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Single Image Super-Resolution (SISR) has achieved the most advanced accuracy
through deep learning technology. However, how to balance between the efficiency
and accuracy of super-resolution remains an open question. This dissertation discusses
state-of-the-art SISR algorithms implemented on mobile devices. Several innovative
algorithms are compared and discussed. Finally, I propose two efficient light-weighted
SISR methods which are suitable for mobile devices. The first is NSAN, which learns
hybrid residual features using non-local second-order attention network, based on which
the residual HR image can be reconstructed. The second is ARSN, from which the
specified residual blocks and skip connections were utilized for residual scaling, global
and local residual learning. The proposed methods have different strengths; they both
achieve good results in terms of performance, speed and hardware consumption, and
have high practical value.
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Chapter 1

Introduction

1.1 Motivation

Due to the increasing volume of the data and the accelerating development of the hard-

ware, single image super-resolution enjoys the prevailing advancement of deep learning

and become more and more attractive recently. Image super-resolution reconstruc-

tion technology has very broad application prospects, and has tremendous practical

value in various fields such as aerial imaging [1], facial image improvement [2],medical

image processing [3]. Single image super-resolution reconstruction belongs to typi-

cal computer vision problems, aiming to reconstruct low-resolution (LR) images into

high-resolution (HR) images.

Achieving a high-resolution picture of a low-resolution picture might be a compli-

cated issue, but the convolutional neural network has had an immense effect on this

area, rendering the resulting image more fragile and realistic. In this work, I am mainly

dealing with super-resolution tasks of a single image.

Given the successful history of the Convolutional Neural Network in advanced com-

puter vision tasks, C. Dong et al. [4] proposed a CNN-based SR algorithm, specifically

SRCNN. Therefore, since then, CNN has attracted more researchers to solve super-
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resolution tasks[5, 6, 7, 8, 9]. Although the performance has been greatly improved,

there are still some problems when applying them to native mobile applications. First,

and most importantly, previous research focused on introducing more complex convolu-

tional neural networks to increase performance while ignoring computational expenses.

The significant amount of calculations cause the implementation of this algorithm

on mobile devices difficult. Second, when the network complexity grows, the training

phase becomes more unpredictable [7, 10], implying further technical abilities are re-

quired to prepare the network to boost efficiency. Third, some of the earlier techniques

do not make fair use of the training data to generate super-resolution images.

To solve the problems mentioned above and make super-resolution appropriate for

mobile devices, I propose a novel attention-inspired network structure. At the begin-

ning, I concentrate on non-local blocks and train the self-attention learning network

by catching remote dependencies. Second, I built the network to utilize the training

data fully to restore images with super-resolution. It offers an unparalleled view of

deep learning data enhancement, and an exceptional benefit for network architecture.

I used the suggested scheme in this work to formulate a compact and effective network.

Experimental findings on the benchmark data set demonstrate that the best balance

between image quality and processing speed can be reached using this approach.

Later I propose a light-weight network with Automatic Residual Scaling (ARSN),

which is combined with the FSRCNN[5], VDSR[11], DRCN[12], MemNet[13] and other

networks. As the network layers of these methods tend to become deeper and deeper,

while the network weights of the method in this paper are relatively light, and the

number of layers is much less. At the same time, the method in this paper can directly

input low-resolution images without bi-cubic interpolation, which can reduce additional

calculations.
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1.2 Objectives

For better performance, it is a design trend to deepen or widen the network. However,

the result in these methods require huge computing costs and memory consumption

thus not very suitable for mobile and embedded vision applications. In the meantime,

conventional convolutional neural networks typically follow a cascaded network topol-

ogy, such as VDSR. In this way, the feature map of the individual layer is submitted

to the following layer without distinction.

My objective is to propose our lightweight model that can run on 80 per cent of

the current mobile devices(Android platform), which could balance the time and the

performance.

1.3 Structures

Chapter 1 briefly reviews the development of the SR field in recent years and the

purpose of the research

Chapter 2 briefly introduces and analyzes the latest technology. Among them, the

first part introduces the latest progress and model of SR in the traditional PC platform.

The second part tests the currently limited algorithms optimized for mobile phones.

Chapter 3 is the design and test of the algorithm I proposed.

Chapter 4 tests and compares the accuracy and operating efficiency of all the algo-

rithms involved in the paper.

Chapter 5 summarizes the main contributions and gives possible ways of future

work.
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Chapter 2

Related work

2.1 Development of Approaches

Among all the jobs of the computer vision, image super-resolution(SISR) is a backbone

problem. The traditional method in our literature is to learn the mapping from a low-

resolution image towards a high-resolution image for reconstruction. Modern machine

learning approaches have been commonly used in this field, including kernel-based

methods [14], PCA-based mothods[15], sparse coding approaches [16], embedding ap-

proaches [17], etc. A robust approach can secure complete use of the similarities of

images without the need for additional data. [18] uses patch redundancy to create

super-resolution photos. Freedman et al. [19] have later developed a localized search

tool. Huang et al. [20] extend the algorithm used to direct a patch search utilizing the

detected perspective geometry.

