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The primary challenge in the treatment of ANCA-associated vasculitis is the balancing of risk of relapse 

with the cumulative toxicities of immunosuppressive treatments. The goal of this research is to perform an 

exploratory analysis of the RKD Registry, a database containing patient biomarkers since its creation in 

2012, and utilising these molecular biomarkers in this database to tackle this issue. Through the application 

of machine learning techniques it is hoped that the statistical information contained in these biomarkers can 

classify patients at risk of relapse from those who are off all treatment for a time period greater than one 

year. If successful, this research will be able to distinguish what biomarker or combination of biomarker 

values signal a safe termination of treatment.  
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Summary 
ANCA-associated vasculitis is a rare auto-immune disease which if left untreated is fatal. That 

said, the treatment of AAV is also extremely challenging. The use of immunosuppressive therapies 

have reduced the mortality rate to about 2.3%, however it remains an issue that approximately 
50% of people suffering from ANCA-associated vasculitis will relapse. While the disease of AAV 

leads to chronic symptoms, the immunosuppressive treatments, in particular their cumulative 

toxicity, have many equally harmful side effects. The immediate challenge of ANCA-associated 

vasculitis is therefore to balance this risk of relapse with the cumulative toxicities of the treatment 

at the maintenance therapy stage. The goal of this research was to tackle this problem through 
the application of machine learning techniques.  

Patients were stratified into two groups, one year in remission off therapy and relapse, and 

biomarker samples were obtained from the RKD registry. These samples were taken from the 

maintenance therapy stage, i.e. before any patient has finished therapy fully and before any 

patient has relapsed. Three datasets were compared. A substantive sample dataset which 
contained raw biomarker values. A Principal Component Analysis dataset which grouped together 

biologically similar biomarkers into principal components. A delta analysis dataset which 

contained raw biomarker values as well as delta biomarkers which are differences in biomarkers 

values from diagnosis to the beginning of maintenance therapy. These datasets were then 

analysed using a Bayesian Logistic Regression and Lasso Logistic Regression algorithms. 

A minimum accuracy of 72.5% was achieved for the substantive sample dataset using the Lasso 

Logistic Regression algorithm. A maximum accuracy of 95.7% was achieved for the delta analysis 

dataset using the Bayesian Logistic Regression algorithm. These accuracies significantly 

outperformed a baseline model confirming that the statistical information contained in the 

biomarker datasets can be utilised to distinguish between patients who have relapsed and those 
who are off all treatments for a time period greater than one year. Subsequent work was carried 

out to identify which biomarkers in particular are predictive of relapse. While it is clear that certain 

groups of biomarkers such as white cells and certain biomarkers such as ANCA titre are predictive 

of relapse, due to high levels of imputation and multicollinearity between variables it was difficult 

to conclusively identify individual important biomarkers.  

Finally, a second Linear Regression analysis was performed to identify if the substantive sample 

dataset could be used to predict the number of relapses a patient will suffer throughout their 

disease course. This analysis was limited in dataset size and an optimal 𝑅! of 0.299 was achieved. 

This result is not strong enough to conclusively state that the statistical information in the 

substantive sample dataset can determine with confidence the Relapse Rate.   
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Glossary of Terms 

Antineutrophil Cytoplasmic Antibody ANCA 

ANCA-associated Vasculitis AAV 

Granulomatosis with Polyangiitis  GPA 

Microscopic Polyangiitis  MPA 

Eosinophilic GPA  EGPA 

Proteinase  PR3 

Myeloperoxidase  MPO 

Neutrophil Extracellular Traps  NET’s 

Cyclophosphamide  CYC 

Glucocorticoids  GC 

Rituximab RTX 

Rare Kidney Disease RKD 

Chronic Disease Informatics Group CDIG 

Birmingham Vasculitis Activity Score  BVAS 

Mycophenolate Mofetil MMF 

C-Reactive Protein  CRP 

End Stage Renal Failure  ESRF 

Ear, Nose and Throat  ENT 

Rheumatoid Arthritis RA 

Inflammatory Bowel Disease IBD 

Multiple Sclerosis MS 

General Practioners  GP 

Trinity College Dublin  TCD 

General Data Protection Regulation  GDPR 

Comma-Separated Value  CSV 

Immunosuppressive Therapy IS 
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Long-Term Remission Off-Therapy LTROT 

C-Reactive Protein  CRP 

Hemoglobin  Hb 

Estimated Glomerular Filtration Rate  eGFR 

Missing Completely At Random MCAR 

Missing At Random MAR 

Principal Component Analysis PCA 

Neutrophil Lymphocyte Ratio NLR 

Principal Component PC 

Markov Chain Monte Carlo MCMC 

Least Absolute Shrinkage and Selection 
Operator 

Lasso 

Area Under the Curve AUC 

Ordinary Least Squares OLS 

Akaike Information Criterion AIC 

Residual Sum of Squares RSS 

Total Sum of Squares  TSS 
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Chapter 1 
Introduction  

The objective of this dissertation is to improve personalisation of treatment plans for patients 

suffering from antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCA-
associated vasculitis is a rare autoimmune disease with an incidence rate of 20 per million 

population (Karangizi & Harper, 2018). Untreated, ANCA-associated vasculitis is fatal and rapid 

diagnosis and treatment are essential to reduce organ damage and death caused by vasculitis 

(Karangizi & Harper, 2018). Despite treatment, AAV patient disease courses often follow a 

remitting-relapsing chronic course with 50% of patients experiencing a relapse within 5 years of 
diagnosis (Karangizi & Harper, 2018). By leveraging data analytical tools in a supervised manner, 

patient treatment plans may be personalised through identification of biomarkers which are 

indicative of relapse.  

ANCA-associated vasculitis is characterised by inflammation of small- and medium-sized vessels 

(Berti & Specks, 2019; Geetha & Jefferson, 2019). The exact causes and pathogenesis of AAV is 
multifactorial, however it is believed that genetics, environmental factors and responses of the 

innate and adaptive immune system all influence the onset of ANCA-associated vasculitis (Geetha 

& Jefferson, 2019). AAV can result in inflammation and necrosis of capillaries, arterioles, venules 

as well as larger vessels such as the kidney. This results in systemic non-specific symptoms such 

as malaise, flu-like symptoms, fatigue and weight loss which make AAV difficult to diagnose 
(Karangizi & Harper, 2018).   

ANCA-associated vasculitis can be stratified into 3 clinical diseases namely, granulomatosis with 

polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic GPA (EGPA). Each of these 

conditions is associated with inflammation of vessels which is caused by the presence of 

circulating ANCA directed against either proteinase (PR3) or myeloperoxidase (MPO) in the 
majority of patients (Berti & Specks, 2019). Vessel inflammation can occur due to ANCA being 

directed against both PR3 and MPO also. ANCA direction against PR3 and/or MPO are believed 

to be the key pathogenic triggers of neutrophil and monocyte activation resulting in small- or 

medium-vessel injury (Berti & Specks, 2019).  

Neutrophils are the primary cause of vessel injury (Geetha & Jefferson, 2019). During an infection 

the body exposes neutrophils to inflammatory cytokines, lipopolysaccharide or complement C5a. 

The neutrophils become primed with movement of MPO and PR3 as a result. In this primed state, 

ANCA’s may bind to these autoantigens on the cell surface resulting in cellular activation (Geetha 

& Jefferson, 2019). In patients with AAV, this immune response is incorrectly activated, therefore 
instead of the above process removing an infection it causes tissue damage which can lead to 
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organ destruction if left untreated. Tissue injury occurs as a result of neutrophil degranulation 

causing a release of reactive oxygen species and proteases. Activated neutrophils also undergo 

a form of cell death called NETosis in which neutrophil extracellular traps (NETs) are extruded 
from the cell containing entrapped MPO and PR3 resulting in tissue damage (Geetha & Jefferson, 

2019). This response to infections or diseases causes flu-like and other aforementioned 

symptoms and if left untreated can result in organ damage and morbidity. 

Treatment of ANCA-associated vasculitis is challenging. The introduction of immunosuppressive 

medications such as cyclophosphamide (CYC), glucocorticoids (GC) and novel medications such 
as Rituximab (RTX) have reduced patient mortality from in excess of 90% if untreated, into a 

manageable yet chronic disease with a relapsing nature (Berti & Specks, 2019).  The difficulty in 

treatment of ANCA-associated vasculitis is that there is no one fit all approach and each patient 

disease course is unique. In general, the treatment plan is divided into two stages. The first is 

aimed at minimizing tissue damage by rapidly quelling the inflammatory process (Geetha & 
Jefferson, 2019). This is known as the induction phase and can last from 3 to 6 months. The 

following stage is referred to as maintenance therapy which takes place over the following 24 to 

48 months. The maintenance stage is aimed at balancing the dangers of the diseases against 

those of treatment-related toxicity (Karangizi & Harper, 2018). The disease course and treatment 

plan is summarised below in Figure 1. 

 

Figure 1 - ANCA-associated vasculitis disease and treatment course (Kitching, et al., 2020) 
 

The reported Relapse Rate of patients suffering with AAV is about 50% within the first 5 years 

post diagnosis (Karangizi & Harper, 2018). Disease management must be tailored to the stage 

and severity of disease, however there is no precise disease course with most physicians 

recommending a minimum of 2 years of maintenance treatment (Karangizi & Harper, 2018). By 
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performing data analytics using the Rare Kidney Disease (RKD) registry, provided by the Chronic 

Disease Informatics Group (CDIG), it is hoped that novel biomarkers will be identified which can 

unobjectively tailor patient treatment plans to minimize the risk of relapse while subsequently 
optimizing the immunosuppressive treatment course.  

Motivation for Research Topic 

The majority of acute mortality and long-term morbidity associated with AAV is due to the use of 
long-term immunosuppressive agents (Berti & Specks, 2019). In fact, effective maintenance of 

remission with the least cumulative toxicity has been the focus of clinical trials in AAV since 1990 

(Berti & Specks, 2019). Standard treatment of AAV during induction therapy utilises a combination 

of GC’s with either CYC or RTX while azathioprine or more recently RTX are commonly used 

during maintenance therapy.  

The use of GC’s has been central in the management of AAV, however they are insufficient by 

themselves (Geetha & Jefferson, 2019). GC’s are usually prescribed with an initial high dosage 

followed by a steroid taper. Despite its effectiveness in controlling disease activity there is an 

extensive side effect profile. Infection, bone disease, obesity, gastrointestinal bleeding, cataracts, 
adrenal suppression, dysglycemia and long-term risks for cardiovascular disease are all related 

toxicities with the maintained use of GC’s (Geetha & Jefferson, 2019).  

CYC’s have been the most common therapy used in combination with GC’s. This combination has 

proved to be effective in more than 90% of patients in inducing remission however it is limited by 

substantial toxicity associated with both CYC’s and GC’s (Geetha & Jefferson, 2019). CYC is 
associated with many adverse serious side effects. These side effects include but are not limited 

to haemorrhagic cystitis, bladder cancer, lymphoma, bone marrow suppression, infertility and 

teratogenicity (Karangizi & Harper, 2018). Once again all side effects are related to the cumulative 

dose of CYC (Karangizi & Harper, 2018).  

RTX has been adopted as the primary treatment for ANCA-associated vasculitis in recent years 
given the toxicity of cumulative CYC’s. RTX targets specific cellular and molecular pathways 

involved in the autoimmune response and has been shown to be as effective for remission 

induction (Geetha & Jefferson, 2019). RTX is therefore superior due to its decreased toxicity, 

however there are still adverse side effects associated with RTX. In clinical trials the rate of severe 

infection was not reduced in patients receiving RTX when compared to CYC however it was 
concluded that this is possibly due to the combined use of GC’s. Progressive multifocal 

leukoencephalopathy is also a listed rare complication of RTX. RTX-induced 

hypogammaglobulinemia is a serious risk factor which occurs in 50% of patients treated with RTX 

and can lead to infection (Geetha & Jefferson, 2019).  
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Common to all treatments is that the cumulative dose of immunosuppressive therapies results in 

adverse side effects for the patient. Thus, the emphasis to minimize the use of said therapies by 

reducing the disease course. In essence, the clinical physician is searching for the optimal 
treatment time which minimises the cumulative dose of immunosuppressive therapy while 

ensuring that the patient is not at risk of relapse. Avoiding relapse is imperative as a patient who 

presents with a relapse is at a higher risk for subsequent relapses compared to newly diagnosed 

patients (Berti & Specks, 2019). Thus, a patient who relapses will have a longer disease course 

and higher cumulative dose of immunosuppressants.  

Currently for ANCA vasculitis, there are some known indicators for patients who are at a higher 

risk of relapse. For example, with patients whose ANCA antibodies are directed at PR3, their risk 

of relapse is significantly higher than those whose are directed against MPO (Karangizi & Harper, 

2018; Berti & Specks, 2019; Geetha & Jefferson, 2019). Other indicators of relapse include but 

are not limited to a rising ANCA titre, reappearance of haematuria in urine and increased serum 
creatinine (Karangizi & Harper, 2018). While these markers are useful indicators it is impractical 

to continuously monitor patients in this manner. Motivation for this research is therefore to leverage 

the power of data analytic techniques to identify patterns within these markers during maintenance 

therapy and to utilise this data to personalise patient treatment plans which minimise the 

cumulative dose of immunosuppressive therapies while ensuring a positive patient outcome.  

Dissertation Overview 

The structure of the dissertation is as follows. Chapter 2 reviews current literature and establishes 
the current state of the art research being undertaken in both the areas of AAV and supervised 

learning in a biomedical setting. Chapter 3 introduces the RKD Registry, the database used in this 

project, and outlines the work undertaken to clean and extract the final biomarker dataset. Chapter 

4 describes the supervised learning algorithms applied to the dataset and presents the results of 

said algorithms. Chapter 5 concludes this research project. It discusses potential future areas of 
research as well as a reflection and conclusion on the findings of this project.  
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Chapter 2 
Literature Review 

This section provides a review of current literature as well as establishing research questions 

addressed throughout this dissertation. The first section presents open issues regarding ANCA-
associated vasculitis as well as the state of the art research identifying known associated risks of 

relapse and their limitations in predicting patient relapse. The second section reviews supervised 

machine learning methods for identifying biomarkers in both ANCA-associated vasculitis and 

other autoimmune diseases and establish their use in improving patient treatment plans. 

Related Work on ANCA-Associated Vasculitis  

Current research undertaken to address the issue of relapse risk for patients diagnosed with 
ANCA-associated vasculitis suffers from conflicting results, small subgroup studies and varying 

inclusion criteria. The explanation for this is largely due to the rarity of the disease combined with 

several varying subgroups of the disease with many studies focusing on particular subgroups of 

AAV such as renal disease. As introduced in Chapter 1, there are three subtypes of ANCA-

associated vasculitis, namely GPA, MPA and EGPA. Not only this but there are two phenotypes 
namely, PR3 and MPO at which the circulating ANCA is directed. The exact pathogenetic triggers 

of AAV are still, as of writing of this paper, unknown (Karangizi & Harper, 2018; Geetha & 

Jefferson, 2019; Kitching, et al., 2020). A widely held belief is that identifying biomarkers 

independent of these subtypes which captures disease activity is the key to not only understanding 
AAV but to tailoring patient treatment plans (Kitching, et al., 2020; Hogan, et al., 2019; Salama, 

2020).  

The Birmingham Vasculitis Activity Score (BVAS) is a measure of disease activity and was 

intended to be used as a measure to guide treatment decisions. A BVAS score of zero indicates 

there is no disease activity and a higher value indicates disease activity, however there are 
limitations to this system. Firstly is its inability to differentiate between remission and low grade 

vasculitis (Trejo, et al., 2019). For example, given two patients, one suffering a relapse and the 

other merely low grade disease activity, depending on the specific markers or symptoms of each, 

the BVAS score of both could be similar, however they should not be treated similarly. In addition 

to this, the BVAS system cannot differentiate active disease from organ damage (Salama, 2020). 
Using the BVAS scoring system, some symptoms such as persistent or mild haematuria, subtle 

elevations in creatinine and others may be related to scarring and active disease but may not be 

recorded (Salama, 2020). Thus, the requirement for accurate biomarkers and disease activity 
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identification methods to differentiate between disease remission, disease suppression (low 

activity) and disease activity.  

