received movement trace, simulates the communication and sends the

result back to the traffic simulator. The sequence diagram in the figure illustrates this

process. The approach lacks implementing the distributive nature of ITS and can only

perform time-discrete simulation, but in real scenario time is continuous.

This dissertation introduces a framework that uses only Carla, autonomous driving

simulator for simulating ITS. The framework is created by extending the Client API

of Carla. Based on the traffic demand, vehicles are added as Carla client using the

framework. The distributed network formed by the clients creates the communication

infrastructure.

In the proposed approach, peer to peer socket communication is used to exchange

messages instead of simulating it. Each client node is responsible for its behaviour

computation based on the messages it receives. This framework is capable of performing

a time-continuous simulation with the help of Carla Server’s asynchronous mode. Thus,

it can be used to create a more realistic ITS simulation.

1.2.3 Research Aims

The research intends to design and develop a simulation framework for ITS, that cre-

ates a realistic and distributed simulation environment. The main motive is to help

developers to concentrate on developing and evaluating traffic management system

(TMS) models. Apart from the above, the specific objectives of this dissertation is

to evaluate the feasibility of the proposed approach by creating customised scenarios

using the designed framework

4

1.2.4 Project Scope

The dissertation focuses on designing a approach to developing a simulation frame-

work using only an autonomous driving simulator to create an environment closely

resembling real-world ITS. Especially focuses on simulating and evaluating an actor’s

behaviour while developing new traffic management systems in a distributed environ-

ment.

The framework distributes computation of the actor’s behaviour among several nodes

in a network and exchanges information between them through socket communication.

This dissertation is not concerned about implementing the network infrastructure or

underlying protocols involved in vehicular communication.

1.2.5 Benefits of this Research

The benefit of this research is to improve the testing and evaluation processes involved

while developing TMS and ITS.

1.2.6 Road Map

The rest of this dissertation is divided into four parts, starting with chapter 2 that

provides the necessary background information for this work and the state-of-the-art

simulation framework for testing ITS. Chapter 3 is about the design of the framework

and decisions that lead to the development of the proposed approach. The following

chapter explains the architecture of the framework and APIs provided for creating

custom scenarios using the framework. Chapter 5 will discuss the evaluation of the

framework. Finally, the dissertation concludes with an outline stating the pros and

cons of this work and future work to enhance the framework.

5

Chapter 2

Background

This chapter discusses the required background information needed for a better under-

standing of the proposed work. In the first section explains the overall architecture of

ITS and their components. The second section discusses the current state-of-the-art

techniques used to perform ITS simulation. At last, an overview of the tools used to

build the framework is given.

2.1 Intelligent Transportation System

The Intelligent Transportation Systems (ITS) comprises of different applications that

improve the safety, security and efficiency of transportation and provide a better driving

experience. ITS achieves this by gathering necessary data from the sensors or devices

placed in the infrastructure or vehicles. Initially, ITS only provided intelligence to

vehicles and roadside infrastructure, it was not able to share information between them

and make them cooperate to regulate the traffic. The European Commission introduced

the Cooperative Intelligent Transportation System as a new category of ITS [15]. In

which drivers, vehicles, passengers or road operators can directly interact with each

other or with the surrounding infrastructure and figure 2.1 illustrates a typical CITS

environment. CITS takes advantage of the communication and cooperation between

different actors and effectively regulate the traffic flow by exchanging information about

traffic jams, congestion, accidents.

6

.

Figure 2.1: C-ITS Environment [1]

2.1.1 Architecture

Intelligent Transportation System consists of four sub-systems or stations [7], that helps

transportation infrastructure to gain intelligence and real-world information . All the

Sub-Systems are made up of ITS Station (ITS-S), it may contain a single ITS-S or

network of ITS-S.

ITS Station Reference Architecture

The ITS Station is the base component upon which a sub-system is built and its refer-

ence architecture helps to understand the functionality of ITS Station. Its architecture

follows the principles of the OSI model[16] for the layered communication protocol,

and it is extended to include different ITS applications. In the figure 2.2,

• Access layer is responsible for the functionality of Physical and Data Link layers

• Network and Transport layer is responsible for the functionality of Network and

Transport layers

• Facilities layer is responsible for the functionality of Session, Presentation and

Application layers

7

• Application layer

• Management layer is responsible for managing the communication with the ITS

Station

• Security layer is responsible for providing security services to ITS Station and it

is also considered as a part of management entity.

.

Figure 2.2: ITS Station Reference Architecture

Functional Components of ITS Station

Based on their functionality, ITS Station can be divided into four sub-clauses [7]

• Host : It helps to run the ITS application

• Gateway : It helps to connect a ITS Station with the external propriety network.

