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1 Introduction
1.1 Outline of the Introduction

Section 1.2 provides a general overview of all Knowledge Graph, Linked Open Data, and

machine learning topics necessary to understand the context of this work. Section 1.3 provides

an overview of the motivations, objectives, methods, and results of this work. Finally, Section 1.4

provides an outline of the remainder of the sections in the dissertation.

Since this work was completed in the context of biomedical research, all examples contained

within will be made in reference to well-known biological facts and processes. The intent of this

is to clearly demonstrate how these techniques and results are immediately applicable to

biomedical research.

1.2 General Background

This section serves to give a general context of the work. Section 1.2.1 introduces the problem

this work seeks to address in the field of Knowledge Graphs and biomedical research. Section

1.2.2 explains the background concepts of Linked Data and Knowledge Graphs in the larger

context of biological Linked Open Data datasets. Section 1.2.3 summarizes the mechanisms

and motivation for using Knowledge Graph Embeddings to learn from Linked Open Data data

sources. Section 1.2.4 continues to explain the process of learning Knowledge Graph

Embeddings using a technique known as negative sampling. Section 1.2.5 considers the details

of biological and cancer data that lend themselves to Linked Data representations and to

Knowledge-Graph Embedding techniques.

1.2.1 Problem Statement

The fields of cancer biology and biomedical sciences have been revolutionized by Big Data.

From projects such as Bio2RDF [1], the International Cancer Genome Consortium [2], the 1,000

Genomes Project [3], and TumorMap [4], big data has become a centerpiece of biomedical

research. With the ever-increasing magnitude of these datasets, several approaches have been

taken to analyze and utilize the full breadth of these resources. Some projects, such as

TumorMap, have focused on transforming the available data into a simpler format through

dimensional reduction mechanisms, accepting a degree of information loss in exchange for

easier usability [4]. On the other hand, recent Linked Open Data (LOD) systems have attempted

to represent the entirety of the data in an easily-queryable graph-based format [1, 7, 13, 15].

Among the projects that have taken this approach is Bio2RDF, a LOD data store that
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incorporates data from many different biological and biomedical datasets into a graph format [1].

Several groups have followed up upon such projects with graph-based machine learning

techniques called Knowledge Graph Embeddings (KGEs) in an attempt to process entire LOD

datasets at once [5-7].

Using Knowledge Graph Embeddings requires the selection of hyperparameters to the models,

and proper selection of hyperparameters is critical to enabling the model to best learn the data

at hand [8, 28]. This research addresses the question of whether biological LOD datasets could

be characterized with a set of general dataset features. This characterization leads to an

exploration of the possibility of allowing relational learning algorithms to operate on these

datasets using a consistent set of known hyperparameters. Such a system would allow

biological LOD datasets to be analyzed much more quickly, without the need for running a full

search for optimal hyperparameters on every new dataset.

Finally, relating optimal hyperparameters and KGE performance to structure would allow

predicting and explaining why certain models perform better than others, and would allow these

results to be generalized to similarly structured graphs from radically different, non-biological

fields. While in this work the cancer biology and biomedical fields are used--due to their

importance and due to the author’s previous experience in both--the goal of explaining results in

terms of KG structure allows for a generalization beyond that domain.

Please note that herein, references to “hyperparameters” refer not only the parameters to
a KGE model (such as the learning rate), but also to the choice of the models
themselves; while this use is not strictly in keeping with the formal definition of

hyperparameters, it results in a simpler phrasing of the model choices made.

1.2.2 Background on LOD and KGEs

Linked Data is a system by which heterogeneous data from a variety of distributed data sources

can be connected, creating a larger web of data not dissimilar to the Internet [9]. Linked Open

Data, by extension, is the subset of Linked Data that is accessible under an open-source

license, allowing it to be used by anyone [9].

The most popular Linked Data technology is RDF, the Resource Description Framework, in

which all data is represented in a graphical format [9]. The smallest unit of information in an
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RDF graph is the triple, a set of two entities and one predicate (or relationship) that links them

[9]. The first entity is called the subject or the head, and the second entity the object or the tail

[9]. In this configuration, RDF triples mirror, to a basic degree, linguistic statements. For

example, the statement “P53 is a protein” could be modelled in RDF as P53 (subject) is-a

(predicate) protein (object).

In the RDF format, subject, predicates, and objects are often represented by URLs which allows

for entities and predicates to be easily reused and dereferenced, either within one data source

or between different data sources [9]. The ability to reuse entities and relationships means that

various triples can be linked and connected logically to each other, either by sharing a head, a

tail, or both. Moreover, the RDF specification also allows for objects to be represented by

literals, such as integers or strings, rather than URLs [10]. Such literals can only appear at the

tail of triples, and thus cannot be re-used as subjects the way URLs can be [10].

Data in the RDF format is most commonly queried using the SPARQL Query Language [48]. In

SPARQL, queries are formulated as graph matching patterns, allowing the queries to take full

advantage of the graphical structure of the data [48]. This allows the construction of queries that

can return a tabular set of results or a subgraph of the queried graph that match the query [48].

Moreover, it is possible to take full advantage of the LOD ecosystem and use information (such

as entities or relationships) defined in one KG to query another KG that contains references to

those items [48]. Due to the power of this approach, many projects such as [7, 13, 23, 24, 39,

43] have made exposing data in a SPARQL-queryable form the end-goal of their work.

1.2.3 Learning RDF data: outline and goals

LOD graphs constructed in the RDF format are referred to as Knowledge Graphs (KGs). Due to

the triple-based structure of KGs, the data contained within can be very easily related. This is

seen simply in the following example:

Subject Predicate Object

protein made-by ribosome

amino-acids monomers-of protein

Repeating entities as both a subject and an object allows linking triples to each other. While this

can be used in many cases for logical reasoning using formal rules to extract more information
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from the graph [9], this property also allows machine learning techniques to operate on the

graph and learn to distinguish and related entities based on the triples they are involved in [11,

45]. These machine learning techniques are referred to as relational machine learning since

they learn based on these relations [11]. The output of this relational machine learning is a set of

Knowledge Graph Embeddings, where entities are typically represented as vectors in Rn and

relationships are represented by transformations on those entities [11, 45]. These relationships

are structured as functions that map Rn onto Rn, allowing them to convert from subjects to the

expected objects of that relationship [11, 45]. The choice of the dimension into which the entities

are placed, as well as the choice of what sort of transformation is used to model the relationship

(such as vector addition or matrix multiplication) are model design choices that must be

investigated by developers to find the optimal combination for a given data set [11, 45].

In most cases, given a triple (s,p,o), applying the relationship that represents p to s should result

in the vector embedding for the object o [45]. It should be noted that some of the more

advanced models depart from this rule and allow other matching systems; however, this

embedding method is the most representative and remains a commonly used one [45]. It can be

expressed simply in mathematical terms as the following objective function:

𝑓
𝑝
(𝑠) ≈ 𝑜

where fp is the function for the relationship p.

For example, in the triple (protein, created-by, ribosomes), applying the transformation

corresponding to the relationship created-by to the subject protein should result in a vector close

to or equal to the embedding of ribosomes.

This formulation of knowledge graph embeddings suggests a very clear use of KGEs: given a

subject and a predicate, predict the associated object [11, 45]. In this way, the KGE system can

be understood as a question-answering system, where the subject and predicate make up the

question and the object is the answer.

This formulation of relational learning works due to the fact that KGEs can learn to identify true

facts without having explicitly seen them, based on how the entities and relationships of those

facts are used elsewhere in the knowledge graph. For example, suppose a KG consists of a

variety of facts about proteins, such as the following:
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Subject Predicate Object

protein made-by ribosome

amino-acid monomer-of protein

P53 is-a protein

P53 made-by ribosome

SHH is-a protein

and then is asked to predict the object given the subject “SSH” and the predicate “made-by”, it

should be able to correctly return the answer “ribosome”, despite never having seen this fact

before [11, 45].

In the context of biomedical and cancer research, this could amount to predicting the result of

loss-of-function of a gene, overexpression of a protein, or environment-stimulated release of

various intra- or inter- cellular messenger molecules. Moreover, since KGEs take into account

the relationships between various elements in the graph, this approach provides an intuitive way

to make use of entire datasets, rather than only subsets thereof.

1.2.4 Learning KGEs: Negative Sampling

In order for the KGE model to effectively learn to predict true triples and reject false ones, it

must be trained not only on the known-true triples but also on known-false triples [11, 45]. This

is done using a technique called negative sampling [11, 45]. Negative (or false) triples are

typically generated either under the Closed-World Assumption, the Open-World Assumption, or

under the Local Closed-World Assumption [11, 45]. The Closed-World Assumption states that all

true triples are contained within the knowledge graph, and that there are no true statements that

do not exist within it [11, 45]. Under the Closed-World Assumption, negative samples can be

generated very easily. Since all triples not in the training set are assumed to be false, simply

inventing a new triple not previously seen will generate a valid negative. However, in real-world

datasets where knowledge is constantly expanding and growing, this assumption practically

never holds, and is thus rarely useful for training on real-world data [11, 45].
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The Open-Word Assumption, by contrast, assumes that there may be arbitrarily many true

statements which are not contained in the KG [11, 45]. However, it gives no way of predicting

which, if any, triples that are not in the KG are true and which are false [11, 45].

The Local Closed-World Assumption is a more practical adaptation of the Open- and

Closed-World Assumptions that claims that if a given subject and predicate are observed with a

certain set of objects, then that subject and predicate only ever match to objects of those types

[11, 45]. In essence, this means that a Closed-World can only be assumed in the local context of

subject-predicate pairs, rather than in the unrestricted context of the whole graph. One major

benefit of this approach is that it strikes a balance between overconfidence in the dataset (seen

in the Closed-World Assumption) and ability to identify likely-false statements (which is not

possible under the Open-World Assumption).

As a result, training is most often done under the Local Closed-World Assumption. Under this

assumption, negative sampling is typically done by corrupting the subject or object of a

known-true triple to another entity that is not in the training set [11, 45]. This also has the effect

of making negatives appear more realistic, since they more closely resemble triples in the KG

[11, 45].

1.2.5 Biomedical LOD

LOD and KGs have become increasingly popular in biological and biomedical research. The

Bio2RDF project focused on converting popular biological databases--relating various fields of

biology such as genetics and molecular biology. It was first announced in 2008 and now

contains 35 distinct datasets that have been converted into RDF format [1, 12]. The Linked

Cancer Genome Atlas (Linked TCGA or LTCGA), published first in 2013, was created to convert

data from the Cancer Genome Atlas (TCGA) into RDF format [13, 14]. The project was later

vastly expanded in 2014 to include data from PubMed, a large biomedical database maintained

by the National Center of Biotechnology Information in the United States [15, 16].

The success of these approaches comes from the naturally linked form of biological and

biomedical data. Biological research and knowledge in most cases is understood in a

cause-effect manner, linking various events such as mutations, protein interactions, pathway

activation, and external stressors to effects such as protein dysfunction, catalysis, cellular

division, or apoptosis; this sort or cause-effect based knowledge can be seen very clearly in [17,
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18, 20]. Moreover, within cellular biology most events are understood in terms of pathways

rather than solitary actions, making the sequential nature of events and interactions

fundamental to understanding the system as a whole. It is for this reason that biopathways are

presented themselves as graphs, as seen again in [17, 18, 20].