In order to differentiate between different disease states, one must be able to obtain clinical 
markers which unobjectively identify that state. For ANCA-associated vasculitis the key 

differentiation between states that is of interest is identifying patients who are in remission and will 

remain in remission from those who will relapse. Various papers have successfully identified 

relapse risk factors of ANCA-associated vasculitis, however there are large differences in how 

researchers and clinicians have defined a relapse. Salama states that a relapse can only occur 
following a remission (Salama, 2020).  Conversely, papers such as Hogan, et al., McClure, et al., 

and He, et al. loosely define relapse as active disease resulting in the change or increase in 

immunosuppressive therapy, although the exact criteria for relapse in all three vary. The disease 

and treatment course of each patient is unique. Defining a relapse based on variation of 

immunosuppressive therapy results in significantly higher reported rates of relapse. As a result 
given a definition of relapse which does not consider remission may result in overestimated 

relationships between risk factors and relapse. This is one possible explanation for conflicting 

results among papers.  

Similarly, while the definition of remission for a patient with ANCA-associated vasculitis has 

generally been defined in papers as a BVAS equal to zero, there is no robust definition of remission 
(Salama, 2020). Hara, et al., have defined remission as a BVAS score of zero on two recurrent 

visits greater than one month apart while, Hogan, et al. have defined remission as the absence of 

dysmorphic red blood cells, no identifiable vasculitis lesions or symptoms in any organ and a 

BVAS equal to 0 (Hara, et al., 2018; Hogan, et al., 2019). Salama on the other hand, states that 
clinical remission is not straightforward, and evidence has been found where patients in remission 

have persistent inflammatory and immunological activity at levels above those of a healthy 

individual (Salama, 2020). For reasons outlined previously, the use of BVAS in identification of 

remission has known limitations. Thus, the variations in definitions of both remission and relapse 

emphasises the requirement for a strict definition of both of these quantities. A definition which is 
clinically validated is required in order to identify, unobjectively, biomarkers which are predictive 

and indicate an increased likelihood of relapse among all patients irrespective of their disease sub 

group.  

Further evidence of this requirement is corroborated given the variation in results in inducing and 

maintaining remission across many immunosuppressive therapy trials. He, et al. performed a 
systematic review and meta-analysis on the risk factors of relapse which showed that intravenous 

CYC induction versus oral CYC was associated with a 1.74 increased chance of relapse and use 

of mycophenolate mofetil (MMF) during maintenance treatment resulted in a 2.33 increased 

chance of relapse when compared to AZA (He, et al., 2020). Hogan, et al. identified that a 
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combination of GC’s and AZA for a time period greater than 2 years resulted in lower rates of 

relapse however this also resulted in a higher rate of infection and comorbid events (Hogan, et al., 

2019). In two trials, namely the MAINRITSAN and RITAZAREM trials, RTX outperformed AZA in 
maintaining remission however the optimal duration for RTX maintenance therapy is still uncertain 

with the REMAIN trial supporting 3-4 years of treatment regardless of all other factors (Kitching, 

et al., 2020). Despite these many trials there is no known reason why one immunosuppressive 

therapy may reduce the risk of relapse. In addition to this, the problems of treatment length as well 

as the fact that patients do still relapse irrespective of their immunosuppressive treatment remain. 
If a biomarker or combination of biomarkers can be identified which are an accurate predictor of 

relapse and independent of treatment, not only can they be used to explain why different 

therapeutics perform better than others, they may also yield an explanation of the pathogenesis 

of ANCA-associated vasculitis and improve the overall understanding of the disease.  

Currently no such biomarker has been discovered but there are various sub-group studies which 
have identified biomarkers which are associated with an increased risk of relapse. It has been 

concluded in most literature that patients who are PR3 positive are at a higher risk of relapse (Berti 

& Specks, 2019). However, there is a geographic incidence related to PR3 and MPO with the 

majority of PR3 positive patients having European ancestry whereas MPO is more common in 

those of Asian descent (Kitching, et al., 2020). Conversely, the study conducted by Hara, et al. of 
risk factors for relapse in AAV in Japan, where the majority of patients were MPO positive, did not 

find a significant difference in relapse rates between patients who were MPO positive and those 

who were PR3 positive (Hara, et al., 2018). These conflicting results could be attributed to the 

small studies performed, the geographic incidence of MPO and PR3 as well as differences in 
relapse definition. Nonetheless the literature highlights the requirement for further analysis. The 

use of ANCA titre is also commonly referred to in literature as being predictive of relapse but not 

sufficiently predictive to warrant a change to immunosuppressive therapy. Instead a change in 

ANCA titre is an indicator that closer monitoring of the maintenance therapy stage is required. 

While, it is commonly accepted that a change in ANCA titre alone is not predictive, Kemna, et al. 
hypothesize that a ‘second hit’ along with this is required for a patient to relapse (Kemna, et al., 

2017). Such a hypothesis has been corroborated elsewhere in literature with Berti & Specks 

finding that a change in ANCA titre along with B cell reconstitution results in a higher incidence of 

relapse (Berti & Specks, 2019). Similarly, Kemna, et al. found that an ANCA rise in the autumn 

months were more frequently followed by a relapse (Kemna, et al., 2017). It was postulated in this 
study that the ‘second hit’ was due to low levels of 25(OH)D more commonly known as vitamin D. 

In a separate study, Kemna, et al. found that ANCA titre was a useful predictor in AAV with renal 

involvement but not in patients with nonrenal disease. Finally, Sanders, et al., Kitching, et al. and 

McClure, et al. all state that a persistently high ANCA titre is a good indicator for relapse however 
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it is possible that this is more indicative of a lack of response to treatment. Other biomarkers such 

as creatinine and complement C5a were both shown to have a relationship with relapse risk 

(Walsh, et al., 2012; Geetha & Jefferson, 2019). These findings however were not conclusive with 
the respective authors citing the requirement for further research.  

The variation in findings in the literature mirror the difficulty of the challenge. Conflicting findings, 

small sub group analyses and the rarity of this disease has, in the past, meant that there are no 

conclusive biomarkers which are indicative of relapse. There is reason for optimism with more 

recent papers such as O'Reilly, et al. identifying a novel biomarker namely, CD163, which can 
accurately diagnose renal vasculitis in a non-invasive manner. CD163 is present in urine and is 

shed by monocytes during macrophage activation. Excessive macrophage activation is a 

biological phenomenon which occurs during active renal vasculitis thus a simple dip-stick urine 

test could be employed to diagnose a renal vasculitis relapse (O'Reilly, et al., 2016). It is hoped 

that through the application of data analytical methods similar novel biomarkers or patterns within 
biomarkers can be identified. Supervised learning has the ability to not only identify novel 

biomarkers but to combine known risk factors such as PR3 positivity or heightened ANCA titre. 

The ideal candidate biomarker or group of biomarkers is similar to CD163 whereby it is biologically 

associated with AAV, explains or aggregates findings in literature, is independent of the type of 

immunosuppressive therapy received and can unobjectively stratify all AAV patients who are at a 
risk of relapse during the maintenance therapy phase from those who are not.  

Related Work in the Field of Supervised Learning in a Biomedical Setting 

Supervised learning in the field of biomedicine is emerging as an area of increased utilization and 

importance. Machine learning can transform medicine into a data-driven, outcome-orientated 

discipline for disease detection, diagnosis and treatment due to its ability to collect and analyse 
large datasets (Goecks, et al., 2020). So far machine learning techniques have been used to 

diagnose breast cancer from X-rays, discover new antibiotics and predict the onset of gestational 

diabetes from electronic health records (Goecks, et al., 2020). ANCA-associated vasculitis is a 

complex disease. The exact pathogenesis and onset of ANCA-associated vasculitis is unknown 

although recent literature, as reviewed above, has begun to identify triggers and risk factors for 
the disease. Goecks, et al. state that currently clinical practices are limited to few markers which 

only reflect a narrow view of complex diseases such as AAV. The use of machine learning in this 

setting can leverage sophisticated algorithms operating on large multi-type datasets to uncover 

useful patterns that would be laborious or even unfeasible for well-trained individuals to identify 

(Goecks, et al., 2020). Applying supervised learning techniques to the challenge of optimizing 
maintenance treatment for patients with AAV is one that has the potential to unlock as of yet 

unknown triggers of disease relapse and activity.  
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There has been limited research utilising supervised learning techniques to predict the risk of 

relapse in patients with ANCA-associated vasculitis. Trejo, et al. performed a multivariable 

regression analysis which identified that one or more renal relapse was a strong predictor for End 
Stage Renal Failure (ESRF) however there were no factors found that were predictive of renal 

relapse (Trejo, et al., 2019). McClure, et al. performed research which aimed to create risk 

prediction models to help guide decision making during extended RTX maintenacne therapy 

(McClure, et al., 2020). Unfortunately this paper was unable to discriminate between individual 

patients at risk of relapse however they were able to categorise patientes into low and high risk of 
relapse. The main finding of this paper was that involvemnet of Ear, Nose and Throat (ENT) in 

AAV was predictive of relapse (McClure, et al., 2020). McClure, et al.’s paper is the closest study 

found to the proposed research in this paper. While the outcomes of the supervised learning 

models are identical, the inputs to the model differ significantly. McClure, et al. have focused on 

the use of RTX during maintenance therapy whereas this study is looking to identify biomarkers 
which can predict relapse irrespective of the immunosuppressive therapy for reasons outlined in 

the section Related Work on ANCA-Associated Vasculitis.  

While there has been limited findings in the application of supervised learning to ANCA-associated 

vasculitis, other auto-immune diseases have benefited greatly from the application of machine 

learning techniques. In autoimmune diseases such as Rheumatoid Arthritis (RA), Inflammatory 
Bowel Disease (IBD) and Multiple Sclerosis (MS) supervised learning techniques have been used 

to diagnose diseases, classify disease subtypes and identify and asses autoimmune disease risk 

(Stafford, et al., 2020). One example is Edner, et al. utilising a gradient boosting model which was 

able to predict the response of patients with type 1 diabetes to immunosuppressive therapy using 
follicular helper T cells (Edner, et al., 2020).  

Goecks et al. states that the application of machine learning to autoimmune diseases is a problem 

that requires disease-specific research to differentiate between indolent and fatal diseases, to 

avoid overtreatment and to identify disease subtypes and progress in order to guide the most 

effective treatment plan (Goecks, et al., 2020). The research undertaken by the CDIG and during 
this dissertation is closely aligned with Goecks statement, thus with the curated RKD database 

there is the opportunity to apply supervised learning methods to improve treatment plans for 

patients with ANCA-associated vasculitis.  
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Chapter 3 
The RKD Database 

Goecks, et al., state that in order for machine learning to play a transformational role in the area 

of biomedicine disease specific research with well-curated datasets will be imperative (Goecks, et 
al., 2020). The RKD Registry database is an example of one such dateset. Created by the CDIG 

and established in 2012, the RKD Registry is a nationwide biobank of patient encounters suffering 

from ANCA-associated vasculitis. This database was the sole source of the dataset used in 

completion of this thesis.  

Security and Privacy Considerations 

 

Figure 2 - RKD Patient Data Collection Flow (Little, 2019) 

Figure 2 above shows the flow of data for an individual patient who has consented to inclusion in 

the RKD biobank. After a patient is admitted to hospital and diagnosed with ANCA vasculitis they 

are recruited by lead clinicians and researchers. De-identification is performed at this stage 
whereby each patient is identified with a unique RKD ID. For each subsequent encounter with a 

General Practitioner (GP) or clinician, patient data is uploaded to the RKD database using this 

RKD ID. User privileges allow for lead researchers to identify patients and high security measures 

are maintained through use of the REDCap database. 

Data obtained includes all information about patients pertaining to the disease such as date of 
birth, gender, height, date of encounter, hospital name as well as disease specific information 

such as medication dosages and clinical biomarker samples. Patients are identified by a unique 

ID, however due to vasculitis being a rare disease factors such as clinical visit dates, unusual 

symptoms and others may allow for specific patient identity to be revealed if such data were known 



 

24 
 

to third parties. For this reason, all research participants, including myself, have agreed to and 

acknowledged a strict ethics declaration which can be found in the Appendix.  

The RKD registry is hosted in its entirety using the REDCap data management system. REDCap 
was created in 2004 at Vanderbilt University and is compliant with 21 CFR Part 11, FISMA, HIPAA 

and GDPR (REDCap, 2021). The REDCap management system is hosted on the Trinity College 

Dublin (TCD) IT services which are compliant with the ISO27001/ISO27002 international best 

practice standards (Trinity Health Kidney Centre, 2021). CDIG personnel who have access to the 

non-anonymised data undergo additional training to ensure researchers adhere to the provisions 
set out by the General Data Protection Regulation (GDPR), Directive 2006/24/EC, Directive 

2002/58/EC and Directive 95/46/EC. These provisions are intended to protect individuals with 

regard to the procession of their personal data and the freedom of movement of said data (Trinity 

Health Kidney Centre, 2021). The CDIG relies on consent as the mechanism for processing data. 

This is dictated by article 6(1)(e) of the Public Interest and Article 9(2)(j) Scientific Research which 
states - Explicit consent is sought as an appropriate safeguard to rights of the data subject as 

mandated by the Health Research Regulations. Only upon a patients consent can researchers 

use their data in a study. Through the aforementioned protocols and measures, the security and 

privacy of patient data is ensured.  

Dataset Description 

The entire usable dataset was pulled from the RKD registry in the form of a comma-separated 

value (CSV) file. This file contains 21060x699 data entries pertaining to patient disease 

information. There was a total of 868 patient ID’s present in this dataset with an average of 24 

entries per patient. The amount of data for each patient varied greatly. Depending on the disease 

stage and course the number of entries per patient could be very large. For example, a patient 
who relapsed multiple times could have as many as 40 observations. Conversely many patients 

were recruited during their remission stage, years after their disease course ended, thus they may 

only have one or two encounters. Large proportions of this data were unusable for the goals 

outlined in this project as discussed in the section Methodology and Data Preparation. 

Biomarker Glossary 

This section is a glossary of biomarkers available in the RKD database. Some of these biomarkers 
are biologically related to AAV. For example, Neutrophils are responsible for the inflammation of 

vessels as discussed in the Introduction. On the other hand, other biomarkers are not directly 

related to the disease but are good measures of bodily function. For example, Creatinine is a 

measure of Kidney function. Table 1  below is a summary of all biomarkers with sufficient data for 
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analysis in the RKD database. A full list of biomarkers available in the RKD database can be found 

in the Appendix in Table 23. 

 

Biomarker Name Description 
% 

Missingness 

Creatinine Marker of Kidney Functionality 8.46 

Estimated Glomerular 
Filtration Rate (eGFR) 

Marker of Kidney Functionality 8.46 

Hemoglobin (Hb) Measure of Iron in blood 13.85 

Total white cell count  Biological Measure 13.85 

Neutrophil count  Biological Measure 20.00 

Lymphocyte count  Biological Measure 20.77 

NLR Biological Measure 20.77 

Anti-PR3/MPO level Level of IgG ANCA directed against PR3/MPO 23.85 

Weight (KG) Weight of Patient 24.62 

C-Reactive Protein (CRP) Marker of Inflammation 28.46 

Platelet count x10^9/L Biological Measure 30.00 

Eosinophil Count x10^9/L Biological Measure 33.85 

Urinalysis Blood Quantity of Blood in Urine 43.85 

Urinalysis Blood Quantity of Blood in Urine 43.85 

IgG g/dL Immunoglobulin G - Antibody present in Blood 48.46 

Age at Diagnosis Age of Patient at Time of Diagnosis 0.00 

Gender Male/Female Categorical 

Smoking Previous/Never/Unknown/Current Categorical 
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Disease Subtype MPA / GPA / EGPA Categorical 

ANCA Specificity PR3 / MPO / Other Categorical 

Treatment Group CYC / CYC & RTX / RTX / No Induction / Other Categorical 

Table 1 - Biomarkers with Sufficient Data for Analysis 

In total there were 70 continuous biomarkers available for analysis in the RKD Registry. As can 

be observed in Figure 3 however there was a large proportion of biomarker missingness with 

some biomarkers such as Serum CD25 having 100% missingness. Consequently, any biomarker 

with a percentage missingness greater than 50% was excluded from the analysis. This left 16 

continuous and 5 categorical biomarkers for analysis shown in Table 1. A biomarker or biological 
marker is a measure of biological state of a person. It can range from simple markers such as 

gender or height as well as biological measures such as those contained in Table 1. It is hoped 

that through the analysis of these biomarkers that a sub-clinical stratification of relapse will be 

attained. The RKD Registry in its current state is limited in the number of biomarkers available for 

analysis however it is expected as the database becomes more prevalent that missingness will 
be reduced and more biomarkers will be utilised in a similar analysis. 