Facilities layer helps to connect different protocols.

• Router : It helps to connect one ITS Station with another. Network and trans-

port layer helps to connect different ITS-S.

• Border Router : It is similar to router but it can also connect ITS-S with

external network.

8

ITS Sub-Systems

• Personal Sub-Systems/Station help us to access ITS applications or platform

through smartphones, Human Machine Interface or similar devices. They can be

used as a user interface for crowdsourcing, getting feedbacks or as an interface

for other sub-systems or station. Its internal network contains only ITS-S host.

• Roadside Sub-Systems/Station are placed along the roadside to collect real-

time traffic (e.g. traffic flow, volume, etc.) and environment (e.g. temperature,

wind speed, humidity, etc.) information, acts as a gateway or a router for other

ITS Sub-Systems and controls equipments like a traffic signal, electronic sign-

boards, etc to provide assistance to the drivers. Its internal network contains

ITS-S host, gateway, router and border router.

• Vehicle Sub-Systems or Station are installed in the vehicles and connected to

their proprietary vehicular network (e.g. CAN bus). They accumulate informa-

tion about the vehicle, their surrounding and drivers trip details. It can be used

to control the vehicle during an emergency situation. They provide the collected

information to the driver and other Sub-Systems. Its internal network contains

ITS-S host, gateway and router.

• Central Sub-Systems or Station are used to monitor the other Sub-System.

2.1.2 Vehicular Communication

As mentioned above, vehicular communication plays a vital role in ITS to establish co-

operativeness and sharing information. It is implemented using communication tech-

nology based on WAVE/IEEE 802.11p [17]. Depending on the Subsystem a vehicle

communicates with the modes are divided into three:

• Vehicle-to-Vehicle (V2V): In this mode it communicates with another vehicle.

• Vehicle-to-Roadside Infrastructure (V2R): In this mode it communicates

with the roadside infrastructure.

• Vehicle-to-Everything (V2X): In this mode it can communicate with device

in the traffic infrastructure.

9

.

Figure 2.3: European ITS communication sub-systems

.

Figure 2.4: Vehicular Communication Modes [2]

10

2.1.3 Cooperative Awareness Message (CAM)

Cooperative Awareness Message (CAM) [18] is a part of the basic cooperative services

that are available in all ITS Stations. CAM is similar to a beacon that is exchanged

between an ITS-S and its neighbours to make them aware of their surrounding environ-

ment and to enable cooperativness between them. CAM is generated and transmitted

periodically but the frequecy is determined by the generating station.

The content provided by a CAM may vary depending on ITS-S type by all the messages

contains the reference position, status and type of the station generating the message.

CAM is only transmitted to the stations that are within the communication range of

the orginating station and they are not forwarded to other stations once received.

2.1.4 Decentralized Environmental Notification Message

(DENM)

Decentralized Environmental Notification Message (DENM) [1] is a part of basic coop-

erative service to support the Road Hazard Warning (RHW) application and available

in all the ITS stations. DENM is used to notify and warn ITS Stations and users

about events that are hazardous to the traffic flow (i.e. vehicle breakdown, accident,

lane status, etc..). ITS application triggers and generates DENM upon the occurrence

of an event. DENM transmission is repeated and lasts until the triggered event is

resolved. A DENM broadcast is terminated once the predefined time limit set by CA

service expires or by the ITS application that triggered the DENM.

The DENM contains information about the event that triggered it along with the type

and location of the event. DENM are broadcasted through vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure communication. Once received, a station forwards the

DENM to other stations and only shows the relevant notifications to the driver.

2.2 Current State of the Art in ITS Simulation

Veins is a popular vehicular network simulation framework researchers use for ITS

simulation and evaluation. In this paper [19], they created an C-ITS applications

by extending it to evaluate the application’s Quality of Service (QoS). An overview

11

of Viens and its simulation technique is briefly described in the next section before

discussing the paper.

2.2.1 Veins

Viens is a simulation framework that performs vehicular communication simulation.

It uses OMNET++, discrete-event network simulator and SUMO, discrete-time traffic

simulator and binds them using Traffic Control Interface (TraCI) a protocol based on

TCP socket. Veins simulate both OMNET++ and SUMO parallelly, and TraCI creates

a bidirectional-coupling and make the simulators interact with each other.

SUMO simulate traffic based on the demand and generates movement trace and sends it

to OMNET++. Then, the network simulator updates all the nodes based on the move-

ment trace simulates communication and sends back the simulation result to SUMO.

