
Investigating the Effects of Double Deep

Q-Learning in Video Game Environment

Kanika Ghiloria

B.Tech (IT)

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: Vincent Wade

Co-Supervisor: Hossein Javidnia

September 2020

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Kanika Ghiloria

September 7, 2020

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Kanika Ghiloria

September 7, 2020

Acknowledgments

I would like to express my gratitude to the following people without whom this disser-

tation would not have been a success.

First and foremost, I want to thank my supervisor Professor Vincent Wade for letting

me be a part of such an amazing project and steering me towards this research area.

A heartfelt thanks to my co-supervisor Dr. Hossein Javidnia for his constant guidance,

support and patience throughout this dissertation.

A big thanks to my family for their everlasting support and faith in me.

Lastly, I would like to thank my friends for their help and guidance whenever I needed

it.

Kanika Ghiloria

University of Dublin, Trinity College

September 2020

iii

Investigating the Effects of Double Deep

Q-Learning in Video Game Environment

Kanika Ghiloria, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Vincent Wade

Over the past decade, the advancement of Deep Reinforcement Learning (DRL) has
shown a great potential towards creating autonomous systems capable of understand-
ing the surrounding world without supervision. This dissertation aims at examining
the performance of Double Deep Q-Learning (DDQN) and Deep Q-Learning (DQN)
techniques with different epsilon decay strategies on the learning and performance of a
RL agent in a video gaming environment. Three AI agents including Deep-Q Network
(baseline model) using decaying epsilon greedy strategy, Backward Q-Learning using
greedy approach and Double Deep Q-Learning using sinusoidal exploration decay are
trained and evaluated in different environments of a popular arcade-style game called
Flappy Bird. The performance of the agents are measured using standard metrics such
as maximum/average score and number of training iterations to achieve the best score.

Summary

The advancement of Reinforcement Learning (RL) techniques over the past decade has

shown a significant potential in a wide range of applications such as robotic, indus-

trial automation and business strategy planning. Over the past couple of years, video

games have become a popular testing platform for efficiency analysis of such systems.

The similarities (such as passing the obstacles, avoiding negative actions and adapt-

ing to new challenges and environments) between the real world and the video game

environments have made video games a prevalent choice as test-beds.

This dissertation focuses on the ongoing research in Deep Reinforcement Learning

(DRL), specifically towards the model free learning algorithms. It begins with an

introduction to the general field of RL followed by a review of some of the state of the

art DRL algorithms.

An experimental study is further conducted to investigate the effects of different

DRL algorithms and exploration - exploitation balancing techniques in a state-of-the-

art video game environment called Flappy Bird. Three DRL algorithms with different

exploration decaying strategies are used to create the following AI agents:

• DQN agent (Deep Q-Learning with decaying epsilon greedy strategy).

• Q-Learning agent (Q-Learning with greedy approach).

• DDQN agent (Double Deep Q-Learning with sinusoidal exploration decay strat-

egy).

v

The training and testing environments are designed based on four models with

varying difficulty levels. The DRL agents are trained in the training environment and

their performance is evaluated in both training and testing environments based on

three performance criteria: Maximum Score, Average Score and Number of Training

Iterations. The main goal is to examine the effects of DDQN algorithm with Sinu-

soidal exploration on the performance of the agent compared to that of standard DQN

algorithm with Decaying epsilon greedy strategy.

A comparative study between the agents’ performance concluded that the DDQN

agent converged to the optimal policy much faster and achieved higher scores an all

the environments.

The implementations of the networks and models discussed in this thesis can be

found at: https://github.com/kanikaghiloria/DeepRL_DQN_DDQN/

vi

https://github.com/kanikaghiloria/DeepRL_DQN_DDQN/

Contents

Acknowledgments iii

Abstract iv

Summary v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Reinforcement Learning . 1

1.2 Thesis Objective and Overview . 3

1.3 Thesis Structure . 3

Chapter 2 A Deeper Look into Reinforcement Learning 5

2.1 Markov Decision Processes . 6

2.1.1 The Dynamics of MDP . 7

2.1.2 Transition Function . 8

2.1.3 Reward Function . 8

2.1.4 Goal . 8

2.1.5 Discounting . 9

2.1.6 Value Function . 9

2.1.7 Q-Value Function . 10

2.1.8 Bellman Optimality Equation 10

2.2 Offline vs Online Learning . 10

vii

2.3 Off-policy vs On-policy Learning . 11

2.4 Exploration vs Exploitation Dilemma 11

2.4.1 Greedy Approach . 11

2.4.2 Epsilon Greedy Strategy . 12

2.4.3 Decaying Epsilon Greedy Strategy 12

2.4.4 Sinusoidal Exploration Decay Strategy 13

2.5 Q-Learning . 13

2.6 Double Q – Learning . 15

2.7 Deep Reinforcement Learning . 16

2.7.1 Deep-Q Learning . 16

2.8 Challenges in RL . 17

Chapter 3 Literature Review 18

3.1 History of Reinforcement Learning in Gaming 20

3.1.1 TD – Gammon . 20

3.1.2 AlphaGo . 21

3.1.3 DOTA 2 . 21

Chapter 4 Flappy Bird Game 22

4.1 Difficulty Levels . 23

4.2 Train and Test environments . 24

4.3 Action Space . 26

4.4 State Space . 26

4.5 Goals and Rewards . 27

4.6 Implementation Details . 27

4.6.1 Input Pre – processing . 27

4.6.2 Convolutional Neural Network Architecture 27

4.6.3 Software and Hardware . 28

Chapter 5 Experiments 30

5.1 DQN Agent – Baseline Model . 30

5.2 Q-Learning Agent . 33

5.3 DDQN Agent . 35

viii

Chapter 6 Results and Analysis 38

6.1 Sinusoidal Exploration Decay vs Epsilon Greedy Decay 41

6.2 Discussion . 43

Chapter 7 Conclusion 48

7.1 Future Work . 49

7.1.1 Offline Learning in DRL . 50

Bibliography 51

ix

List of Tables

4.1 Hardware specifications . 28

4.2 Software specifications . 29

5.1 DQN parameters . 33

5.2 DDQN parameters . 37

6.1 DQN agent results - training environment 39

6.2 DDQN agent results - training environment 39

6.3 DQN agent results - testing environment 40

6.4 DDQN agent results - testing environment 40

x

List of Figures

1.1 Flow of the project . 4

2.1 Agent’s interaction with the environment 6

4.1 Flappy Bird game - Graphical user interface 23

4.2 Easy model . 25

4.3 Moderate model . 25

4.4 Moderate model . 25

4.5 Moderate model . 25

4.6 Training environment - Hard model . 26

4.7 Testing environment - Hard model . 26

4.8 CNN architecture used in DRL algorithms 28

5.1 RL agents . 31

6.1 Performance plot - Easy model . 42

6.2 Performance plot - Moderate model . 42

6.3 Performance plot - Moderate model . 42

6.4 Performance plot - Moderate model . 42

6.5 Training Iterations plot . 43

6.6 Epsilon vs Training Iterations plot for DQN agent - General model . . 44

6.7 DQN agent’s Score vs Training Iterations plot - General model 44

6.8 Epsilon vs Training Iterations plot for DQN agent - General model . . 45

6.9 DDQN agent’s Score vs Training Iterations plot - General model 45

6.10 Score vs Training Iterations plot - comparison 46

xi

Chapter 1

Introduction

Creating AI systems that have the ability to learn from their environment and interact

with it, has always been thought-provoking. These systems can range from robots to

software-based agents. An AI should fundamentally “understand the world around us”

[1]. Video games have proven to be amazing test-beds for AI algorithms. Ability of the

AI agent to interact with the controlled game environment and solve complex problems

make these games a popular domain for AI research. These simulated environments

are often created for a specific problem, and can be used to prove or disprove the

hypothesis quickly. This dissertation aims at investigating the effects of Double Deep

Q-Learning (DDQN) [2] and different exploration decay strategies such as Exponential

and Sinusoidal [3] in a state of the art video game environment known as Flappy Bird.

The agent is trained in different scenarios with varying difficulty levels to examine its

performance with regards to the variation in environment. The preliminary evaluations

indicate a significant improvement in the performance of the agent while being trained

using the new decay strategy.

1.1 Reinforcement Learning

Reinforcement Learning (RL) in one of the most cutting-edge approaches that focuses

on developing AI systems. RL is more of a goal-directed learning technique from inter-

acting with the environment when compared to supervised and unsupervised machine

learning. An agent is designed to interact with its environment and learn to take ap-

1

propriate actions respectively i.e. learn from its own experience. Agent receives an

immediate reward signal (positive or negative) from the environment after each ac-

tion. The ultimate goal of the agent is to maximize this cumulative numerical reward.