 

Figure 3 - Biomarker Availability 

The use of the biomarkers in Table 1, to quantify risk factors and classify patients into target 

outcomes of relapse and long term remission, significantly differs from research found in the 
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literature review. Previous research tended to focus on the immunosuppressive therapy received 

or focused on a single marker such as ANCA titre. The focus of this research is to explore whether 

the biological factors can be used to identify unusual sub-clinical immunological activity in patients 
which distinguish those who relapse from those who don’t using all available information in the 

RKD registry.  

The following section provides a methodology outlining how the relevant biomarkers were 

extracted. As can be seen in Table 1, there is a reasonably high level of data missingness. This 

section also explains what measures were taken to maximise data use to reduce this percentage 
missingness.  

Methodology and Data Preparation 

The aim of this project is to stratify patients into those who are at risk of relapse from those who 
are in long term remission. The reason for this is to minimise the cumulative dose of the treatment 

stage due to the toxicity of immunosuppressive therapy received during the maintenance stage of 

therapy. The dataset provided contains patient biomarker data throughout the entire disease 

course however the methodology employed in this project considers patients who are in remission 
after the introduction of maintenance therapy. Application of data science techniques can then 

quantify sub-clinical immune activation which can aid the diagnoses of lingering ANCA-associated 

vasculitis in patients who are likely to relapse from those who will remain in remission long term 

off therapy. This section explains the work carried out to clean and prepare the data for analysis.  

Clinical Definitions of Remission and Relapse 

The first step in preparation was to define and stratify patients into the target outcomes of 
remission and relapse. As outlined in Chapter 2, there is no robust definition for relapse or 

remission. The definition of both changes throughout literature with various studies citing different 

definitions. A clinical definition of relapse was provided by the CDIG team to overcome this issue 

and ensure consistent stratification of patients. The definition provided is robust in that it considers 

patients who are in remission as well taking into account the patients BVAS score, objective data 
and both changes and responses to immunosuppressive treatment.   

The occurrence of a relapse was defined by:  

• New symptoms of AAV (BVAS > 0) 

• In a patient with prior remission 

• Requiring an increase in Immunosuppressive Therapy (IS) 

• With a clinical response to IS 

• Supported by objective data 
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Patient relapses are tracked in the dataset under the column ‘adjudicated probability of relapse’ 

with entries of ‘definite’ and ‘high probability’ being taken as a clinical confirmation of relapse. No 

patient data was used after they had relapsed as the aim of this work is to differentiate and 
ultimately prevent patients who will relapse from those who will not.  

The clinical definition of remission is referred to as Long-Term Remission Off-Therapy (LTROT). 

This is a patient who has never had a clinically defined relapse and has stopped all IS for a period 

of time greater than one year. This is monitored in the RKD registry under the columns ‘adjudicated 

probability of relapse’ with either no entry or an entry of ‘No’ as well as an entry of ‘Remission’ 
under the column ‘disease activity since last return’.  

Figure 4 on the right shows the distribution of 

labels in the dataset. The total number of 

patients was 868. Of those 22 have no 

useable data. These are patients for whom 
there is no data available during the 

maintenance therapy phase. There may be 

several reasons for this such as they were 

only recruited years after their disease 

course finished, or they may only have one 
encounter and they are missing key dates such 

as date of diagnosis.  

656 patients do not have a valid label. These patients are either still undergoing induction or 

maintenance therapy or have active disease. The final 189 patients have successfully met the 
criteria for either LTROT or Relapse.  

While only approximately 22% of the patients can be labelled as LTROT or relapse, this is to be 

expected for several reasons. First, the strict definition of LTROT and relapse results in many 

patients being excluded. The dataset is also still in its infancy despite being first curated in 2012. 

This was significantly evident as there are currently 626 patients who are currently undergoing 
some form of treatment and thus, while they have not relapsed, they also have not met the 1 year 

off treatment criteria. The incidence of AAV-associated vasculitis makes for very few cases. Given 

an incidence between 20-40 per million population it would be expected that there are 100-200 

active cases of AAV in Ireland which corroborates the numbers seen.  

Relapse Rate 

Given the small number of labelled ID’s available it was hypothesised that by looking at the 
incidences of relapse, more data could be used. The Relapse Rates was defined as the number 

Figure 4 - RKD ID Remission and Relapse Stratification 
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of times a patient relapsed, given the above definition for relapse, during the disease course 

counted in years. The disease course for each patient was the time from their ‘Date of Sample’ 

(explained below) to their last data entry logged in the RKD Registry. For LTROT patients or 
patients who have not suffered a relapse, their Relapse Rate will be zero. Conversely a patient 

who has suffered a relapse will have a Relapse Rate greater than zero.  

This method targets patients who have not suffered a relapse but who do not have sufficient time 

off therapy to be considered an LTROT. For these patients, given an accurate model, this method 

could help to distinguish LTROT patients from relapse patients while also identifying important 
features used to make this distinction.  

Data Cleaning & Biomarker Extraction 

Despite the RKD registry being a well curated dataset, much data cleaning and filtering was 

required before biomarker data was able to be extracted. The first step in this process was to 

stratify patients into LTROT and relapse as per the aforementioned definitions. The workflow for 
this process is shown in the Appendix.  

Identifying key dates was integral to the data cleaning stage and identifying the window for each 

ID from which data could be sampled. Some dates such as date of diagnosis were included in the 

dataset however other dates such as the date of treatment stop and the date at which maintenance 

therapy began were not included. Finding the date at which maintenance therapy began and 
ended for each patient was imperative as this is the timeframe from which data was taken.  

The start date from which data was sampled, referred to as date of sample, was found using the 

below workflow process in Figure 5. The end date from which data was sampled, referred to as 

the date of treatment stop, was found using the below workflow process in Figure 6. The maximum 

number of biomarkers within this window were taken as a single sample for each ID. This was 
referred to as a substantive sample. Other work was carried out to include categorical variables 

as well as combining some biomarkers to reduce the missingness as discussed below. Finally, 

where available a delta between biomarker values when a patient first presented with AAV 

symptoms to the beginning of maintenance therapy was obtained. These delta biomarkers were 

appended to the substantive sample to form the delta analysis dataset. Both the substantive 
sample and delta analysis datasets then formed the input to the supervised data analytics models 

in Chapter 4. Note a third dataset was created from the substantive dataset using Principal 

Component Analysis. This is also described in Chapter 4. 
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Figure 6 – Date of Treatment Stop Workflow 
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Figure 5 - Date of Sample Workflow Process 
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Date of Sample 

The date of sample is that date at which maintenance therapy has begun. The criteria for the 
beginning of maintenance therapy are that the patient is in remission, the date of sample is greater 

than 6 months after the date of diagnosis, the patient is no longer taking cyclophosphamide 

medication and if the patient was taking intravenous RTX, the last dose was greater than 6 months 

ago. Samples were not taken within the first 6 months of therapy as the medication taken during 

the induction phase of therapy would result in much larger variations of biomarker values. The 
goal of the research is to optimise the maintenance treatment phase of therapy by sub-clinically 

quantifying patients at risk of relapse once in remission, thus the induction phase is not of interest.  

Date of Treatment Stop 

The date of treatment stop is the date at which maintenance therapy has been stopped and 

samples can no longer be used after this date. The workflow for finding this date is shown above 

in Figure 6. A point of note is that this workflow does not distinguish between LTROT and relapse 
patients. While a LTROT patient may have a simple disease course whereby they will never stop 

treatment for a short period of time before resuming therapy the converse is always true for relapse 

patients. A patient who relapses will have a remitting-relapse disease course and may discontinue 

and resume therapy many times. The above workflow in Figure 6 is designed to find the very last 
time any patient took any medication and this date becomes the date of treatment stop.  

Obtaining a Substantive Sample 

The next step in the data cleaning and biomarker extraction is to extract a sample within the 

maintenance window timeframe for each patient that has the most biomarker data available. This 

is referred to as a substantive sample. Each patient with AAV will have a single substantive sample 

which will be used as an input to the data analysis. This sample contains the maximum number 
of non-missing biomarkers. Ideally this sample corresponds to the date of sample as it is 

preferable to be able to classify patients as early as possible in the maintenance therapy stage. A 

common trend in the dataset was biomarker missingness. A technique employed to overcome this 

was to average samples over a 6-month period. In this way more biomarker samples were 

included as different biomarkers are taken during consecutive encounters. For example, a patient 
might have Creatinine measured during their first encounter but their C-Reactive Protein (CRP) 

and not Creatinine taken during their second. If these two observations occur within 6-months of 

each other their values can be aggregated into a single input sample as it was clinically confirmed 

that these values should not change significantly with maintenance therapy within a 6-month 

period. This method of data extraction and aggregation is referred to as the sliding window 
method.  
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Figure 8 shows the workflow for selecting the substantive sample. A key differentiation in this 

workflow is the timeframe from which the sample can be taken for LTROT and relapsing patients. 

A LTROT patient can have their substantive sample taken anytime from the date of sample to the 
date of treatment stop. A relapsing patient cannot have a sample taken after their first relapse, 

hence the timeframe is from the date of sample until the last encounter before the patient relapsed.  

To help decrease the data missingness, particularly for patients who had few encounters between 

the date of sample and the date of treatment stop, this window was expanded to include any 

sample taken up to three years post diagnosis. The time frame of three years was chosen and 
clinically validated as the typical length of disease course is 6 months of induction therapy plus 2-

2.5 years of maintenance therapy.  

An example of the sliding window methodology is shown in Figure 7. All encounters within the 

respective window are found. Encounters within a 6-month period are grouped together and the 

biomarker values are merged. If a biomarker is filled in three times in this period, the average of 
the three values is taken. Similarly, if a biomarker is filled in twice, then the average of the two 

values is taken and if only filled in once in 6 months this value is taken. If the value is missing 

across all instances, then it is left blank. This process is repeated for all groups and the group with 

the largest number of unique biomarkers is selected. As can be seen in Figure 7, the first three 

encounters had 20 unique biomarker values taken when the samples were merged versus a 
maximum of 15 if only a single encounter had been taken. If multiple 6-month groups have the 

same number of unique biomarkers available, then the group closest to the date of sample is 

taken as this is the sample closest to the beginning of maintenance therapy.  

 

Figure 7 - Example Sliding Window 
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Figure 8 - Sliding Window Workflow 
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Categorical and Combining Biomarkers 

Not all biomarkers are continuous measures of body function. In fact some categorical biomarkers 
such as ANCA antibodies being directed against PR3 were found to be more predictive in the 

literature. For this reason the categorical variables Gender, Smoking, Disease Subtype, 

Treatment Groups and ANCA specificity were added to the substantive sample. The age at 

diagnosis was also added to the substantive sample. The Disease Subtype or Clinical ANCA 

subtype logged whether the patient had MPA, GPA or EGPA. ANCA specificity was specified as 
one of four groups namely, MPO, PR3, MPO & PR3 and ELISA negative. 

Patients were divided into groups depending on the Immunosuppressive Therapy they received. 

Those who received Cyclophosphamide whether it was pulse or intravenous were assigned to the 

group ‘CYC’. Those who received a combination of Cyclophosphamide (pulsed or intravenous) 

and RTX were assigned to the group ‘CYC & RTX’. Those who received RTX only were assigned 
to the group ‘RTX’. Those who received any other type of treatment excluding those mentioned 

previously were assigned to the group ‘Other’ and finally those who received no induction 

treatment were assigned to the group ‘No Induction’. 

The biomarkers Anti-PR3 and Anti-MPO levels were merged into one biomarker with the maximum 

value of either being taken. The majority of patients are either PR3 or MPO positive with very few 
being both PR3 and MPO positive. In patients who are both PR3 and MPO the level would be 

similar in both and either could be used. In PR3 patients the MPO level is likely negligible and not 

of use and vice versa for MPO. These markers were also merged with the ‘ANCA IF’ entry in the 

RKD Registry. This entry logs whether there was a negative, increase or decrease in ANCA levels. 

If the ‘ANCA IF’ test returns a negative then a value of 0 can be logged in the combined Anti-
PR3/MPO biomarker. This reduced the level of missingness in this column significantly as a value 

of 0 would not have been logged otherwise.  

Similarly the biomarkers eGFR and ‘eGFR (calculated)’ were merged. These values should be 

identical however in the case that one was filled and the other not, the filled sample was taken. If 

both were filled then the value in ‘eGFR (calculated)’ was taken as this was deemed clinically to 
be more accurate.  

The biomarkers ‘Urine sCD163 (ng/ml), Duoset’ and ‘Urine sCD163 (ng/ml), Euroimmun’ were 

also combined as they are simply different methods of measuring the quantity of CD163 present 

in the patients urine.  

The variables Urinalysis Protein, Urinalysis Blood and ANCA titre were mixed variables with some 

entries being categorical and other entries being numerical. The reason for this is that these tests 

can return a ‘Negative’ result. In this case a negative result corresponds to there being no 
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presence of the target in this test. For example a negative ANCA titre means there was no ANCA 

found in this sample. For all these tests, a ‘Negative’ result was replaced with a value of 0.  

Obtaining a Delta Sample 

Delta samples were obtained for all ID’s where possible. A delta sample consists of the difference 
in a biomarker value from when the patient first presents with symptoms of AAV to when the date 

of sample is obtained. The delta can be taken anytime either one month before the date of 

diagnosis to one month after. It was corroborated medically that induction treatment would not 

have yet resulted in a significant change in biomarker value in this time frame. The hypothesis of 

using delta samples is that a change or lack of change in biomarker value is more indicative of 
relapse than the nominal biomarker value. The reasoning is that a delta sample gives information 

on if and how a patient is responding to treatment. For example, a patient can present with an 

abnormal creatinine level when first diagnosed. This creatinine level may still be abnormal at the 

beginning of maintenance therapy however a large difference between these values would show 
that this patient has responded well to induction therapy and therefore could be less likely to 

relapse.  

As per Figure 9 below, the prevalence of ID’s with a delta sample available is small. Hence the 

utilization of deltas in this research is limited to 69 samples. 

 

Figure 9 - Delta Availability 
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Chapter 4 
Supervised Learning Approach 

The chosen data analytical technique employed was to adopt a supervised learning approach. 

This approach utilizes labelled data only. As per Figure 4, this results in only approximately 22% 
of patients being included in this research. Both classification and regression problems were 

analysed using the labelled data. The goal of the classification was to stratify each patient into 

one of two categories, LTROT or relapse, as early as possible during their maintenance therapy 

phase. Three inputs to the model were studied. The substantive sample of biomarker values taken 

as early as possible during the maintenance phase of their therapy, the PCA groupings as outlined 
in the section Principal Component Analysis and the delta analysis. The dependent variable was 

the label of either LTROT or Relapse.  

The regression problem utilised only the substantive sample input. The target was the Relapse 

Rate i.e. predict how many relapses a patient is likely to experience throughout their entire disease 

course. This analysis was performed on both LTROT and relapsing patients and on relapsing 
patients alone. The analysis on the relapsing patients alone was limited in size as only 59 patients 

were labelled as having a relapse.  

Pre-processing 

Pre-processing is a necessary step in machine learning to ensure the data is correctly formatted 

for the algorithm employed. The techniques used in this analysis include standardisation, 

imputation and dimensionality reduction. Standardisation is a common technique used to modify 

the range of input features to a common scale. Imputation was a required step to account for the 
data missingness. Dimensionality reduction refers to reducing the number of input variables in the 

training data.   

Dataset and Features 

 

Figure 10 - RKD Registry Clean Dataset 
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Figure 10 above shows a subset of the cleaned dataset obtained from the RKD database. In total 

there are 109 observations of the 21 variables presented in Table 1. The continuous variables 

were standardised to have a mean about 0 and the categorical variables were treated as factors.  
Stratification, shown in Figure 10, and Relapse Rate were the two dependent variables. 