Biomedical data thus has a fundamentally graphical structure, which is easily represented in an

RDF format. Yet on top of that, the ability to link disparate datasets, combine structured and

unstructured data, and to easily extend this data by adding new triples as more data is

discovered make RDF a very natural representational format for big biomedical data. As

mentioned above, the use of KGEs to learn from this data allows taking advantage of the

fundamental structure of this data, rather than only a subset or select portion of it.

1.3 Overview of this Research

This section contains a summary of the objectives, methods, and results of this work. Section

1.3.1 discusses the goals of this work in the formal context of Knowledge Graph Embeddings

and Linked Data. Section 1.3.2 presents an overview of the methodology used, and Section

1.3.3 discusses the major results and outlines the expected contributions of this work.

1.3.1 Research Objectives

There have to date been many attempts to use KGs and KGEs to understand and characterise

big biomedical data [5, 7, 13, 15, 21-24, 27, 39-43]. Almost all of these have focused upon using

queries on KGs directly without machine learning models to help researchers understand and

learn from the data [5, 7, 13, 15, 21-24, 39-42], while many fewer have made use of KGEs a

principal goal of their work [27, 43]. However, to date, multiple massive biomedical LOD sources

and projects exist [1, 13, 15], which provide a strong basis for the application of KGEs to the

field.

The selection of the proper model and hyperparameters are fundamental to the creation and the

success of any KGE system [8, 11, 28]. It has been established that KGs are very sensitive to

hyperparameter choice, but that the grid search needed to select them can be very time

consuming [43]. Moreover, several elements of KG structure have been identified not only as

defining characteristics of the KG type [46], but as critical to producing optimal embeddings in

neural-network based KGEs [47]. Many of the KGs examined in this work had a similar

structure, which motivated an attempt to find a common set of hyperparameters that could be
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broadly applicable to various biomedical datasets. Thus, the methodology and analysis were

aimed at characterizing the nature of the structural similarity between biological KGs, and

exploiting this similarity to find a set of hyperparameters that could operate effectively across

datasets of similar structure.

As such, the objective of this research was guided by a single central question: To what extent
can the structural properties of Knowledge Graphs explain their performance under
different hyperparameter configurations, and can this be exploited to find a single,
cross-dataset optimal hyperparameter set for biomedical LOD? The specific structural

features examined were the centralities of each node (measured by degree) and the ratios of

sinks, sources, and repeated entities in the KG relative to the total number of triples in the KG.

1.3.2 Methodological Overview

In order to address the goal, a set of 5 datasets contained within Bio2RDF were selected to be

analyzed by their structure and optimal hyperparameters. The selected datasets were chosen

from the domains of cancer and biomedical research; a full description of the metrics by which

these were selected will be given in the methodology in Chapter 3. The 5 datasets chosen were:

BioPortal [30], DBSNP (Database of Single-Nucleotide Polymorphisms) [31], DrugBank [32],

OMIM (Online Mendelian Inheritance in Man) [33], and PharmGKB [34], all of which are

contained within Bio2RDF [12].

Two searches were conducted for the optimal algorithms and hyperparameters: in the first case,

the AUC score of the model was used to gauge its success. In this instance, the AUC score is a

measure of the probability that a true triple will be chosen over any negative triple [29]. The

second hyperparameter search attempted to maximise the “r1” score, which is the probability

that a true triple would outrank all of the negatives created samples for it specifically under the

Local Closed-World Assumption, rather than any possible negative sample [29]. During both

hyperparameter search rounds, the datasets were subsetted randomly to ensure they would be

able to train sufficiently quickly to enable analysis and to enable proceeding to further rounds of

analysis.

In both searches, hyperparameters were initialized with arbitrary default values, and then

updated in three main rounds. In the first round, hyperparameters relating to how the data was

modelled were varied and the optimal value was selected in a grid-like search. In the second
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round, hyperparameters for batching and negative sampling were varied and selected; in the

third and final round, hyperparameters for embedding dimension and number of epochs were

selected. The choice of three rounds was based upon two key principles: focusing on the most

determinant model features first and reducing the number of hyperparameter combinations in

any step to a relatively small value measured in the tens or low hundreds rather than thousands

or beyond.

In terms of the first principle, all of the model choices that defined the algorithm were taken as

the most determinant of how the model represents knowledge. Every different method of

embedding, comparing, and learning (through the loss function) entities is the very base upon

which KGEs are able to model knowledge, and the most important distinguishing elements

between different approaches [45]. Thus, these were selected first. Negative sampling and

batching methods were sampled next as representative of how the model learns to distinguish

truth and falsehood after it has a knowledge model structure [45]. Thus, the remaining

hyperparameters (embedding dimension and epochs) were left to the end once the way the

model represents knowledge, and learns to identify truth were established.

In the case of the second principle, reducing the number of combinations to consider at any one

step was particularly important since time available was a very critical factor, and since every

additional combination to search increased multiplied the running time of the search

several-fold. In the final form after this level of time optimisation, the searches took between 1 to

3 days to finish in all cases.

Each search was run three times and the results were averaged and analyzed. This led to the

determination that the r1-based search yielded much better KGE models than the AUC

based-search, and as thus the results of that search were carried forwards. Once a final pool of

validated hyperparameters was obtained, the full datasets were trained and evaluated using

those hyperparameters. In the end, two sets were curated with all datasets using either one set

or the other. Specifically, one was hypothesized to be better on BioPortal alone, and the other

hypothesized to be better on the other four datasets (DBSNP, DrugBank, OMIM, and

PharmGKB).

Metrics on the structure of those KGs--notably measures of entity degrees and the numbers of

source / sink nodes--were calculated and analyzed to determine patterns and to understand
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what similarities in their structures were most indicative of being well-suited to a given set of

hyperparameters. Four additional datasets were selected for this round of analysis, which were

not used at any phase of the hyperparameter searches. They were similarly chosen based on

relevance to cellular and biomedical data. These datasets were GOA (Gene Ontology

Annotations) [35], HGNC (HUGO Gene Nomenclature Committee) [36], KEGG (Kyoto

Encyclopedia of Genes and Genomes) [25], and the LSR (the Life Sciences Resource Registry)

[37], all of which are also contained within Bio2RDF [12]. Note that since evaluation by r1 was

preferred, only the two hyperparameter sets from that evaluation round were used.

While several different structural metrics were examined, the distribution of the degrees of

nodes (also referred to as ‘centrality’) was found to be a particularly relevant feature for

predicting relative performance under the selected models. The set of results of this level of

analysis was then used to analyze the relative performance of each dataset under different sets

of hyperparameters.

The findings from this final round, in tandem with the performances of the datasets used in the

hyperparameter search, suggest a very strong influence of structure on KGE hyperparameter

choice, and on the performance of any given dataset under a fixed hyperparameter

configuration. Taking this into account, several final conclusions on the interaction between

structure and performance were drawn, and a final list of major contributions and directions for

future research was compiled.

1.3.3 Results and Contribution

The datasets examined in this work were found to have a very high proportion of sinks (nodes

that only ever were objects) relative to entities that appeared as both subjects and objects. It

was similarly found that the distribution of degrees of nodes was highly skewed left. In total, the

ratio of sink and repeats to the total number of triples in the KG, as well as the extent of the

skewness in the centrality distribution, were found to be very powerful predictors for KGE

performance by all metrics measured under two different hyperparameter sets. Moreover, these

features were found to have moderate predictive power in determining the difference in efficacy

between the two hyperparameter sets, which allows the construction of a model to predict the

best hyperparameter set given KG structure.
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However, this analysis also revealed that neither of the two candidate hyperparameter sets

could be considered optimal with confidence despite the clear effect of structure on them. This

sub-optimality was particularly noted even in the context of the datasets that the

hyperparameter configurations were designed for. In addition, in the context of the selected

hyperparameters for optimizing the r1 score, the r1 scores for the trained models tended to be

quite low with none of the datasets exceeding an r1 of 0.4. KGE AUC scores fared somewhat

better, but none exceeded 0.85 in the final models.

Overall, these results show a strong effect of structure on optimal hyperparameter choice and

emphasize that similar structured datasets can be placed into classes that operate optimally

under the same hyperparameter configurations. However, the relative weakness of the

predictive power of these models indicates that much work remains to be done regarding

optimizing predictive power in datasets that exhibit such a strong left skewness of entity degree

values. In addition, the poor fit of the hyperparameter search to finding ideal hyperparameters

means that the results of this work should be interpreted in terms of structural and predictive

power of the KGEs, not in terms of having found optimal hyperparameter sets.

The main contribution of this dissertation to the field is twofold. For bioinformaticians, it is

intended to create an easily-applicable KGE framework that can be applied to narrow the

hyperparameter search space when designing KGE models. By doing so, it will also reduce the

technical expertise needed to run KGE models and open up KGE use to less-technically

oriented biological researchers. For relational learning researchers, it is intended to highlight the

importance of KG structure on KGE models by demonstrating that similarly-structured KGs

perform similarly under identical hyperparameter choices. In addition to that, this work further

suggests to relational learning researchers that graph structure and embedding models are

fundamentally related and should be understood in context of each other.

1.4 Outline of the Remainder of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 provides a literature review

of related works in the field of KGEs for biomedical data, with a focus on the gap in current

literature. Chapter 3 explains in detail the methodology used, and is followed by Chapters 4 and

5, which give an analysis of the hyperparameter searches based on both the AUC and r1

statistics respectively. Chapter 6 presents the results of these models and explains how they

relate to the structure of the various knowledge graphs investigated. Chapter 7 concludes the
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work with a discussion of these results and their significance both to biomedical research and to

relational learning. It also describes important future directions and research questions opened

up by this work.
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2 Literature Review
2.1 Outline of the Literature Review

This chapter will focus on the details of biomedical LOD, KGs, KGEs, and graph structural

analysis needed to provide full context and background for the research at hand. Section 2.2

describes two of the largest, most comprehensive biological LOD datasets with an eye to their

structure, motivations, and uses. Section 2.3 reviews how various groups have used these and

other datasets, as well as the overall RDF framework, to draw conclusions about biopathways,

drugs, and treatments. Section 2.4 transitions into the details of KGEs, including a summary of

common algorithms and open-source libraries for running them. Section 2.5 discusses graph

structure metrics and features and provides a background of research in the area as it relates to

how KGEs interact with various graph structural features. Section 2.6 concludes the chapter

with a formal identification of the gap in modern research this dissertation aims to fill, as well as

the perceived benefits of addressing this gap.

2.2 Major Biological LOD Projects

Many biological and biomedical LOD projects have begun and been extended throughout the

last 15 years. Among these are Bio2RDF [1] and the LTCGA [13, 15]. Both of these projects are

very notable for incorporating within them a great number of datasets; Bio2RDF currently

contains 35 datasets on various fields of the life sciences [12]. The LTCGA contains the National

Center for Biotechnology Information (NCBI) Cancer Genome Atlas (TCGA) [13] and was later

expanded with a large aggregation of data from PubMed, an unstructured repository of

biomedical research articles [15]. Both of these projects were created to help bring the power of

Linked Data--notably, being able to integrate structured and unstructured data from distributed

data sources--to life science research [1, 13, 15].

2.2.1 LTCGA

The Linked TCGA, or LTCGA, was originally announced in 2013 as a conversion of TCGA data

to RDF format [13]. The project focused on ‘type 3’ data in the TCGA--data that had been

processed by researchers after being submitted [13]. It ignored type 1 and 2 data, which were

respectively raw data and normalized data, since the vast majority of biomedical analysis using

TCGA occurs only on type 3 TCGA data [13].