The actions taken by the agent could impact not only the immediate reward, but also

the subsequent rewards. ‘Trial and error search’ and ‘delayed reward’ are the most

important distinguishing features of RL [4]. One of the main challenges in RL is the

dilemma of exploration vs exploitation. Exploitation entails the agent selecting one of

the actions it has tried in the past, which will lead to a definite positive reward. Explo-

ration on the other hand involves agent trying random actions for the same situation

in order to understand which one of them will lead to the maximum reward. The agent

might exploit its existing knowledge and lose an opportunity to discover an even better

action. Or else, it can explore more actions in hope of finding better options and risk

getting a negative reward. Ideally, it is expected that the agent will need to explore

more in the beginning of the training and eventually reduce the exploration.

Following four elements of a RL system can be identified apart from the agent and

environment [4].

Policy – It guides an agent to take specific actions in perceived states. It is a set

of state – action rules and defines the behaviour of an agent. A policy may be either

stochastic or deterministic in nature.

Reward Signal – It defines the goal of Reinforcement Learning. Agent receives an

immediate numerical reward signal after each action which is determined by the state

in ended up in. This signal therefore defines the good and bad actions. These signals

tend to alter the policy if the defined action for any state leads to a low or better reward.

Value Function – This function determines the impact of any action not just on the

resulting state, but on all the upcoming states. Values of any state is equivalent to the

total reward that the agent will accumulate in the future. This value is estimated by

the agent using the reward it receives from the environment.

Model of environment – It is an optional element and the methods that use it are

called model-based methods while the rest are called model-free methods. A model

2

specifies the behaviour of the environment and therefore learning is not completely

based on trial and error search.

1.2 Thesis Objective and Overview

The dissertation focuses on examining the effects of DDQN technique with different

epsilon decay strategies on the learning and performance of RL agent in a video gaming

environment. The overall objectives of the project are listed below:

1. Study the state-of-the-art Deep Reinforcement Learning (DRL) algorithms.

2. Analysis of a Deep Q-Learning (DQN) technique with exponential epsilon decay

trained in an Atari gaming environment.

3. Exploring DDQN algorithm with sinusoidal epsilon decay strategy in a gaming

environment.

4. A comparative study on the implemented algorithms and strategies used based

on their performance and training time.

Figure 1.1 shows the approach that was followed for the implementation and eval-

uation in this dissertation.

1.3 Thesis Structure

The rest of this dissertation is structured as follows:

Chapter 2 presents a detailed description of Reinforcement Learning and its compo-

nents. This section explains the Markov Decision Processes, types of learning, various

RL strategies that are being used for better training and the description of algorithms

used in this dissertation.

Chapter 3 presents the review on some of the most significant state-of-the-art methods

and achievements in Reinforcement Learning.

3

Figure 1.1: Flow of the project

Chapter 4 describes the implementation details and components of the video game

environment – Flappy Bird created for this dissertation.

Chapter 5 presents the detailed description of the experiments conducted to mea-

sure the performance of different RL agents. Implementation details and description

of DQN agent, Q-Learning agent and DDQN agent is presented in detail.

Chapter 6 constitutes the results obtained from the experiments in the previous section

and their analysis.

Chapter 7 concludes the dissertation with the learning outcomes, possible areas for

future research and concluding remarks.

4

Chapter 2

A Deeper Look into Reinforcement

Learning

Reinforcement Learning constitutes learning from interaction and how to act to achieve

defined goals. The RL agent (everything is known and controllable) interacts with the

environment (may or may not be known) over a sequence of discrete time steps t.

Agents objective is to maximise the cumulative numerical reward that it receives for

each interaction, while following a defined policy. The interaction of an agent with its

environment can be visualised from Figure 2.1 where,

• st –current state (representation) of the environment at time step t, where st ε S

(a set of valid states in the environment)

• at – action selected by the agent for the state st, where at ε A (a set of valid

actions for state st)

• st+1 – state of the environment at time step t+ 1, where st+1 ε S

• rt – numerical reward received by the agent as a consequence of action at, where

rt+1 ε R (a set of numerical rewards)

The agent receives the information regarding the current state of the agent from the

environment, chooses the best possible action and takes it. The environment receives

this information and returns the numerical reward / penalty and information of the

5

Figure 2.1: Agent’s interaction with the environment

new state as the outcome. This process is repeated until the agent learns to achieve

the defined goals.

RL problems can be formulated in mathematical form using Markov Decision Pro-

cesses (MDPs). They are a formalization of sequential decision making where the

actions impact both immediate rewards along with subsequent situations and future

rewards (delayed rewards) [4].

2.1 Markov Decision Processes

Markov Decision Processes (MDP) frame the problem of agent’s learning from inter-

acting with the environment to achieve a goal. The learner is called an agent while

the interaction takes place in an environment. The agent selects an action (from a

defined set of actions) to interact with the environment. The environment responds

with a numerical reward and a new situation for the agent to tackle. This process goes

on in a continuous loop with the ultimate goal to maximise the cumulative reward

over time. The MDP framework proposes that any problem of goal-directed learning

6

from interaction can be reduced to three signals passing between the agent and the

environment: actions, states and awards. The set values for current state (s), action

(a), reward (r) and next state (s,) constitute as experience for the agent. The primary

aim of the MDP is to find an optimum policy function for the agent.

The challenge in practical implementations is that, despite having the complete

model of the environment and the optimal policy, agent fails to perform enough com-

putation for each timestep. Also, availability of large memory is required for storing

the computations and complete state space. Therefore, the agent uses approximations

instead to achieve the desired goals.

2.1.1 The Dynamics of MDP

In MDP, the finite variables rt and st have a well-defined probability distribution which

only depends on its previous state and action. This implies that for some random vari-

ables, s′ ∈ S and r ∈ R there is a probability of these values occurring if the particular

values of previous state and action are present.

p (s′, r|s, a) = Pr (St = s′, Rt = r|St−1 = s, At−1 = a) , ∀ s, s′ ∈ S, r ∈ R, a ∈ A (s)

The dynamics of the environment [4] is characterised using the above equation which

highlights that the reward and state at any particular time depends on its previous

state and action.

The dynamic function p is a four-argument deterministic function represented by

S × R × S × A → [0, 1]. p here gives the probability distribution of each s and

a. This means that the probabilities of the all the values of states and rewards are

dependent only on its previous state and action. This implies that the current state

must contain all the information of the previous interactions of the agent with the

environment. If this statement holds true, then the agent is said to have the markov

property [4]. Using this dynamics function, all the information of the environment can

be computed.

7

2.1.2 Transition Function

State transition probability is a three-argument function (p : S × S × A → [0, 1])

[4] defined as :

p (s′, r|s, a) =
∑
r ∈ R p (s′, r|s, a), ∀ s, s′ ∈ S, a ∈ A, r ∈ R

It gives the probability that by selecting an action a in a state s at a given time

t, the agent will arrive at the next state s′ and receive the reward r. MDPs assume

that the state transitions depend only on the last state of the agent and not on any of

the previous states or actions.

2.1.3 Reward Function

Expected reward can be represented as a three-argument function (state – action –

next state) [4] r : S × A× S → R,

r(s, a, s′) =
∑
r∈R r

p(s′,r|s,a)
p(s′|s,a) , ∀ s, s

′ ∈ S, a ∈ A, r ∈ R

Reward function determines the rewards using action taken in any particular state

and the state agent has ended up in. Hence, this function maps the rewards / penal-

ties to the observations. Reward function has a direct impact in altering the policy.

2.1.4 Goal

The agent receives a numerical reward from the environment as a consequence of each

action taken for a particular state. The goal of the agent is to maximise the cumulative

reward or expected return in the long run. Expected return is a function for future

rewards that the agent trains to maximise. For every action that leads the agent

towards a desirable or favourable state, it receives a positive numerical reward. For

any action that leads the agent to any undesirable state, a negative reward or penalty

is received. Hence, the rewards are setup to define the goals that agent is expected to

receive.

8

2.1.5 Discounting

Actions taken by the agent may result in the positive reward after a number of time

steps and states later. This is called as delayed reward [4]. Since the final goal is to

maximise the cumulative reward, the agent will treat the actions leading to immediate

rewards and the ones leading to rewards at a later stage as equal. To increase the value

of immediate rewards over delayed rewards, discount rate γ (gamma) is introduced.