Imputation 

As shown in Figure 3 and Figure 11, there was a large number of biomarker values missing, even 

among those included in the analysis. While there are several options when dealing with data 

missingness such as a complete case analysis or use of a model which can handle missing data, 

imputation was conducted to overcome this missingness. Imputation is simply replacement. 
Imputation techniques are structured on the idea that a data sample of a variable can be replaced 

by a new randomly chosen sample from an estimate of the distribution of this variable (Donders, 

et al., 2006). Imputation was performed for several reasons. A complete case analysis would 

reduce the number of data samples and biomarkers which could be included in the analysis. 
Simple techniques such as mean imputation and the missing-indicator method have been shown 

to provide biased results, even when the data is missing completely at random (MCAR) (Donders, 

et al., 2006). Finally, the data missingness observed in the RKD Registry is missing at random 

(MAR). Unlike MCAR, where the probability an observation is missing is not related to any other 

patient characteristic, the missing biomarker values can be considered to be random conditional 
on other patient characteristics. Thus, multiple imputation was performed whereby several 

imputed datasets are created and different imputations are based on a random draw from different 

estimated underlying distributions (Donders, et al., 2006). Averaging over multiple imputations 

generally lowers the variance as well as allowing one to average the standard errors resulting in 

an unbiased replacement of the missing data.  

Figure 11 below shows the missingness among the biomarkers included in the analysis. Some 

biomarkers such as Total White Cell Count (White Cell in plot) and Hemoglobin (Hb) have 

complete cases whereas the Urinalysis biomarkers of both protein and blood have a large degree 

of missingness. This is likely due to some tests being easier to perform on patients than others. 

Overall, given the below biomarkers, over 83% of the data is not missing. Approx. 45% are missing 
the Urinalysis biomarkers and there is no observable pattern to the data missing in the right hand 

plot of Figure 11. Thus, it can be concluded that the data is indeed MAR.  

Figure 12 below, shows the estimated variable distributions for each of the imputations run. There 

were 10 imputations run and overall the estimate distributions mirror the observed distributions as 

per Figure 12. The estimated distributions of the Lymphocyte and Neutrophil biomarkers appear 
to deviate the most from the observed distribution, however for the reasons outlined previously, 

the final complete data set was assumed to be unbiased and treated as such.  
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Figure 11 - Biomarker Missing Plot 

 

Figure 12 – Imputed Variable Distribution Estimate Plots 

Multicollinearity 

The issue of multicollinearity is one that required careful consideration during the pre-processing 

of the data. Multicollinearity arises when two or more highly correlated variables are assessed 
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simultaneously by a model (Vatcheva, et al., 2016). As can be seen below in Figure 13, there 

exists some large collinearities between variables A Pearson coefficient of 0.5 or greater was 

deemed to be strongly correlated, between 0.2 and 0.5 moderately correlated and below 0.2 to 
be uncorrelated or negligibly correlated. Note, in Figure 13 below, only the largest correlations are 

shown as all Pearson coefficients are scaled by value. Hence, any values not shown can be 

deemed to have negligibly small correlation 

Multicollinearity causes unstable and biased standard errors leading to unstable p-values for 

assessing statistical significance of predictors in a regression analysis according to Vatcheva, et 
al. (Vatcheva, et al., 2016). This also holds true for the feature importance of a classification model. 

Multicollinearity among the predictor variables can obscure the computation and identification of 

key independent effects of collinear predictor variables on the outcome variable because of the 

overlapping information they share (Vatcheva, et al., 2016). Any interpretations or conclusions 

drawn from the feature importance of a model containing mulitcollinearity are not reliable however 
the overall result is. In the context of the problem at hand, a significant aspect of this research is 

to identify which biomarker or combination of biomarkers are significant predictors of relapse. 

Therefore, ignoring the multicollinearity and focusing only on the accuracy of the model is not an 

option in this case. 

There are several methods for dealing with multicollinearity in a model. The simplest one is to drop 
the most highly correlated variables as the information they convey is captured by the other 

variables. Mason, 1987, states however that it is not correct to drop variables from the model 

unless they are redundant to the program logic and underlying theory (Mason, 1987). Moreover, 

given the limitation of the data and biomarker availability it is prefereable to utilise all biomarker 
information unless they are perfectly correlated.  

Multicollinearity was handled in two primary methods during the course of this dissertation. The 

first was the use of a Lasso Logistic Regression model (see Chapter 4 : Lasso Logistic Regression 

for more information). A Lasso Logistic Regression model can be used to identify feature 

importance and remove non-predictive and collinear variables from the model. The strength of 
this technique is its ease of implementation however it can yield unreliable interpretations of 

features when multicollinearity is involved. The reason for this is that different features would be 

identified as important for different models due to the high correlations between variables. The 

second method was to perform a Principal Component Analysis (PCA). PCA is a technique which 

splits variables into their principal components which are independent of each other. This 
technique was optimal in maintaining maximal biomarker information while subsequently 

addressing the issue of multicollinearity as described in the following section. 
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Figure 13 - Multicollinearity Plot 
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Principal Component Analysis 

As discussed in the previous section PCA was used to reduce the multicollinearity between input 
variables into the classification model. PCA is a technique, not only for handling multicollinearity, 

but also for reducing the dimensionality of datasets (Jolliffe & Cadima, 2016). Given the extremely 

small size of the dataset, it was preferable to decrease the number of input features to the 

predictive model. Minimizing the number of input features reduces the reliance on large datasets 

and returns more reliable results. The use of PCA not only maintains interpretability of the feature 
importance but also minimizes information loss. It does so by creating uncorrelated variables, 

referred to as principal components (PC), while preserving as much variability or statistical 

information as possible (Jolliffe & Cadima, 2016). In essence PC’s are variables that are linear 

functions of those in the original dataset, that maximise variance but are uncorrelated with each 

other. Finding such new variables reduces to solving an eigenvalue/eigenvector problem 
(Vatcheva, et al., 2016).  

PCA can only be performed on continuous variables hence the categorical variables and the 

ordinal variables of Urinalysis Blood and Urinalysis Protein were ignored in this analysis. Usually 

PCA is performed on the entire dataset however, in order to maintain a higher level of 

interpretability it was decided to group highly correlated and biologically similar variables together 
and perform multiple PCA’s.  

As can be seen in Figure 13, the biomarkers Total White Cell Count, Neutrophil Count, 

Lymphocyte Count, Neutrophil Lymphocyte Ratio (NLR), Eosinophil Count and Platelet Count 

were all reasonably highly correlated with at least one other biomarker in that group. Neutrophil 

Count and Lymphocyte Count were reasonably correlated with each other and highly correlated 
with NLR. This is because the latter is simply the ratio of Neutrophil and Lymphocyte Count. Total 

White Cell Count is highly or reasonably correlated with all other biomarkers in this group. The 

reason for this is due to the fact that Neutrophils, Lymphocytes and Eosinophils are all different 

sub groups of white blood cells. Platelet is another name for a red blood cell and the Platelet Count 

was reasonably correlated with the other blood biomarkers hence its inclusion in this group.  

 PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 1.5017 1.3462 0.9927 0.8251 0.46880 0.21617 

Proportion of Variance 0.3758 0.3020 0.1643 0.1135 0.03663 0.00779 

Cumulative Proportion 0.3758 0.6779 0.8421 0.9556 0.99221 1.00000 

Table 2 - Blood Biomarker PCA Group 



 

42 
 

Table 2 above shows the proportion of variance among the PC’s. It can be seen that 95.5% of the 

statistical information is maintained with only 4 PC’s, hence reducing the number of input features 

by two. In addition the collinearity between the variables has been removed as per the definition 
of PC’s.  

 

Figure 14 - PCA Blood Biomarker Variation Explanation 

Figure 14 highlights how a PCA analysis can maintain interpretability of the dataset. It is clear that 

Neutrophil Count and White Cell Count are the most important biomarkers for explaining the 

variance of PC1. Similarly it is NLR and the Lymphocyte Count that explain the largest proportion 

of variance for PC2. Conversely, White Cell Count has little explained variance for PC2. A similar 
analysis can be performed for all PC’s in this group thus maintaining interpretability of results 

when the 4 PC’s with the largest cumulative proportion are inputted into the model.  

A second PCA grouping, consisting mostly of personal characteristics, was also formed containing 

the variables CRP, eGFR, Creatinine, Weight, Hemoglobin and Age at Diagnosis. These were 

grouped together as they were highly correlated with at least one other biomarker in the group as 
per Figure 13 and there is biological reasoning for the collinearity. eGFR and Creatinine are 

measures of kidney function and as a result were strongly correlated. eGFR was also strongly 

correlated with Age at Diagnosis. eGFR is a summary statistic of kidney health which takes 

personal characteristics such as Age, Gender and Creatinine levels into account hence it was 

unsurprising that these were strongly correlated. Age at Diagnosis, Weight and Hemoglobin were 
moderately correlated also. People of a higher weight tend to have higher levels of Hemoglobin 

and weight increases with age hence this relationship was also unsurprising. Finally CRP and 

Hemoglobin were moderately correlated. CRP is found in blood plasma and whose circulating rise 

is a marker for inflammation hence the biological connection between the two. 
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 PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 1.5382 1.1654 0.9236 0.8940 0.62789 0.47898 

Proportion of Variance 0.3943 0.2263 0.1422 0.1332 0.06571 0.03824 

Cumulative Proportion 0.3943 0.6207 0.7629 0.8961 0.96176 1.00000 

Table 3 - Personal Characteristic PCA Group 

Table 3 above shows the distribution of variance among the PC’s. As per Table 3, there is 96% 

information retention in the first 5 PC’s, hence the number of input features can be reduced by 

one and collinearity between variables is removed.  

A PC explanation plot, similar to Figure 14, for the above grouping is included in the Appendix. 

IgG levels and Anti PR3/MPO levels were not included in any PCA grouping as they were not 
moderately or highly correlated with any other variables in the PCA groupings. Both the PCA 

groupings and a direct analysis on the biomarkers was performed and compared to conclusively 

identify the predictive biomarkers.  

This following section introduces the predictive models used during the classification and 

regression problems and reviews their strengths and weaknesses. The below models were 
selected due to their ease in implementation as well as interpretation of feature importance.  

Bayesian Logistic Regression 

Introduction to Algorithm 

Bayesian Inference for Logistic Regression consists of three core steps common to all Bayesian 
analyses. The first step is to specify the log-likelihood function for the model. In this case, the log 

likelihood function is a logistic regression function. The second is to form prior distributions for all 

unknown parameters and the final step is to use Bayes Theorem, shown below, to find the 

posterior distributions over all parameters.  

𝑝(𝜃|𝑦) =
𝑝(𝑦, 𝜃)
𝑝(𝑦) =

𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)  

The posterior distributions were found using a common class of algorithms called Markov Chain 

Monte Carlo (MCMC). MCMC starts with the predefined prior distributions from which samples 

are taken. Markov chains then guide these samples towards the posterior distribution using the 

logistic regression log-likelihood function and Bayes Theorem (Kana, 2020).   

The prior distributions of the unknown parameters were left as uninformative binomial distributions. 
Binomial distributions were chosen as the mean does not have to be centered at 0 and the range 
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of the standard deviations can be large. Thus, this distribution is very uninformative and unlikely 

to bias the posterior distribution. While, providing informative prior distributions of parameters can 

lead to higher accuracies it can also lead to biases. Utilising uninformative priors allows for the 
Bayesian model to provide unbiased posterior distributions which result in conclusive feature 

importance’s.  

The advantages of Bayesian Logistic Regression are that they can handle incomplete datasets, 

they can prevent overfitting of data and there is no need to remove contradictions from the data 

(Ray, 2019). Another significant advantage of Bayesian Logistic Regression is that it provides 
confidence of its estimate predictions (Kana, 2020). Conversely, the selection of a prior can be 

difficult and can lead to biases of the posterior distribution and it can be computationally expensive 

(Ray, 2019).  

Final Dataset and Features 

Substantive Sample Dataset 

Of the 21 biomarkers available for analysis, shown in Table 1, only 7 biomarkers, which are shown 

in Table 4 below, were kept in the final model. Biomarkers were removed iteratively if deemed not 

important. Pairs of biomarkers with a high collinearity were removed and subsequently re-added 
to ensure only the optimal biomarkers were kept. 

U-Protein Hb White 

Cell 

Eosinophil PR3/MPO 

Level 

Disease 

Sub 

Treatment Stratification 

3 0.258 -0.219 -1.027 -0.567 MPA CYC Relapse 

0 -0.207 -0.108 0.992 0.266 MPA Other LTROT 

0 -1.370 0.539 -0.385 -0.329 MPA CYC Relapse 

0 0.607 2.522 -1.210 -0.507 EGPA Other Relapse 

0 0.064 -1.388 -0.660 0.551 MPA CYC Relapse 

1 0.491 0.435 -0.109 -0.555 MPA CYC Relapse 

Table 4 - Final Input Dataset 

Figure 15 below, shows the MCMC trace plot of the 7 biomarkers kept in the model. The trace plot 
shows that all chains did converge with the average of the 4 chains being similar for all variables. 

This is ideal behaviour of the Bayesian Logistic Regression model. Note the trace plots of the 
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subsequent PCA and delta groupings also showed good behaviour and are included in the 

Appendix.  

 

Figure 15 - Bayesian Logistic Regression MCMC Trace Plot Important Features 

 

Figure 16 - Bayesian Logistic Regression Posterior Distribution Density Plots Important Features 
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Figure 16 above shows the posterior distributions of the features deemed important by the 

Bayesian Logistic Regression algorithm. A mean greater than zero signifies this feature increases 

the risk of relapse and vice versa for a mean lower than zero. The mean of the intercept is greater 
than zero which reflects the imbalance in the dataset with more Relapsing patients than LTROT 

present in the final dataset.  

From Figure 16 it can be concluded that patients with a lower amount of protein (`U-Protein1`), a 

higher total white cell count (`White Cell`), a higher ANCA titre (`PR3/MPO Level`), those who 

received a CYC and RTX (`TreatmentCYC&RTX`) and those who received only RTX 
(`TreatmentRTX`) during induction treatment are more likely to relapse. Conversely, those with a 

higher Hemoglobin (`Hb`), a higher Eosinophil Count, those with a clinical subtype of MPA AAV 

(`Disease SubMPA`) and those who received No Induction treatment (`TreatmentNoInduction`) 

are less likely to relapse. Both `U-Protein1` and `TreatmentCYC&RTX` are the biggest indicators 

of relapse while `TreatmentNoInduction` is the most predictive of LTROT.   

PCA Groupings Dataset 

Table 5 and Table 6 below show the final inputs to the Bayesian Logistic Regression models for 
the PCA groupings. All blood biomarker PC’s were retained by the model however only 3 of the 5 

PC’s from the personal characteristic PC’s were deemed important. There was significant overlap 

in information with the Substantive Sample group with only the IgG biomarker being included as 

an additional biomarker in this analysis. This method resulted in 12 input features to the model 

with only Urinalysis Blood deemed uninformative by the model and subsequently being dropped.  
The trace plot shown in Figure 35, located in the Appendix, showed convergence as well as 

consistent averaging of the chains. 

Blood_PC1 Blood_PC2 Blood_PC3 Blood_PC4 Char_PC2 Char_PC3 Char_PC5 

-0.393 -2.011 0.152 0.074 -0.106 -0.214 -0.242 

-0.560 1.187 0.322 -1.265 0.158 -0.409 -0.781 

2.663 -3.007 -2.621 2.069 4.777 4.437 0.157 

3.102 -1.202 2.115 0.506 0.023 -0.142 -0.044 

-2.269 -1.791 -0.197 -0.761 0.489 -0.545 -0.479 

-0.009 -0.895 0.957 -1.134 -0.905 0.107 -0.850 

Table 5 - PCA Inputs to Bayesian Logistic Regression part 1 of 2 
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U-Protein IgG.g.dL PR3/MPO Level Disease Sub Treatment Stratification 

0 -1.368 -0.552 MPA CYC Relapse 

0 -0.058 0.276 MPA Other LTROT 

0 -1.461 -0.316 MPA CYC Relapse 

0 -0.959 -0.552 EGPA Other Relapse 

0 -0.366 0.561 MPA CYC Relapse 

1 -0.879 -0.552 MPA CYC Relapse 

Table 6 - PCA Inputs to Bayesian Logistic Regression part 2 of 2 

 

Figure 17 - Bayesian Logistic Regression Posterior Distribution Density Plots PCA Group 

Analysing Figure 17 above, once again the mean of the posterior distribution of the intercept is 

greater than 0, reflecting the imbalance in the dataset with more Relapse patients present. 
`blood_PC1`, `blood_PC3`, `blood_PC4`, `PC2`, `PC5`, `U-Protein 1`, `PR3/MPO Level`, 

`TreatmentCYC & RTX` and `TreatmentRTX` are all positive indicators of Relapse. Conversely, 

all other biomarkers are indicators of LTROT. There is consistency between the important features 

of both the PCA and Substantive Sample datasets which shows that the issue of multicollinearity 

does not appear to have a large effect on the data. This is discussed further in the section 
Discussion.  
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Delta Analysis Dataset 

Table 7 and Table 8 below were combined with 21 biomarkers available in the Substantive Sample 

to form the inputs for the delta analysis. These two tables show all the biomarkers for which there 

was sufficient data available to obtain a delta. As per Figure 9, this analysis was limited in sample 

size to just 69 samples due to the availability of deltas. This resulted in 69 observations of 36 
potential features. Of the 36 potential features, 18 were kept in the final model shown in Figure 18 

below. Identical to the analysis on the Substantive Sample dataset, biomarkers were removed 

iteratively if deemed not important by the Bayesian Logistic Regression model. Biomarkers with a 

high collinearity were removed and subsequently re-added to ensure only the optimal biomarkers 

were kept. 