The principal motivation for the LTCGA was twofold. The TCGA is a huge data repository, yet

the various data files within it are not linked meaningfully, which means that discovering
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relationships and following links was a manual process without an immediately clear method for

automation [13]. Saleem et al. also identified that while over 350 academic articles had cited the

TCGA as of 2013, the majority of these only used raw TCGA data without linking to the wider

context of the entire TCGA [13]. Moreover, they aimed to link the TCGA not only to itself, but to

other large biological ontologies and KGs such as HGNC (HUGO Gene Nomenclature

Committee), OMIM (Online Mendelian Inheritance In Man), and Homologene [13]. Doing so

allowed them to take advantage of the full power of Linked Data--being able to incorporate

many different datasets into a single LOD knowledgebase.

The LTCGA was later expanded in 2014 to include unstructured text data from research articles

on PubMed, which deal with a large variety of biomedical concerns [15]. The motivation for this

was to take full advantage of the ever-growing scientific literature on cancer, to link it with other

sources of known data in the LTCGA, and to allow easier discovery of article contents through

LTCGA queries [15].

The LTCGA was created at first by scraping text files available on the TCGA, cleaning and

processing them, and then passing them through a RDFizer to convert them to a

Knowledge-Graph format [13]. These RDF files were loaded onto a publicly-available SPARQL

endpoint that allowed users to run queries on the data contained within the LTCGA [13].

Moreover, Saleem et al. took advantage of link-prediction tools to automatically link the LTCGA

to HGNC, OMIM, and Homologene after its construction [13].

In order to expand the LTCGA to include PubMed, they scanned the text of all PubMed articles

and selected those containing keywords related to cancer [15]. The article meta-data, as well as

any named genes or diseases in the abstract, were added as records to the LTCGA to allow

easy article discovery on topics contained in the LTCGA [15]. Moreover, since the LTCGA had

by that point expanded to 20 billion triples and was projected to reach 30 billion, Saleem et al.

created a federated query mechanism across 17 different SPARQL endpoints by which all of

this data could be accessed [15].

Finally, Saleem at el. created a dashboard and various visualization systems to sit on top of the

expanded LTCGA, with the aim of making data access simple for clinicians and researchers

[15]. However, in all their work their focus remained principally on how to enable human-based
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analysis and querying, rather than also taking advantage of automated learning and information

extraction from the information available [13, 15].

With all of these features, the expanded LTCGA is clearly a very powerful tool for biomedical

research, particularly with regards to cancer. However, at the time this research was done,

almost all of their endpoints were down and the main links contained within their articles were

broken, which prevented taking advantage of this work. While some data was later found to be

accessible in backup dumps on their website, recovery of the entire project was not possible

through their website, especially as many of the download links contained there were broken.

As a result, it was impractical to perform this research with the LTCGA system.

2.2.2 Bio2RDF

Bio2RDF was created in 2008 with similar intent to the LTCGA: to create a large repository of

linked biological data that could be easily accessed and used with LOD and KG technologies

[1]. However, its vision encompassed more than just one topic alone, and aimed to aggregate

as many sources as possible related to the life sciences into an RDF format, and to publish it as

fully-accessible LOD [1]. Their goal was not to allow the data-system to only answer specific

problem-oriented questions, but to allow a more exploratory analysis of many fields using the

collected data [1]. Belleau et al. described their work as a “mashup” of many different biological

databases, which now includes 35 datasets, notably including BioPortal, DBSNP, DrugBank,

KEGG, OMIM, PharmGKB, GOA, HGNC, LSR, and several from the National Center for

Biotechnology Information [1, 12]. A full list of the datasets contained within Bio2RDF, as well as

their provenance and basic contents details, can be found at [12].

Bio2RDF explicitly designed an ontology for the datasets collected to label them and assign

various entities and relationships to classes; this was done using the Web Ontology Language

(OWL) framework [1]. They created their own namespace and identification method to

disambiguate various references, and RDF-ized all target datasets into this final format [1].

All of the data they collected was made available on the Internet both in HTML and RDF

formats, and their raw RDF files were maintained and made available for downloading [1, 12].

Much like the LTCGA, the original intent of Bio2RDF was to facilitate querying these different

databases by human experts and researchers [1]. In one case, Belleau et al. describe the power
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of the SPARQL query engine that sat on top of their RDF resources, but did not address

automated relational learning or KGEs [1].

However, the project’s focus on comparability, extensibility, and long-term maintenance [1, 12]

have resulted in their collected data still being very readily accessible on the Web [12].

Moreover, Bio2RDF currently contains a large variety of Linked Data from various sources [12],

making it an attractive source for data on automated relational learning of biomedical and

biological data. As a result, this large data store is a very natural choice for use in this research.

In the methodology section, further details will be provided on the use of Bio2RDf as the source

of RDF files to be used to produce predictive KGE models.

2.2.3 Other Projects

Many other biomedical and biological LOD projects exist. Many, as previously mentioned, have

since been incorporated into Bio2RDF or other datasets-of-datasets. However, a great many

have not, or have been linked in a data mashup and also maintain their own independent

Knowledge Graphs. A brief summary of several other common biological RDF datasets is listed

here, both to give a complete overview of the state-of-the-art resources as well as to provide

context for the later discussion on future directions of extending this work to a larger range of

datasets.

2.2.3.1 NCI Thesaurus

The NCI Thesaurus is a large collection of terminologies relating to cancer, pharmaceutical

drugs, anatomy, and biomedical, cellular, and molecular concepts [38]. It also contains several

terms on common experimental organisms used in research [38]. It was created by the National

Cancer Institute in the United States to serve as a common, controlled source of terminology for

research and bioinformatics publications to ensure that data was consistent and easily

accessible [38].

The NCI Thesaurus is based on the Web Ontology Language (OWL), which is a part of the RDF

ecosystem [38, 50]. OWL serves to identify synonymous terms and establish how they relate to

each other--such as if two relationships are inverses of each other, or if a relationship has the

transitive property [50]. The vocabulary was designed to support all the common statements

that a Knowledge Graph may contain about biomedical data, such as for expressing protein

interactions or purported effects of diseases [38]. However, it was not created as a database but
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rather as a base of knowledge on how terms relate [38]. As a result, it is a very powerful tool for

determining how concepts relate, rather than for predicting new facts about a given disease or

about biological pathways.

2.2.3.2 miRBase

miRBase is a LOD adaptation of two databases focused on microRNAs and their biological

functions [39]. They wrote their own RDF-izer to convert the data contained therein to the RDF

format, with an end goal of aiding research specifically regarding the functions and

inter-relationships of microRNAs [39]. Moreover, the group used text analysis on PubMed

articles to find associations between miRNAs in their databases with various diseases [39].

Much like LTCGA and Bio2RDF, they made the data publicly available through a SPARQL

endpoint [39]. In their analysis, they focused on the use of SPARQL queries over the RDF data

to extract information and guide research [39]. They limited their examples and case studies to

the query-ability of the data rather than to higher-order learning tasks upon the data, but even

within that context were able to demonstrate that the resulting database would be a useful

research tool [39].

At the time of writing, the links to the miRBase servers in [39] were broken, preventing access to

any of the data or query systems created by the authors.

2.2.3.3 BIOOPENER

First presented in 2017, BIOOPENER was created by the authors of the LTCGA and with many

of the same goals [7]. The authors describe its goals as being largely similar to Bio2RDF in that

they aimed to create a mashup of many different data sources, linked using RDF, and to enable

researchers to take advantage of this linking to discover new facts [7]. BIOOPENER was

specifically created in the context of evaluation of cancer data and focused on collecting data in

RDF format from sources highly relevant to cancer research such as the TCGA [7].

They created novel links between the member datasets of BIOOPENER to explicitly model

identical elements from different datasets [7]. This was done using properties of the

datasets--such as various unique gene IDs--that allowed matching elements with high certainty

[7]. Since the resulting combination of these datasets was very large, they separated it into
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multiple components and employed a federated query engine to allow access to all the data

hosted at different endpoints [7].

Unfortunately, much like LTCGA, many of the links to the project given in [7] were broken at the

time of writing, making taking advantage of what otherwise seems like an invaluable resource

impossible to use for the research at hand.

2.3 Biomedical Research based upon KGs

To date, there have been many studies attempting to use the power of LOD and KGs to produce

new biological insights [5, 7, 13, 15, 21-24, 27, 39-43]. The vast majority of these have focused

on using the properties of linked data alone to query information, retrieve results and facilitate

manual data exploitation and analysis without using KGEs or relational learning techniques [5,

7, 13, 15, 21-24, 39-42]. However, some articles did find that KGEs can be a very natural

perspective for understanding and processing large-scale biomedical KGs and were able to

produce clinically relevant results using those techniques [27, 43].

This section gives an overview of the most common approaches to manual knowledge graph

exploratory analysis and use with an eye to the benefits and drawbacks of the manual elements.

From there, it proceeds to compare these results with automated KGE-based methods and the

insights those methods generate.

2.3.1 Manual Exploratory Methods based on KGs

The most common manual exploratory methods can be divided into three approaches: those

based on database queries alone, those that build visualization and automation tools on top of

queryable endpoints to facilitate end-user access, and those that are not based upon database

queries. These three approaches are outlined in sections 2.3.1.1, 2.3.1.2, and 2.3.1.3

respectively.

2.3.1.1 Approaches that Analyzed KGs based on Queries Alone

The work of Zhao et al. was centered around using a KG approach to understand and

summarize large amounts of clinical data [23]. Zhao et al. used a natural-language processing

pipeline on genetic reports from cancer patients to identify cancer-related terms from

unstructured textual data [23]. Relevant terms, such as those relating to pathways, genes, and

drugs, were identified and their co-occurrence within sentences was used to establish a network
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of relationships among the terms in a graphical format [23]. They proceeded to

demonstrate--both through review by medical professionals and through direct analysis of the

output graph--that the resultant knowledge graph was able to effectively identify gene mutations

patterns in cancer patients, such as that the tumor-suppressor gene TP53 was mutated in 96%

of observed ovarian cancers [23]. The main goal of this system was to enable future re-use of

this data in clinical decisions, which would be significantly faster than manually reviewing all of

the genetic reports; however, the resultant Knowledge-Graph was not intended to be expanded

to cover a larger knowledgebase of the broader cancer or biomedical context [23].

In [24], Hasan et al. created a knowledge graph to contain data from the Louisiana Tumor

Registry, particularly with the aim of overcoming the challenges of integrating heterogeneous

data, linking disparate data sources, and facilitating the execution of complex queries on the

knowledgebase [24]. They demonstrated that several higher-order tasks, such as constructing

queries to identify common treatment sequences or to identify population-level occurrences of

different types of cancer, were feasible using queries on their graph [24]. Since they built the

graph to be easily extensible, they were able to link other datasets, and left the linking of other

major biological datasets such as Bio2RDF as future work [24].

Dalamagas et al. created miRBase, a knowledgebase directed specifically at understanding the

clinical and pathological functions of microRNAs (miRNAs) [39]. Like the work of Zhao et al., the

goals of this KG were very specific and not immediately intended to be generalized across the

wider fields of cancer biology, biomedicine, or molecular biology as a whole [23, 39]. The major

contribution of miRBase was the ability to quickly search for lists of miRNAs based on type and

function [39]. Very notably, miRBase was the only KG system examined that was built from the

ground-up with the intent of having very easy version tracking and with the ability to explicitly

query older or current versions of the KG very simply [39]. This ability in itself is critical to

establishing reproducibility between studies on these knowledgebases, and is one of the most

notable and important features of miRBase [39].