The new development of the super-resolution makes excellent use of the efficient

representation capabilities of the convolutionalneural networks.

Dong et al. [4] firstly suggested SRCNN to restore high-resolution images. This

structure in CNN was described as an extraction layer, followed with a non-linear map-

ping layer, and then a reconstruction layer corresponding to these phases in the[16].
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Kim et al. [11] utilizes a deep residual CNN to improve the performance. This tech-

nology uses bicubic interpolation to upload low-resolution images to the appropriate

scale; furthermore, they feed the network to produce super-resolution images. After

that, super-resolution approaches based on the convolutional neural network have be-

come a must towards better results. These approaches include LapSRN[6], DRRN[8],

SRResNet[21], EDSR[7] and RCAN[9].

Nevertheless, the size of the network adds many calculations and increases the re-

sponse time. Dong et al. utilize a relatively smaller filter size and a relatively deeper

network, specifically FSRCNN [5] to solve this problem. This network eliminates the

bicubic interpolation layer and embeds the deconvolution layer at the end of FSRCNN.

In order to minimize the parameters, DRRN[8] suggested a combination of the remain-

ing skip and recurrence links, which would decrease the running speed. CARN[22] uses

several bypass connections and multilevel design to achieve a cascading method on the

residual network. Aiming to use multi-scale features, Li et al. .[23] have proposed

a model to achieve multi-scale features of different scales. Dai et al. proposed SAN

[24] to reduce the calculation time, while He et al. proposed an ordinary differential

equation (ODE) inspired structure[25]. They all implemented high-order function ex-

tractors to catch high-order statistics but skipped the convolutionallayer. Operations

are local, so I have combined non-local operations with high-order statistical extractors

to boost our network.

While most CNN-based super-resolution approaches have extensively promoted

progress for this area, most advanced models aimlessly increase network depth and

parameters, and disregard the fact that convolution is local.

14



2.2 Attention Model

Attention typically suggests that the human being’s optical system focuses on the

relevant area[26] and adaptively processes visual information.

Currently, some studies suggested embedding attention mechanisms to improve

CNN’s performance on various jobs, including image segmentation, multimedia clas-

sification [27, 28]. Wang et al. introduced neural network [28] for multimedia classi-

fication. This method incorporates non-local processes into remote spatial attention

features. Hu et al. SENet [27] introduced a method to achieve the channel-level rela-

tionship aiming to improve the image classification performance. The expectation to

maximise attention network for semantic segmentation is proposed by Li et al. Utilis-

ing the EM algorithm to optimise parameters and reduces the complexity of non-local

block operations is suggested by Huang et al. Fu et al. proposes a method for semantic

segmentation of crisscross attention [29]. That can effectively capture context patterns

from remote dependencies. The Dual Attention Network (DANet)[30] is proposed,

consisting mainly of a location attention structure and a channel-attention structure.

This utilises the location attention structure to study spatial interdependence. The

channel-attention module aims to trace the interdependence of channels. By capturing

rich contextual relevance, the results of segmentation are greatly improved. A residual

channel attention network (RCAN)[9] for single image super-resolution is proposed by

Zhang et al. This method utilises the channel attention to capture channels adaptively

by considering the interdependence of information between channels. First, insert

non-local blocks into a single super-resolution image. Then they introduced residual

non-local attention structure[31] to obtain extra detailed knowledge by retaining rela-

tively low-level features that are proper for super-resolution reconstruction. The design

pursues better representation capabilities and delivers high-level image reconstruction

results. After that, a non-local residual enhancement group (NLRG)[24] is proposed

to achieve spatial context that significantly improves the result of the model.
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2.3 Categories for Techniques

[32] divides current methods of modelling neural network architectures into the follow-

ing groups.

2.3.1 Linear Networks

The linear network has a simple network type, with only one signal direction, no bypass

connections or multiple branches. In this network architecture, multiple convolutional

layers are superimposed on each other, so the input flows from the initial layer to the

node. SRCNN [4], VDSR [11], etc., are usually linear network designs.

2.3.2 Residual Networks

Unlike linear networks, the residual network utilizes network architecture links to skip

away to prevent gradient disappearance and make deep networking feasible. First

proved its importance in the topic of image classification. Some networks, such as

EDSR[7] have recently been using residual learning to increase the efficiency of SR

systems. In this process, the residual is learned by the algorithm, which is the high

frequency between the input and ground truth. Present residual learning methods are

classified toward single-stage or multi-stage, depending on the number of steps utilized

in these networks.

2.3.3 Recursive Networks

The recursive structure uses convolutionallayers or recursively linked units that are

recursively related. The fundamental purpose behind these designs is to slowly de-

compose the more complex SR problems into a series of easier-to-resolve, more specific

problems.
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2.3.4 Progressive Reconstruction

Generally speaking, the CNN algorithm can predict output in one step; however, larger-

scale factors may not be capable of this. Many algorithms (such as LapSRN [6]) will

predict the performance in multiple stages, i.e. perform two times, then four times,

and so on, to deal with broader factors.