Discount rate determines the current value of future rewards. Hence, the expected

return is represented as:

Gt =
∑∞
k = 0 γ

krt+k+1, where 0 ≤ γ ≤ 1

2.1.6 Value Function

Value function or state-value function [4] estimates how good it is for an agent to be

in a particular state, which is defined in terms of the cumulative reward / expected

return. These functions are defined using policies. A policy (π) is a stochastic set of

rules that defines the mapping between the states and the probable actions. The RL

agent learns from experience and modifies this policy eventually. The value function

gives the expected return for each state s when agent is following a policy π.

vπ(s) =
∑
a π(a|s)∑s′,r p(s

′, r|s, a) [r + γvπ (s′)] ,∀ s ∈ S, a ∈ A, r ∈ R

This equation is known as Bellman equation [4]. This equation denotes the associ-

ation between the value of the state and its successor states.

Optimal Policy (π∗): Policy that is better than or equal to all other policies i.e. its

expected return is greater than or equal to all the other policies [4]. There may be

more than one optimal policy.

Optimum policies share the same optimum state-value function [4]. This function

assigns to each state the maximum expected return that can be achieved by a policy.

Optimum state-value functions are unique for any given MDP. It is formulated as:

v∗(s) = maxvπ(s),∀ s ∈ S

9

2.1.7 Q-Value Function

Q-value function or action-value function [4] gives expected return for taking action a

in state s under the policy π.

qπ(s, a) =
∑
s′ T (s, a, s′)[R(s, a, s′) + γv∗(s′)],∀s, s′ ∈ S, a ∈ A, r ∈ R

Where T represent the model of the environment.

Optimal policies share the common optimal action-value function. Optimal action-

value function is the maximum achievable expected return for each state s when action

a is taken by the agent while following policy π. It is represented as:

q∗(s, a) = max qπ(s, a),∀ s ∈ S, a ∈ A

2.1.8 Bellman Optimality Equation

Bellman optimality equation states that the value of a state following an optimal pol-

icy is equal to the expected return for the best action from that state[4]. Bellman

optimality equation for v∗,

v∗(s) = maxqπ∗(s, a)⇒ v∗ (s) = max
∑
s′,r p (s′, r|s, a) [r + γv∗ (s′)] , ∀ s ∈ S, a ∈ A, r ∈ R

Bellman optimality equation for q∗,

q∗ (s, a) =
∑
s′,r p (s′, r|s, a) [r + γmaxq∗ (s′, a′)], ∀ s, s′ ∈ S, a, a′ ∈ A, r ∈ R

2.2 Offline vs Online Learning

Offline Learning entails learning from the available and limited data of an environment.

In online Learning on the other hand, along with learning the sequential decision-

making tasks, agent has to explore the environment as well [5].

10

2.3 Off-policy vs On-policy Learning

On-policy learning agent [4] computes the Q-values for the states using the action

mapped in its current policy. In this type of learning agent does not explore and keeps

on following the policy. Whereas Off-policy learning [4] computes the Q-values for

the states by taking different (or random) actions than the ones defined in the policy.

Therefore, the agent follows a different policy to generate behavior (called behavior

policy) and a different one to evaluate an improve (called estimation policy).

2.4 Exploration vs Exploitation Dilemma

Trade-off between exploration and exploitation is one of the challenges in RL. In order

to increase the cumulative award, the RL agent needs to choose actions that has been

tried in the past – Exploitation. Furthermore, for stochastic environments the agent has

to try a particular action for a state multiple times to confirm its desirability. At any

timestep for the explored state-space, there is at least one action whose value is greatest.

These actions are known as greedy actions, which exploits the current knowledge of the

agent. But to know the best action in any particular state (or situation) the agent

needs to try actions whose outcome is unknown – Exploration. Even for an explored

state-space, selection of nongreedy actions will lead to better estimation of their values.

The dilemma is that the exploration and exploitation cannot be pursued exclusively

if we need the algorithm to converge [4]. Exploitation (or greedy approach) lead to

immediate high reward while exploration might result in low short-term reward and

greater total reward in the long run. If the agent has many time steps left then

exploring using non-greedy actions might be more fruitful in terms of achieving high

cumulative reward. Actions that lead to negative rewards or undesirable state causes

regret. Regret is the difference between the return of the optimal actions and the return

of the action taken. The task of the RL agent is to minimize this total regret.

2.4.1 Greedy Approach

Here, the agent performs exploration and observe the rewards in the beginning. As

the Q-function converges, the amount of exploration decreases. This approach selects

11

on one action that gives good results and keeps selecting it. This action might be

good but not necessarily optimal. This approach exploits too much, does not balance

the exploration and exploitation, increases cumulative regret and therefore greedy in

nature.

2.4.2 Epsilon Greedy Strategy

Epsilon greedy strategy [4] is the simplest solution to the previous approach. This

approach uses a hyper-parameter ε (epsilon), which is the probability of choosing be-

tween exploration and exploitation. The value of ε is the probability with which the

agent takes random actions i.e. explores instead of exploiting. High value of epsilon

would mean that agent takes more random actions and lower value would mean more

greedy actions. Issue is that over time, the agent does not need to explore as much (the

agent has been learning for a while and has found some optimal actions). The strategy

keeps allocating fixed percentage of actions for exploration throughout the training and

therefore ends up increasing the cumulative regret. This strategy explores too much.

2.4.3 Decaying Epsilon Greedy Strategy

To overcome the drawbacks of greedy and ε-greedy strategy, it is necessary to strike the

correct balance between exploration and exploitation. In decaying ε-greedy strategy,

the value of ε decreases exponentially or linearly over time and then settles to a fixed

value. Hence, as the learning of the agent increases, the percentage allocated for the

exploration decreases. This results into agent selecting completely random actions in

the beginning of training (when value of ε is high), reducing the exploration over time

(as ε decreases) and then settles down to a fixed exploration rate (when agent does

not need to explore as much). Epsilon is updated at each time step using the following

function:

ε = ε−
(
εo−εf
X

)

Where,

εo: initial epsilon

12

εf : final epsilon

X: Total number of training time steps

2.4.4 Sinusoidal Exploration Decay Strategy

Since decaying epsilon greedy strategy is either linear or exponential in nature, it

has been observed that the training curve of the agent flattens when epsilon decreases.

Sinusoidal exploration decay strategy was proposed by R. Chuchro and D. Gupta [3] to

handle this issue. It is a decaying function that exponentially decays over the episodes

in sinusoidal manner. This method helps in escaping the local optima that agent might

reach due to reduced ε.

Epsilon is updated at each timestep using the following equation:

ε = εo • εxd • 1
2

(
1 + cos

(
2πt
X

))

Where,

εo: initial epsilon

εxd: decay rate

t: current timestep

X: Total number of training time steps

2.5 Q-Learning

Q-Learning [6] is a model-free algorithm. This implies that it estimates the optimal

policy without the knowledge of the dynamics (transition and reward functions) of

the environment. The aim is to learn the optimal policy by estimating the optimal

action-value-function. Optimal policy can be represented as:

π (s) = argmaxaQ
∗ (s, a)

The Q-values of state-action pair are updated using following value iteration:

Q(s, a)← Q(s, a) +α (R (s) + γmaxa′Q (s′, a′)−Qold(s, a)) , ∀s, s′ ∈ S, a, a′ ∈ A, r ∈

13

R

s: current state

s′: next state

α: Learning rate

R (s): Reward function

γ: Discount factor

Qold(s, a): estimated Q-value of the starting state

maxa,Q (s′, a′): maximum estimated Q-value from next state

This equation shows iterative process of back-propagation which causes the learned

action-value function to directly approximate the optimal action-value function. The

algorithm uses a table to map all the states-action pairs to their current Q-values.

Every iteration, the algorithm looks up the Q-values for the current state (and next

state) from this table and updates them. Pseudocode for Q-Learning algorithm [?] is

depicted in Algorithm 1.