The LTCGA, as described before, was designed to link various datasets about cancer into a

single large Knowledge Graph [13]. BIOOPENER, a tool based on the TCGA and various other

genetics datasets, was a later iteration of this concept build by the same group to create a

queryable interface [7]. In fact, BIOOPENER was developed using the results of a similar study

by Zehra et al. as a part of the same research project which aimed to convert various biological
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datasets to RDF and to expose them with an easily-queryable interface [41]. Much like the work

of Zhao et al., the principal function of both these systems was in relating and querying data in

the LOD format, and all results were presented as query outputs [7]. Among use-cases given

are queries for finding methylated gene promoters in DNA sequences and finding methylation

changes between healthy and cancerous genes [7], as well as identifying patients who would be

most likely responsive to cocktail-based cancer treatment or estimating survivorship of patients

based on their clinical data [13]. However, unlike Zhao et al. and Dalamagas et al. the

knowledge bases constructed in both these works was significantly larger and more general,

containing several major biological knowledge bases (converted to RDF format) as well as

patient and clinical data [23, 39, 7, 13].

Detwiler et al. expanded the concept of query-based exploratory analysis by constructing an

extended query interface in which variable paths could be more constructed and used [42].

Their goal was to make querying paths as simple as constructing a regular expression, and they

extended the default SPARQL query language for RDF datasets to form GLEEN, a language

that supports regular-expression-like constructs as part of these queries [42]. This work was

done in the context of the NCI Thesaurus [38], and specifically aimed to allow easy access to

subgraphs of massive ontologies through regular path exploitation [42]. While the group did not

apply this in a clinical context, this work (especially in the light of the query-based applications

aforementioned) has great potential to expand the ability to analyze clinically relevant RDF data

[42].

These approaches were all based heavily upon SPARQL queries or, more generally, KG queries

[7, 13, 23, 24, 39, 42]. As thus, while they were accessible to knowledge engineers and RDF

experts, their usability by non-technical biomedical researchers and clinicians was generally

limited. Moreover, their dependence on manual queries meant that they were most applicable

when researchers could formulate a research question directly in terms of the entities in the

graph in the form SPARQL accepts [48]. This in turn meant that researchers would have

difficulty taking the entire set of data in the graph into account when running individual queries,

requiring multiple queries to get an overall understanding of the data at hand.

2.3.1.2 Approaches that Analyzed KGs based on Higher-order Tools

Many different groups observed that providing a UI, rather than simply a query endpoint, could

greatly boost the usability of their LOD products, which are detailed below [22, 15].
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In [22], Deus et al. created an endpoint through which SPARQL queries could be run on the

TCGA; however, unlike the LTCGA project, they only allowed querying the hierarchy of the

TCGA rather than the data contained within its files [22]. In order to make the endpoint

accessible to researchers not familiar with SPARQL, they created a HTML-form like interface for

constructing queries based on selectable components, essentially guiding the user through

query construction [22]. It should be noted that this system still required the construction of

queries even though it was facilitated; while this made it more accessible, it still was limited by

being a predominantly query-based UI [22]. They made the endpoint public on the Web;

however, as of the time of writing, the backend server supporting the endpoint was unreachable

[22].

In [15], Saleem et al. expanded on the LTCGA project with a large, multi-faceted data

visualization tool to allow exploratory analysis of the data contained in the Knowledge Graph

[15]. They incorporated information from the LTCGA and PubMed articles, created a distributed

data storage and query system, and then built a network exploration visualization tool and a

genomic information browser on top of their knowledgebase [15]. In the network exploitation

tool, they used a force-directed layout to display various tumor types linked to publications

characterizing them [15]. The visualization was created to allow the user to expand on

sub-graphs of interest, and to automatically run SPARQL queries to retrieve basic information

on nodes, such as publication metadata [15]. This system allowed human users to more rapidly

access and process the information, enabling learning to be done at a human level on the data

[15].

The genome browser view they created similarly was designed to take full advantage of

automated queries on the KG backend. Information from the Human Genome Project was

linked to clinical data and known cancer markers [15]. As data from each clinical case was

selected, data would be retrieved from the KG using automated SPARQL queries and displayed

on a coordinate grid to facilitate human analysis [15]. As this, this project managed to overcome

many of the limitations of query-based formats: using graphical layouts, they allowed human

analysis to gain an intuitive understanding of the data as a whole, as well as to explore certain

parts in much greater detail [15].

2.3.1.3 Approaches that used non-Query-based Analysis Methods
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Some research and development in the area of KGs and biomedical LOD focused on

construction of KGs not to run SPARQL queries, but to allow downstream analysis based

directly on the graph format of the data.

McCusker et al. [5] constructed a KG containing information on known melanoma cancer

pathways as well as on the mechanism of action of pharmaceutical drugs intended to treat a

variety of diseases, not only melanoma [5]. They then manually annotated each statement in the

graph with a reliability score reflecting how probable it was that the demonstrated relationship

was true [5]. Once this graph had been constructed, they searched for drugs that affected

known melanoma pathways but that had not been used previously for melanoma and selected

only those that had an overall probability over the cutoff value [5]. By doing so, they were able to

predict known drugs that could be repurposed to treat melanoma [5]. Moreover, they created an

Augmented-Reality-based visualization of the graph structure to facilitate human analysis and

pattern finding in the graph as a whole [5]. A web portal to a demonstration of the project, as

well as to a callable API, were created but as of the time of writing are no longer accessible on

the internet [5].

In [21], Kim et al. created a KG specifically to help prediction of cancer outcomes [21]. The KG

was created on a comprehensive set of “multi-omics” data (such as genomic and proteomic

data) that could effectively characterize the larger context of a cancer cell rather than only one

piece of it [21]. In order to assess the system, they tested it on ovarian cancer data from the

TCGA using a graph-based semi-supervised learning approach to predict cancer outcomes for

patients based on their data and data contained in the graph [21]. Their model yielded an AUC

statistic of 0.7866 [21]. When they integrated data from more sources, such as Gene Ontology,

they were able to increase the model AUC to up to above 0.8 depending on the data integrated

[21].

While Kim et al. did perform machine learning on their KG, the approach did not use KGEs, nor

did it attempt to predict new edges given information already present in the graph [21]. In this

sense, the approach was a more problem-specific method built to answer a particular question

rather than to gain a general understanding of all data contained in the KG; however, it is still

notable for having used machine learning to take into account the entire dataset in its graph

format [21].
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Overall, these systems provided a greater level of automation and used the entire graph as a

whole in its native structure [5, 21]. The generally strong results produced in terms of predicting

drug re-use ability [5] and predicting cancer outcomes [21] indicate that such automated

methods can yield very medically relevant results even in the absence of traditional lab- or

clinical-based experimentation [5, 21].

2.3.2 Automated analysis of KGs via KGEs

In contrast to the large number of groups that attempted to use query-based methods to assist

human analysis of the dataset or that constructed problem-specific KG-based models, relatively

few attempted to use KGEs to gain a comprehensive learned model of all the data contained in

the KG. Notably, Celebi et al. [27] and Mohamed et al. [43] both consider the application of

KGEs in the context of analysis of drug interactions and side-effects, an issue which has very

high complexity and can only be fully understood by considering the full network of biological

pathways and interactions at play.

Celebi et al. analyzed several different KGE algorithms to predict drug-drug interactions for pairs

of drugs with no known interaction data [27]. In particular, they examined the RDF2Vec, TransE,

and TransD algorithms for embedding knowledge graph entities and relationships, and used the

DrugBank, PharmGKB, and KERG datasets as their knowledgebases [27]. Interestingly, their

goal in constructing KGEs was not for link prediction, but to use the embeddings as input

feature vectors to various classification algorithms (Random Forest, Logistic Regression, and

Naive Bayes) [27], a task for which the KGEs were not directly trained [11, 45]. Notwithstanding,

it is expected that a good KGE model will learn latent features of the dataset and gain some

form of intuition-like understanding of the data [11, 45], which means that the embeddings can

be expected to be applicable in other, non-link-prediction tasks. Indeed, Celebi et al. found that

the RDF2Vec algorithm, in combination with a Random Forest Classifier, was most effective at

predicting whether two drugs would have off-target interactions; the AUC of this prediction score

was 0.93, indicating that the model was largely successful in predicting the presence or lack of

interactions [27].

In [43], Mohamed et al. apply KGE models to two use-cases: predicting the targets of

pharmaceutical drugs (modelled as a link prediction task) and predicting side-effects caused by

the co-use of two drugs as a cocktail; in both cases, training and evaluation was based on

link-prediction accuracy [43]. Their KG data sources for these tasks were DrugBank,
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DrugBank_FDA, KEGG, and UNIPROT. Examining a variety of KGE algorithms, they found that

TriModel, ComplEx, and DistMult were the most effective at both predicting drug targets and

predicting side effects of drug cocktails [43]. Moreover, they found that these knowledge-graph

embedding models produced results comparable to, or better than, the current state of the art

predictors for both tasks [43].

Interestingly, Mohamed et al. also suggested several other applications of KGEs: measuring

similarity between different entities in the graph by using distance measures between the

various embedded nodes and allowing clustering algorithms to be run on embedded biological

entities such as proteins that require transformation to vector space to be used as an input

vector to clustering algorithms [43]. They also found that KGEs can be very sensitive to changes

in hyperparameters, especially embedding size dimension, whose optimal value tended to be

proportional to the overall size of the KG being learned [43]. They also noted that finding optimal

hyperparameters is often a very time-consuming task, requiring in most cases a brute-force grid

search of all possible values [43].

These findings are particularly interesting in the context of the work of McCusker et al., who also

focused on predicting drug-use patterns, albeit in the different context of drug repurposing [5].

All three studies yielded very relevant pharmaceutical results, which is especially notable since

none of their research involved any lab or clinical work [5, 27, 43]. However, while the work of

McCusker et al. required very large amounts of manual work to rate various interactions [5], the

works of Celebi et al. and Mohamed et al., being based on more KGEs, were much more

automatable and as a result were more automated [27, 43]. Of particular note is Mohamed et

al.’s reference to the high time cost of running a grid search to determine proper

hyperparameters to new biomedical datasets [43], the exact problem that this research seeks to

address.

2.3.3 Key Take-aways from the Literature

The current literature in KGs and KGEs has established that both human-based KG analysis

and automated learning through KGEs or semi-supervised learning can be very effective in

allowing the discovery of new facts about biological and biomedical systems [5, 7, 13, 15, 21-24,

27, 39-43]. There is a particular divide between those approaches that are designed to augment

human reasoning and understanding, such as query-based interfaces and higher-order

visualization methods [7, 13, 15, 22-24, 39-42], and those that are designed to take advantage
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of automated learning techniques with less analytical or explanatory input from humans [5, 21,

27, 43].