2.3.5 Densely Connected

Motivated by the DenseNet’s successful image classification, a new algorithm built on

tightly connected CNN layers is introduced for performance improvements. The key

reason for this design is to integrate the available hierarchical indications along the

depth of the network to achieve a high degree of versatility and a better representation

of functions.

2.3.6 Multi-branch Networks

Multi-branch networks aim to achieve a complex range of functions on different back-

ground scales, in contrast to architectures focused on single-stream (linear) and skip

links. Then this additional information is merged to get a better reconstruction of HR.

Multi-path signal flow can also be realized by design so that that information can be ex-

changed in the training process between previous and subsequent stages. Multi-branch

design is typical in many other computer vision tasks, too.

2.3.7 Multiple Degradations Network

The hitherto addressed super-resolution network considers bicubic degradation. Nonethe-

less, this may not be a realistic conclusion in practice, since at the same time, several

degradations may occur. A system similar to ZSSR is proposed to tackle this fact.

17



2.3.8 GAN

The Generative Adversarial Network (GAN) uses an approach to game theory in which

the model’s two components (namely the generator and the discriminator) attempt to

deceive the latter. The generator produces the super-resolution image such that it can

not be recognized like a genuine high-resolution image or an artificial super-resolution

output by the discriminator. The approach allows for the creation of HR images of

better perceptual accuracy.

18



Chapter 3

Design and Experiment

3.1 Non-local Second-order Attention

3.1.1 Structure Design

I have published this NSAN algorithm in CD-MAKE2020 Conference[33]. As illus-

trated in the structure in Figure 3.1, this NSAN structure consists primarily of the

following parts: the shallow feature extractor, the high-order enhancement group with

deep feature extraction(HEG), and the expansion and reconstruction layer. First in-

put ILR and ISR as our NSAN’s input value and the output value;Then I applied a

convolutional layer after [7, 24] to capture the shallow features from the input

F0 = HSF (ILR) (3.1)

where HSF denotes the convolution process. Later the shallow feature F0 filled in HEG

based deep feature extraction thus achieves the deep feature as

FDF = HHEG(I0) (3.2)

19



where HHEG is the HEG based feature extraction structure, which comprised of two

RL-NL modules to achieve the long-range information and G residual channel attention

groups. In this way, our proposed HEG method could achieve intense depth and could

obtain more information. Next, the extracted FDF is going to be upsampled through

the upscale module through

F↑ = H↑(ILR) (3.3)

from which H↑ and F↑ are upsample layer and upsampled feature individually.

There are multiple options in previous works to be done as an upscale procedure,

for instance, transposed convolution [5], ESPCN [34].

In recent SR models [5, 24, 7], the integration of upscaling functionality in the last

few layers achieves a reasonable trade off between output and computational burden.

Then upscaled function is through one layer of convolution

ISR = HR(F↑) = HNSAN(ILR) (3.4)

Where HR, H↑ and HNSAN are respectively the reconstruction layer, the upsample

layer and the NSAN function.

NSAN will then be optimized with a function of losses. Some loss functions were

widely used, such as perceptual losses in L2, L1. To verify our NSAN ’s effective-

ness, I have adopted the L1 loss functions that followed previous works. Because of

the training set with low-resolution N images and high-resolution images denoted by

{IHR, IHR}N , the NSAN aims to optimize the loss function:

L(Θ) =
1

N

N∑
i=1

||IHR − ISR||1 (3.5)

Where θ represents the NSAN range of parameters. To optimize the loss function, I

select Adam algorithm.
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Figure 3.2: The detailed structure of the attention module
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3.1.2 Enhanced High-order Group (HEG)

Now I describe edge HEG module (see Figure 3.1), which could be divided into branch

enhancement and edge enhancement of the main branch. The main branch is com-

prised of 2 regional levels [24] and G structure of non-local (RL-NL) residual channel

attention group (NRCAG) modules. RL-NL may collect information from distant lo-

cations. Each NRCAG also includes simplified residual M channel blocks with local

skip connections followed by a non-local channel attention module (NCA). The edge

enhancement branch consists of padding module and V. The NRCAG can take full

advantage of edge information and use edge information to improve channel features.

The method for stacking residual blocks has been verified as useful. It creates

in [7, 23, 24] a deep network. Even so, deeper networking built in this way will cause

performance gaps and difficulty training. When problems arise, the gradients disappear

and explode in deep network.

Stacking repeated blocks, as we all know, may simply not provide better perfor-

mance. I have introduced NHAG to solve this problem, and also the large amount of

low-frequency LR image information contributes to our deep network training.