Algorithm 1: Q-Learning

• Algorithm parameters: step size α ∈ (0, 1] , small ε > 0

• Initialise Q (s, a) ,∀s ∈ S, a ∈ A, arbitrarily except that Q (terminal, .) = 0

• Loop for each episode:

– Initialize S

– Loop for each step of episode:

∗ Choose a using policy derived from Q

∗ Take action a, observer r, s′

∗ Q (s, a) ← Q(s, a) + α (r + γ maxaQ (s′, a) − Q(s, a)

∗ s← s′

– Until s is terminal

14

2.6 Double Q – Learning

One of the drawbacks of DQN is that it overestimates the Q-values leading to poor

performance for some stochastic MDPs. Using maximum value to approximate the

maximum expected value causes positive bias. To resolve this issue, Double Q-Learning

[7] was proposed which uses a double estimator method that sometimes underestimates

the maximum expected value instead of overestimating it. Double Q-Learning stores

two Q functions and each is updated with the value of the other Q function for the

next state. Algorithm 2 is the pseudo code for Double Q-Learning.

Algorithm 2: Double Q-Learnining

• Algorithm parameters: step size α ∈ (0, 1] , small ε > 0

• Initialise QA, QB, arbitrarily except that Q (terminal, .) = 0

• Loop for each episode:

– Initialize s

– Loop for each step of episode:

∗ Choose a, based on QA (s, .) andQB (s, .)

∗ Take action a, observe r, s′

∗ Choose either UPDATE(A) or UPDATE(B)

∗ If UPDATE(A):

· Define a∗ = arg maxaQ
A (s′, a)

· QA(s, a)← QA(s, a) +α (s, a)
(
r + γ QB (s′, a∗)−QA(s, a)

)
∗ If UPDATE(B)

· Define b∗ = arg maxaQ
B (s,, a)

· QB(s, a)← QB(s, a) +α (s, a)
(
r + γ QA (s′, b∗)−QB(s, a)

)
∗ s ← s′

– Until s is terminal

15

2.7 Deep Reinforcement Learning

The idea of deep neural networks being trained using backpropagation was first intro-

duced in 1986 by D. E. Rumelhart, G. E. Hinton, and R. J. Williams [8]. The deep

architecture utilized hidden layers to successfully learn non-linear functions. Further

research in convolutional neural networks led to several major breakthroughs in com-

puter vision. Imperviousness of neural networks to the ‘curse of dimensionality’ and

their ability to extract high level features from raw sensory data made them a potential

candidate for RL techniques with sensory data. Deep-Q learning (DQN) [9] proposed

the first deep learning model that learns to control policies using RL, directly from

high dimensional sensory inputs. It uses convolutional neural network to predict the

Q-values and outperformed more than half of the Atari 2600 games.

2.7.1 Deep-Q Learning

Instead of using tables to store and lookup the Q-values in Q-Learning algorithm (sec-

tion 2.5) , Deep Q-Learning uses non-linear function approximation to approximate

Q(s, a; θ). θ represents the tunable parameters for approximation. Deep neural net-

works are used for this purpose. Following loss function (using Bellmans equation) is

used in addition to calculate the loss in gradient descent [10]:

L (θi) = E
[
(r + γmaxa′Q (s′, a′; θi)−Q (s, a; θi))

2
]

The neural network takes the state and the action as input and gives the q-values

of each state. Q-table for DQN agent is updated using the following steps [3]:

1. Feedforward pass for y the current state s→ predicted Q - values for each state

2. Feedforward pass for the next state s′ → compute maximum of network outputs

maxa,Q (s′, a′)

3. Set Q-value target for action to r + γ maxa′Q (s′, a′). For all other actions

make output equal to zero.

4. Update the weights of the network using back propagation

16

Experience Replay

Concept of experience replay was introduced by V. Mnih et al [9] to resolve the issue of

correlated data. It is a memory module that stores the memories / experiences (tuples

of state, action, reward and next state) from already explored state-space. Random

experiences from this buffer are sampled at frequent epochs and used as training input

for the DQN agent. Use of experience replay buffer increases the training stability.

Using an experience replay buffer helps in convergence of the networks and helps to

de-correlate the experiences.

Target Network

DQN traditionally uses the same neural network for estimating the target Q-values

and predicted Q-values. Target Q-values shift with each iteration causing instability

in estimating the Q-values and minimizing loss. Using two separate neural networks

to stabilize the training was proposed as an enhancement to original DQN algorithm

by V. Mnih et al [10]. Q-network is used to estimate the predicted Q-values while

target-network is used to estimate the target Q-values. The weights of the q-network

are updated at each timestep while the weights of the target-network are fixed and

updated periodically with the weights of the q-network.

2.8 Challenges in RL

Following are the major challenges in the field RL [11]:

• The agent only receives the reward signal to converge to the optimal policy.

• The experiences of the RL agent are directly impacted by its actions and thereby

leading to temporal correlations.

• he outcome of any particular action might be gathered after a many time steps.

This is called as credit assignment problem [12].

• Balancing exploration and exploitation.

17

Chapter 3

Literature Review

Some of the earlier successes of RL include using a form of policy gradient RL to train

a quadruped robot to fast walk [13], designing a controller for autonomous inverted

flight on helicopter[14] and NJFun [15] – a spoken dialogue system that can provide

the information about interesting things to do in New Jersey. Although these ap-

proaches were fairly successful, scaling them was difficult in high dimensions. This is

due to three essential challenges in RL algorithms – space complexity (measurement of

memory required for algorithm implementation), computational complexity (amount

of operations that the algorithm executes in a single timestep) and sample complexity

(amount of experiences / training the algorithms needs to behave optimally) [16]. In

recent years, advent of deep learning has made it possible to scale RL to problems

that were challenging before. S. Levine et al [17] used an RL approach with a CNN in

robotics to improve hand-eye coordination. The system was used to predict the prob-

ability of gripper to result in successful grasps. DRL research also include agents that

can meta – learn called deep meta-reinforcement learning [18], using Recurrent Neu-

ral Network (RNN) to store computation of “fast” RL algorithm and learning RNN’s

weights using a general purpose “slow” RL algorithm [19]. RNN has also been used

with RL to deal with partially observable MDPs – POMDPs [20] (environment where

the agent has incomplete or noisy information about the state) using policy gradient

method having capability to memorize the events in the past [21, 22]. Research in

DRL ranges wide from target driven visual indoor navigation [23] to learning paying

video games [10]. The motivation behind learning to play video games using DRL is

18

to generate systems that can adapt to the challenges in the real world [11].

Function approximation and feature extraction from high dimensional sensory data

using CNNs progressively resulted in their use in RL algorithms for video games. Go-

ing further, the Deep Q-Learning algorithm [9] and some of the advancements in it are

reviewed in detail. Deep Q-Learning (DQN), a first deep learning model that success-

fully learns the control policies from raw high dimensional sensory input using RL was

proposed by V. Mnih et al [9]. The algorithm was tested on Atari 2600 games [24] and

resulted in a state-of-the-art benchmark for RL methods in Atari games. This variant

of Q-Learning [6] algorithm accepts raw RGB screenshots of the game and uses Con-

volutional Neural Network (CNN) to detect objects from the high dimensional data.

Hence, it resolves the issue of high dimensional observation spaces. This algorithm

uses a policy network (a CNN) for the approximation of both Q-value function and

optimal Q-value function. Loss or TD Error between the current Q-value function and

optimal (or target) Q-value function is computed by taking the mean squared error be-

tween the two. The aim of the network is to minimize the TD error which is achieved

by performing Gradient Descent. Along with this, an experience replay mechanism

that samples previous transitions is also used to reduce the issue of correlated data

and non-stationary distributions. Later, V. Mnih et al [10] introduced the addition of

target network, that has same initial weights as the policy network. This approach

uses two different neural networks to calculate target Q values (target network) and

current Q values(policy network). The weights of the target network are updated with

that of the policy network after a fixed number of steps. This enabled the agent to

calculate the TD error between the target Q values and estimated Q values more ef-

ficiently. T. P. Lillicrap et al [25] introduced Deep DPG (DDPG) utilising experience

replay, target network and deep function approximators to learn policies in continuous

and high dimensional action spaces. The algorithms reduced the timesteps required

for training by a factor of 20. Unlike previous advancements in DQN, authors changed

the structure of neural network in [26] rather than the algorithm itself. This neural

architecture decouples the value and advantage function streams in deep Q-networks.

The lower layers of the network are kept convolutional. This is followed by two se-

quences of fully connected layers. These streams provide separate estimates of value

and advantage functions, which then combine to produce a single Q function. This

steered to more frequent updating of the value stream and ultimately to better ap-

19

proximation of value streams. A method called Human Checkpoint Replay [27] learns

to play the most difficult games in Atari using checkpoints generated from human ex-

perience. These checkpoints are sampled from the gameplay of human player and are

used as the starting points in the game. M. Hessel et al [28] integrated the existing

improvements in DQN [9] into a single algorithm and achieved competitive results.