Many of the articles focused on creating exploratory visualizations noted the difficulty for those

not familiar with SPARQL to use SPARQL endpoints to their full extent [15, 22]. These

approaches have the benefit of greatly enhancing human understanding of the data, opening it

up to easy use by clinicians, doctors, and researchers not familiar with KGs. Particularly in the

case of BIOOPENER, in which the visualization efficacy was directly measured, it has been

demonstrated that these approaches can be beneficial to end-use [15]. Unfortunately, there is a

common trend that many of the endpoints and visualizations created by these groups become

unavailable a few years after publication, as happened with [7], [15], [22], and [39].

Overall, the integration of KGs, KGEs, and biomedical research is still growing. However, as

many of these recent projects show, it promises a wealth of benefits both to theoretical

research, clinical practice, and to our understanding of machine learning [7, 13, 15, 27, 43]. The

issue, however, of finding optimal hyperparameters to new KG datasets is noted particularly as

a high cost of such research [43], and thus provides further motivation for this work.

The next two sections will explain in further detail the inner-workings of KGE algorithms (section

2.4), as well as a background in graph structural characteristics and how those have been

shown to interact with graph-based machine learning (section 2.5).

2.4 Knowledge Graph Embeddings: Algorithms and Implementations

2.4.1 Knowledge Graph Embedding Algorithms

There are many different approaches to producing KGEs given a KG, which vary not only on

how they represent data, but on how they use the embeddings to predict new data and on what

extra data, if any, they incorporate [45].

The most basic conceptualization of KGEs is the TransE model [11, 45]. Under the TransE

model, nodes are embedded as vectors, and relationships as vector displacements between

those nodes. If si is the embedding of a subject node, pi the embedding of a relationship, and oi

the embedding of an object node, then TransE attempts to enforce the objective function:

[11, 45]. In essence, this gives a very intuitive definition of embeddings: the subject𝑠
𝑖
+ 𝑟

𝑖
= 𝑜

𝑖
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(entity) plus the predicate (how the subject relates to the predicate) should be close or equal to

the object [11, 45].

While this model is very simple and intuitive, it fails to account for the full complexity that can be

observed in many knowledge graphs, particularly in that it fails when relationships may be

1-to-many, many-to-many, or many-to-1 [45]. For example, suppose TransE learns the following

triples which have a many-to-1 relationship:

Subject Predicate Object

P53 is-a Protein

RNA Polymerase is-a Protein

RAS is-a Protein

It will model P53, RNA Polymerase, and RAS in a similar region of vector space so that the

embedding of the “is-a” relationship maps them all to the single node for the embedding of

“protein.” However, these entities are nothing like each other: P53 is well-known to be a tumor

suppressor gene (protecting against cancer), RNA Polymerase a protein involved in the

expression of genes (in both cancer and healthy cells), and RAS a known oncogenic protein

(being able to drive cancer cell growth when over-activated). As thus, TransE in this case would

be learning a representation of these entities that work only in the context of understanding that

they are proteins, but that will reduce the model's performance when the functions of the

proteins must be considered.

Most other common KGE models are attempts to evolve TransE into a form that retains its

simplicity (as much as is possible) while allowing for them to model complex and high-cardinality

relationships that TransE cannot perfectly describe [45]. TransH expands TransE by modelling

the subjects and objects differently for each relationship [45]. It does this by projecting them

onto a hyperplane in which the relationship lives, and then attempting to co-localize si + ti a and

oi on that hyperplane [45]. Since head and tail embeddings are dependent on the relationship,

this overcomes the cardinality issue faced by TransE [45]. TransR follows a very similar concept

as TransH, except that it uses matrix multiplication to project head and tail embeddings into a

vector space specific to each relationship, rather than a hyperplane specific to each relationship

[45]. However, TransR must train many more parameters due to the use of a whole matrix
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multiply, and so modifications to TransR, such as TransD and TranSparse, typically attempt to

reduce the space and time complexity of the algorithm [45].

Other variations of TransE attempt to allow matching subjects and predicates to their associated

objects in embedding space without requiring that hold in any space (original,𝑠
𝑖
+ 𝑟

𝑖
= 𝑜

𝑖

projected, or otherwise) [45]. For example, TransM introduces a relation-specific weight θi that is

used to weight how close to the object embedding the value of si + ri must be, with lower values

meaning it may lie farther away [45]. TransF only enforces that si + ri be in the same direction as

oi, regardless of location in space. Many other algorithms exist along this line, all of which

attempt to allow inexact colocalization in space such that the cardinality of relationships does

not affect the model negatively [45].

An entirely different set of models, called “Semantic Matching Models”, use similarities and

dissimilarities rather than distances to match subject-predicate combinations with object

embeddings [45]. These dissimilarities need not be measures of distance in space, so long as

they are generally lower for embeddings that are more similar and higher for those that are

more different. Among the algorithms in this class are RESCAL, which represents relationships

with matrices and entities with vectors [45]. In the case of RESCAL, pairwise multiplication of all

elements in the matrix with elements in both vectors is used as a dissimilarity measure.

However, due to the use of a matrix, the number of parameters needed for each extra

dimension is quadratic rather than linear [45].

The DistMult model attempts to correct the high time complexity of RESCAL by using only a

diagonal matrix to represent relationships [45]. However, in its base implementation the

multiplication is symmetric, which means that it cannot model asymmetric relationships as

RESCAL (and the Trans model family) can [45]. The ComplEx model was created as a reaction

to this; it uses embeddings in complex space rather than real space [45]. However, since the

objective function extracts the real-values components only after performing transformations on

the embeddings, it results in a non-symmetric function that can operate effectively on

asymmetric relationships [45]. Thus, ComplEx can often model a variety of relationships that

DistMult cannot [45].

Beyond these models, others have proposed to use probabilistic embeddings or neural

networks to attempt to improve embedding quality [11, 45]. However, such algorithms are
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outside of the scope of this research, which focuses on the traditional distance and dissimilarity

models of KGEs.

2.4.2 Knowledge Graph Embedding Algorithm Implementations

Many different implementations of KGEs have been made available as Open-Source software.

However one such project, BioKEEN, was developed specifically to assist with running KGE

models on biological datasets, coming with automated default hyperparameter selection to

make it simple to use for researchers with little background in machine learning [28]. BioKEEN

was later succeeded by PyKEEN, a project developed by the same group that aimed to

generalize BioKEEN and expose the ability to use more advanced configuration options when

running a KGE algorithm [44]. However, both BioKEEN and PyKEEN had a major limitation:

they were limited by the RAM of the host computer, unable to train KGEs on KGs of any greater

size [28, 44]. However, many biological datasets far exceed the RAM capacity of commercial

computers; KGs such as the LTCGA or BIOOPENER contain billions of triples [7, 13], and from

the subsets of LTCGA project that was still accessible online, the it alone contained datafiles

measuring on the order of 13 TB. Running a KGE model on such a dataset--even with

distributed memory management--would be an infeasible task on even some of the best modern

computers. However, even subsets of this data would far exceed the 16 or 32 GB present in

most commercial computers. Even smaller datasets, such as the Bio2RDF version of BioPortal,

measured in excess of 18 GB when in their uncompressed forms.

A separate implementation of KGEs, PyTorch-BigGraph (PBG), was created to address this

problem [8]. Also released as Open-Source software, PBG allows partitioning the graph into

subgraphs, where each partition can be of a size that fits in system memory [8]. Each such

partition is used for training, and then different partitions are swapped until all data has been

used in training, which represents the end of a single epoch [8]. While such an approach clearly

will only approximate the more-optimal model result obtained through non-partitioned training,

Lerer et al. found that these differences were minimal for large datasets [8]. Moreover, PBG

allows training KGEs on KGs of any theoretical size, so long as the entire graph can fit on the

computer’s hard disk [8], at which point processing power limitations would almost certainly be

more relevant than memory limits.

As described later in the methodology in Chapter 3, this research was conducted using PBG

both to allow training on larger datasets such as BioPortal as well as to investigate the
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interactions between partitioning and KGE results in the context of optimal hyperparameter

choices and graph structure.

2.5 Graph Structure Metrics and KGEs

Since KGEs are fundamentally connected to the structure of a graph, such as with how TransE

can be negatively affected by high-cardinality relationships [45], searching for a set of

hyperparameters also attentive to graph structure is a natural direction for research. However, to

date relatively little work has been done in this context.

Ellefi et al. profiled a variety of Knowledge Graphs based on key features such as provenance,

statistical and structural features, licensing, and dynamics [46]. Among the statistical and

structural characteristics they noted as being most relevant were sizes of the different classes of

nodes, class and predicate use per subject, depth of type and predicate hierarchies, URI usage

per entity, and the number of triples containing literals [46]. However, the group did not aim to

connect these features to machine learning or KGE models, but only to note that they were

among the more significant features by which KGs could be classified and understood [46].

Sadeghi et al. observed that some structural quantities, such as centrality, could impact how

well various relational learning systems performed [47]. However, they focused on creating a

relational learning model that represented nodes not only as embeddings, but with knowledge of

their centrality and hop-distance from other reference nodes [47]. In doing so, they were able to

create a neural network model that accounted not only for the immediate context of nodes (such

as the object matching a subject and a predicate) but to allow it to take into account some

features of the overall structure and form of the graph [47]. They concluded that this yielded

much better results than methods that did not take overall graph structure into account, beating

even former state-of-the-art methods [47].

From the work of Sadeghi et al. came two facts that are very relevant to the work at hand; first,

that traditional relational learning via KGEs is very attentive to the local (one-hop) area of nodes,

but unable to detect major patterns outside that region [47]. Second, that centrality as a feature

is critical to understanding and optimizing graph-based learning [47]. In this context, centrality is

a measure of how connected a node is to the rest of the graph; many measures of centrality

exist, including degree of the node [47]. Their observation regarding the relevance of centrality

in particular suggests that finding hyperparameters for graphs based on centrality as a statistic
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for graph structure might result in reliable cross-dataset performance. A similar trend of counting

the number of occurrences of nodes given properties (or vice versa) was also evident in the

profiling system developed by Ellefi et al. [46], suggesting that using degree measure

distributions could be a valuable approach for summarizing graph structure. As mentioned in

methodology, node degree (as a measure of centrality) was the one of the most prominent

structural statistics used in this work to estimate optimal cross-dataset hyperparameters.

2.6 Key Gap in the State-of-the-Art

The KGE models that have been applied have focused on producing a set of embeddings either

for use as feature-vector inputs to a different machine learning application [27, 43] or directly for

novel link prediction within the learned dataset [43]. While both of these approaches are very

valuable, both run into the inevitable issue of finding the correct hyperparameters, which often

required a brute-force search [43]. These methods also tend to be focused on specific

applications [22, 43], although making more general link predictions using the KGEs produced is

also possible [11, 45]. KGE-based methods, however, have a greater up-front barrier to entry

than human-based visualization tools do, since finding ideal hyperparameters and training the

model can both be very time-consuming processes [43].

The current literature on KGs and KGEs overall shows a field that is still maturing, but one that

also has much potential for biomedical application even now. The recent trend towards both

more advanced visualization, as in the transition from the LTCGA to BIOOPENER [7, 13, 15], as

well as interest in automated KGE models [27, 43] are producing results that commonly match

or exceed other modern approaches in data visualization and prediction [7, 43].

In the case of this dissertation, focus was given specifically at the automated KGE approach to

modelling data, particularly with an eye to how to reduce the up-front barrier to entry posed by

hyperparameter selection. By identifying the extent to which common hyperparameters can be

applied to similarly structured KGs, and by understanding what elements of structure are most

relevant to hyperparameters choice and ultimate model performance, it creates a framework

that could allow automated learning of Knowledge Graphs to be performed more quickly and

with less need for machine learning expertise.