Then a HEG is represented in the group g-th as:

Fg = Hg(Fg−1) (3.6)

Where Fg, Fg − 1 denotes a g-th HEG output and input. For simplicity the term

of the bias is omitted. The function g-th HEG is Hg.

Deep feature is then obtained as:

FDF = F0FG (3.7)
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3.1.3 Non-local Second-order Attention

Most previous CNN-based SR models overlooked interdependence between functions.

To use this information to the full, SENet parencite hu2018squeeze introduced CNN

to rescale the image SR function at channel level. However, SEnet only uses that First-

order statistics are realised through the global average pool, and non-local statistics are

ignored which are richer than local statistics, hampering the network’s discriminative

ability.

Inspired by the above work, I proposed a non-local second-order attention (NSA)

module to capture the interdependence of higher-order characteristics by including non-

local characteristics (see Figure 3.2). I remodelled the feature map F = [f1, · · · , fC ]

with C feature maps with size of H ×W to a feature matrix X with s = WH features

of C-dimension. Then compute the sample covariance matrix as

Σ = XIXT

where I =
1

s
(I − 1

s
1) , I and 1 are the s × s identity matrix and manix of all ones,

respectively.

Covariance normalisation plays a vital role with more biassed representations. For

this function, I first perform a covariance normalisation for the covariance matrix Σ

obtained, which is a symmetrical positive semi-definite and thus has an own value

decomposition (EIG) as follows.

Σ = UΛUT

where U is an orthogonal matrix and Λ = diag(λ1, · · · , λC) is diagonal matrix with

eigenvalues in non-increasing order. Then convariance normalization can be converted

to the power of eigenvalues:

Ŷ = Σα = UΛαUT
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where α is a positive real number, and Λα = diag(λα
1 , · · · , λα

C) . When α = 1, there

is no normalization; when α < 1, it nonlinearly shrinks the eigenvalues larger than 1.0

and streches those less than 1.0.

The normalized covariance manix characterizes the correlations of channel-wise

features. I then take such normalized covariance matrix as a channel descriptor by

global covariance pooling. As illustrated in Fig. 2, let Ŷ = [y1, · · · , yC ], the channel-

wise statistics z ∈ RC×1 can be obtained by shrinking Ŷ. Then the c-th dimension of

z is computed as

zc = HGCP (yc) =
1

C

C∑
i

yc(i)

Where HGCP represents the global covariance pooling function. Compared to the

widely employed first-order pooling (e.g., regional average pooling), our regional covari-

ance pooling examines the distribution of features and collects higher-than-first-order

figures with more unequal representations.

To better leverage the interdependencies of the aggregated information by global

covariance pooling, I also add a non-local block to catch long-range trends. Inspired by

the Dual Attention Network introduced by Fu et al., which implemented a non-local

channel focus block to gain more valuable functionality, but did not include a second-

order feature. In our network, I pair the second order extractor with the non-local

attention, which will extract the second order function and then generate a non-local

attention map.

X
′
= HNSB(z)

where HNSB denote the non-local second-order block.
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3.2 ARSN - light-weight Network with Automatic

Residual Scaling

Though NSAN has excellent performance on latest mobile phones with powerful GPUs,

the hardware of standard smart terminals is not suitable for large-scale deep neural

network models proposed. To make up for its shortcomings, I propose a light-weight

Network with Automatic Residual Scaling (ARSN). The innovation of this approach

is to achieve fewer layers and lighter weights of the method without sacrificing much

accuracy. At the same time, this method can directly input low-resolution images

without bi-cubic interpolation, which could reduce additional calculations.

3.2.1 Architecture

The basic structure of ARSN is shown in Figure 3.3. The model contains several special

residual blocks for feature extraction. The number of residual blocks can be increased

or decreased according to the actual situation. Compared with many different deep

learning-based algorithms, this structure has fewer layers and parameters. Besides,the

specified residual blocks and skip connections in this network were utilized for residual

scaling, global and local residual learning. This results on test datasets prove that this

model achieves balanced performance on both reconstruction quality and operating

speed. The proposed network achieves good results in terms of performance, speed

and hardware consumption, and has high practical value.

3.2.2 Residual module

As shown in Figure 3.4, each residual block contains two convolutional layers, plus

each convolutional layer contains 64 convolution kernels including a kernel size of 3*3

to maintain the ratio of the output map.
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Figure 3.3: Structure of ARSN.

Figure 3.4: Structure of a specified residual block.

Unlike the residual blocks in the standard residual network and SRresNet, the

residual blocks in the design proposed in this dissertation will delete the useless batch

normalization layer. Szegedy et al. found that adding feature maps would make the

model training unstable. Therefore, according to the methods of Szegedy et al. and

Lim et al., the model proposed in this paper adds residual gating following the second

convolutional layer of the residual block.

3.2.3 Structure of reconstruction network

Global residual learning is utilized in the reconstruction of the network, which may

cause the main branches of the network to learn or predict the details of the image.