Viens implemented vehicle and roadside ITS subsystem as network entities to per-

form vehicular communication. Each entity contains three components and they are

extended to create new ITS application, the components are

• Network Interface Card (NIC): It implements protocols and stack required

vehicular communication

• Mobility: It is responsible for the mobility of the network entity, it configures

the position based on the movement trace for a vehicle or a static position for

RSU

• Application: It implements application, that generates and shares message

based traffic information to perform a basic simulation.

Bidirectionally Coupled Simulation

Viens extended both the simulators and added a communication model to exchange

and buffer commands and messages (e.g., simulation results, movement trace).

Since OMNET++ is a discrete-event simulator, it should be triggered to perform the

simulation. The framework schedules a trigger at a regular interval to update the node

movement and perform the simulation. It follows the same trigger approach for SUMO,

12

as it is a discrete-time simulator the approach suits well. The communication module

buffers any messages received by the simulators until the next trigger.

At each time step, OMNET++ sends the simulation result as commands and trigger

to SUMO, then SUMO performs traffic simulation. After the simulation, SUMO sends

the generated movement trace back to OMNET++ and waits for the next trigger.

This way OMNET++ updates the position of all the nodes based on the movement

trace received from SUMO and performs simulation until the next trigger. During the

simulation, OMNET++ makes its nodes interact with inter-vehicle communication

and reassign their attributes (e.g., speed, route). In this process, SUMO computes the

behaviour of each vehicle in the traffic based on the attributes (e.g., speed, route) of

the corresponding nodes. Figures 2.5 and 2.6 illustrates the entire process.

2.2.2 Extending Veins for ITS Application Simulation

Veins is extended to implement multiple ITS application to evaluate the QoS of the

message broadcasting model. The applications implemented are:

• Hazard warning (HW), an event-driven road Safety application

• Dynamic speed limit (DSL), a traffic management application

First, they create the Traffic Manager Control (TMC) application entity class, it is

inherited from BaseWAVEApplLayer class. Then they override the custom application

component of Veins RSU with TMC. Now, Veins RSU is customised to send HW and

DSL messages. Likewise, the application component of the vehicle entity is overridden

with CarApps class. Now, Venis is fully extended and ready for the ITS simulation

2.3 Tools

This section discusses the various tools used by the framework to perform the simula-

tion. The framework uses Carla Server as a simulation engine and CarlaViz to visualize

the entire simulation in a webpage.

13

.

Figure 2.5: Flow Diagram of the simulation [3]

.

Figure 2.6: Sequence diagram of messages exchanged between simulators [3]

14

.

Figure 2.7: class of TMC and CarApps [3]

2.3.1 CARLA

“CARLA is an open-source autonomous driving simulator” [4]. It provides a set of API

to perform autonomous driving simulation and build as a tool to help researchers and

companies to “democratize autonomous driving RD” [4]. It used the Unreal Engine

to compute physics and perform simulation and follows the OpenDRIVE standard to

design road network and related settings. The simulation performed by the Unreal

Engine is controlled by its API provided by Carla in Python and C++. Apart from

autonomous driving RD, this is a great tool to simulate mobility.

Architecture

Carla is built based on a client-server architecture pattern. The server is coupled

with the Unreal Engine, and it holds sole responsibility for simulation (i.e., physic

computation, sensor and scene rendering are performed). The server is divided into

two components based on the elements they control in the simulation. The figure 2.8

illustrates the architecture of Carla.

• World Server: This component is responsible for creating the simulation

environment. This includes the building, road network, actors (vehicles, sensors

and other static properties) etc. It is used to initiates sessions to perform the

simulation. Once, initiated it sets the simulation world where actors can be

placed.

15

• Agent Server: This component is responsible for the simulating actors. It

provides two threads, Control Thread (It receives commands for simulation from

a client) and Measurements Thread (It streams the live sensor data from the

simulation).

The Carla Server only creates the platform and provides the infrastructure for per-

forming the simulation. The behaviour of all the element is controlled by the Carla

Client. A user can gain complete control over an actor, starting from creating it and

controlling their behaviour throughout their lifetime.

.

Figure 2.8: Carla Architecture [4]

16

Client-server synchrony

This section explains about different modes of communication between a client and the

server. The server runs in Asynchronous mode by default. In this mode, it simulates as

fast as possible without does not wait for any client. On the other hand, in Synchronous

mode, the server waits for the client. It proceeds to simulate only if the client gives

the signal to do it.

The client can also control the simulation time-step. By default, the server does not

follow a fixed time gap, it is called ”Variable time-step”. The time gap depends on

the computation and rendering of physic. The simulation time-step can be fixed by

a client. Based on this the server can perform a time-continuous and time-discrete

simulation. The figure 2.10 shows all the configuration modes provided by Carla.

.