While various articles have established that KGEs are very sensitive to good hyperparameter

choice [43], characterized the most important meta-elements of graphs such as structure and
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provenance [46], and noted the effect of graph structure on embeddings [47], no previous

attempt has been found to identify a common set of optimal or near-optimal hyperparameters for

KGE models that could be applied across datasets. Furthermore, no attempts have been made

to relate these hyperparameters to KG structural features for use in model design, model

choice, or final performance prediction tasks. Determining whether such a set of

hyperparameters exist, and what they would be if so, would thus be a contribution both to the

field of knowledge-graph machine learning and to the field of bioinformatics. Moreover, relating

these hyperparameters to structure would expand the field's understanding of knowledge

representation systems and why hyperparameters' optimal values vary as they do. As thus, this

research has been aligned with the end goal of answering the question of to what extent

hyperparameters can work optimally or near-optimally across biomedical datasets, and what

structural characteristics can explain this effect.
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3 Methodology
3.1 Outline of the Methodology

Section 3.2 provides an outline of data sources and KGs selected for use in this work, with a

detailed analysis of how and why they were chosen.  Section 3.3 continues to explain how the

data was obtained from online repositories. and preprocessed. Section 3.4 discusses the choice

of KGE algorithm implementations and the specific metrics considered when evaluating the

available options. Section 3.5 describes the methods used to select hyperparameters to the

chosen datasets, and contains sub-sections outlining the two major hyperparameter searches

conducted based on optimizing the AUC or r1 statistics respectively. Section 3.6 concludes the

methodology with an explanation of how structural analysis of the KGs was carried out.

Please note, all code used to collect data, preprocess it, perform analysis, and identify structural

patterns is made available in a zip file submitted with the dissertation, as well as on GitHub at

the following link: https://github.com/Jeffrey-Sardina/cod-trachtais.

3.2 Selection of LOD Data Sources

3.2.1 Selection of a Biological LOD Mashup

Selection of data sources occurred in two steps: selection of a multi-dataset LOD mashup, and

selecting datasets from within that mashup. Selection of data from a single mashup rather than

from solitary KGs was done for four reasons: simplicity, ease of reproducibility, relevance, and

consistency.

Simplicity and ease of reproducibility for LOD-based projects go hand in hand. Mashup systems

such as the LTCGA and Bio2RDF are intended to be used in many different contexts and by

different applications [1, 13, 15]. Moreover, they are designed for easy access of their

components by researchers [1, 13, 15]. Both of these attributes make the datasets very

attractive in terms of simplicity: all the data is easy to obtain from a single place. Moreover, ease

of access to the data is a great boost to ease of reproducibility, since other groups who wish to

reproduce the results of this work need only reference data from a single location rather than

many. Since there is an unfortunately common trend for biological LOD endpoints and data

availability to fall offline, as noted in the literature review, a single point of access to a reliable

data source reduces the chance that some of the relevant datasets later become inaccessible.
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In addition, these larger data mashups tend to have much higher overall relevance. Bio2RDF,

for example, was constructed from the most commonly used biological datasets [1], and now

contains a total of 35 datasets [12]. Similarly, the LTCGA was built upon the TCGA [13] and

PubMed [15], which are among the most commonly used and critical resources in cancer

bioinformatics. This makes these projects highly relevant, since they contain the most

in-demand modern biological data. Other projects, such as miRBase [39] and the NCI

Thesaurus [38], while very useful for their given domains, are not as broadly applicable and thus

have a lower relevance to the biomedical LOD community as a whole.

Finally, consistency between datasets was a critical factor for selection. Since mashups are

intended to link all the data contained within them [1, 7, 13, 15], all their graphs are naturally

linked together and need little to no modification to be used with each other if required.

However, projects such as miRBase [39] would have to be computationally linked to other,

newer datasets, which increases the time needed to get the full data system operational. The

fact that Bio2RDF and the LTCGA had already established links and namespaces means that

data consistency comes built-in, rather than being another pre-processing step [1, 13].

As mentioned in the literature review, the largest and most relevant biomedical dataset mashups

in this domain are LTCGA [13, 15],  BIOOPENER [7], and Bio2RDF [1]. The original intent of

this research had been to apply this work specifically in a cancer biomedical context, which

naturally suggested the LTCGA and BIOOPENER projects. However, the afore-mentioned

inaccessibility of data from the LTCGA and from BIOOPENER left only a single feasible choice

for a biological LOD mashup: Bio2RDF. As such, all data sources were taken from the Bio2RDF

project.

3.2.2 Selection of datasets from Bio2RDF

Selection of datasets from within Bio2RDF was based upon two key principles: relevance to

cancer and biomedical research and size of the whole dataset.

In terms of the first criterion, datasets from Bio2RDF that were immediately relevant to cancer

and biomedical research were selected. These domains, of course, are very broad and can

encompass a variety of types and sources of data. Specifically, in order to select the datasets

most relevant to these categories, datasets containing information on drugs, molecular biology,

clinical data, and genetics were selected as the most highly relevant. Datasets containing data
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exclusively from non-human animals were excluded. This left a list of 15 potential datasets. The

sizes of all raw data, after being downloaded and uncompressed as described in Section 3.3,

were measured and linked to each dataset. This information, as well as the purpose of each

dataset as described in [12], are detailed in Table 3.1.

Dataset Contents Uncompressed
RDF Size

BioPortal A variety of biomedical ontologies
useful in bioinformatics and
biomedical research [12]

18.3 GB

Clinical Trials Results of human-based clinical
studies from public and private
sources [12]

46.2 GB

Comparative
Toxicogenomics
Database (ctd)

Information on chemical-gene and
chemical-drug interactions from
multiple species [12]

97.5 GB

Database of single
nucleotide
polymorphism
(DBSNP)

Information on common single
nucleotide polymorphisms and other
important short DNA mutations [12]

2.9 GB

DrugBank Data on drugs and their targets [12] 1.6 GB

Gene Ontology
Annotation (GOA)

Ontologies of genes sourced from
the UniProt Knowledgebase and the
International Protein Index [12]

17.1 GB

HUGO Gene
Nomenclature
Committee (HGNC)

Nomenclature and ontology of
human genes [12]

844.8 MB

Interaction
Reference Index
(iRefIndex)

Protein interactions sourced from
over 10 different protein interaction
databases [12]

67.9 GB

Kyoto Encyclopedia
of Genes and
Genomes (KEGG)

A large genetic, biosystems, and
chemical knowledgebase integrating
information from a 16 different
databases [12]

18.1 GB

The Life Science
Resource Registry
(LSR)

Common biological datasets and
vocabularies [12]

12.1 MB
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NCBI Gene A broad range of genetic information
from multiple species [12]

68.2 GB

Online Mendelian
Inheritance in Man
(OMIM)

Information on human genetics,
including links between genotypes
and phenotypes [12]

2.2 GB

Orphanet Information on rare diseases and
less-commonly used drugs [12]

29.0 KB

Pharmacogenomics
Knowledge Base
(PharmGKB)

Interaction between gene products,
protein, drugs, genetics, and disease
[12]

1.5 GB

PubMed Metadata and some textual data
from PubMed [12]

415.7 GB

Table 3.1. A listing of biomedically relevant databases contained within Bio2RDF. Datasets were

selected based on containing pharmaceutical, molecular, clinical, or genetic information.

Datasets containing data exclusive from non-human animals were excluded.

Once this list of suitable datasets was obtained, a subset of datasets to be used in analysis was

selected based on the size of the dataset. This restriction was introduced for purely practical

reasons: larger datasets take significantly longer to preprocess and train even with low epochs,

and even on a memory-efficient system such as PyTorch-BigGraph processing power remained

a significant barrier to dataset use.

In order to strike a balance between including enough datasets in the pool for analysis and

minimizing the overall computational time and power spent, any datasets in excess of 20GB

were removed from consideration. Moreover, datasets measuring under 1 MB were removed for

containing too little information, since the goal of this work is to focus on big data rather than

learning from small KGs. This resulted in a list of 9 datasets; PubMed, Orphanet, NCBI Gene,

iRefIndex, the Comparative Toxicogenomics Database, and Clinical Trials having been

removed. The remaining datasets are shown in Table 3.2.

Dataset Contents Uncompressed
RDF Size

BioPortal A variety of biomedical ontologies
useful in bioinformatics and
biomedical research [12]

18.3 GB
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Database of single
nucleotide
polymorphism
(DBSNP)

Information on common single
nucleotide polymorphisms and other
important short DNA mutations [12]

2.9 GB

DrugBank Data on drugs and their targets [12] 1.6 GB

Gene Ontology
Annotation (GOA)

Ontologies of genes sourced from
the UniProt Knowledgebase and the
International Protein Index [12]

17.1 GB

HUGO Gene
Nomenclature
Committee (HGNC)

Nomenclature and ontology of
human genes [12]

844.8 MB

Kyoto Encyclopedia
of Genes and
Genomes (KEGG)

A large genetic, biosystems, and
chemical knowledgebase integrating
information from a 16 different
databases [12]

18.1 GB

The Life Science
Resource Registry
(LSR)

Common biological datasets and
vocabularies [12]

12.1 MB

Online Mendelian
Inheritance in Man
(OMIM)

Information on human genetics,
including links between genotypes
and phenotypes [12]

2.2 GB

Pharmacogenomics
Knowledge Base
(PharmGKB)

Interaction between gene products,
protein, drugs, genetics, and disease
[12]

1.5 GB

Table 3.2. The 9 datasets remaining, as well as their description and size, after removing those

that were in excess of 20 GB or under 1 MB.

These 9 remaining datasets were all used in analysis, either in the original two hyperparameter

searches for optimising AUC or r1, or in a hold-out set used to validate how good these

hyperparameter sets were on different KGs not involved in hyperparameter selection. The

allotment and use of these two sets is described later in Section 3.5.

3.3 Obtaining and Preprocessing the Datasets

3.3.1 Downloading from Bio2RDF

Datasets were all downloaded from the Bio2RDF website. However, link-based access to the

datasets directly resulted in “file not found” errors due to limitations of their web-based file

viewer. In order to avoid this error, a Python script was written to crawl the Bio2RDF website and
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automatically download all the datasets contained therein. All files were downloaded from the

Bio2RDF release 4, which contained all of the selected datasets listed above. The code used to

do this download is contained within the GitHub repository referenced at the start of chapter 3.

Once datasets were downloaded to local folders, they were manually checked for

completeness, and any files that had not fully downloaded were re-downloaded manually from

the Bio2RDF website. The datasets were then manually uncompressed from their archived

form, and stored in a permanent location on a local hard drive.

3.3.2 Structure of the downloaded data

It is important to note that each downloaded dataset was represented as a set of files, rather

than just a single file. For example, the RDF data or BioPortal was contained in a total of 365

individual files rather than a single one. All of this data was stored in the N-Quads RDF format,

which represents data as 4-element quads rather than 3-element triples. The first three

elements of a quad are the subject, predicate, and object. A fourth element is introduced to

represent to which subgraph a specific datapoint belongs, thus allowing different statements to

be optionally localised into different graphs rather than the same one.