F. Moreno-Vera [29] presented recurrent double Q-Learning as an improvement over

double Q-Learning. However, the proposed method only achieved the state-of-the-art

results on a few gaming scenarios.

3.1 History of Reinforcement Learning in Gaming

RL in video games is a recognized area of research and is frequently used to evaluate

the performance of RL algorithms. This section presents the review of some of many

significant achievements in this area.

3.1.1 TD – Gammon

In 1992 G. Tesauro proposed TD-Gammon at IBM’s Thomas J. Watson Research

Center [30]. It is a neural network that learns backgammon from playing against itself.

It is based on a temporal difference learning algorithm called TD-Lambda, proposed

by R. S. Sutton and A. G. Barto [12]. TD-Gammon algorithm uses a three-layer ANN

to estimates the reward for all the possible moves (action) in any particular state. It

selects the move that gives the highest reward and keeps updating the ANN parameters

that are selected at random in the beginning of the game. The network learns to play

at a “strong intermediate level” with minimal knowledge of just board state i.e. the

network is not provided any information on how to play good backgammon. Adding

few hand-crafted features to the network’s input representation resulted in master

level performance. The algorithm was tested numerous times in play against several

good human players including former world champions Bill Robertie and Paul Magriel.

The performance of TD-Gammon was very close to that of best human players (Bill

Robertie managed to win the game

20

3.1.2 AlphaGo

D. Silver et al [31] presented AlphaGo which is a combination of deep neural networks

and Monte Carlo Tree search (MCTS) [32]. It became the first algorithm to beat a

professional Go player. It uses two separate neural networks to estimate value (expected

future reward from any particular state in a perfect play) and policy (mapping of best

actions from any particular state / position at the board). State of the game board is

passed as its 19 X 19 image to CNN. First, the training of the network is done in 3

stages. A policy network is trained using supervised learning using the expert human

gameplay as dataset. Second, another policy network is trained using RL that improves

the previous policy network. Third, a value network is trained that predicts the winner

out of all games that are played by the previously trained policy network Both these

networks are integrated via MCTS. In the later versions, AlphaGo uses only RL to

learn the optimal policies and achieve super human performance [33].

3.1.3 DOTA 2

OpenAI invented an AI that could beat professional players in this game, in 1v1

matches. The agent used RL techniques and learned the game completely from self-play

(learning from playing with itself) [34].

21

Chapter 4

Flappy Bird Game

Flappy bird is a popular arcade-style game developed by Vietnamese video game artist

and programmer Dong Nguyen in May 2013. The player controls the bird which moves

to the right and enables it to keep flying by flapping (by tapping on the screen or

pressing the up button) its wings. The task is to prevent the bird from crashing into

the columns of pipes. Every time the bird passes a pipe (obstacle), player is awarded

one point. At the end of the game (when the bird collides with the pipes), total score

of the player is displayed (i.e. total number of pipes crossed). 4.1 shows the graphical

user interface of this game.

Flappy Bird game has become a very common testing platform for RL algorithms

since its first usage in [35]. This game environment is used as a testbed in this project

and simulated using Pygame [36]. Pygame is a python wrapper for SDL (Simple Direct

Media Layer) library which allows the users to create fully featured video games using

Python.

Visual representation of the game in the dissertation is kept almost similar to the

original game. The bird (enabled by the RL agent) moves towards right i.e. horizontally

with constant velocity. The velocity of the bird along vertical axis is controlled by the

player – which in this case is the agent. The vertical velocity of the bird keeps on

increasing linearly in the downward direction until the player interferes and chooses

to “flap” the bird in upward direction i.e. increase the velocity in upward direction.

The game randomly generates two vertical pipes with a gap in between which are

considered as obstacles for the agent to pass. The length of the upper and lower pipes

22

Figure 4.1: Flappy Bird game - Graphical user interface

varies randomly while maintaining the defined gap between them. The agent takes an

action at every timestep which represent one iteration including Q-values calculation

and selecting the best possible action.

4.1 Difficulty Levels

In this project, four models were trained with varying difficulty levels based on the

vertical gaps between upper and lower pipes. The gap size between the upper and

lower pipes was used to introduce significant variations for the different models and

was chosen. Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5 illustrate the graphical

user interface of the four difficulty models.

The models are as follows:

Low Difficulty Model – The model with the lowest difficulty has the largest verti-

cal distance (i.e. 230 pixels) between the upper and lower pipes. The agent can learn

23

to perform well in this environment by learning to stay in the middle of the screen.

Moderate Difficulty Model – The distance between all the upper and lower pipes of

this environment lies between that of low difficulty model and high difficulty model

(i.e. 160 pixels). The agent needs to learn better than the low difficulty level as just

staying in the middle of the screen all the time will not lead to very high scores.

Hard Difficulty Model – The level of difficulty for this model is very high as the distance

between all the upper and lower pipes is very less (i.e. 100 pixels). This means that

staying in the middle will almost always lead to very low scores and the agent has to

learn not to crash while trying to pass through very small gaps.

General Model – This model generates each pipe with a random gap size (selected

from: 100, 130, 160, 190, 220, 230 pixels) between the upper and lower pipes. This

model is a combination of low, moderate and hard difficulty models in a way. This

model better represents the obstacles or task that an AI might need to perform in real

time. General model can be considered the hardest model as the gap size between

upper and lower pipes is not constant. The agent needs to manage this variation and

learn how to pass these obstacles.

4.2 Train and Test environments

The agent is trained on the training environment where two consecutive pairs of pipes

are generated in each frame, each pair separated from the other by a constant hori-

zontal distance. The trained models are then evaluated on both training and testing

environments. In testing environment, only one pair of pipes are generated in each

frame i.e. the horizontal distance between the pipes is larger than that in the training

environment. Both the environments have four difficulty levels as described in section

4.1. Figure 4.6 and Figure 4.7 present the graphical user interface of training and

testing environments of hard model respectively.

24

Figure 4.2: Easy model
Figure 4.3: Moderate
model

Figure 4.4: Moderate
model

Figure 4.5: Moderate
model

25

Figure 4.6: Training envi-
ronment - Hard model

Figure 4.7: Testing envi-
ronment - Hard model

4.3 Action Space

The action set for the environments contains two elements representing two actions

that are same and valid for all the states including:

• Flap

• Do not flap

4.4 State Space

The state of the agent at any particular time is represented by a sequence of the

frames of the game along with the sequence of the actions taken by the agent. The

implementation in this project uses four consecutive frames to represent the state.

This is done in order to provide the necessary temporal information for the agent to

continue playing. Only with the help of multiple frames the agent determines the state

in which the birds end up. First frame gives the visual information of the current state

26

of the bird and the last tells the next state of the words. So, the information of the

current state, action taken and the resulting state constitutes as a single state for the

algorithm.

4.5 Goals and Rewards

The goal of the game is to pass maximum number of pipes without colliding with

one or touching the ground and the ceiling. The agent achieves this by receiving the

numerical reward of +0.1 for every neutral action the keeps the agent alive, +1 for

passing a pipe and -1 when the collision happens and the game ends. The ultimate

aim of the agent is to increase this numerical reward over multiple games.

4.6 Implementation Details

4.6.1 Input Pre – processing

Since the frames captured from the game is high dimensional, they are pre-processed

to reduce their dimensionality and eventually state space. The pixels of the frames are

pre-processed which originally are in RGB format. These RGB images are converted

into grayscale images and thereby reducing dimensions from three to two. These images

are then resized to 80 X 80 pixels. Dimensions of these images are further reduced by

normalizing them from [0, 255] to [0, 1]. The resulting images are then stacked together

to form a single state for the algorithm.

4.6.2 Convolutional Neural Network Architecture

Both DQN agent (section 5.1) and DDQN agent (section 5.3) use similar structure.

They use convolutional neural networks to approximate the predicted and target Q-

values. Pre-processed images of latest four frames (current state) the neural networks

as input and Q-values of all the states are returned. The RL agent uses this information

to predict the optimal action and the resulting state and reward.

The neural network implementation uses three convolutional layers and one fully

connected layer. Max pooling is used once after first convolutional layer. The architec-

27

Figure 4.8: CNN architecture used in DRL algorithms

ture used for approximating Q-values in DQN and DDQN implementation is depicted

in Figure 4.8.

4.6.3 Software and Hardware

The specifications of hardware are detailed in Table 4.1.