Figure 2.9: Configuration Modes Provided by Carla [4]

2.3.2 CARLAVIZ

Carlaviz is a visualization plugin developed for Carla to view the simulation environ-

ment through a web browser. It streams the world created by the server along with

the actors (i.e. Vehicles and pedestrians) living in them and updates their status on

the air. Along with this, it streams data from the sensors and visualizes using tables

and graphs. Added to this, Carlaviz also allows users to draw texts, points and lines

on the visualization. The figure is the sample screenshot of the visualization.

17

.

Figure 2.10: CarlaVIZ Visualisation Screenshot

18

Chapter 3

Design

This chapter discusses the design of the proposed approach in detail. The first section,

explains the limitations in the state-of-the-art approach, and a set of requirements is

extracted from that. The second section describes the overall design of the framework.

The last part reviews the design.

3.1 Design Decisions

This section formulates a set of requirements for the proposed design. It is done

by reviewing the state-of-the-art explained by the previous chapter and finding the

limitations.

3.1.1 Limitations of previous work

In the state-of-the-art section, the ITS application is simulated by extending a frame-

work designed to simulate a vehicular network. The ITS simulation is about simulat-

ing and evaluating the coordinative and cooperative behaviour of actors. The message

sharing is needed only to establish this behaviour. The approach performs a realis-

tic simulation from the network perspective but lacks to implement the distributive

and real-time characteristics of ITS. These characteristics have a great impact on the

behaviour of actors. This is followed by the limitations of this approach.

19

centralised behaviour computation

The traffic simulator of Veins is responsible for the computation of the behaviour of

the vehicles in the simulation. Once the traffic simulation is triggered, it starts the

computation loop. For each iteration, the behaviour of a vehicle is decided based on

the attribute of the corresponding node in the network simulator. The traffic simulator

updates the simulation after the loop is complete.

In reality, all the vehicles are independent and responsible for computing their be-

haviour based on the message it receives. It changes the trajectory as soon as it

receives the message.

The traffic simulator does not update the vehicle behaviour as soon as it receives the

message, and this is because of the centralised computation.

Message receiving and behaviour computation process are divided

Aforementioned, the vehicle changes behaviour based on the message it receives. It

involves two processes to achieve this one receiving the message and computing the

behaviour.

In the state-of-the-art approach, the processes are divided between simulator. The

network simulator receives or broadcasts a message. The traffic simulator computes

the behaviour.

Time-discrete simulation

The state-of-the approach uses a scheduled timer to trigger the network simulator, and

then the network simulator triggers the traffic simulator. The trigger is introduced

to establish synchronization among the simulator. The approach makes the entire

simulation time-discrete, but in real scenario time is continuous.

Apart from the above-mentioned limitations, one more issue is the developers have to

understand both the simulators to extend the framework for creating an ITS applica-

tion. This increases the complexity of the approach.

20

3.1.2 Requirements

Based on the limitations discusses in the above section, the requiremens set for the

proposed design are:

• The computation of the actors should be distributed to implement the distributed

characteristic of ITS

• The actor should be able to compute its behaviour and exchange messages from

the same node.

• The complexity involved should be reduced

3.2 Proposed Design

The framework is developed by extending the Carla python API for creating an ve-

hicle and Roadside ITS Subsystem. Using the Carla multi-client support developers

can spawn multiple ego vehicles to generate traffic and roadside unit to the simulation

server. Before explaining how it performs ITS simulation. Let us discuss the motive

behind using Carla,the design of vehicle and Roadside ITS Subsystem and communi-

cation component in the framework.

3.2.1 Why Carla

The motive behind choosing Carla are:

• Carla’s robust and scalable client-server architecture, this allows us to implement

the distributive nature of the ITS.

• Carla Client’s domination over the computation of the behaviour of the actor

it spawned, the server simulates the actors and updates their states based on

control commands sent by the client.

• Carla can perform both time-continuous and time-discrete simulation based on

its client-server synchrony mode.

• Carla’s web plugin CarlaViz helps us to visualize the entire simulation through

live streams. This helps to visually evaluate the whole simulation.

21

3.2.2 Design of ITS Subsystem

Design of Vehicle

.

Figure 3.1: Design of Vehicle ITS Subsystem

Aforementioned, a vehicle ITS-S installed in vehicles as On Board Unit (OBU). ITS-S

host runs the application to control the OBU, it uses IST-S gateway to gather vehi-

cle information for the proprietary vehicular network, and ITS-S router shares it with

other Subsystems. Likewise, the framework uses Carla client to collect the ego vehicle

information and a communication module shares it with other Carla Client. Addi-

tionally, a behaviour Agent controls the behaviour of the ego vehicle. The framework

provides a waypoint navigation based driving agent to support the ego vehicle mobility

as a sub-component of behaviour agent.