CRP_delta Creatinine_delta eGFR_delta White Cell_delta Neutrophil_delta 

0.441 0.542 -1.032 -0.310 -0.256 

1.464 -0.862 0.743 -0.026 -0.217 

-4.012 -0.397 0.010 -0.612 -0.973 

0.804 -0.452 -0.183 1.461 1.696 

1.044 0.674 -0.145 -0.095 0.133 

0.441 -0.008 -0.550 -0.624 -0.839 

Table 7 - Delta Inputs to Bayesian Logistic Regression part 1 of 2 

Lymphocyte_delta NLR_delta Eosinophil_delta Platelet_delta ANCA_delta Hb_delta 

-0.116 -0.082 -0.026 0.219 0.571 -0.460 

0.547 -0.328 -0.839 0.917 0.442 -0.210 

1.154 -1.999 -0.396 -1.211 0.485 1.390 

-0.375 3.238 -0.237 -0.003 -0.951 -0.493 

-0.590 0.228 -0.554 -0.504 0.244 -1.360 

-0.073 -0.383 1.030 -0.054 -0.040 1.040 

Table 8 - Delta Inputs to Bayesian Logistic Regression part 2 of 2 
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Although the dataset is once again imbalanced with a higher number of Relapse than LTROT 

patients, the mean of the posterior distribution of the intercept is less than 0. Usually, this would 

indicate a prevalence of LTROT patients in the dataset, however in this case, there are some 
extremely strong positive features which are indicative of relapse which are likely skewing the 

mean of the intercept to be below zero.  

 

Figure 18 - Bayesian Logistic Regression Posterior Distribution Density Plots Delta Group 

As per Figure 18 `U-Protein`, `U-Blood`, `White Cell`, `NLR`, `ANCA`, `Disease Sub GPA`, 

`Disease Sub MPA`, ̀ Treatment CYC & RTX`, ̀ CRP_delta`, ̀ Neutrophil_delta`, ̀ Eosinophil_delta` 

and `ANCA_delta` are all positive indicators of relapse. All other biomarkers are negative 

indicators of relapse i.e. they are indicators of LTROT. As can be seen in Figure 18 some posterior 

distributions such as `ANCA_delta` do not contain 0 in the range of their distribution. This is very 
significant as the model has identified this feature of having a negligible chance of being non-

predictive. In other words one can be almost 100% confident that this feature is predictive of being 

of LTROT or Relapse.  

Comparison of Results 

This section compares the results of all three datasets using the Bayesian Logistic Regression 

model against a dummy model which predicts the most popular class. Metrics are shown below 
in Table 9 and comparative plots are subsequently shown also.  
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Substantive Sample 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.762 

Prediction 
LTROT 29 10 Specificity 0.844 

Relapse 16 54 Sensitivity 0.644 

PCA Groupings 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.762 

Prediction 
LTROT 30 11 Specificity 0.823 

Relapse 15 53 Sensitivity 0.667 

Delta Analysis 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.957 

Prediction 
LTROT 27 1 Specificity 0.975 

Relapse 2 39 Sensitivity 0.931 

Dummy Comparison 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.587 

Prediction 
LTROT 0 0 Specificity 1.00 

Relapse 45 64 Sensitivity 0.00 

Table 9 - Bayesian Logistic Regression Comparison of Results 
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Table 9 above shows a comparison of the Substantive Sample, PCA group and Delta Analysis 

versus a dummy model. It is clear from all three datasets that the Bayesian Logistic Regression 

model significantly outperforms the dummy the comparison with a minimum accuracy of 76.2% 
for the PCA group compared to 58.7% for the dummy model. There is no difference in accuracies 

between the PCA group and Substantive Sample group despite the number of features of the 

PCA group being larger than the Substantive Sample. It can be concluded from this that the 

statistical information or variance captured by the additional PC’s are either captured by the 

features of the Substantive Sample or do not help in the classification of LTROT from relapse. 
The accuracy of the Delta Analysis is extremely high at 95.7%. This dataset is clearly significantly 

easier to classify than either the PCA group or Substantive Sample datasets and highlights the 

importance of deltas in the classification of LTROT and Relapse. There is a possibility of overfitting 

occurring on the Delta Analysis dataset due to the large number of features and small sample size 

and this is discussed further in the section Discussion. The metrics of Specificity and Sensitivity 
show that the Relapse class is significantly easier to classify than the LTROT class. This could be 

due to the imbalance in the dataset but it also reflects the complexity and difficult nature in 

predicting LTROT among patients who have ANCA-associated vasculitis. Overall, the results in 

Table 9 are conclusive that the information contained in the RKD Registry can be used to 

differentiate LTROT from Relapse with the inclusion of deltas being of significant importance.  

 

Figure 19 - Bayesian Logistic Regression AUC Comparison 
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Figure 19 above reflects the findings of Table 9. The PCA grouping slightly outperforms the 

substantive sample when predicting the LTROT label. This increase in performance is marginal 

however it could suggest that some personal characteristics are important when classifying this 
label as this is the main differentiation between the two datasets. Once again the impressive 

predictive performance of the Delta Analysis is clear to see in Figure 19. An Area Under the Curve 

(AUC) of 0.95 is close to perfect performance. When compared to the dummy model it is clear 

that the Bayesian Logistic Regression model is performing well and finding patterns within the 

dataset which can stratify AAV patients into the categories of LTROT and Relapse.  

 

Figure 20 - Bayesian Logistic Regression Classification Certainty Boxplot Comparison 

Figure 20 above shows a comparative boxplot of each models predictions. Predictions greater 

than 0.5 are classified as Relapse and the opposite is true for predictions less than 0.5. The closer 
the prediction is located to 0.5 the less certain that model was about its predictions of that class. 

The delta analysis in blue shows a clear divide between its predictions of LTROT and Relapse 

with several outliers. This divide reflects the great performance of this model. The range of the 

LTROT prediction are from approx. 0.0 to 0.3 which highlights this models confidence in its 

predictions. Similarly the range of Relapse predictions is also very narrow. Conversely, it is clear 
that the Bayesian Logistic Regression is significantly less confident in its predictions of both the 

Substantive Sample group in grey and the PCA group in green. These boxplots have a much 

wider range in their predictions which shows the models uncertainties in some of its predictions.  
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The above analyses was performed on the entire dataset due to the restriction in the size of the 

dataset. Figure 21 below shows a comparison in how the models generalise when the dataset is 

split into a training and a test set. It is clear from Figure 21 that the models do not generalise well. 
Both models suffer a significant drop in accuracy when the datasets are split into a training and a 

test set. The accuracy of the Substantive Sample model drops from 76% to a maximum of 66% 

on the 90:10 split while the accuracy of the Delta Analysis model drops from 96% to a maximum 

of 76% on the 80:20 split. It can be concluded however that the Delta Analysis is significantly more 

accurate than the Substantive Sample. As can be seen in the 80:20 split of Figure 21, there is no 
overlap in the boxplots which suggests that even taking standard deviations into account, the 

Delta Analysis is the more accurate model. From Figure 21, it is clear that the standard deviation 

of all models is quite large meaning there is a large amount of uncertainty in the true accuracy of 

the test set. There are two possible reasons for this. The first is simply due to the small size of the 

datasets. The Substantive Sample with a 70:30, 80:20 and 90:10 split has test set sizes of 33, 22 
and 11. The Delta Analysis with a 70:30, 80:20 and 90:10 split has test set sizes of 21, 14 and 7 

respectively. Given such small test set and training set sizes the models did not have sufficient 

data to train properly and also even a small number of misclassified labels could result in large 

errors. The second possible reason would be due to overfitting on the entire dataset. Given a high 

number of features and small dataset it is easy to overfit models. When a model is overfit it 
performs very poorly on unseen datasets as it does not capture the overall behaviour of the model.  

These issues are discussed further in the Discussion.  

 

Figure 21 - Bayesian Logistic Regression Generalisation Comparison 
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Figure 22 below shows the models insensitivity to the imputation performed. The accuracies 

observed in each of the three datasets showed good resistance to imputation and highlighted the 

effectiveness of the multiple imputation performed. From Figure 22 it can be concluded that 
imputation did not impact the accuracies or the results observed for the Bayesian Logistic 

Regression model.  

 

Figure 22 – Bayesian Logistic Regression Model Sensitivity to Imputation on Substantive Sample 

Lasso Logistic Regression 

Introduction to Algorithm 

Least Absolute Shrinkage and Selection Operator (Lasso) Logistic Regression is a technique 

employed which modifies the log-likelihood by adding a continuous penalty function of the 

parameters (Makalic & Schmidt, 2010). This penalty function, commonly referred to as a L1 

penalty, simultaneously performs parameter shrinkage and pertinent variable selection resulting 

in a sparse model (Makalic & Schmidt, 2010). The L1 penalty, shown below, generates a sparse 
model which is easier to interpret. 

𝐿1 = 	-|𝛽"|
#

"$%

 

The advantage of Lasso Logistic Regression over basic Logistic Regression is the tendency for 

Logistic Regression to overestimate parameters resulting in poor predictions. The disadvantage 

of Lasso is the unpredictability of feature selection among highly correlated predictors (Makalic & 
Schmidt, 2010).  When a group of features are highly correlated, the Lasso algorithm tends to 
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randomly include one predictor from the group and ignore the other predictors. As there was 

significant collinearity found among the predictors as per Figure 13, this was an important issue 

however it was addressed through the use of PCA. Another solution to address the issue of 
multicollinearity would be to utilise a Ridge Logistic Regression model. A Ridge Logistic 

Regression model uses a L2 penalty which results in features which are small in value. This 

approach was not favourable however as there is little interpretability of feature importance and 

there is no dimensionality reduction both of which are highly relevant to this research.  

Final Dataset and Features 

Unlike Bayesian Logistic Regression, Lasso models do not differentiate between different factors 
of categorical variables. For example, the Bayesian Logistic Regression compared MPA and GPA 

to EGPA, thus this categorical was split into two features as per Figure 18. Lasso Logistic 

Regression considers all levels of categorical features as a single feature, thus categorical 

features were inputted in R as a numeric feature.  

Substantive Sample Dataset 

Of the 21 biomarkers, 9 biomarkers, shown below in Table 10 and Table 11, were retained in the 

final model. Similarly to the Bayesian Logistic Regression, biomarkers were removed iteratively if 
deemed not important. Pairs of biomarkers with a high collinearity were removed and 

subsequently re-added to ensure only the optimal biomarkers were kept. 

Table 10 and Table 11 also show the weight of that biomarkers coefficient in the Lasso Logistic 

Regression model. Coefficient values greater than 0 indicate an increased risk of relapse, while 

values less than 0 decrease the risk of relapse. Higher coefficient values also have an increased 
weight in the model which can be used to determine feature importance. From Table 10 and Table 

11 it can be concluded that the presence of protein in urine, a higher White Cell count, a higher 

Platelet count and increases in ANCA titre all increases the risk of relapse. The converse is true 

of Haemoglobin count, Eosinophil count, IgG and the disease subgroup of EGPA.  

Biomarker Intercept U-Protein Hb White Cell Eosinophil 

Coefficient 2.72 0.15 -0.35 0.44 -0.412 

Table 10 - Lasso Substantive Sample Model Coefficients Part 1 of 2 

Biomarker Platelet IgG ANCA titre Disease Sub Treatment 

Coefficient 0.27 -0.377 0.21 -0.92 -0.05 

Table 11 - Lasso Substantive Sample Model Coefficients Part 2 of 2 
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Figure 23 - Lasso Substantive Sample Feature Importance 

Figure 23 above shows a plot of the feature importance for the Substantive Sample dataset. 

Consistent with the tables above it is clear that a high White Cell count is the most important risk 

factor for relapse. Conversely, patients who are diagnosed with subtype EGPA are less likely to 

relapse. This can be concluded as Disease Sub is negatively associated with relapse and the 

EGPA corresponds to the zeroth level of the Disease Sub biomarker.  

 

Figure 24 - Lasso Substantive Sample Feature Selection Cross Validation 
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Figure 24 above shows a cross validation plot generated for the Lasso Logistic Regression model. 

The cross validation plot has identified 11 biomarkers, as per the top axis, as the optimal number 

of features to minimize the binomial deviance. Despite Figure 24 identifying 11 biomarkers as 
optimal there was significant collinearity between Neutrophil and White Cell count and also 

Lymphocyte and White Cell count. As a result, keeping all three biomarkers in the model was 

suboptimal and did not result in an increase in accuracy. Neutrophil Count and Lymphocyte Count 

were dropped as a result however either could be included as a replacement for White Cell while 

maintaining similar accuracy. The bottom axis shows the log of the coefficient shrinkage 𝜆. The 
value of 𝜆 which minimizes the error rate was 0.03.  

PCA Groupings Dataset 

Biomarker Intercept U-Protein IgG ANCA Titre Disease Sub 

Coefficient 2.563 0.073 -0.343 0.333 -0.867 

Table 12- Lasso PCA Model Coefficients Part 1 of 2 

Biomarker Blood_PC1 Blood_PC2 Blood_PC4 PC1 PC2 PC3 PC5 

Coefficient 0.507 0.360 -0.355 -0.031 0.210 -0.164 0.512 

Table 13 - Lasso PCA Model Coefficients Part 2 of 2 

 

Figure 25 - Lasso PCA Feature Importance 

Figure 25, Table 12 and Table 13 show the feature importance for the PCA Grouping Dataset. 

This model utilizes 11 biomarkers in total including three PC’s from the blood grouping and 4 PC’s 
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from the personal characteristic group. Of the 5 blood PC’s 2 were deemed not important while 

only one personal characteristic PC was dropped from the model. There is consistency in the 

feature importance between the PCA Grouping and the Substantive Sample with the addition of 
the IgG biomarker being included in the PCA Grouping model being the main difference. 

 

Figure 26 - Lasso PCA Feature Selection Cross Validation 

Figure 26 is also similar and consistent with the findings in the Substantive Sample dataset with 
11 biomarkers minimizing the binomial deviance at a value of 𝜆 equal to 0.03. Unlike the 

Substantive Sample dataset however all 11 important biomarkers are kept in the model. This 

highlights the advantage of utilising the PCA approach as by definition the PC’s are independent 

of each other meaning there is no collinearity between them.  

Delta Analysis 

Biomarker Intercept U-Protein Hb 
White 
Cell 

Eosinophil IgG 

Coefficient 1.741 0.443 -0.356 0.981 -0.234 -0.535 

Table 14 - Lasso Delta Model Coefficients Part 1 of 2 

Biomarker 
Disease 

Sub 
Creatinine 

Delta 
eGFR 
Delta 

Neutrophil 
Delta 

Eosinophil 
Delta 

Platelet 
Delta 

Coefficient -0.609 -1.246 -0.579 1.012 0.897 -0.853 

Table 15 - Lasso Delta Model Coefficients Part 2 of 2 
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Figure 27 - Lasso Delta Feature Importance 

Figure 27, Table 14 and Table 15 show the feature importance for the Delta Analysis model. It is 

clear that the inclusion of delta features was deemed important by the model as of the 11 

biomarkers included in the model, 5 were deltas. Moreover, the nominal value of the delta 

coefficients are higher than the other biomarkers with only White Cell count having a comparable 
weighting to the deltas. The Creatinine delta is the single biggest indicator of LTROT while the 

Neutrophil delta is the largest indicator of relapse.  

 

Figure 28 - Lasso Delta Feature Selection Cross Validation 
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Figure 28 shows poor behaviour when performing cross validation on the Delta Analysis dataset. 