ARSN also uses subpixel shuffle to enlarge low-resolution images. Experiments have

found that global residuals can converge faster and produce better quality than simple

deconvolution layers or bicubic interpolation. The main reconstruction process is shown

in Figure 3.5
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Figure 3.5: Structure of a specified residual block.

3.3 Comparing Approaches

Here I extensively compare the following most-advanced super-resolution Convolu-

tional Neural Networks together with my methods to benchmark single image super-

resolution.

I also compare the following models by network size, input and output model,

learning information, technical variations, operating speed, and peak signal-to-noise

ratio.

3.3.1 SRCNN

The SRCNN[4](shown in Figure3.6) is the first successful model to achieve super-

resolution using convolutional layers only. This work can be seen as a ground-breaking

work focused on deep learning SR, which has inspired several subsequent attempts in

this direction. The layout of the SRCNN is plain and simple. This consists only of

convolutional layers where a ReLU unit accompanies the nonlinearity of the individual

layer (except the last layer).
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Figure 3.6: Structure of SRCNN

3.3.2 FSRCNN

FSRCNN[5] (shown in Figure3.7) has improved speed and accuracy as compared to

SRCNN [4]. It aims to achieve a real-time calculation rate (24 fps) compared to SRCNN

(1.3 fps).

Compared with SRCNN, the model does not need to preprocess the input for in-

terpolation, directly conduct model training, and then perform up-sampling in the last

deconvolution; then use 1x1 convolution in the middle of the model layer to perform

dimensionality increase and dimensionality reduction , To further reduce the amount

of model parameters.

The PReLU used by the nonlinear activation function in the middle of the model

is used to avoid the dead zone problem of ReLU during the training process, and the

loss function is still the MSE used.

3.3.3 VDSR

SRCNN[4]has three problems that need to be improved: 1. It depends on the content

of the small image area; 2. The training convergence is too slow; 3. The network is

only effective for a certain ratio.

The VDSR[11](Figure3.8) model mainly has the following contributions: 1. It in-

creases the receptive field and has advantages in processing large images, from 13*13
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Figure 3.7: Structure of FSRCNN

Figure 3.8: Structure of VDSR

of SRCNN to 41*41. 2. Using residual images for training, the convergence speed be-

comes faster. Because the residual image is more sparse and easier to converge (another

understanding is the low-frequency information of the LR carrier, this information is

still trained to the hr image, but the low-frequency information of the HR image and

the LR image are similar, which takes a lot of time to train) . 3. Considering multiple

scales, a convolutional network can handle multi-scale problems.

3.3.4 LAPSRN

Deep Laplacian Pyramid Super Resolution Network (LapSRN)[6] uses a structure with

pyramids.The LapSRN network is made up of three component types, namely a convo-
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Figure 3.9: Structure of LAPSRN

lutional layer, a ReLU leakage, and a deconvolutional layer. Following the CNN rule,

the convolutional layer is placed at the end of the sub-layer before the leaky ReLU

(allowing a negative 0.2 slope) and before the deconvolutional layer to increase the

residual image size to the corresponding proportion.

LapSRN uses a ’1 loss function differential variant named Charbonnier that can

accommodate outliers. In each subnet, losses are recognized, similar to a multi-loss

structure. In comparison, the philtre sizes of the layer convolution and deconvolution

are 3 ranges and 4 ranges, each with 64 channels.

The LapSRN software uses 3 different 2x, 4x, and 8x SR models. We also suggested

a single model that could learn together, called LapSRN Multi-Scale (MS). Hold mul-

tiple SR rates. Ironically, a single MSLapSRN model’s performance is higher than

that of the three different models. One reason for this effect is that specific interscale

features are used by a single model to help produce more accurate results.
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Figure 3.10: Structure of MemNet

3.3.5 MemNet

Tai et el.[13] presents a novel, persistent memory network for image super-solution

(MemNet)(Figure 3.10).Traditional neural networks are basically one-way propagation,

so in the lower layer, the received signal is very weak. This one-way propagation

network, such as VDSR, DRCN, etc., is called short-term memory network. RED,

ResNET, the neurons in the network are not only affected by the direct predecessor,

but also by the heroes of the additional designated predecessor neurons. This is called

a restricted long-term memory network.

The long-term memory model has the following 3 special features:

1. The memory unit uses the gate unit to establish long-term memory. In each

memory unit, the gate unit adaptively controls the weights of different blocks in the

final output and controls which ones to keep Unit, what information is stored.

2. Deep network (80 layers), dense connection structure (as can be seen from the

figure above), signal compensation mechanism (the neurons in the back are directly

connected by the neurons in the front), which maximizes the information in different

Flow between memory cells.

3. The structure is proven to have a strong learning ability, and one model handles

multiple tasks (the model is used for image restoration, denoising, and super-resolution)
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3.3.6 EDSR

Enhanced Deep Ultra High Resolution (EDSR)[7] updated ResNet’s originally proposed

architecture for image classification to be used in SR tasks. Specifically, they showed

substantial improvement by removing the batch normalization layer (from each residual

block) and activating ReLU (outside of the residual block). Like VDSR, their single-

scale method to work on multiple scales has also been extended. Their proposed

multi-scale depth architecture for SR (MDSR) reduces the number of parameters by

most shared parameters. To learn about scale-related representations, only near the

input and output blocks are applied in parallel scale-specific layers.