Hardware Description
Processor Intel R© CoreTM i3-8145U CPU @ 2.10 GHz 2.30 GHz
RAM 4.00 GB

Table 4.1: Hardware specifications

Python was chosen as a programming language as it helps in developing a clean, read-

28

able and concise code Along with it, deep learning framework Tensorflow [37] was used

for neural network implementation. Many other external libraries such as OpenCV

[38] (for image processing) and Numpy [39] (for operations on matrices) were used in

this project. PyCharm was used as IDE and project development and versioning was

managed using GitHub. Table 4.2 contains the details regarding software specifications.

Software Description
Operating System Windows 10
Programming language & version Python 3.7.3
IDE PyCharm 2019 .3.3 (Professional Edition)
Deep Learning Framework Tensorflow 2.1.0
Version control Git

Table 4.2: Software specifications

29

Chapter 5

Experiments

Different RL agents (experiments) are designed using various algorithms and strate-

gies. The agents are trained until they started to give superhuman performance or

when more training stopped having any effect on the agent’s performance. The perfor-

mance of the agent was judged using the game score (number of pipes agent passes).

Figure 5.1 illustrates the three types of agents that were implemented and their corre-

sponding exploration decay strategies.

5.1 DQN Agent – Baseline Model

Deep Q-Learning algorithm using experience replay [9] is implemented as the base-

line model (DQN agent) for this project. Algorithm 3 depicts the pseudo code for

the implemented DQN agent. Decaying epsilon greedy strategy (explained in sec-

tion 2.4.3) is used in this implementation to balance the trade-off between explo-

rations and exploitation. The agent records a few experiences / observations as tuples

< currentstate, action, reward, nextstate > in the replay memory before starting the

training. A neural network (Q-network) is used to predict the Q-values which is done

by minimizing the loss function using gradient descent. The DQN agent is trained on

different scenarios with varying difficulty (easy, moderate, hard and general). It was

observed that in the beginning of the training, the agent keeps on selecting the up or

30

Figure 5.1: RL agents

down action until the bird reaches the ceiling / floor of the game. It takes the agent

long time to learn to try and stay in the middle of the screen instead. Hence, for

general model, to speed-up the training, trained easy model was fine-tuned instead of

training from the scratch. Table 5.1 contains the details of the parameters used in this

implementation.

31

Algorithm 3: DQN

• Algorithm parameters: γ(gamma) ≥ 0, εo(initialepsilon) ≥
0, ε(epsilon) ≥ 0, εf (finalepsilon) ≥ 0

• Initialise replay memory D

• Initialise OBSERV E,EXPLORE

• Initialise Q-value function Q (s, a) , ∀s ∈ S, a ∈ A via q-network with ran-

dom weights

• Observe initial state s

• ε← εo

• Loop for each episode until convergence:

– Select a random action a with probability ε

otherwise

a← argmax Q (s′, a′)

– Take action a

– Observe reward r and next state s′

– Store experience < s, a, r, s′ > in D

– If ε > εfandt(timestep) > OBSERV E:

ε← ε−
(

εo−εf
EXPLORE

)
– If t > OBSERV E

∗ minibatch < ss, aa, rr, ss′ >← sample random experiences from

D

∗ Calculate output y for each experience in minibatch:

y ← rr if ss′ is terminal (end state)

otherwise

y ← rr + γ ∗maxQ (ss′, aa′)

∗ Optimize q-network using gradient descent and minimizing loss

function:

(y −Q (ss, aa))2

∗ s← s′
32

Parameter Initial Value Description
gamma 0.99 Decay rate of past observations
initial epsilon 0.1 probability of selecting random actions

in the beginning of training
final epsilon 0.0001 Probability of selecting random actions

towards the end of the training
OBSERVE 10000 Number of timesteps till the agent ob-

serves and records the experiences be-
fore starting training

EXPLORE 3000000 Number of timesteps after which the
agents stops exploring

Table 5.1: DQN parameters

5.2 Q-Learning Agent

A variation of Q-Learning algorithm was proposed [40](Vu and Tran 2020), which

according to the author outperforms the “more complex deep Q-Learning approaches”.

Q-Learning agent’s implementation was influenced by this approach.

Process of extracting the state information for this algorithm is different than the

one used for the other agents. The algorithm receives the following information from

the game environment to constitute the current state of the game.

• xdiff = The horizontal difference between the bird and the next pipe

• ydiff = The vertical distance between the bird and the bottom pipe

• yvel = The in-game velocity of the bird

Another technique that is proposed to make the algorithm converge faster is to use

backward updates. This means feeding the experiences to the agent in reverse order

(i.e. last experience first) while the agent is learning from the stored experiences. As a

result, the agent will get more useful information first i.e. when agent collided with the

pipe and therefore learns what not to do first. In addition to this, authors used epsilon

33

greedy approach to balance exploitation and exploration for the agent. Algorithm 4

contains the pseudo code used by to implement Q-Learning agent.

The model used by the authors to train and evaluate the agent was similar to the

hard model created in this project. The Q-Learning agent was trained on the general

model in our implementation. The agent was trained using the approach presented,

but performed poorly than the baseline. Since the Q-Learning agent’s performance was

not matching that of the baseline, the agent was trained only on the general model.

Due to time crunch, a decision was made to not train this agent for easy, moderate

and hard models.

Algorithm 2: Backward Q-Learning

• Algorithm parameters: γ(gamma) ≥ 0, ε(epsilon) ≥ 0, η

• Initialise all Q-values to 0

• Loop for each episode until convergence:

– Initialise memory M

– Observe initial state s

– Loop until s is not terminal

∗ Select a random action a with probability ε

otherwise

a← maxa (Q (s′, a′))

∗ Take action a

∗ Observe reward r and next state s′

∗ Observe reward r and next state s′

∗ s← s′

– For observation in M do:

Q (s, a)← (1− η)Q (s, a) + η (r + γ maxQ (s′, a′))

34

5.3 DDQN Agent

Issue of overestimating the action values was also observed in DQN algorithm. The idea

behind Double Q-Learning [7] was utilised to develop Double Deep Q-Learning algo-

rithm [2]. This adaptation of DQN algorithm reduces the overestimations and increases

the performance. The algorithm is implemented in an attempt to beat the baseline al-

gorithm (section 5.1). This implementation uses sinusoidal exploration decay strategy

as described in section 2.4.4. Algorithm 5 contains the pseudo code for the same. The

agent records a few experiences / observations as tuples< currentstate, action, reward, nextstate >

in the replay memory before starting the training. A neural network (Q-network) is

used to approximate the Q-values while another neural network (target-network) pre-

dicts the target Q-values. The Q-network minimizes loss function using gradient de-

scent. DDQN agent was trained on different models based on different difficulty levels

– easy, moderate, hard and general. Table 5.2 contains the details of the parameters

used in this implementation.

35

Algorithm 5: Double Deep Q-Learning with Sinusoidal exploration

decay

• Algorithm parameters: γ(gamma) ≥ 0, εo(initialepsilon) ≥
0, ε(epsilon) ≥ 0, εd(epsilondecayrate) ≥ 0

• Initialise replay memory D

• InitialiseOBSERV E,EXPLORE, TARGET UPDATE THRESHOLD

• Initialise q-network with random weights

• Initialise target-network with q-network weights

• Observe initial state s

• ε← εo

• Loop for each episode until convergence:

– Select a random action a with probability ε

Otherwise,

a← argmaxQ (s′, a′)

– Take action a

– Observe reward r and next state s′

– Store experience < s, a, r, s′ > in D

– If t(timestep) > OBSERV E:

ε← (εo ∗ εd) ∗
(
1
2
∗
(

1+cos(2πt)
EXPLORE

))
– If t > OBSERV E

∗ minibatch < ss, aa, rr, ss′ >← sample random experiences from

D

∗ Calculate output y for each experience in minibatch:

y ← rrifss′ is terminal (end state)

otherwise

y ← rr + γ ∗maxQtarget (ss′, argmax (Q (ss′, aa′)))

∗ Optimize q-network using gradient descent and minimizing loss

function:

(y −Q (ss, aa))2

∗ s← s′

∗ After every TARGET UPDATE THRESHOLD iterations:

weights (target− network)← weights (q − network)

36

Parameter Initial Value Description
gamma 0.99 Decay rate of past observations
initial epsilon 0.1 probability of selecting random actions in the

beginning of training
epsilon decay rate 0.99 Probability of selecting random actions to-

wards the end of the training
OBSERVE 10000 Number of timesteps till the agent observes

and records the experiences before starting
training

EXPLORE 3000000 Number of timesteps, used to compute ep-
silon

TARGET UP-
DATE THRESH-
OLD

1000 Weights of target network are updated after
every 1000 iterations

Table 5.2: DDQN parameters

37

Chapter 6

Results and Analysis

This project aims at comparing the performance of reinforcement learning algorithms

using the popular game Flappy Bird as a test-bed. The performance of the trained

models is compared using metrics: game score (i.e. number of pipes passed by the

agent) – average score and maximum score and training time.