Design of Roadside Infrastructure

Roadside infrastructure is standalone devices placed along the road as Road Side Unit

(RSU), to control traffic. ITS-S host runs the application to control the RSU. It uses

ITS-S router and ITS-S gateway to communicate with other Subsystems and traffic

infrastructure (e.g., traffic signal, digital display boards). Similarly, the framework uses

the communication module to communicate with the ego vehicle and control module

to control the RSU.

3.2.3 Design of Communication Component

Aforementioned, peer to peer socket communication is performed to share messages be-

tween actors. Each actor spawned in the simulation has an attribute called “role name”,

22

.

Figure 3.2: Design of Roadside ITS Subsystem

and the framework assigns this attribute with a string combining the Internet Protocol

(IP) address and hosts of the actor’s socket server (e.g., “role name” = “ip:host”).

The communication module considers the simulation world created by Carla as a live-

map. Before broadcasting a message, it retrieves all the actors “role name” attribute

from the world and sends the message to the actor’s socket server.

To broadcast a message only within a filter is created. The role of the filter is to

retrieve the “role name” of the actors within a mentioned range. The filtering is done

based on the actor’s location in the world. For instance, consider an RSU that has

a communication radius of 200 meters and it needs to broadcast a message. The

communication module uses the filter to get the “role name” of actors within a 200-

meter radius of the RSU and broadcasts the message only to those actors. The figure

3.3 below is the code snippet of the broadcasting function and “isInRange” is the filter

function.

3.2.4 ITS Simulation Performed by the Framework

The entire design has three main components, the Carla server that takes care of the

simulation, the Client that controls the behaviour of actors and the CarlaViz that

visualizes the entire thing.

For instance, consider an RSU is broadcasting a lane closed message and three vehi-

cles moving towards it. The RSU broadcasts the lane change message throughout its

life-time. The vehicles spawned at a random location will be moving in its planned

path using waypoint navigation until they enter the communication range of RSU.

23

.

Figure 3.3: Broadcast function code snippet

Once a vehicle enters the communication range, it receives the message and changes its

path based on the lane id. The sequence diagram in the figure illustrates the message

broadcasted by the RSU is only received by the vehicle only when it enters the commu-

nication range. Apart from this, the figure shows that the vehicle and RSU behaviour

computation is carried out separately by their respective clients, and they coordinate

by sending messages.

24

.

Figure 3.4: Sequence diagram: Simulation Performed by the Framework

25

Chapter 4

Implementation

First part of this chapter . Starting with its component architecture, followed by a flow

diagram and at last, it tells how to extend this framework by adding message handlers

and behaviour agent for both vehicle and roadside infrastructure for creating new ITS

application.

4.1 Framework

It is a ITS simulation framework written in Python to spawn vehicle and roadside ITS

subsystem in Carla simulator, It takes care of creating and maintaining the life-time

of the actors in the simulation and provides extensions to customise the behaviour of

the actors and messages to interact with other actors.

4.1.1 Configuring the Framework

A set of key-value pairs configures the framework and the spawned actor, and they are:

• CarlaHost: This is a required property to provide the IP address of Carla

server.

• CarlaPort: This is a required property to provide the port of Carla server.

• Port: This is a required property to provide the port of actors socket server.

26

• Type: This is a required property, and based on this the framework spawns a

vehicle or RSU in the Carla server. It should be either Vehicle or RSU.

• CommunicationRange: This is a required property, and based on this the

communication of the actor is set.

• ActorSpawning: This is an optional property, and based on the spawn point

of the actor is determined. The actor is spawned at a random location if the

value is not available.

• ActorDestination: This is an optional property. Based on this the vehicle

destination is decided. The destination is selected at random if the value is not

available.

4.1.2 Component Architecture

.

Figure 4.1: Component Architecture

27

The framework has four components are they are divided based on functionality. The

figure 4.1 is the component architecture of the framework and the entire class diagram

is available in the appendix.

Setup Component

The responsibility of this component is to set up the entire framework to spawn the

actor in the Carla server. It has only one class called “Setup” that acts as the entry

point for the framework. The code snippet in the figure 4.2 shows how to initialise

the framework.The responsibility of “Setup class” is to create Carla Client instance,

initialise the states and global variables.

.

Figure 4.2: Code Snippet to Initialise The Framework

Control Component

This component is responsible for creating, spawning and maintaining the lifetime and

controlling the actor. This component separate control class for RSU and vehicle called

“VehicleControl” and “RSUControl”. The “VehicleControl Class” has a driver agent

that acts as the mobility model for the vehicle and the agent is based on waypoint

navigation.