The proposed deep architecture uses 1 loss for the training. Data enhancement

(rotation and flip) is used to create ”self-integration,” i.e. the transformed input is

passed through the network, reverse-transformed and averaged together to create a

single output. The author points out that this system of self-integration does not need

to learn several separate models but can bring comparable advantages to conventional

models based on integration.

3.3.7 SRMD

Super-resolution multidegradation network (SRMD)[35] shoots cascaded low-resolution

images and their maps of degradation. First, a cascaded, three-part filter size convolu-

tion layer is applied to the extracted features, and then a series of normalization layers

for Conv, ReLU and Batch. In addition, the convolution operation is used to extract

the HR sub-images, and the last step is to convert multiple HR sub-images into a single

final HR output. SRMD learns the HR image directly, and not the image residual.

The author also introduced a variant called SRMDNF that learns from degradation

without noise. In the SRMDNF network the connection is removed in the convolu-

tional layer from the first noise level mapping; however, the rest of the architecture
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is similar to SRMD. The author trained a separate model for each upsampling scale,

compared to multi-scale training. The number of convolutional layers is fixed at 12,

with 128 feature maps for each layer. The initial learning is set at 10-3, then lowered

to 10-5. The standard for lowering the learning rate between two consecutive times is

based on the era of error changes.

3.3.8 DBPN

DBPN (Deep Back-Projection Network)[36] is the winner of the PIRM Super Resolu-

tion Competition 2018. The innovation is that the modules combined with upsampling

and downsampling use stacking in residual mode which can take advantage of depen-

dence on upsampling and downsampling. It makes use of iterative upper and lower

layers of sampling to provide an error feedback mechanism for the projection error of

each stage. Create interconnected up-sampling and down-sampling stages, each stage

represents a different form of image degradation and components with a high resolution.

By extending this idea to allow for cascading features in the up- and down-sampling

phase (dense DBPN), the results can be further improved.

3.3.9 RDN

It is proposed that the Residual Dense Block (RDB)[37] extract rich local characteris-

tics through densely connected layers of convolution.

RDB also allows direct connections to all current RDB layers from the previous

RDB state , resulting in a Continuous Memory (CM) mechanism. In RDB, the local

feature fusion is then used to adjust and learn more successful features from past and

current local features, and to improve the training of a broader network.

International function fusion is used in a holistic way, jointly and adaptatively to

learn different hierarchical features.
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3.3.10 RCAN

Residual Channel Attention Network (RCAN) [9] is a recently proposed deep CNN

architecture for single image super-resolution.

The first novelty of this structure allows multiple paths from initial to final infor-

mation level. The second contribution allows the network to focus on selective feature

maps that are more important to the final task, and it can also effectively model the

relationship between feature maps.

RCAN uses 1 loss function network training. It has been observed that the recur-

sive residual style architecture can lead to very deep networks with better convergence.

In addition, it has better performance than modern methods such as VDSR and RDN.

This illustrates the influence of the guided attention mechanism on low vision tasks.

However, one disadvantage of the proposed framework is its high computational com-

plexity compared with other frameworks.

3.3.11 SAN

The second-order attention network (SAN) [24] aims to provide more powerful expres-

sion of function-related functions and learning. In this structure, a novel trainable

second-order channel attention (SOCA) module has been developed to better distin-

guish representations to adapt to channel direction features by using second-order fea-

ture statistics. In addition, the non-local enhanced residual group (NLRG) structure

not only contains non-local operations for capturing remote spatial context informa-

tion, but also contains repeated local source residual attention groups (LSRAG) for

learning increasingly abstract features.
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Figure 3.11: Super-resolution data set utilized in this study

3.4 Datasets

A number of data sets are now available that can be used for super-resolution images

and have major differences in image quantity, accuracy, quality, and variety. Some

have pairs of LR-HR images while others only send HR images. Typically the default

imresize feature (i.e., bicubic anti-aliasing interpolation) is used to obtain LR images

in this case). Numerous image data sets widely used in the SR community are listed

in the table below, specifically their HR image number, average size, average number

of pixels, image format and category keywords. In addition to these data sets, some

data sets for other vision tasks are commonly used in SR such as ImageNet, MS-

COCO. In addition, multiple training data sets, such as combining T91 and BSDS300

or combining DIV2K and Flickr2K, are also common. Finally, as shown below, we

selected the five most common data sets of all of those data sets:
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Table 3.1: Most widely used public image datasets for SISR
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3.5 Image Quality Assessment

Image quality refers to the visual qualities of the image, and focuses on assessing the

expectations of viewers. Methods for measuring image quality (IQA) typically include

subjective methods based on human interpretation (i.e., how the picture looks real)

and methods for objective measurement.