3.3.3 Pre-processing the datasets

The uncompressed datasets were not immediately usable; both the aforementioned KGE

technologies PyTorch-BigGraph and PyKEEN require input to be in a tab-delimited

subject-predicate-object format [8, 44] while the downloaded data was stored in the N-Quads

RDF format as mentioned above, including subgraph membership data that cannot be fully

expressed in a triples-only format. As a result, converting into a triples-based format by

removing the fourth element in the quad results in some degree of data loss.

However, the lost data is not of biological relevance; all biomedically relevant data is contained

within the subject, predicate, and object rather than within the fourth element of the quad.

Moreover, inspection of the datasets revealed that the different subgraphs were used on

different files, but that within each file all triples belong to the same subgraph. As a result of

these two observations, an n-Quads to tab-delimited triples conversion based upon removing

the fourth element in each quad was deemed feasible and valid.
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However, this conversion process was made difficult by a variety of inconsistencies in the base

dataset. Some RDF subjects contained literal string quotes within them, which itself is not

standard RDF syntax [10]. Moreover, the “<” character, typically used to denote the beginning of

a new element of the quads in the n-Quads format, could be found within those strings. Finally,

some of the strings were opened with open-quotes, but never closed, which made the process

of identifying which “<” signs were less-than signs, and which defined the start of a new triple,

much more complex.

In order to overcome the inconsistencies of this syntax and manage the conversion to a

tab-delimited triples-only format, a custom parser was developed. The parser combined regular

expressions, quoting pattern analysis, and extraction of consistent positional reference tokens to

identify where each element began and ended. It then wrote only the first three elements (the

subject predicate, and object) into a tab-delimited file. All triples were written to a single file,

rather than to different files, for ease of use and analysis later in the pipeline.

This tab-delimited triples file, however, tended to be very large, since all the triples’ data was

written in expanded form of URLs. However, PyTorch-BigGraph’s pre-processor and PyKEEN

training algorithm both have upper-bound memory limits proportional to computer memory, even

though PyTorch-BigGraph is significantly more resilient to large-memory datasets [8, 44]. In the

cases of both PyTorch-BigGraph and PyKEEN, however, the actual textual contents of each

element are irrelevant; it is only the relationships between elements that are needed to produce

embeddings [8, 44].

This property immediately suggests a way to reduce the memory footprint of processing and

preparing the dataset--replacing the large URLs with smaller unique character sequences. To

implement this idea, a custom compression system was developed that replaced each URL or

literal with a much shorter sequence of characters. The most common URLs and literals were

prioritised to have the shortest character representations, and the least common ones were

given the longer leftover representations. In order to allow the compression to run on larger files,

a sharded version was created in which the original file was split into sub-files, which were fed

through the compression pipeline. The results of both systems were identical in terms of final

compression size; however, the second method was more resilient in the face of larger files that

could not fit entirely in system memory.
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This resulted in a very significant reduction of space needed to represent these datasets, which

both facilitated running them with constrained memory and, for several structural analysis tasks,

greatly reducing the running time of algorithms that analysed the contents of these files. Table

3.3 below shows a list of the original (uncompressed n-Quads) dataset size, the size of the

tab-delimited triples file before compression, and its size after compression.

Dataset Size of
uncompressed
n-Quads files

Size of uncompressed
tab-delimited triples
file

Size of compressed
tab-delimited triples
file

BioPortal 18.3 GB 12.8 GB 907.6 MB

DBSNP 2.9 GB 2.1 GB 114.7 MB

DrugBank 1.6 GB 1.2 GB 59.3 MB

GOA 17.1 GB 12.0 GB 779.3 MB

HGNC 844.8 MB 584.2 MB 40.3 MB

KEGG 18.1 GB 12.7 GB 918.5 MB

LSR 12.1 MB 8.6 MB 481.8 KB

OMIM 2.2 GB 1.6 GB 102.5 MB

PharmGKB 1.5 GB 1.0 GB 67.2 MB

Table 3.3. The size of the data in n-Quads, tab-delimited triples, and compressed tab-delimited

triples files. While many of the n-Quads files take up close to 20GB of space, all of the final

compressed files are smaller than 1GB.

Since these compressed tab-delimited triples files were structurally identical to the KGs from

which they came, and since all embedding systems considered only take into account these

relative relationships [8, 44], these files were used in all further steps of the KGE pipeline and

analysis.

3.4 Selection of KGE implementation and hyperparameters for study

The selection of which KGE implementation to use (PyKEEN or PyTorch-BigGraph)

fundamentally affects which hyperparameters would be selected for study, since the two

systems support different KGE algorithms and express KGE training workflows slightly
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differently [8, 44]. The KGE implementation to use was first chosen as outlined in Section 3.4.1,

and the set of hyperparameters to study was selected as described in Section 3.4.2.

3.4.1 Selection of KGE implementation

As mentioned in the literature review in Chapter 2, two major open-source KGE

implementations were considered for use in this work: PyKEEN [44] and PyTorch-BigGraph [8].

PyKEEN is an open-source KGE implementation that aims to provide a simple, Python-based

pipeline for running KGEs on default or custom datasets [44]. As of the time of writing, it

contains 31 different KGE models and 3 different negative samplers, as well as a large variety of

other algorithmic options that can be mixed-and-matched with each other to create an

embedding system [49]. However, as noted in the literature review, it was, at the time this

research was conducted, unable to run KGEs on KGs that required more space than was

available in system memory [44]. Unfortunately, early experiments with PyKEEN showed that

even on the compressed datasets, it was unable to process the larger-end datasets such as

BioPortal and GOA on a system with 16 GB RAM. As a result, it was not a feasible choice for

use in this research.

The second alternative considered was PyTorch-BigGraph (PBG) [8]. Like PyKEEN,

PyTorch-BigGraph is based on the idea of modularity: it aims to allow mixing and matching of

various components and parameters that determine what KGE model will be run [44. 8].

However, it does not provide implementations of standard KGEs the way PyKEEN does;

instead, it allows the user to define their own KGE algorithm by choosing an operator (to

transform subject embeddings to object embeddings), a comparator (to define how to measure

closeness of two embeddings) and a loss function (to be used to optimize the model) [8].

However, the authors demonstrated that several of the common KGE algorithms, such as

TransE and CompleX, can be expressed in this format [8].

The most important facet of PBG is that it allows the main graph to be split into partitions. Each

partition is loaded into memory one at a time, and each one represents the fraction of the graph

that can fit in system memory at once [8]. PBG then handles communicating the results of

training on different partitions between partitions and uses this to create an overall KGE model

[8]. The authors showed that, for large KGs, this system approximates the results that would be

obtained using an identical configuration on non-partitioned graphs [8]. However, they did note
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that creating partitions on smaller graphs could have some negative effects on embedding

quality [8].

In the case of this work, many of the datasets considered could only be run under the system

limit of 16 GB with multiple partitions in use. As thus, PBG was employed to allow embedding

and analysing all of these datasets.

3.4.2 Selection of hyperparameters to study

Once PBG was selected as the KGE implementation, the types of models, hyperparameters,

and hyperparameter values to study and optimise were selected. The hyperparameters chosen

were those that applied to the KGE models at hand. In PBG, KGE models all require these

parameters to be defined as a part of the algorithm description. Since testing each value was

preferred to accepting defaults, as those could be arbitrarily poor, all of these hyperparameters

were examined. The hyperparameters chosen are listed in Table 3.4.

Model-related
Hyperparameters

Function

Comparator Defines the distance or dissimilarity metric to be used to determine how
close two embeddings are to each other [29]

Learning rate Defines the learning rate value to be used by the optimizer [29]

Loss function Defines the function that should be optimized by the optimizer to find
optimal embedding values [29]

Operator Defines the transformation used to represent predicates, which is
applied to subjects to map from subjects to predicted objects of that
predicate [29]

regularisation
coefficient

Specifies the coefficient to the regularization (penalty) term added to the
cost function [29]

Batch-related
Hyperparameters

Batch size The number of edges to include in each minibatch for the optimizer [29]

Number of batch
negatives

The number of negatives to sample, under the Local Closed-World
Assumption, with entities sampled proportional to their degree when
constructing negatives [29].

Number of uniform
negatives

The number of negatives to sample, under the Local Closed-World
Assumption, with entities sampled with equal probability regardless of
their degree when constructing negatives [29].
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Epochs and
Dimensions

Embedding
dimension

The dimension into which subject and object embeddings will be placed
[29]. This also affects the size of the operator, but different operators
may scale linearly or quadratically with entity embedding dimension [29].

Number of epochs The number of full passes over the entire dataset to perform during
training [29]

Table 3.4. A list of relevant hyperparameters to KGE models in PBG, as well as a description of

their function in the KGE algorithms.

Once the relevant hyperparameters to examine were identified, a set of values to use for those

hyperparameters was chosen. Choosing these values was guided by four main goals: choosing

as few values as reasonable for each hyperparameter, maximising coverage of the search (for

continuous-valued hyperparameters), choosing the most distinct hyperparameters among the

possible values (for discrete-valued hyperparameters), and simplicity (for discrete-valued

hyperparameters).

This first requirement was implemented since the hyperparameter used search was based off of

a grid search, with some modification as explained later in this section. In a grid search, a ‘grid’

of all combinations of all hyperparameter values are tested, and the combination leading to the

best results is selected. As a result, adding many values to search leads to a combinatorial

explosion in the number of combinations that must be searched; as a result, using as few values

as is reasonable greatly speeds up search time.

The next two goals were used to increase the breadth of different models searched without

increasing the search space. For example, examining two different models equal in all respects,

except that one has a learning rate of 0.01 and the other a learning rate of 0.011, is largely

redundant. Since the two values are so similar, it is unlikely that there would be a significant

difference, especially compared to a choice of parameters that covers a wider range of values

such as 0.1 and 0.01. As thus, values chosen were selected for maximal difference from each

other. In the discrete case, this argument cannot be made numerically. However, as described

below, an understanding of the implementations and algorithmic effects of the discrete-valued

option did reveal that some were more similar to, or different from, others. Thus, the more

different values were selected for testing.
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Finally, for discrete-valued hyperparameters, it was common that many of the choices presented

would be similar, but that one would be of a more simple form that the other more complex.

Herein, simpler forms were generally preferred when a choice between two similar options was

presented, both to make the resultant model more simple to understand, and to ensure

consistent design choices when selecting hyperparameters. The set of values selected for each

hyperparameter is shown below in Table 3.5, which is followed by a more detailed explanation

as to why the given values for each hyperparameter were chosen.

Model-related
Hyperparameters

Values Searched

Comparator translation, diagonal, affine

Learning rate 1e-2, 1e-3, 1e-4

Loss function ranking, softmax

Operator dot product, L2 distance

regularisation
coefficient

1e-1, 1e-3, 1e-5

Batch-related
Hyperparameters

Batch size 500, 1000, 1500, 2000

Number of batch
negatives

10, 50, 100, 250, 500

Number of uniform
negatives

10, 50, 100, 250, 500

Epochs and
Dimensions

Embedding
dimension

50, 100, 200, 400

Number of epochs 50, 100, 200, 400

Table 3.5. The values searched for each hyperparameter that was cross-validated.

Choice of comparator, loss function, and operator were unique since the values they take are

discrete rather than continuous. In the case of the comparator, there were four options: dot
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product, L2 distance, cosine distance, and squared L2 distance [29]. Of these four, dot and L2

distance (not squared) were selected. The reasoning for this was of non-redundancy: both L2

and squared L2 distance are ultimately based upon the same metric: Euclidean distance. Since

having fewer values greatly speeds up the search, the simpler of the two--L2 distance--was

chosen.