Communication Component

This component is responsible for broadcasting and receiving messages. It plays a vital

role in establishing the coordination and cooperation between the actors. At this stage,

the component only supports one-hop communication.

28

The “Receiver class” receivers the message and pushes it to their respective message

handlers based on its type. This class is responsible for initing and maintaining the

lifetime of the socket server.

The “BroadCaster Class” broadcasts the message to other actors within the assigned

communication range. It provides V2V, V2R and V2X communication modes and

based on the mode it filters the actors and sends the message to them.

Helper Component

This component provides support functioning of the framework. It has two classes,

they are:

• Container Class: It is a singleton class that holds the states of the actor,

simulation world and map throughout the life-time of the actor. Additionally, it

holds the metadata of “Broadcaster class” and message handler classes. It also

holds a key-value dictionary property to store the handled messages, and it can

be retrieved by other components when needed.

• CarlaPainter Class: It is used to create a client instance for CarlaViz and draw

additional features to the visualization. It allows actors to draw text, point and

lines.

4.2 Extending the framework

The framework provides extensions for certain sub-component to customize it. The

decorator design pattern [20] is used to add the customized component to the framework

with affecting its behaviour. This way, users can easily customize by just creating a

class and adding the decorator at the top of the class name. The rest of the explains how

to add message handlers to the communication module and customise the behaviour

of the vehicle and RSU.

4.2.1 Vehicle Behaviour

The behaviour of the vehicle is controlled by the driver agent of the framework. To

customise, it the “BasicVehicleAgent class” should be overridden using the “@drivin-

29

gAgent” decorator.

First, a behaviour class is created inheriting from “BaseVehicleAgent class”. The

behaviour logic is written inside the “RunStep” abstract function. After creating,

the decorator is added at the top. The decorator adds the customised agent to the

framework to control the vehicle behaviour.

4.2.2 Roadside Infrastructure Behaviour

The framework does not provide any behaviour agent for RSU. The behaviour agent

class is added to the framework using “@rsuAgent” decorator.

First, a behaviour class is created inheriting from “BaseRsuAgent class”. The be-

haviour logic is written inside the “RunStep” abstract function. After creating, the

decorator is added at the top. The decorator adds the customised agent to the frame-

work to control the RSU behaviour.

4.2.3 Adding Message Handler

The behaviour of actors depends on the message they receive. The framework has

a collection of handlers to receive, process and stores the messages in the container

class and later it can be retrieved by the agent class to compute logic based on the

message. Any new message handlers can be added to the framework using “@addRx-

Handler(‘MessageType’)” decorator, where MessageType is the type of the message

the class handles. (e.g., “@addRxHandler(‘DENM’)” for handling DENM message).

First, a handler class is created inheriting from “BaseRxHandler class”. The handling

logic is written inside the “Main” abstract function. After creating, the decorator is

added at the top. The decorator adds it to the handler collection in the communication

module.

30

Chapter 5

Evaluation

This chapter discusses the process of testing the framework and evaluating the same.

The scope of the evaluative is to ensure the feasibility of the proposed approach and

measure the effort involved in extending the framework to create new ITS application

and simulate it. For testing two scenarios simulation and each scenario is based on

a different application. An overview of the testing infrastructure is discussed before

explaining the scenarios.

5.1 Test Setup

For testing, a distributed network is built. The Carla server runs in a machine located

at the Trinity College Dublin Linux lab at South Leinster Street. To run the Client

(i.e. to spawn the actors) an AWS Linux EC2 instance and Lenovo laptop were used

and a separate Linux EC2 instance to run CarlaViz server.

In both, the scenario, three vehicles and three roadside unit were spawned from two

client nodes (i.e., two RSU and one vehicle form EC2 instance and two vehicles and

one RSU from the laptop). The figure illustrates the entire setup.

31

.

Figure 5.1: Test Setup

5.2 Scenario

5.2.1 CAM Exchange

The motive for simulating this scenario is to test the performance of the communica-

tion module to establish vehicular communication between vehicle and RSU. In this

scenario, the CAM message is exchanged between all the actors. Once received, the

actor displays the message using the CarlaViz “draw text” function. The content for

the CAM message used in this scenario is a string combining the actor’s “role name”

and “id” attribute. The code snippets of this scenario is available in appendix.

Implementation

• To create a custom behaviour for RSU to broadcast its “role name” and “id” at-

tribute as CAM and to display the received message using CarlaViz, “CamRSU”

behaviour class is created by inheriting “BaseRsuAgent” class and then override

32

the “BaseBehaviour” class with “CamRSU” by adding the decorator “@rsuA-

gent”.