The former is more in line with our needs but is usually time-consuming and costly,

which is why the latter is currently the norm. These methods do not necessarily

coincide, however, since the target method is Normally human visual experience can’t

be very well described Precisely this may cause major variations in IQA outcomes.

In addition, objective IQA methods are further broken down into three types: com-

plete reference assessment methods using reference images, simplified reference Meth-

ods to compare the extracted products, and No reference system, with no reference

image. These are some of the most commonly used IQA methods which entail both

subjective and objective methods.

3.5.1 PSNR

The PSNR is calculated as follows:

PSNR(x, y) =
10 log10[max(max(x),max(y))]2

x− y2
(3.8)

PSNR is one of the most common quality restoration metrics for loss transfor-

mations (such as compression of images and restore of images). For super-resolution

image, the maximum pixel value (referred to as L) and the mean square error ( MSE)

between the image are specified as PSNR.

Since PSNR is connected only to pixel-level MSE, it focuses only on the difference

between the corresponding pixels rather than visual perception. Thus, when represent-

ing the quality of reconstruction in a real scene, this typically leads to deterioration of
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results, and we typically pay more attention to human perception. However, due to

the need for comparison with literary works, and the lack of an appropriate comparison

PSNR is now the most commonly used method of assessment of SR models in terms

of perception measures.

3.5.2 Structural Similarity

The formula of SSIM is defined as below:

(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.9)

Given the human visual system (HVS) is very useful for capturing image structure,

a structural similarity index (SSIM) is proposed to measure the structural resemblance

between images based on the independent colour, contrast and form analysis.

3.6 Experiments

To check our network ’s efficacy, I pick 5 datasets of benchmarks: Set5, Set14, BSD100,

Urban100 and Manga109. I’m implementing resize feature with bicubic activity for the

degradation model. I use PSNR and SSIM for assessing SR performance for the metrics.

The low-resolution images are increased for the NSAN training by horizontally

tossing and arbitrarily spinning 90◦, 180◦, 270◦. I set 16 low-resolution image patches

for each min-batch, with size 48× 48as input. I use the ADAM algorithm to simplify

our model with β1 = 0.9, β2 = 0.99,and ϵ = 10−8 and initialize learning speeds as 10−4

and then minimize them to half after 200 epochs. To train our proposed NSAN on an

Nvidia 2080Ti GPU, I use the Pytorch system.

Due to time limit, I set the initial learning rate at 0.001 for ARSN training, and it

will decrease after 60 epochs. The experiment also made use of the Adam optimizer to
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minimize the role of failure and equipped 120 epochs. The original residual scale factor

is set to 0.25 and will be automatically changed as the model runs. Momentum is 0.9

and weight attenuation is 0.001. Place 256 pictures as mini batch for model entry.
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Chapter 4

Results

4.1 Ablation Study

Our NSAN consists of two main components, including the high-order enhancement

group (HEG) and non-local second-order attention module (NSA), as shown in Figure

3.1. Of comparative purposes I practiced and evaluated NSAN and its derivatives on

the Set5 dataset to check the efficacy of specific modules. The specific performance is

reflected in Table 4.1.

I set RBASE as the standard baseline, comprising only the convolution layer con-

taining 20 NHAGs and the remaining 10 blocks in each NHAG. I have introduced long

jump and short jump connections to the basic model, after [38]. Ra and Rb show that

the second-order extractor and the non-local component are contained in the basic

structure, respectively. Rc represents a combination of the second-order extractor and

non-local block function. It can be seen that the Rc output is higher than the Ra to

Rb process.
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Table 4.1: Effect of different module for Set5 dataset with 200 epoch

HQ Bicubic SRCNN VDSR LapSRN 

 

 

 

 

 
Urban100: img011 MemNet EDSR RDN RCAN NSAN (ours) 

 

 
Urban100: img020 MemNet EDSR RDN RCAN NSAN (ours) 

HQ Bicubic SRCNN VDSR LapSRN 

Figure 4.1: Visual Result for scale factor 2
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Table 4.2: Quantitative results(PSNR/SSIM)
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Figure 4.2: Visual Result for scale factor 2
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Table 4.3: Computational and parameter comparison (2X) Set5).

4.1.1 Results

I set up a comparative test with model 12 state-of-the-art CNN-based SR methods:

SRCNN [4], FSRCNN [5], VDSR [11], LapSRN [6], MemNet [13], EDSR [?], RDN

[38], and RCAN [9] to verify the effectiveness of NSAN. See Table 4.2 for the detailed

findings of each scale element. Our NSAN worked better on all datasets as opposed to

other models, with different scaling factors. NSAN and SAN can produce very close

outcomes without self-integration, and are superior to other methods. This is mostly

because they also use high-order features to understand the interdependence between

users, which lets the network pay more attention to users of the details.