The Lasso Logistic Regression is unable to find an optimal number of biomarkers to minimize the 

binomial deviance. Figure 28 states that the optimal model is one which predicts all patients as 
relapse patients and that the outcome of LTROT/Relapse is independent of the biomarkers 

inputted into the model. The simple explanation for this result is due to the large number of features 

inputted into the model compared to the relatively small dataset. Inputting 36 biomarkers with only 

69 samples led to the cross validation being unable to find an optimal solution. As a result, 11 

biomarkers with the highest coefficient weightings were selected as this does seem to give some 
trade-off between the bias and the variance, as per Figure 28, however it can be concluded that 

the Lasso Logistic Regression is not optimal when analysing the Delta Analysis dataset.  

Comparison of Results 

The results of the three datasets were compared against a dummy model which predicted the 

most frequent class, in this case Relapse. Table 16 below is a comparison of the classification 
metrics for the datasets of Substantive Sample, PCA Grouping and Delta Analysis versus the 

dummy model.  

As can be observed in Table 16 the Lasso Logistic Regression model on all three datasets 

significantly outperforms the dummy model in predicting the classes of LTROT and Relapse when 

compared to the dummy model. The accuracy of the Lasso Logistic Regression is higher as well 
as more balanced scores of sensitivity and specificity. It can be therefore concluded that the 

machine learning techniques applied were successful in their goal of predicting the two classes 

and that the statistical information contained in the biomarkers can be utilised to predict the 

classes of LTROT and Relapse.  

The PCA grouping dataset was the best performing model in terms of accuracy, specificity and 
sensitivity although the accuracies of all three groups are comparable. This is an interesting result 

as it suggests that there is greater statistical information included in the PCA Grouping when 

compared to the Substantive Sample despite both datasets having very similar features. 

Similar to the Bayesian Logistic Regression it is clear that Relapsing patients are easier to classify 

as the specificity scores were consistently higher among all three groups. The Delta Analysis was 
not significantly greater in terms of accuracy as was seen in the Bayesian Logistic Regression 

model, however this is expected given the poor behaviour of the model and the limitations of the 

dataset when performing cross validation as discussed in the previous section.  
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Substantive Sample 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.725 

Prediction 
LTROT 29 14 Specificity 0.781 

Relapse 16 50 Sensitivity 0.644 

PCA Groupings 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.752 

Prediction 
LTROT 29 11 Specificity 0.8281 

Relapse 16 53 Sensitivity 0.644 

Delta Analysis 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.725 

Prediction 
LTROT 18 8 Specificity 0.800 

Relapse 11 32 Sensitivity 0.621 

Dummy Comparison 

Confusion Matrix 
Reference 

 

Metrics 

LTROT Relapse Accuracy 0.587 

Prediction 
LTROT 0 0 Specificity 1.00 

Relapse 45 64 Sensitivity 0.00 

Table 16 - Lasso Regression Comparison of Results 
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Figure 29 - Lasso Logistic Regression AUC Comparison 

Figure 29 above shows a plot of the AUC of all three models compared to the dummy model. This 

is another metric for analysing the accuracy of the model by comparing the True Positive Rate to 

the False Positive Rate. The Delta Analysis dataset has the highest AUC however the AUC of all 

three models are comparable. This is somewhat contradictory to the findings of Table 16 which 
suggested that the PCA Grouping was the optimal dataset however the AUC takes into account 

the size of the dataset, therefore overall it can be concluded that similar to the Bayesian Logistic 

Regression the Delta Analysis is the optimal dataset however the differences in this case are 

minimal.  

 

Figure 30 - Lasso Logistic Regression Classification Certainty Boxplot Comparison 
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Figure 30 above shows a boxplot comparison of the model certainties. Predictions greater than 

0.5 are classified as Relapse and the opposite is true for predictions less than 0.5. The closer the 

prediction is located to 0.5 the less certain that model was about its predictions of that class. The 
blue Delta Analysis boxplot had a wide range in its certainty of its predictions of the LTROT 

stratification. This is good performance as it was correctly able to label a significant number of 

both LTROT and Relapses with a high degree of confidence and other incorrect predictions were 

less confident. In comparison the PCA Groupings model was significantly more uncertain in its 

predictions. The small size of the boxplot in Figure 30 whose lower quartile is located at 
approximately 0.4 suggests that its most confident predictions are only 0.1 unit away from being 

predicted as Relapse compared to 0.3 units of confidence for the Delta Analysis. The median of 

the Delta Analysis is also located further from 0.5 which indicates that a greater number of its 

predictions were more confident when compared to the Substantive Sample and the PCA 

Groupings.  

 

Figure 31 - Lasso Logistic Regression Generalisation Comparison 

The Delta Analysis model is also superior when split into a training and test set as per Figure 31. 
Although the performance of both models is significantly degraded when generalised, the delta 

analysis on average achieves higher means and similar standard deviations. Given the limitation 

to the size of its dataset this once again highlights the predictive power of the delta features. The 

likely reasons for the degradation in performance when generalising the model to an unseen 

dataset is once again overfitting of the model and small dataset sizes.  
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Figure 37, located in the Appendix, shows that the models used are not sensitive to the imputation. 

There is very little variance in the accuracies of the different imputed datasets as can be observed 

thus confirming that imputation did not affect the accuracy of the Lasso Logistic Regression model. 

Linear Regression 

Introduction to Algorithm 

Linear Regression refers to the Ordinary Least Squares (OLS) estimate shown below. This 
method minimizes the error between the unknown parameters of a model and the observed data. 

𝛽0 = 	 (𝑋&𝑋)'%𝑋&𝑦 

The OLS is the simplest method for producing a model which minimizes the variance between the 

fitted model and the data points (Powell, 2021). The advantage of the Linear Regression model is 

its simplicity in its interpretability as it not only provides feature importance but confidence intervals 

and p-values reaffirming the significance of those predictors. The disadvantage of the Linear 
Regression mode is the bias-variance trade-off. This trade-off is of particular relevance to this 

research due to the comparatively large number of features and small number of data points. 

Without due care this could result in overfitting and overestimation of accuracy. This was 

addressed through the use of iterative step forward and step back models which removed non-

predictive features.  

In order to reduce the number of variables in the model, Backward Stepwise Linear Regression 

with Akaike Information Criterion (AIC) was performed. AIC is an estimator of prediction error 

which attempts to find balance between underfitting and overfitting in the bias-variance trade-off 

(Chowdhury & Turin, 2020). Backward Stepwise Linear Regression starts with the full model and 

iteratively deletes variables which reduce the AIC the least. This is repeated until any variable 
deleted significantly decreases the AIC (Chowdhury & Turin, 2020). 

Final Dataset and Features 

The dataset utilised for the Linear Regression algorithm consisted of unlabelled ID’s and all 

biomarkers with less than 50% data missingness. A subset of this dataset is shown below in Table 

17. In total there were 19 biomarkers, 6 of which are shown in Table 17, with sufficient data that 

could be used in the analysis. The target of this analysis is different to the previous research. The 
dataset and features inputted to the Linear Regression algorithm were used to predict the Relapse 

Rate. The Relapse Rate, shown below in Table 17, was defined as the number of relapses a 

patient suffered throughout their disease course. The disease course being the length of time from 

diagnosis to their last encounter as discussed in Methodology and Data Preparation. There were 

two analyses run. The first looked at all patients for whom a Relapse Rate could be calculated and 
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sufficient biomarker data was available. The second analysed only those patients who suffered a 

relapse, thus having a Relapse Rate greater than 0.   

In both analysis, patients with disease subtype of EGPA were filtered from the analysis. There 
was a significant class imbalance whereby only 5% of the patients belonged to this group. In 

addition to this, disease subtype was identified as important in both models, hence patients with 

disease subtype EGPA were filtered for a more meaningful exploration of the importance of this 

variable.  

U-Blood Weight Creatinine eGFR Hb White Cell Relapse Rate 

-0.637 -0.052 -0.314 0.189 0.403 -0.314 0.114 

-0.637 -0.959 -0.377 -0.321 -0.549 -0.130 0.000 

-0.637 1.065 -0.509 0.517 0.668 -0.308 0.000 

-0.637 -0.736 0.144 -0.798 -0.020 -0.209 0.000 

0.644 -1.378 -0.407 -0.371 -1.077 0.405 0.167 

-0.637 0.095 -0.761 1.339 0.720 2.285 0.053 

Table 17 - Relapse Rate Subset of Dataset 

All Usable Data Points   

Table 18 shows the features retained by the Stepwise Linear Regression model. The estimate 

column shows the effect each parameter has on the overall model, i.e. if the coefficient estimate 

is greater than 0 this parameter increases the Relapse Rate and vice versa for estimates less than 

0.  

The model intercept is greater than 0, meaning the longer the disease course of a patient, the 

increased incidence of relapse. In other words, all other parameters being equal, given an 

intercept value of 0.583, for a patient who’s disease course is 10 years they can expect to suffer 

5.83 ± 1.63 relapses. The standard error of the intercept is of the same order of magnitude as the 

estimate meaning that there is quite a large variance in the expected number of relapses. On the 
other hand, the P value of the intercept is significantly below 0.05 hence, this parameter is very 

relevant to the model.  

The White Cell Count is the only other variable with an estimate greater than zero. This suggests 

that patients with an increased White Cell Count are more likely to suffer an increased number of 
relapses. The standard error of this estimate is an order of magnitude lower than the estimate 
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hence one can be confident the true value of this estimate lies close to that presented in Table 

18. The P-value also shows a high level of significance.  

Neither the NLR nor ANCA Specificity Other show significance as their P-values lie above the 0.05 
threshold, hence they are not significant features of the model. ANCA Specificity PR3 and Disease 

Subtype MPA both have similar values in Table 18 below with estimates less than 0. It is important 

to note that these parameters are categorical parameters, hence their estimate values are in 

comparison to another feature in that category. For ANCA Specificity PR3 it is being compared to 

MPO and for Disease Subtype MPA it is compared to GPA. Interpreting Table 18, it can be 
concluded that patients with phenotype PR3 suffer 0.434 ± 0.162 less relapses than those with 

MPO. It is important to distinguish that this does not necessarily contradict the findings in the 

literature that PR3 positive patients are more likely to relapse. Similarly patients with the MPA 

subtype can expect to suffer 0.441 ± 0.152 less relapses compared to GPA throughout their 

disease course. Once again the standard errors of both variables are of the same order of 
magnitude as the estimates hence there could be significant deviation of the estimate from its true 

value. That being said, once again the importance of both features cannot be underestimated 

given their P-values are significantly below the 0.05 significance threshold.  

Finally, while ANCA Specificity and Disease Subtype are categorical variables meaning their 

estimates will be multiplied by either a 1 or 0, the White Cell Count is a continuous variable hence 
its estimate could have a larger weighting over the overall model. The true range of White Cell 

Count is in fact (-1.98 , 4.54) which when multiplied by its estimate yields (-0.413 , 0.944). While 

White Cell count has been standardised to have a mean of 0, it cannot be denied that abnormally 

high or low values of White Cell Count have the largest weighting over the Relapse Rate of 
patients in this dataset.  

 Estimate Std. Error t-value 𝐏𝐫(	> |𝒕|) 

Intercept 0.583 0.163 3.571 0.000 

White Cell Count 0.208 0.059 3.507 0.001 

NLR -0.089 0.059 -1.496 0.136 

ANCA Specificity Other -0.31 0.172 -1.801 0.072 

ANCA Specificity PR3 -0.438 0.162 -2.711 0.007 

Disease Subtype MPA -0.441 0.152 -2.901 0.004 

Table 18 - Stepwise Linear Regression All Data Point Model Parameters 
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Relapsing Patients Only 

 Estimate Std. Error t-value 𝐏𝐫(	> |𝒕|) 

Intercept 4.032 1.057 3.815 0.000 

White Cell 1.129 0.372 3.035 0.003 

NLR -0.889 0.403 -2.229 0.03 

ANCA Specificity Other -1.651 1.515 -1.090 0.280 

ANCA Specificity PR3 -3.769 1.091 -3.456 0.001 

Disease Subtype MPA -3.284 1.067 -3.079 0.003 

Table 19 - Stepwise Linear Regression Relapsing Patients Model Parameters 

Table 19 above shows the parameter estimates and their significance in the Stepwise Linear 

Regression model. It is clear that when the non-relapsing patients have been removed there is a 

much stronger relationship between the parameters and the Relapse Rate. Unexpectedly, the 

parameter estimates are much larger as they are not being dampened by the non-relapsing 

patients however the weighting of the estimates (positive/negative), the relative magnitude of their 
standard errors and their significance are all comparable to those found in Table 18. The only 

parameter which deviates significantly from Table 18 is the Neutrophil Lymphocyte Ratio (NLR). 

As per Table 19, this parameter is significant as its P-value has fallen below the 0.05 threshold 

and it is negatively associated with Relapse Rate. Despite this the estimate and standard error 
are of the same magnitude, hence the true value of the estimate could deviate from the value 

presented in Table 19.  

Similar to White Cell Count, NLR is also a continuous variable with a range of (-1 , 6.4) after 

standardisation. When multiplied by the estimate this results in a output range of (0.9 , -5.65). 

Comparably the White Cell Count output range of this model is (-2.25 , 5.13). Thus, it can be 
concluded that both of these features have the greatest weighting over the model. 

Comparison of Results 

Stepwise Linear Regression 

 All Usable Data Points Relapsing Patients Only 

𝑹𝟐 0.053 0.299 

Table 20 - Stepwise Linear Regression Comparison of Results 
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Table 20 shows a comparison of the 𝑅! metric for both datasets. The 𝑅! or coefficient of 

determination is a measure for the proportion of variance in the response variable Relapse Rate 

which can be explained by the regression variables in Table 18 and Table 19  (Date, 2020). 𝑅! is 
calculated using the below formula whereby the Residual Sum of Squares (RSS) captures 

deviance of the data from the model and the Total Sum of Squares (TSS) captures the deviance 

of the model from the mean.  

𝑅! = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆	 

Clearly, when Linear Regression is performed on Relapsing Patients Only, there is a much larger 

proportion of the variance explained by the variables. The reason for this can be attributed to 

Figure 32 below. As can be seen in Figure 32, any Relapse Rate greater than 0 is deemed to be 
an outlier with the mean and median of the dataset being located at 0. There are only 59 patients 

who have suffered a relapse, therefore all other 325 data points have a relapse rate of 0. This 

means the mean of the dataset will be approximately 0 and the TSS will be very small. This causes 

the Linear Regression predictions to be pulled towards 0 and as a result the parameters are unable 

to explain the variance in Relapse Rate as there appears to be so little.  

 

Figure 32 - Boxplot Comparison of Relapse Rate in both datasets 

Conversely, an 𝑅!	of 0.299 is quite a positive result when performed on the Relapsing Patients 
dataset. Clearly there is some proportion of the statistical information leading to an increased 

Relapse Rate captured by the parameters. That said, given the small dataset and the small value 

of 𝑅!, there are limitations to the conclusions which can be drawn. 
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Discussion 

ANCA-associated vasculitis is a rare auto-immune disease which if left untreated is fatal. That 

said, the treatment of AAV is also extremely challenging. The use of immunosuppressive therapies 

have reduced the mortality rate to about 2.3%, however it remains an issue that approximately 

50% of people suffering from ANCA-associated vasculitis will relapse (Karangizi & Harper, 2018). 

While the disease of AAV leads to chronic symptoms, the immunosuppressive treatments, in 
particular their cumulative toxicity, have many equally harmful side effects. The primary challenge 

of ANCA-associated vasculitis is therefore to balance this risk of relapse with the cumulative 

toxicities of the treatment at the maintenance therapy stage. The goal of this research was to 

tackle this problem through the application of machine learning techniques. Success of this 

research is defined by accuracy of a model significantly greater than a dummy baseline model 
and conclusive identification of biomarkers which are predictive of relapse.  

 Two classification algorithms, namely Bayesian Logistic Regression and Lasso Logistic 

Regression, were applied to three datasets to identify whether physiological biomarkers could be 

used to distinguish between two classes; LTROT and Relapse. The results of the research are 
conclusive in that the statistical information contained in the biomarkers can be used to distinguish 

between these two classes with an accuracy significantly greater than a dummy baseline model. 