• To make the vehicles receive the CAM, “CaMsgHandler” class is created by

inheriting “BaseRxHandler” class and added to the framework using “@addRx-

Handler”.

• To create a custom behaviour for Vehicles to broadcast its “role name” and “id”

attribute as CAM and to display the received message using CarlaViz, “CamVe-

hicle” behaviour class is created by inheriting “BaseVehicleAgent” class and then

override the “BaseBehaviour” class with “CamVehicle” by adding the decorator

“@rsuAgent”.

5.2.2 DENM Exchange

The motive of this scenario is to create a sample ITS safety application that sends

hazard warnings. It sends lane status and speed limit messages. Two RSU broadcast

the lane status message and the third broadcast the speed limit message. In this

scenario, vehicles behave according to the DENM it receives from the RSU. The path

and speed of the vehicle is visualized using CarlaViz to evaluate the behaviour. The

code snippets of this scenario is available in appendix.

Implementation

• To create a custom behaviour for RSU to broadcast lanchange and speed limit

messages as DENM, “DenmRSU” behaviour class is created by inheriting “BaseR-

suAgent” class and then override the “BaseBehaviour” class with “DenRSU” by

adding the decorator “@rsuAgent”. As three RSU broadcast different message

all have different behaviour and three classes are created.

• To make the vehicles receive the DENM, “DenMsgHandler” class is created by

inheriting “BaseRxHandler” class and added to the framework using “@addRx-

Handler”.

• To create a custom behaviour for a vehicle to receive DENM and act accordingly

and visualize its path and speed using CarlaViz, “DenmVehicle” behaviour class

33

is created by inheriting “BaseVehicleAgent” class and then override the “Base-

Behaviour” class with “DenmVehicle” by adding the decorator “@rsuAgent”.

5.3 Discussion

Since the framework does not have an evaluation component, visualization provided

by the CarlaViz is used to evaluate both the scenarios.

The screenshots of DENM scenarios in the appendix shows the message exchange and

cooperation between actors. The basic aspect of ITS is to improve the safety and

driving experience by establishing cooperation among the traffic. Thus based on the

screenshots of the scenario visualization and the test setup made, we can conclude that

the proposed method is feasible to perform a distributed ITS simulation.

The decorator design pattern followed in the framework helps it to extend it without

altering the flow and behaviour of the. The developer has to create handlers and

behaviour classes according to their need. This approach allows developers to create

an ITS application with a little knowledge about the framework. Thus we can conclude,

the framework can be easily extended.

34

Chapter 6

Conclusion

6.1 Conclusion and Limitations

This dissertation presents a distributive approach for ITS simulation and implements

it by designing a framework extended from the Carla Client API. It is designed based

on the limitations of the current state-of-the-art ITS simulation approach.

Chapter 3 reveals that the state-of-the-art approach is designed based on the vehicular

network simulation and lacks implementing distributive and real-time characteristics

of the ITS. Based on the limitations, a set of requirements are created for the proposed

approach. In the later part of the chapter, the design ideas of the proposed approach

and compares it through a discussion.

The framework developed based on the proposed design is evaluated in Chapter 5. The

scope of the evaluation is to check the feasibility of the approach and flexibility provided

by the framework to extend it and simulate ITS applications. The results both the

scenarios are favourable to the approach indicating the motive behind designing the

scenario is achieved simulating using the framework. In the end, it became evident

that the approach is indeed feasible.

Though, the framework performed a distributed simulation of an extended ITS appli-

cation. It has certain limitations, they are:

35

• The distributed network to perform the simulation should be created manually.

This including installing and running the framework in all client nodes, Carla

simulator in the server node and CarlaViz in a client node.

• The communication module can only perform single-hop communication. This is

a big limitation while simulating safety application, but a workaround approach

can be created by adding message handlers with certain protocols.

• The performance of nodes can affect the performance of the simulation. A

workaround approach is to make use of the synchronous mode of Carla server.

6.2 Future work

The designed framework was able to perform the distributed ITS simulation and imple-

mented the distributed and real-time characteristics of ITS. The framework is designed

as a proof of concept for the approach and there are many this to be considered to

improve the framework and the import things are mentioned below

• Adding an evaluation component. The current design only provides the visualiza-

tion using CarlaViz to evaluate the behaviour. Addition of performance metrics

for both actors and ITS environment will improve the evaluation process.

• Creating an interactive dashboard that controls the simulation environment and

visualize evaluation matrices.

• The communication component only supports single-hop communication. It

should be improved to support various protocols.