Our NSAN performed satisfactorily on data sets with rich texture information,

such as Set5, Set14, and BSD100 relative to RCAN, and marginally worse results for

data sets, such as Manga109 and BSD100 with rich reprocessing edge details. As we

all know, layer is a higher-order pattern with more complicated statistical properties,

while edge is a first-order pattern only a first-order operator can remove. Based on

second-order attribute statistics and non-local operator, our NSA therefore performs

best on images with higher-order details like texture.

I also display the visual effects of the various approaches as seen in Figure 4.1.

I note that most SR models are unable to reproduce the lattices correctly, and have

extreme fuzzy artifacts. Our NSAN, on the opposite, shows better performance and

reconstructs more high-frequency information including high contrast and rough edges.

Most of the comparative methods produce highly fuzzy objects in the case of ”img011”

and ”img076” Bicubic, SRCNN, FSRCNN and LapSRN ’s early inventions have lost
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their principal architectures.

Compared to the ground-truth, NSAN obtains more accurate results and restores

more information in the picture. Although recreating high-frequency information is

difficult during LR ’s restricted input information, our NSAN can still take full ad-

vantage of the restricted LR information by non-local second-order observation, thus

taking advantage of the spatial function of both high-order characteristics correlated

with more efficient pattern representation, resulting in more detailed outcomes.

This article also picked three photographs from the BSD100 dataset as a comparison

example for checking the visual effects, as seen in Figure 4.3. This article contrasts

conventional methods of restoration and alternative methods of restoration and bicubic

and profound methods of learning.

4.1.2 Model Size Analyses

The Table 4.3 displays the scale and output of existing CNN SR models. MemNet

and NLRG provide far fewer criteria for the output loss costs of these approaches. Not

only did NSAN have less parameters than RDN, RCAN and SAN, but also achieved

improved performance, meaning that NSAN may have a perfect performance trade-off

between complexity and efficiency of the model.

4.1.3 Speed comparison

In order to make our method practically used, we conduct a experiment to demonstrate

the speed of our proposed method. As shown in Table below, we test several methods

on Kirin 970, which is a artificial intelligence mobile phone chip. It should be noted

that our proposed ASRN achieve the best PSNR than other methods. Although the

speed of ASRN are little large than VDSR, ASRN obtain a good balance between

performance and speed.
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Table 4.4: Speed test results for scale factor 4 on Set5
Method VDSR LapSRN MemNet NSAN ARSN

Speed(ms) 2.45 3.12 5.78 3.83 2.97
PSNR(dB) 37.53/0.9587 37.52/0.9591 37.78/0.9597 38.43/.9634 38.31/.9687

4.1.4 Visual Comparison between ARSN and NSAN
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Figure 4.3: Qualitative comparison between ARSN and NSAN
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Chapter 5

Conclusion

5.1 Main Contribution

In this dissertation, I proposed a network with attention mechanism (NSAN) for SISR.

By utilizing this network structure, the high-order enhancement group supports NSAN

to grab structural information and long-term dependences by integrating non-local

operations. At the same time, NHAG allows a large amount of low-frequency data

in the LR image to be utilized in the local skip connection. NSAN does not just use

spatial correlation but also learns the interdependence of higher-order features through

the global covariance pool to obtain a more discriminative representation through the

NSA module. Experiments have shown NSAN ’s efficacy in mathematical, visual, and

evaluation analysis.

At the same time, I also introduced a lightweight network with automatic resid-

ual scaling algorithm, which can be used for super-resolution reconstruction. Through

this algorithm, the number of parameters can be reduced, and the image can be recon-

structed in real-time. The model proposed in this article has been tested in many ways.

The performance of the standard test data set has reached a very high level. Compared

with deepened super-resolution, the previously proposed convolutional neural network
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model has lower performance but higher real-time processing speed capacity; In addi-

tion, this method dramatically reduces model parameters and calculations. Therefore,

the model has high practicality.

5.2 Future Work

5.2.1 Super Resolution Optical Microscope

This sort of microscopic image enhancement and transfer of microscopic LR to HR

image is a fascinating area with little research. My experiments have shown that deep

learning can be utilised to boost the efficiency of mobile microscopes in their imaging

significantly.

The development of cost-effective portable microscopic imaging equipment based

on cell phones has dramatically improved over the last few years, with possible impacts

on environmental health and safety inspections. However, this handheld microscope

system also has multiple bugs and causes of aberrations, and at the same time, the

target data collection is small relative to the conventional SISR. With the advent of

robust unsupervised learning, however, I believe this process, which will have a remark-

able effect on the microscopic LR-to-HR super-resolution, will offer new functions and

realise applications that cannot be done with today’s optical microscope technologies.

5.2.2 Domain-specific Application

Not only can super-resolution be used specifically on particular fields for data and

scenes, some vision functions will also, be significantly improved. It is also also a

promising path to extend SR to more specialised areas, such as video monitoring,

product analysis, object detection, medical imaging, and scene rendering.
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