The minimum accuracy achieved was 72.5% for the Substantive Sample and Delta Analysis 

datasets with the Lasso Logistic Regression algorithm. This is significantly greater than the 58.7% 

baseline accuracy of the dummy model which only predicted the most frequent class. While this 
result is extremely positive and conclusively confirms the above hypothesis, there are still many 

considerations to take into account.  

The accuracy of the Bayesian Logistic Regression algorithm was superior to the Lasso Logistic 

Regression algorithm across all three datasets. There are likely multiple reasons for this such as 

the models identifying different features as important however, the biggest difference between the 
inputs to these models was their treatment of categorical variables. While the Bayesian Logistic 

Regression algorithm treated categorical variables as factors and compared different levels of the 

factors against one another, the Lasso Logistic Regression treated these variables as numerical. 

The benefit of treating the variables as numerical is that there is only a single feature for each 

categorical variable. Conversely, for a categorical variable such as Disease Subtype with three 
levels, MPA, GPA and EGPA, the Bayesian Logistic Regression algorithm will treat this as two 

comparative variables, EGPA vs MPA and EGPA vs GPA. This can be observed in Figure 16, 

Figure 17 and Figure 18. It is possible that the increased number of features resulted in overfitting 

of the Bayesian Logistic Regression model, however it is far more likely that it is more meaningful 

to compare different levels of categorical variables. Both the results and the findings in the 
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literature corroborate this. The results show that the accuracy of the Bayesian Logistic Regression 

model is consistently greater than the Lasso Logistic Regression and the feature importance of 

the Bayesian Logistic Regression includes more categorical features. This suggests that there is 
statistical information being missed by the exclusion and method in which the Lasso algorithm 

handles categorical features. In literature, it was far more common to compare categorical groups 

for risk of relapse. For example, the risk of relapse among patients who are PR3 positive compared 

to those who were not was consistently higher (Berti & Specks, 2019). Similarly, studies which 

compared different induction treatment groups also found that the risk of relapse can depend on 
the type of induction treatment received. The Lasso Logistic Regression model does include 

categorical features however it does not compare different levels of categorical features which 

likely explains the discrepancy in accuracies between the models.  

While the Bayesian Logistic Regression model was clearly superior, the issue of poor 

generalisation was common to both. Generalisation refers to the splitting of the data into a training 
and test set and is a good measure to see if a model has been overfitted to the training data. The 

idea behind generalisation is to test the accuracy of a model on unseen data. This is equivalent 

to testing the model on a new patient presenting with ANCA-associated vasculitis. Figure 21 and 

Figure 31 show that the accuracy of both Bayesian and Lasso Logistic Regression models is 

significantly degraded. The two reasons for this were presented as being small test set size and 
overfitting. The likelihood is that both factors play a significant role in the poor generalisations of 

the model. The size of the test set means that even mis-labelling only three or four patients can 

result in poor accuracies of approx. 50% when the data is split 90:10. Not only this but the size of 

the training and test sets can significantly impact the overfitting of categorical variables. ANCA 
specificity, which is the proteinase against which ANCA is targeted (commonly PR3 or MPO), was 

commonly overfitted. Patients with PR3 and MPO were identified as being more likely to relapse 

when compared to PR3. This contradicted the literature which states that PR3 patients are more 

inclined to relapse. On further analysis, there were only a very small number of patients belonging 

to this group, with more having suffered a relapse. Hence, this result was clearly due to the model 
overfitting to a small subgroup. Care was taken to address this issue by ensuring that different 

levels of categorical variables were well populated. For small subgroups of categorical variables 

which had few entries, subgroups were combined under a common heading such as ‘Other’. 

Where possible biological significance of features under this other group was maintained however 

this was not always possible. The issue of biologically important features is addressed later in the 
Discussion. Despite this, due to the small number of datapoints any given test or training set with 

a random sample could easily have been overfitted to one or two subgroups of a variable resulting 

in large overfitting and poor accuracy of the model.  
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Given the relatively large number of features compared to the size of the dataset it also must be 

concluded that overfitting is occurring with the results on the full dataset. In truth, the true accuracy 

likely lies somewhere between the accuracy on the full dataset and the accuracy of the 
generalised test set. There is not sufficient data available to be able to perform a proper train-test 

split. By running many iterations with different train-test splits it was hoped that on average the 

accuracy might even out however the standard deviations remained quite large. It is clear that the 

Delta Analysis dataset suffered the most from overfitting. An accuracy of 95.7% is too good to be 

true however, the generalised accuracy of this model was still extremely high with a mean 
accuracy of 76% which is large enough to confirm the original hypothesis. Overall, even with the 

degradation in performance due to overfitting and small sample sizes, the generalized models 

outperformed any baseline comparison. While this research is in its infancy, the variance in the 

biomarker data can distinguish with high accuracy between patients who have relapsed from those 

who are LTROT.  

This result is meaningful under the assumption that every patient will fall under the label of LTROT 

or Relapse, however with a complicated disease such as ANCA-associated vasculitis this is rarely 

the case. The labels of LTROT and Relapse were chosen as they represent opposite ends of the 

spectrum with regards to patient health. These labels assume that patients will either relapse with 

a new onset of the disease or they will be cured and never suffer from AAV again. Unfortunately, 
AAV is defined by a remitting-relapsing nature with the vast majority of patients falling somewhere 

between these two labels. These patients will often have low levels of active disease which are 

treated with immunosuppressive therapy but are not considered as having a full blown relapse 

resulting in a restart of induction therapy. Clearly, only a small proportion of the population present 
in the RKD registry have been included in this research as a result. This challenge is common to 

interdisciplinary research, where the results while meaningful to the statistician only captures one 

small aspect of a much larger problem. The results of this research therefore represent a first step 

in the right direction. It can be conclusively concluded that biomarkers can be utilised to distinguish 

between these sets of patients with the label of LTROT or Relapse as defined in this research, 
however implementing this in a medical setting will require further research.  

In addition to the above classification problem it was analysed to see if the Relapse Rate could be 

regressed to. The aim of this was to see if the biomarker data could be used to distinguish which 

patients suffer multiple relapses. The power of this analysis was limited in terms of both dataset 

size and performance degradation by a class imbalance. When the dataset was limited to only 
Relapses an 𝑅! of 0.299 was obtained. This is promising however a dataset of 59 is too small to 

have confidence in the result as outliers could have a significant weighting on the result. 

Conversely when performed on all patients, for whom Relapse Rate could be calculated, the 𝑅! 

showed little to no correlation and there was no simple linear model which could predict the target. 
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The reason for this was the imbalance in the number of Relapse Rates which were zero compared 

to those which were not. Overall, the results of this analysis, particularly when compared to the 

classification results, are disappointing. An 𝑅! of 0.299 suggests that 30% of the variance is 
explained by the variables which means that a much higher proportion is not.  

Combining this result with the previous analysis in the context of AAV, means that yes, one can 

use biomarker data to distinguish LTROT from Relapse however, one cannot determine with 

confidence how many times a patient will Relapse from the biomarker data obtained at the 

beginning of the maintenance therapy stage. The biomarker samples used in this analysis 
represent one snapshot in time. For a patient who has relapsed, their biomarkers will have largely 

different values after their relapse. Thus, it is unsurprising that there is only a small correlation 

between Relapse Rate and the biomarker samples taken at this moment in time. It is possible that 

the distinguishing factor between a single relapse and multiple relapses could depend on 

biomarker values after rather than before the first relapse. It could also be worthwhile to include 
patients who have relapsed multiple times in the classification analysis more than once. One 

sample taken before their first relapse and another taken after their first relapse when their 

maintenance therapy has been reintroduced. This would increase the number of data points 

available for analysis and could give a clearer indication of the biomarker levels which are 

indicative of relapse.  

While the accuracy of the classification model was important, the most relevant aspect of this 

research was the identification of biomarkers which were predictive of relapse. The ideal candidate 

biomarker was one which was biologically significant, independent of other factors such as gender 

and easily obtained. It can be assumed that all biomarkers included in the models are easily 
obtainable. Given the large amount of data missingness, logically the most common and easily 

sampled biomarkers will be included. Independence from other factors was addressed largely 

through the methods employed to handle multicollinearity and a biologically significant biomarker 

is one that not only plays a role in the pathogenesis of ANCA-associated vasculitis but is one 

which can provide consistent measurements. A summary of the ten most relevant biomarkers are 
included in Table 22 in the following chapter. In short, the delta biomarkers, white cell markers 

(White Cell Count, Eosinophil, Neutrophil and Lymphocyte), ANCA titre, disease subtype and 

induction treatment received were all very important biomarkers. There is significant literature and 

research in existence discussing the predictive power of ANCA titre and disease subtypes, 

however the use of deltas and the findings regarding white cell markers are novel.  

The introduction of the delta biomarkers were extremely significant in increasing the accuracy of 

the classification. The power of the delta markers are that they provide a sub-clinical measurement 

of how a patient has responded to induction treatment. In essence, while a patient can present as 

non-symptomatic, with a BVAS of 0 and apparently be in remission, these delta markers capture 
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how the patient has responded to treatment and if there is some underlying low activity of disease. 

This is particularly relevant for markers such as ANCA titre. As discussed in the Literature Review, 

this marker while not sufficiently predictive of relapse to require a change in therapy, it is 
sufficiently predictive to warrant closer monitoring. A patient suffering from ANCA-associated 

vasculitis could have ANCA present at both diagnosis and maintenance. Some physicians may 

see the presence at maintenance indicative that the patient will relapse, however if the ANCA titre 

has decreased significantly since diagnosis this patient is actually much more inclined to be a 

LTROT as per Figure 18. Similarly, comparing the White Cell count, to the White Cell count delta 
in Figure 18, shows why the inclusion of the delta is so significant. If one were to exclude the delta 

and look at White Cell count on its own, the assumption is simply that an increased number of 

white cells is indicative of relapse. This was consistent across both models and all datasets. 

However, if the White Cell count has decreased from diagnosis, then the patient is likely not to 

relapse. Thus, both aspects of the treatment response and biological significance are captured by 
the delta analysis. 

The inclusion of White Cell count is an interesting marker. There is biological significance in the 

role that the white cells, namely neutrophils, lymphocytes and eosinophil, have in the 

pathogenesis of AAV however the measurements of them may not be consistent. An elevated 

White Cell count is symptomatic of active disease however, white cells are very short lived in the 
human body. A white blood cell will only live for 1 to 3 days. One week a patient may have a very 

high white cell count and the next it could be normal. That being said, the consistency at which 

the model found white cells to be significant is too large to be ignored. This once again represents 

the challenge of interdisciplinary research whereby while all mathematical signs point towards 
significance, biologically it does not make sense. The importance of this feature is therefore 

unlikely to be an elevated white cell count on any given day, instead it is likely that persistent 

elevation of White Cells are predictive of relapse. This research did aim to take one sample from 

as early in the maintenance stage as possible, however these samples actually represent a 6 

month window over which biomarker values were averaged. While this may not be the case for 
every patient, the explanation that makes both mathematical and biological sense is that a 

persistent elevation of White Cells over a 6 month period is predictive of relapse. An interesting 

note in this analysis is that while Eosinophils, Lymphocytes and Neutrophils are all White Cells, 

only Lymphocyte and Neutrophils were highly correlated with White Cells. Eosinophils on the other 

hand were maintained in the model and should be kept alongside one of White Cell count, 
Lymphocyte count or Neutrophil count in any future models. The most important aspect of 

inclusion of any of these biomarkers however should be the persistent elevation of their count.  

White Cell count raises another interesting aspect of interdisciplinary research. Mathematically, 

one is inclined to take all biomarkers at face value and trust the outputs of the models. In this 
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research however it is important to consider the significance of why a certain biomarker has been 

identified as important. Take induction treatment as an example. In all of Figure 16, Figure 17 and 

Figure 18 those patients who received no induction treatment were far less likely to relapse than 
those who had received induction treatment. In other words patients who received no therapy 

were less likely to relapse. While one might assume that it is therefore better for no patients to 

receive induction therapy as they are less likely to relapse, the truth is that patients who received 

no induction treatment actually had a much milder form of the disease. Similar findings could be 

said for the biomarker of protein in urine in Figure 16 and Figure 17. When only a small amount 
of protein was found in the urine (‘U-Protein1’), these patients were more likely to relapse. The 

opposite was true for patient with a medium amount of protein in urine (‘U-Protein2’). Finally, for 

those with a large amount of protein in urine (‘U-Protein3’), this was not indicative of LTROT or 

Relapse. Protein in urine is indicative of active disease, therefore it is interesting that the more 

protein found in urine the less likely it was for the patient to relapse. Logically one would assume 
the converse. It is possible that the model is simply overfitting to these groups, however it is also 

possible that the model is capturing how different treatment strategies can effect relapse. A small 

amount of protein in urine may not be sufficient to require a change in treatment while a medium 

or large amount could be. When only a medium amount of protein was found the treatment could 

be shown to be effective however when there is a large amount of protein the treatment may or 
may not be effective as it is possible that it was given too late. Thus, a small amount of protein in 

urine could be a symptom of low underlying disease activity leading to relapse which if treated 

could prevent relapse. This corroborates statements by Salama, 2020, who stated that patients in 

remission can often have underlying low activity of AAV. While this is merely a hypothesis, the 
importance of exploration of these features in an interdisciplinary environment is very important 

so that the not only the importance but the relevance of the features is understood.  

Finally, a positive of this research is the consistency of the feature importance across both models 

and all three datasets. The same key biomarkers such as ANCA titre, disease subtype and white 

cell were included in almost all models. It is clear that there is biological information contained in 
these biomarkers can be transformed into statistical information for distinguishing between 

LTROT and Relapse patients with AAV. There were two main difficulties in determining biomarker 

importance. The first was the presence of multicollinearity. This made it very difficult to 

conclusively identify singular biomarkers which were predictive of relapse. The PCA groupings 

were easily the most consistent biomarker identification given the independence of the PC’s 
however while easily interpretable to a statistician, adoption of PCA in a medical setting is unlikely. 

It is much easier for a local physician to understand that persistent elevation of white cells is 

indicative of relapse than explaining the covariance of a PCA matrix. The second difficulty was 

the performance of the imputation. Clearly from Figure 22 and Figure 37, the use of imputation 
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did not affect the accuracy of the results. That is to be expected as multiple imputation maintains 

the statistical variance of the dataset. However, when the imputation was combined with high 

collinearity it made for difficult and unreliable interpretations of feature importance. 
Generalisations can easily be made among feature importance. For example, the presence of 

white cell counts in the model was consistently predictive of relapse, however often one of White 

Cell count, Neutrophil count and Lymphocyte count would be far more predictive than the other 

two depending on the imputed dataset. It was clear that biomarkers with less missingness 

performed more consistently than those with higher missingness. A higher haemoglobin was 
consistently predictive of LTROT whereas IgG was sometimes included and other times not. The 

use of imputation in a medical setting is debated and in general imputation should not be 

performed when missingness exceeds 20%-30%. Given the limitations of the dataset, this was 

stretched to 50% hence inconsistencies in the interpretation of feature importance is not 

unsurprising.  

Overall the findings of this research are extremely positive in the utilization of the RKD registry 

database to optimise the treatment of AAV. The accuracies of the classification models even when 

generalised to a small test set exceed any dummy baseline comparison. It can be conclusively 

stated that the statistical information in the biomarker dataset can be utilised to distinguish 

between the classes LTROT and Relapse. There are limitations to the secondary goal of important 
biomarker identification. Multicollinearity and imputation make for difficulty in interpretability of 

importance beyond findings in current literature however general observations such as importance 

of elevated white cell counts can be conclusively made. The inclusion of deltas is novel to this 

research and their role in the classification of LTROT from relapse cannot be understated. The 
importance of the interdisciplinary aspect of this research is also integral to the understanding of 

the biomarker importance and to the future implementation and deployment of any model in a 

medical setting. These findings are very encouraging for future work. This research represents a 

very positive first step to the employment of machine learning in optimising the treatment plans of 

patients with ANCA-associated vasculitis however it is clear that more data, maturation of the RKD 
registry and further research will be required before its utilisation in a medical setting.  
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Chapter 5 
Future Work 

This research has created a foundation for the integration of machine learning techniques with the 

RKD Registry database to improve patient treatment plans for those suffering from ANCA-
associated vasculitis. This project has created a framework for the cleaning and extraction of 

relevant biomarker data and its application to a Bayesian Logistic Regression model with the 

target of LTROT or Relapse as the outcome. The success of this work is the classification 

accuracy, particularly when delta variables are included, however the limitation of this work is the 

conclusive identification of important biomarkers. The reason for this limitation is largely due to 
data availability. Both in terms of biomarker missingness and the size of the dataset. That being 

said, the RKD registry is a well curated dataset and there was much data excluded from this 

analysis that could be utilised in future works.  