Three different agents were trained and evaluated – DQN (baseline), Q-Learning

and DDQN. Due to the poor performance of the Q-Learning agent (section 5.2) on

general difficulty model, I did not continue the training for the rest of the scenarios

and it is not considered as part of the comparative study.

Table 6.1 and Table 6.2 present the performance of DQN agent and DDQN agent

respectively evaluated in the training environment. Table 6.3 and Table 6.4 on the

other hand contain the results of the performance of the two agents evaluated on

testing environment.

Performance of the easy model for DQN agent in training environment was evalu-

ated only over two games. The agent had reached more than 1000000 timesteps and

therefore was stopped after two games due to time constraints. Due to the same rea-

son, performance of DQN agent for moderate model, DDQN agent for easy model and

DDQN agent for moderate model in training environment were evaluated over 12, 1

and 10 games.

DQN agent for general model was finetuned on the trained DQN easy model. Hence,

the total number of training iterations for general model is the sum of iterations needed

to train easy model and the additional iterations DQN agent took to finetune over gen-

38

eral model (2950000 + 10190000).

Easy
Model

Moderate
Model

Hard
Model

General Model

Maximum
Score

18720 10092 204 503

Average
Score

14530.5 4567.33 67.8 93.18

Training
Itera-
tions

2950000 4320000 9220000 2950000 + 10190000
= 13140000

Total
games /
episodes

2 12 100 100

Table 6.1: DQN agent results - training environment

Easy
Model

Moderate
Model

Hard
Model

General Model

Maximum
Score

28022 13136 1878 2396

Average
Score

28022 5275.5 450.42 1023.16

Training
Itera-
tions

1690000 1470000 7740000 7520000

Total
games /
episodes

1 10 100 100

Table 6.2: DDQN agent results - training environment

The evaluation of the DQN and DDQN agents in the testing environment was ran

for either 50 games or a maximum of 2100000 timesteps, whichever the agents reached

39

first.

Easy
Model

Moderate
Model

Hard
Model

General Model

Maximum
Score

427 2850 268 418

Average
Score

105.3 1130.83 125.52 109.5

Total
games /
episodes

50 24 50 50

Table 6.3: DQN agent results - testing environment

Easy
Model

Moderate
Model

Hard
Model

General Model

Maximum
Score

28378 9311 1796 553

Average
Score

28378 746.08 770.36 168.66

Total
games /
episodes

1 38 50 50

Table 6.4: DDQN agent results - testing environment

Performance of the two DRL agents – DQN and DDQN were compared across four

models (easy, moderate, hard and general) in two environments (train and test). Fol-

lowing metrics were used for the comparative study:

• Training Iterations – Total number of iterations (timestep) it took the agent for

training.

• Maximum Score – Maximum game score achieved by the agent among total games

it was tested for. It is the best agent has performed.

40

• Average Score – Mean of the game score achieved by the agent across total

number of games it is tested for. It describes the performance of the agent better

in terms of consistency.

Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 shows the plot of maximum score

and average score metrics achieved by the two agents for easy, moderate, hard and

general models respectively. The DDQN agent outperform the DQN agent across most

models and environments significantly. Moderate and general models in testing envi-

ronment are an exception and almost matches the DDQN agent’s performance . In

addition, DDQN agent takes significantly less time to train in all the models when

compared with DQN agent. The comparison is shown in Figure 6.5.

6.1 Sinusoidal Exploration Decay vs Epsilon Greedy

Decay

In this project, DQN agent uses decaying epsilon greedy strategy to handle exploration

– exploitation dilemma while DDQN agent uses sinusoidal exploration decay strategy.

Figure 6.6 represent the plot of decaying epsilon values with respect to the training

iterations for the DQN agent while training the general model. Figure 6.7 and Figure

6.9 shows the changing scores as the training progress for DQN and DDQN agents

respectively. Figure 6.8 shows the changing values of epsilon in sinusoidal manner

while training the DDQN agent for general model. Large values of epsilon caused the

agent to die frequently and therefore leading to low scores while low values resulted in

higher scores while training. This can be concluded from the plot in Figure 6.7 and

Figure 6.9.

Figure 6.10 is a comparison plot of scores with respect to the training iterations

for DQN and DDQN agent for general model. The plot shows that the DDQN agent

starts to converge faster when compared to the DQN agent. Also, the training of the

DQN agent becomes flat after epsilon decays completely, but the training of DDQN

agent continues in sinusoidal fashion and reached the peak thrice. This means that the

DDQN agent does not stop exploring altogether after reaching its local minima. DQN

41

Figure 6.1: Performance plot -
Easy model

Figure 6.2: Performance plot -
Moderate model

Figure 6.3: Performance plot -
Moderate model

Figure 6.4: Performance plot -
Moderate model

42

Figure 6.5: Training Iterations plot

agent on the other hand stops exploration and consequently further training once the

epsilon decays completely.

6.2 Discussion

It is clear from the results of the experiments that DDQN algorithm with sinusoidal

exploration decay outperforms DQN algorithm with decaying greedy epsilon substan-

tially. Also, DDQN agent converged considerably faster. During the training of the

43

Figure 6.6: Epsilon vs Training Iterations plot for DQN agent - General model

Figure 6.7: DQN agent’s Score vs Training Iterations plot - General model

44

Figure 6.8: Epsilon vs Training Iterations plot for DQN agent - General model

Figure 6.9: DDQN agent’s Score vs Training Iterations plot - General model

45

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e7

0

100

200

300

400

500

600

700

Sc
or

e

Agent
DQN
DDQN

Figure 6.10: Score vs Training Iterations plot - comparison

agents, it was observed that with the level of difficulty in the models (easy, moder-

ate, hard and general), training time of the agent also increased. Hence, not only the

training times of the easy and moderate models are very low comparatively, they also

achieved the superhuman score of more than 10000 (and 28000 for DDQN easy model)

in the training environment. Training hard and general models on the other hand were

time intensive and their performance do not reach anywhere near the easy and moder-

ate models. DQN agent found it difficult to converge for the hard and general models

and did not perform well comparatively. DDQN agent’s performance and convergence

even for hard and general models was very good. Even though it did not match the

scores of easy and moderate models, it reached the maximum scores of more than 2300

and average score of 1000 for general model. Since hard and general models are better

representations of real-time obstacles, outperforming baseline in these constitute good

results.

Apart from using the target network and double deep Q-Learning algorithm for

DDQN agent, using sinusoidal exploration decay function also helped. While training

DQN agent, the agent stopped exploring altogether after it reached the final epsilon

value. As a result, the further training of the agent stopped (or slowed down sizeably)

after reaching a certain point. Sinusoidal exploration decay function in DDQN agent

prevents the agent to stop exploring. Every time epsilon reaches its smallest vale, it

starts increasing again and consequently agents starts to exploring more.

46

The performance of the agent was evaluated on two environments : train (which is

the same environment agents are trained on) and test (slightly different than training

environment). The agent’s performance on the testing environment are generally poor

than their performance in the training environment. This may be due to the fact that

the algorithms use the frame representation of the games to store the state information.

When we change the environment (GUI) of the game even slightly, for the algorithms it

becomes an entirely new state which has not been explored yet. As a result, the agents

make its best approximation and tries to achieve the maximum score. Fine-tuning the

agent by training it sometime in the new environment might lead to better results.

It has also been observed, that the agents might start to forget or begin to re-learn

the policies if trained too much.

47

Chapter 7

Conclusion

In this thesis we analysed the performance of the RL agents trained in a classic ar-

cade gaming environment using DDQN and DQN techniques. Different epsilon decay

strategies are utilised in order to identify their characteristics and effects on agents’

performance. Baseline model (DDQN agent) was first created followed by other mod-

els. Two different strategies to balance exploration and exploitation were also studied

and used in both the agents. The details of the experiments are outlined in section 5.

Different game environments (test and train) and models (easy, moderate, hard and

general) were also designed to support evaluation of the algorithms and strategies used

(section 4).

Three performance metrics were defined to evaluate the performance of RL agents:

maximum game score, average game score and the number of iterations agent took to

train on different models. These metrics were computed for the agents and presented.