36

Bibliography

[1] ETSI, “Intelligent transport systems (its);vehicular communications; basic set of

applications; part 3: Specifications of decentralized environmental notification

basic service,” EN 302 637-3 V1.2.1 (2014-09).

[2] F. Arena and G. Pau, “An overview of vehicular communications,” Future Inter-

net, vol. 11, p. 27, 01 2019.

[3] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network and

Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on Mo-

bile Computing (TMC), vol. 10, pp. 3–15, January 2011.

[4] Carla, “Carla simulator documentation,” https://carla.readthedocs.io/en/latest/.

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” arXiv preprint arXiv:1711.03938, 2017.

[6] “Statistical pocketbook 2019,” Mobility and Transport - European Commission,

May 2020.

[7] ETSI, “Intelligent transport systems (its); communications architecture,” ETSI

EN 302 665 V1.1.1 (2010-09).

[8] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,

R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic

traffic simulation using sumo,” in The 21st IEEE International Conference on

Intelligent Transportation Systems, IEEE, 2018.

[9] N. E. Lownes and R. B. Machemehl, “Vissim: A multi-parameter sensitivity anal-

37

ysis,” in Proceedings of the 38th Conference on Winter Simulation, WSC ’06,

p. 1406–1413, Winter Simulation Conference, 2006.

[10] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator, pp. 15–34. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010.

[11] A. Varga, OMNeT++, pp. 35–59. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010.

[12] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw, and H. Nijmeijer,

“Design and experimental evaluation of cooperative adaptive cruise control,” in

2011 14th International IEEE Conference on Intelligent Transportation Systems

(ITSC), pp. 260–265, 2011.

[13] D. Marinescu, J. Čurn, M. Bouroche, and V. Cahill, “On-ramp traffic merging

using cooperative intelligent vehicles: A slot-based approach,” in 2012 15th In-

ternational IEEE Conference on Intelligent Transportation Systems, pp. 900–906,

2012.

[14] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R. Lo Cigno,

“PLEXE: A Platooning Extension for Veins,” in 6th IEEE Vehicular Network-

ing Conference (VNC 2014), (Paderborn, Germany), pp. 53–60, IEEE, 12 2014.

[15] M. Alam, J. Ferreira, and J. Fonseca, “Introduction to intelligent transportation

systems,” Intelligent Transportation Systems Studies in Systems, Decision and

Control, p. 1–17, 2016.

[16] “Information technology - open systems interconnection - basic reference model:

The basic model,” ISO/IEC 7498-1, 1994.

[17] D. Jiang and L. Delgrossi, “Ieee 802.11p: Towards an international standard for

wireless access in vehicular environments,” in VTC Spring 2008 - IEEE Vehicular

Technology Conference, pp. 2036–2040, 2008.

[18] ETSI, “Intelligent transport systems (its);vehicular communications; basic set of

applications; part 2: Specification of cooperative awareness basic service,” EN 302

637-2 V1.3.1 (2014-09).

[19] M. Karoui, M. Kassab, H. Aniss, and M. Berbineau, “Enhance veins simulator

38

for realistic evaluation scenarios,” in International Workshop on Communication

Technologies for Vehicles, pp. 128–140, Springer, 2017.

[20] R. Guru, “Decorator design pattern,” https://refactoring.guru/design-

patterns/decorator.

39

Appendix 1

This appendix contains the class diagram of the framework. It is divided into three

parts:

.

Figure 1: Class Diagram of Helper Component

40

.

Figure 2: Class Diagram of Setup, Control and Communication Components

41

.

Figure 3: Class Diagram of Vehicle Control Class

42

Appendix 2

This appendix contains code snippets of the two scenarios implemented by extending

the designed framework

.

Figure 4: Code Snippet of DEN Message Handler

43

.

Figure 5: Code Snippet of DEN Vehicle Behaviour

44

.

Figure 6: Code Snippet of DEN RSU Behaviour

45

Appendix 3

This appendix contains screen shot of the DENM exchange scenario. In this simulation

the vehicle initially moves in lane “-7” and when it comes in the communication range

of RSU, it receives the lane closes message and it initiates lane change and moves to

lane “-6” and at last when it comes near last RSU, it receives speed limit warning and

reduces the speed

.

Figure 7: Scene 1: initially moves in lane ’-7’

.

Figure 8: Scene 2: initiates lane change

46

.

Figure 9: Scene 3: Changes the lane

.

Figure 10: Scene 4: Reduces the speed

47

Appendix 3

• Project git repository : https://github.com/amrishAK/ITS-Simulation-Framework

• Installing Carla : https://carla.readthedocs.io/en/latest/start quickstart/

• Installing CarlaViz: https://carla.readthedocs.io/en/latest/plugins carlaviz/

48