There are two main avenues to research in the future that would allow for the inclusion of more 

data with the RKD registry in its current state. They are to adjust the labels of LTROT and Relapse 
or to remove the labels entirely. The work undertaken in this project had strict definitions of LTROT 

and Relapse for reasons outlined in the Literature Review. As mentioned in the discussion 

however these strict labels only reflect the two extremes of the spectrum of patients who suffer 

from ANCA-associated vasculitis. Simply one can re-define the labels more loosely to include 

more data however this approach will likely remove the time element from the analysis. The time 
element being that for a patient to be considered LTROT, they must be at least one year off all 

treatments. This analysis then results in one simply classifying active disease for which there 

already exists the BVAS scoring system. Thus, any re-definition of the labels will have to be done 

with careful consideration. Another approach could be to utilise a semi-supervised approach. 

Semi-supervised classification is a data analytical technique which trains a supervised classifier 
from both labelled and unlabelled data (Bouveyron, et al., 2019). Semi-supervised learning can 

not only help to better define the decision boundary on the spectrum of LTROT vs. Relapse but it 

can also classify points as being on either side of this decision boundary (Bouveyron, et al., 2019). 

This approach is similar to that of the current research however it does not exclude those patients 
which do not fall under the label of LTROT or Relapse, thus capturing the entire spectrum of 

patients without removing the time element. 

The other avenue to explore is to remove the labels LTROT and Relapse entirely and to undertake 

an unsupervised learning approach. An unsupervised approach looks at clustering similar groups 

of patients together who have similar features. In this approach, an ideal implementation could be 
the use of a unsupervised algorithm, such as k-means, where there are two main groups, one 
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LTROT and one Relapse, and the distance to these groups provide a classification of whether a 

new patient will be an LTROT or a Relapse. This implementation is presumptuous as there is no 

guarantee that there will be a clear division of LTROT and Relapse when the unlabelled data is 
included. On the other hand the benefit of this analysis could be the discovery of unknown groups 

or patterns in the biomarkers.  

The final future work that could be carried out would be to simply wait for patients to either fall into 

one of the categories of either LTROT or Relapse. ANCA-associated vasculitis is a complex 

disease and as stated the labels utilised in this research do not capture the true nature of the 
disease with majority of patients lying somewhere between LTROT and Relapse. That being said, 

as the disease course of some these patients progresses it is likely that the number of both LTROT 

and Relapse patients will increase. The RKD Registry, while a well curated database, is still largely 

in its infancy given the length of the disease course. In general it takes a minimum 2 years from 

diagnosis for a patient to finish therapy and a further year for them to become an LTROT. Given 
the RKD Registry began in 2012, only patients from 2012-2018 at the very latest are included in 

this analysis. Some patients diagnosis dates predate 2012 however the further before 2012 these 

patients are diagnosed the less biomarker availability there tends to be. It is likely that in 3 or 4 

years the number of patients included in this analysis could be significantly increased.    

Future work should also be carried out to reduce biomarker missingness. While it is not conclusive 
that certain biomarkers are predictive of relapse, it is conclusive that deltas, white cells, induction 

treatment received and disease subtype are all important features. In particular for new patients 

the importance of a delta sample cannot be understated. To reduce biomarker missingness 

biological samples and tests will be required. A disappointing aspect of this research was the 
exclusion of the CD163 biomarker. This biomarker, obtainable in a urine sample, has shown great 

promise in the diagnosis of a renal relapse and could be very important in the prediction of relapse 

in the future (O'Reilly, et al., 2016). That said, reducing the biomarker missingness is the key to 

be able to conclusively state biomarker importance and should be the focus of any work before 

any future application of data analytical techniques.  

The final step in any future work must look at deploying the predictive model in a medical setting. 

The aim of this research is to one day be able to personalise the treatment plans of patients. 

These treatment plans will always require medical experts hence future work must be done to 

create explainable models which can be easily be deployed by physicians. This will require 

interdisciplinary training and cooperation to be successful, hence future and current work should 
be undertaken to include key medical experts in all aspects of the interdisciplinary research.   
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Conclusion 

In the most fundamental aspect, this research was an exploratory analysis of the RKD Registry 

database. The RKD Registry is a dedicated database with the aim of monitoring patient 

biomarkers to aid in the treatment and health of those suffering with ANCA-associated vasculitis. 

The largest challenge facing patients with AAV is balancing the risk of relapse with the cumulative 

toxicities of treatments. Through application of data analytical techniques, it was hoped that the 
optimal trade-off between these two could be found by analysing patient data during their 

maintenance treatment stage. In conclusion, this research was successful in achieving this goal.  

Summary of Model Classification Accuracy 

 Substantive Sample PCA Grouping Delta Analysis Dummy 

Bayesian Logistic 
Regression 

76.2% 76.25% 95.7% 58.7% 

Lasso Logistic 
Regression 

72.5% 75.2% 72.5% 58.7% 

Table 21 - Summary of Model Classification Accuracy 

Table 21 above shows the model accuracies obtained on three different datasets. A minimum 

accuracy of 72.5% was achieved while a maximum accuracy of 95.7% was achieved. 

Comparative to the Dummy baseline it is clear that the statistical information contained in the 

biomarkers of the RKD Registry can be used to distinguish between patients who have relapsed 
and patients who are off all treatment for a minimum time period of one year and who have never 

relapsed. Ignoring the limitations of the research, such as overfitting, poor generalisation and 

multicollinearity, these results conclusively confirm the primary hypothesis.  

It was also hypothesised that the Relapse Rate, i.e. the number of relapses a patient experienced 

throughout their disease course, could be regressed to. This research achieved an optimal 𝑅! 
value of 0.299. This result was not conclusive given the relatively low coefficient of determination 

and small dataset size. Give only 59 data points and the aforementioned 𝑅! value it cannot be 

determined with confidence that the statistical information analysed in this project can be used to 

predict the Relapse Rate.  

Secondary to the primary goal was to identify feature importance which contribute to an increased 
risk of relapse. Table 22 below shows the ranking of each of the consistently important biomarkers 

in their relative model and dataset. For example, Disease Subtype was the most important feature 

of the Bayesian Logistic Regression model in both the Substantive Sample and Delta Analysis 
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datasets. This table was created by simply sorting the mean of the posterior distribution of the 

Bayesian Logistic Regression model (as shown in Figure 18 for example) and by sorting the 

weights of the Lasso Logistic Regression model coefficients (as shown in Table 15 for example). 
For categorical variables in the Bayesian Logistic Regression model it was the average of the 

means of the posterior distribution that was taken.  

Summary of Biomarker Importance 

 Ranking 

Model Bayesian Logistic Regression Lasso Logistic Regression 

Dataset Substantive 

Sample 

PCA 

Grouping 

Delta 

Analysis 

Substantive 

Sample 

PCA 

Grouping 

Delta 

Analysis 

U – Protein 3 7 5 6 6 5 

Hb 6 6 4 4 5 6 

White Cell 3 4 8 2 2 2 

Eosinophil 5 4 9 3 2 7 

ANCA 6 3 9 5 4 N/A 

Disease 
Subtype 

1 2 1 1 1 4 

Treatment 2 1 2 7 N/A N/A 

White Cell 
delta 

N/A N/A 3 N/A N/A 1 

Eosinophil 
delta 

N/A N/A 5 N/A N/A 3 

ANCA 
delta 

N/A N/A 5 N/A N/A N/A 

Table 22 - Summary of Biomarker Importance 
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Given a large proportion of biomarker missingness and a subsequent reliance on imputation 

combined with high collinearity between variables it was difficult to identify individual feature 

importance conclusively. Clearly from Table 22 the categorical variables of induction treatment 
and Disease Subtype were important markers. White cell markers such as White Cell count, 

Neutrophil count, Lymphocyte count and Eosinophil count all were consistently important however 

due to the multicollinearity between them and reliance on imputation it is difficult to extract which 

one exactly is the most predictive. ANCA titre was consistently shown as important however it is 

the addition of the delta biomarkers that resulted in the greatest accuracy. Once again the delta 
markers suffer from multicollinearity and a large reliance on imputation. Overall, if this analysis 

were to be repeated, the biomarkers shown in Table 22 would be a good place to start. 

In conclusion, despite the research presented in this paper being too raw to be deployed in a 

medical setting, the classification accuracies obtained conclusively show that machine learning 

techniques can sub-clinically classify patients who have relapsed from those who are LTROT 
before the termination of maintenance treatment. 

Reflection 

Personally, I found this project to be extremely rewarding yet very challenging. I think that 

undertaking a project such as this, where the outcome is required to be beneficial to an 

interdisciplinary cohort, requires flexibility and resilience. I found myself lucky that I got the 

opportunity to begin this project as early as possible during the course year. In order for a 

interdisciplinary project to be successful one must immerse themselves wholly in both sides of the 
project as early as possible. I found that my understanding of not only the project but the disease 

ANCA-associated vasculitis changed several times throughout this project but that I was far more 

knowledgeable because of it. For me, my greatest learning from this project was to not only 

consider what you are doing but to consider why.  

Often as a data scientist it is easy to jump to the next best latest algorithm however working with 
the CDIG and listening to their meetings allowed me to better understand their goals. Similar to 

the discussion on the spectrum of labels of LTROT vs. Relapse, the goals of the medical team 

and of the computer science team are often at opposite extremes. For example, the importance 

of white cells was found to be important by the model however, the medical side of this project 

were largely disinterested with this finding due to their biological irrelevance. It was only on further 
discussion that the persistent elevation of white cells was discussed. Similarly, adoption of an 

unsupervised approach, while statistically very interesting, is largely unusable in a medical setting. 

I found myself not only having to consider the goal of this research but also who would be 

implementing this research were it to be successful as there is no GP in the world with the 

capability to run a complex unsupervised algorithm in their local practice. Lastly, it is easy to trust 
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a model and in particular a model outputs. This project forced me to question why certain features 

are being identified as important and to wonder if this finding is merely a proxy for something else. 

No better example of this was the ‘No Induction’ treatment group. This group were significantly 
less likely to relapse than any other despite not receiving any treatment. Not only did this contradict 

the literature, logically it did not make sense. However, this in fact was simply a proxy for a 

subgroup of patients who did not require induction treatment as they had a much milder form of 

disease. Being inquisitive in my findings was therefore another valuable skill learnt.  

By aligning the goals of this research with that of the CDIG and being resilient, flexible and 
inquisitive I did thoroughly enjoy and find satisfaction in the outcome of this project. I enjoyed 

learning and listening at the CDIG meetings and consider myself lucky to be able to contribute to 

research which can have a real world impact on those with ANCA-associated vasculitis. My 

experience was extremely positive, rewarding and the skills I learnt will definitely benefit my future 

in the area of biomedicine and data analytics.  
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Appendix 
Ethics Declaration 

‘RKD data is saved, if this is necessary, on a password encrypted device. RKD data is not emailed 

to yourself or anyone or stored on cloud services without being encrypted. RKD data is not shared 
with anyone else or discussed with anyone else. Demonstrations, reports and publications about 

the project will not display actual individual level patient data’  

Data Cleaning Workflow Extra Process’s 

 

Figure 33 - Patient Stratification Workflow 
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Full Biomarker List 

Biomarker Name Description 
% 

Missingness 
Included Reason 

Serum sCD25 

(pg/mL) 
Biological marker of 

macrophage activation 
100.00 No 

Data 

Missingness > 

50% 

Anti-GBM Level Measure of Kidney Damage 95.38 No 

Data 

Missingness > 

50% 

Serum YKL-40 

(ng/mL) 

Secretory Protein Which 
Potentially Play a Role in 

Tissue Remodelling 

94.62 No 

Data 

Missingness > 

50% 

Serum sCD206 

(ng/mL) 
Biological marker of 

macrophage activation 
94.62 No 

Data 

Missingness > 

50% 

Urinary Calprotectin 

(ng/mL) 

Protein Biomarker Present 
During Intestinal 

Inflammation 

93.85 No 

Data 

Missingness > 

50% 

Rheumatoid factor 

Measure of Proteins 

Produced When the Immune 

System Attacks Health 
Tissue 

93.08 No 

Data 

Missingness > 

50% 

Urine Glutaric acid 

Results 
Measure of Acidity of Body 

Tissues 
86.15 No 

Data 

Missingness > 

50% 

Urine Betaine 

Results 
Biological Measure 86.15 No 

Data 

Missingness > 

50% 
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Urine 

Dimethylglycine 

Results 
Biological Measure 86.15 No 

Data 

Missingness > 

50% 

Urine Citric acid 

Results 
Measure of Vitamin D 86.15 No 

Data 

Missingness > 

50% 

Urine TMAO Results Measure of Cardio Function 86.15 No 

Data 

Missingness > 

50% 

Urine Succinate 

Results 
Biological Measure 86.15 No 

Data 

Missingness > 

50% 

Urine Oxoglutaric 

acid Results 

Diagnostic Test for 
Overgrowth of Harmful Gut 

Flora 

86.15 No 

Data 

Missingness > 

50% 

Urine Maltose 

Results 
Measure of Glucose in blood 86.15 No 

Data 

Missingness > 

50% 

Urine Glycolic acid 

Results 
Biological Measure 86.15 No 

Data 

Missingness > 

50% 

Urine N-

Phenylacetylglycine 

Results 
Biological Measure 86.15 No 

Data 

Missingness > 

50% 

Urine MyoInositol 

Results 
Measure of Blood Sugar 86.15 No 

Data 

Missingness > 

50% 
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Absolute CD19 count 

cells/uL 

Biological Marker for B cell 

disorders 
85.38 No 

Data 

Missingness > 

50% 

Complement (C4) 
Measure of Autoimmune 

Disease Activity 
85.38 No 

Data 

Missingness > 

50% 

Complement (C3) 
Measure of Autoimmune 

Disease Activity 
85.38 No 

Data 

Missingness > 

50% 

ESR Measure of Inflammation 83.85 No 

Data 

Missingness > 

50% 

AST Marker of Liver Disease 83.85 No 

Data 

Missingness > 

50% 

Visual Analogue 

Health Scale 
Measure of Quality of Life 78.46 No 

Data 

Missingness > 

50% 

5L Anxiety 

Depression Level 
Patient Reported Outcome 77.69 No 

Data 

Missingness > 

50% 

5L Mobility Level Patient Reported Outcome 77.69 No 

Data 

Missingness > 

50% 

5L Pain - Discomfort 

Level 
Patient Reported Outcome 77.69 No 

Data 

Missingness > 

50% 
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5L Selfcare Level Patient Reported Outcome 77.69 No 

Data 

Missingness > 

50% 

5L Usual Activities 

Level 
Patient Reported Outcome 77.69 No 

Data 

Missingness > 

50% 

sCD163 (serum, 

ng/mL) 
Measure of CD163 in blood 77.69 No 

Data 

Missingness > 

50% 

Monocyte count 

x10^9/L 
Biological Measure 76.92 No 

Data 

Missingness > 

50% 

Total cholesterol 

mM 
Biological Measure 66.92 No 

Data 

Missingness > 

50% 

BMI Body Mass Index 60.00 No 

Data 

Missingness > 

50% 

IgA g/dL 
Immunoglobulin A - 

Antibody present in Blood 
58.46 No 

Data 

Missingness > 

50% 

IgM g/dL 
Immunoglobulin M - 

Antibody present in Blood 
58.46 No 

Data 

Missingness > 

50% 

sCD163 (urine, 

ng/mL) 
Measure of CD163 in Urine 57.69 No 

Data 

Missingness > 

50% 
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Urine PCR / ACR 

mg/mmol 
Protein to Creatinine Ratio 56.92 No 

Data 

Missingness > 

50% 

Table 23 - Full Biomarker List 

Principal Component Variation Explanation Plot 

 

Figure 34 - Personal Characteristics PCA Variation Plot 
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Bayesian Logistic Regression Trace Plots 

 

Figure 35 - Bayesian Logistic Regression MCMC Trace Plot PCA Group 

 

Figure 36 - Bayesian Logistic Regression MCMC Trace Plot Delta Group 



 

92 
 

Lasso Logistic Regression Imputation Plot 

 

Figure 37 - Lasso Logistic Regression Model Sensitivity to Imputation on Substantive Sample 

 