The performance of the agents was then compared with the each other using the three

defined metrics. The agents were trained and evaluated on different models, to see the

impact of “difficulty” on the ease of training and performance. The agents were also

evaluated on two different environments to measure their flexibility.

The findings of these experiments indicate that the sinusoidal decay strategy can

significantly improve the performance of the AI agent while exposed to unknown varia-

tion in the environment which in this thesis is simulated by introducing difficulty levels.

It was also observed that the DDQN network architecture results in a significantly less

training time and using the target-network during the training stabilised the Q-values

48

estimation.

Importantly, we note that the main challenge in such platform and systems are:

• Balancing exploration and exploitation which is one of the most demanding chal-

lenge of all. A single strategy may not work for all the environments and may

vary from environment to environment.

• In more complicated environments, the DRL agent might get stuck in the local

optimum. Simple exploration decaying strategies might not be enough to escape

local optima and reach global optimum in such environments.

• Complete training of RL agents from the scratch takes a long time (weeks for

complicated environments). Even then, it might not be possible for the agent to

explore all the scenarios.

• It was observed that if the agent is over trained, it starts to perform worse i.e.

forgets what it has learned before. This leads to the need of knowing the correct

time when the training of the agent should be stopped.

7.1 Future Work

There are numerous possibilities to extend the work done in this project. An obvious

way to extend this study could be to implement more algorithms and strategies for

the comparative study. Another area that I wanted to explore but could not due the

time constraint was to implement a DDQN algorithm using decaying epsilon greedy

strategy. This would have enabled me to bifurcate the impact of using double Q-

Learning algorithm and sinusoidal exploration decay strategy on the performance. It

was observed that after convergence, DRL agents started to perform poorly if kept on

training. It could be a good idea to study the cause for this and research on techniques

to prevent this.

Furthermore, more experiments can be conducted for better evaluation of the

agent’s performance. Different game environment or models could be used for another

comparative study.

49

7.1.1 Offline Learning in DRL

R. Agarwal, D. Schuurmans, and M. Norouzi [41] proposed an approach to train the

DQN agent [9] using offline learning. DQN agent was trained using logged replay data

of previously trained DQN agents instead of learning online from the environment. The

authors also contributed a large dataset consisting 50 million logged experiences (tuple

of observation, action, reward, next observation) of DQN agents for more than 60 Atari

games. Since in online learning, agent needs to gather a very large set the experiences

from scratch, training is a long process. Also, it is not possible for a single RL agent

to explore all the scenarios in a constraint time frame. Offline learning is effective and

can overcome this barrier if a “sufficiently large and diverse dataset is available”.

Utilizing this approach to enhance the performance of the DDQN agent further was

considered for this dissertation. Unfortunately, the replay logs shared by [41] did not

contain the dataset for Flappy Bird environment. For future research, a diverse and

large dataset containing the replay logs of DQN agent in Flappy Bird environment can

be accumulated. This dataset can then be used for offline training of the RL agent in

the current implementation and its evaluation.

50

Bibliography

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” IEEE transactions on pattern analysis and machine intelli-

gence, vol. 35, no. 8, pp. 1798–1828, 2013.

[2] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning,” arXiv preprint arXiv:1509.06461, 2015.

[3] R. Chuchro and D. Gupta, “Game playing with deep q-learning using openai

gym,” Semantic Scholar, 2017.

[4] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” 2011.

[5] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An

introduction to deep reinforcement learning,” arXiv preprint arXiv:1811.12560,

2018.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[7] H. V. Hasselt, “Double q-learning,” in Advances in neural information processing

systems, pp. 2613–2621, 2010.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

51

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–

533, 2015.

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief

survey of deep reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

[12] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 135.

MIT press Cambridge, 1998.

[13] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal

locomotion,” in IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004, vol. 3, pp. 2619–2624, IEEE, 2004.

[14] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and

E. Liang, “Autonomous inverted helicopter flight via reinforcement learning,” in

Experimental robotics IX, pp. 363–372, Springer, 2006.

[15] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimizing dialogue manage-

ment with reinforcement learning: Experiments with the njfun system,” Journal

of Artificial Intelligence Research, vol. 16, pp. 105–133, 2002.

[16] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “Pac model-free

reinforcement learning,” in Proceedings of the 23rd international conference on

Machine learning, pp. 881–888, 2006.

[17] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye

coordination for robotic grasping with deep learning and large-scale data collec-

tion,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp. 421–

436, 2018.

[18] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos,

C. Blundell, D. Kumaran, and M. Botvinick, “Learning to reinforcement learn,”

arXiv preprint arXiv:1611.05763, 2016.

52

[19] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl

2̂: Fast reinforcement learning via slow reinforcement learning,” arXiv preprint

arXiv:1611.02779, 2016.

[20] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in

partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,

pp. 99–134, 1998.

[21] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent policy gradi-

ents,” Logic Journal of the IGPL, vol. 18, no. 5, pp. 620–634, 2010.

[22] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with

recurrent neural networks,” arXiv preprint arXiv:1512.04455, 2015.

[23] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,

“Target-driven visual navigation in indoor scenes using deep reinforcement learn-

ing,” in 2017 IEEE international conference on robotics and automation (ICRA),

pp. 3357–3364, IEEE, 2017.

[24] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning

environment: An evaluation platform for general agents,” Journal of Artificial

Intelligence Research, vol. 47, pp. 253–279, 2013.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[26] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling

network architectures for deep reinforcement learning,” in International conference

on machine learning, pp. 1995–2003, 2016.

[27] I.-A. Hosu and T. Rebedea, “Playing atari games with deep reinforcement learning

and human checkpoint replay,” arXiv preprint arXiv:1607.05077, 2016.

[28] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements

in deep reinforcement learning,” arXiv preprint arXiv:1710.02298, 2017.

53

[29] F. Moreno-Vera, “Performing deep recurrent double q-learning for atari games,” in

2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI),

pp. 1–4, IEEE, 2019.

[30] G. Tesauro, “Td-gammon, a self-teaching backgammon program, achieves master-

level play,” Neural computation, vol. 6, no. 2, pp. 215–219, 1994.

[31] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering

the game of go with deep neural networks and tree search,” nature, vol. 529,

no. 7587, pp. 484–489, 2016.

[32] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,”

in International conference on computers and games, pp. 72–83, Springer, 2006.

[33] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human

knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[34] OpenAI, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[35] K. Chen, “Deep reinforcement learning for flappy bird,” 2015.

[36] P. Shinners, “Pygame.” http://pygame.org/, 2011.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software

available from tensorflow.org.

[38] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[39] T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

54

https://blog.openai.com/openai-five/
http://pygame.org/

[40] T. Vu and L. Tran, “Flapai bird: Training an agent to play flappy bird using

reinforcement learning techniques,” arXiv preprint arXiv:2003.09579, 2020.

[41] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective on of-

fline reinforcement learning,” in International Conference on Machine Learning

(ICML), 2020.

55

	Acknowledgments
	Abstract
	Summary
	List of Tables
	List of Figures
	Chapter Introduction
	Reinforcement Learning
	Thesis Objective and Overview
	Thesis Structure

	Chapter A Deeper Look into Reinforcement Learning
	Markov Decision Processes
	The Dynamics of MDP
	Transition Function
	Reward Function
	Goal
	Discounting
	Value Function
	Q-Value Function
	Bellman Optimality Equation

	Offline vs Online Learning
	Off-policy vs On-policy Learning
	Exploration vs Exploitation Dilemma
	Greedy Approach
	Epsilon Greedy Strategy
	Decaying Epsilon Greedy Strategy
	Sinusoidal Exploration Decay Strategy

	Q-Learning
	Double Q – Learning
	Deep Reinforcement Learning
	Deep-Q Learning

	Challenges in RL

	Chapter Literature Review
	History of Reinforcement Learning in Gaming
	TD – Gammon
	AlphaGo
	DOTA 2

	Chapter Flappy Bird Game
	Difficulty Levels
	Train and Test environments
	Action Space
	State Space
	Goals and Rewards
	Implementation Details
	Input Pre – processing
	Convolutional Neural Network Architecture
	Software and Hardware

	Chapter Experiments
	DQN Agent – Baseline Model
	Q-Learning Agent
	DDQN Agent

	Chapter Results and Analysis
	Sinusoidal Exploration Decay vs Epsilon Greedy Decay
	Discussion

	Chapter Conclusion
	Future Work
	Offline Learning in DRL

	Bibliography