The choice of dot product rather than cosine distance was similar; both dot products and cosine

distances can be interpreted as measures of the angles between the two vectors. As noted in

[29], the cosine distance is in fact the dot product divided by the product of the lengths of the

vectors. Thus the simpler form--the dot product--was once again chosen.

In terms of loss functions, there were a total of three choices: ranking, logistic, and softmax [29].

Of these, ranking was chosen because it is based fundamentally on the task at hand. In KGEs,

a ranking loss function is calculated based on the score of a positive (true) triple against all of

the negative (false) triples generated specifically for it [29]. The difference between these is

used as a metric for the goodness of fit of the model [29]. This loss function, however, mirrors

exactly what is done when KGEs are used: when trying to predict new triples, the ideal situation

is that the true result is preferred over all possible false results. Since this loss function bijects

so well to the goal of using KGEs, it was selected to be used in the hyperparameter search.

In order to reduce the total number of values to examine, only one other loss function was

chosen. This was softmax, which is a commonly used loss function within the realm of machine

learning. This choice, however, was somewhat arbitrary and motivated more by lack of

computational power to examine all three than by a belief in any fault in a logistic loss function.

As a final note on loss function: the PBG implementation of the ranking loss function by default

does not penalize the scores of a positive triple that are very close to the negatives, only those

that are relatively far away. The width of this interval is determined by a separate

hyperparameter, which takes a default value of 0.1 but was not included in hyperparameter

search [29]. The reasons for not considering this parameter were twofold: for one, it only applies

when the ranking operator is used [29]. In addition, adding in the values of this hyperparameter

would have greatly increased the time to run the grid search, which was already very

computationally expensive. As thus, the effect of this hyperparameter, and its ideal settings, are

left as a future direction.
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In terms of the operator, there were 5 choices: translation, linear, affine, diagonal, and complex

diagonal [29]. However, since Lerer et al. found that PBG runs sub-optimally with some graphs

on ComplEx [8], the complex diagonal operator (used to implement the ComplEx model) was

not considered. Looking at the remaining four, affine was chosen over linear since it was a more

general form of the same operation: linear is a simple matrix multiply, while affine combines a

matrix multiply with a translation operation [29]. The translation operator was chosen to examine

the TransE model, which is one of the most used KGE models despite its limitations [45]. Finally,

the diagonal operator, which multiplies by a diagonal matrix [29] was chosen as a third option

that was significantly different from the both affine and translation operators.

The other parameters were all continuous or defined on the domain of all positive integers. As

such, they were selected using values that increased roughly 2 or 10 times between each item

in the sequence. This was done to give a wide coverage of possible values while using relatively

fewer values in total. Notably, epochs and dimensions did not exceed 400, since the amount of

time required for computing KGEs at 400 epochs or 400 dimensions made using anything

beyond that infeasible.

3.5 Searching for optimal hyperparameters

This section outlines the methods by which the search for optimal hyperparameters was
conducted. Moreover, the key points of this search are summarized in Figure 3.1.

Figure 3.1. A summary of the hyperparameter searches and their results. Five datasets
(BioPortal, DBSNP, DrugBank, OMIM, and PharmGKB) were examined in two searches. The
first, using AUC to select hyperparameters, failed as was stopped in preference of one
optimizing for higher r1 scores. This resulted in a total of 2 hyperparameter sets, which were
carried forwards for analysis.
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3.5.1 Modified grid search protocol

In order to determine the optimal hyperparameters, a modified version of the grid search was

used. In a traditional grid search, all values of all hyperparameters in question are varied over a

grid, and the best choice from among them is chosen. However, the vast number of KGE

models and hyperparameters listed above made such an approach infeasible. Thus, a set of

default parameter values given by [29] were used to initialize the model. Three grid searches

were then carried out: in the first, model-related hyperparameters were varied. These were,

specifically: comparator, learning rate, loss function, operator, and regularisation coefficient. It

should be noted that, due to the design of PBG, a regularization coefficient hyperparameter is

not given to KGE models using the affine operator [29]. As such, this combination of operator

and regularization coefficient was not allowed when searching for optimal hyper parameter

calculations.

In the second round, hyperparameters relating to batching were varied; these were batch size,

the number of batch negatives to use, and the number of uniformly sampled negatives to use.

Finally, in the third round, the number of epochs and embedding dimensions were varied. A

summary of this modified grid search structure is given below in Table 3.6.

Grid search round Hyperparameters varied

1 (Model-related
hyperparameters)

comparator, learning rate, loss function, operator, regularisation

coefficient

2 (Batch-related
Hyperparameters)

Batch size, number of batch negatives, number of uniform negatives

3 (Epochs and
Dimensions)

Embedding dimension, number of epochs

Table 3.6. A summary of the hyperparameters searched in each of the three search rounds.

In addition, rather than conducting the hyperparameter search on the entire dataset, datasets

were subsetted randomly in order to make the search feasible in the available time. In order to

do this, the decision of how large to make the subsets was critical to ensuring that they could

well represent the data from which they were drawn. As a note, all subsets taken were taken in

a single-pass traversal of the graph in which a triple was randomly chosen with probability equal

to the desired number of triples divided by the total number of triples in the graph. This was

done to reduce the time and memory complexity of the subsetting step, as well as due to the
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fact that at large subsets the variance from the target number of triples would be negligibly low

due to the large sample sizes.

3.5.1.1 Selecting the proper subset size

In order to determine the correct size of the subsets, as well as to verify that these subsets

captured the structural elements of the original graph, two experiments were performed: one

based on timing and output statistics, and one investigating the structure of the subgraphs as

compared to the overall graph. These experiments were done on a subset of the BioPortal

dataset, since carrying them out on all available datasets required significant time in terms of

training, and since the time taken, which was one of the most important factors for choosing a

subset size, is more dependent upon the subset size itself than upon the dataset from which the

data was drawn.

In the first case, a timing experiment was performed. Subsets of the BioPortal dataset were

taken with sizes of 200, 2000, 4000, and 8000 triples. This subset was then used for a sample

round of search iteration 1 to estimate the computation load of the grid search. In each case, the

time taken to perform the search was recorded. The results of this are shown in Figure 3.2.

Figure 3.2. The relationship between subset size (measured by the number of triples included)

and time taken to run the search (in minutes).

The relationship is very clearly linear and has an overall R2 value of 0.9862. However, subsets

of BioPortal sized at 8,000 triples took over 4 hours to train, while those sized at 4,000 triples

took around 3 hours. During this research, the difference of one hour per round was quite

significant--conducting the search, correcting errors, and re-running the search in different
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iterations resulted in a large amplification of time. However, it was critical that the size of the

dataset not be allowed to compromise the quality of the search data.

Thus, the similarity of the AUC and the r1 scores for each hyperparameter combination in the

grid search were recorded to ensure that choosing a smaller subset size (below 8000) would not

result in dramatic loss of performance that could negatively impact the quality of

hyperparameters found in the search. For each size and the one immediately following (i.e., 200

and 2000, 2000 and 4000, etc.) the difference between the AUC and r1 statistics for each of 84

total hyperparameter combinations was taken. This difference was calculated as the Euclidean

distance between the r1 or AUC scores of each respective pair. The results of this are shown in

Table 3.7.

Subset size
pair

Euclidean distance
between r1 scores;
Total | Average

Euclidean distance
between AUC scores;
Total | Average

200 vs 2,000 0.3347 | 0.0040 0.4831 | 0.0058

2,000 vs 4,000 0.2175 | 0.0026 1.5024 | 0.0179

4,000 vs 8,000 0.2724 | 0.0032 1.3731 | 0.0163

Table 3.7. A listing of the Euclidean distances between r1 and AUC scores of different subgraph

sizes. The first number is the total distance, and the second number is the average distance

equal to the total distance divided by the number of observations, 84.

In all cases, the difference between the two elements was minimal, especially in reference to the

average differences expected between two elements from the pairs. However, there is also

much data contained in the graphs not captured in this analysis, such as structural patterns.

However, in order to facilitate running the search, the subset size of 8,000 was not preferred. As

a middle ground, the subset size of 4,000 was selected for further evaluation to help ensure that

it matched the key structural characteristics of the overall graph and did not exclude too many

small trends. Particularly, it was important to ensure that this random subsetting method did not

over-select for sinks and sources by chance of not picking up on triples that connected to each

other within the domain of the subgraph.
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As thus, the ratios of sinks and sources to the total number of entities in the overall BioPortal

graph and the size-4000 subset were collected. The results of this analysis are shown in Table

3.8.

Size-4000 Subset Full BioPortal Graph

Ratio of sinks to triples 0.3844 0.6032

Ratio of sources to triples 0.5180 0.1942

Ratio that were neither sinks
nor sources to triples

0.0976 0.2026

Table 3.8. The ratios of sinks, sources, and repeated entities to the total number of entities in

the 4000-triple subset and in the full BioPortal graph.

From this data, it is clear that there is a difference between the subsetted data and the original

data. In particular, the number of sources is overestimated, likely due to an under-estimation of

the number of repeated (neither source nor sink elements. However, the fact that many

repeated elements were still captured indicates that some of the original graph structure is

capable of being replicated in the subsetted graph. Moreover, while running on the full dataset

would clearly be preferred, the processing power needed to run such a hyperparameter search

far exceeded that which was available for datasets over several MB. As such, a middle line was

drawn by using the 4000-triples subset, balancing time taken with the ability to faithfully

represent the full graph. It is likely that this sub-optimal choice resulted in the

lower-performances of some of the models and sub-optimality of the resultant hyperparameters,

as noted in Chapter 6. However, it is important to note that, even in the absence of a perfect

hyperparameter search, patterns of overall graph structure versus KGE performance under

various hyperparameters are still indicative of the effects of KG structure on KGE models; the

only difference is that the hyperparameters found here cannot be claimed to be entirely optimal.

3.5.1.2 Running the modified grid search

When run, the modified grid search was run using two partitions. This was done because PBG

and KGEs generally behave somewhat differently when partitioned [29], and since in the case of

almost all the KGs examined herein, it was necessary to use at least 2 partitions to run KGE

models on them. 15% of the data was placed in a held-out evaluation dataset that was not used

during training, and AUC and r1 estimations were performed from this held-out set rather than

on the training set.
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This grid search was performed twice: once to optimise the model’s performance as estimated

by the AUC statistic, and once to estimate its performance as measured by the r1 statistic. As

mentioned in the introduction, the AUC statistic represents the probability that a positive triple

will be preferred over any negative, not only the negatives created for it; r1 is a measure of the

probability that a triple will be preferred over all triples created specifically for it under the Local

Closed-World Assumption [29].

In the searches for both AUC and r1, when multiple hyperparameter values worked similarly

well, preference was given to those that were more generally applicable across the datasets in

question. This was done to produce one, or very few, hyperparameter sets that could apply

optimally to multiple datasets in question. The process by which this was done is explained in

detail in the two following chapters that detail the steps of the AUC and r1 based searches

respectively.

In both rounds, hyperparameters were selected in three rounds since varying all of the

hyperparameters at once led to a combinatorial explosion and excessive time cost. This had two

main effects: some hyperparameters had to be varied and selected before others, and yet

unselected hyperparameters had to be given arbitrary starting values. In response to this,

hyperparameters were selected in order of how impactful they were to the KGE’s knowledge

representation ability as a whole, with the most impactful features coming first. As such, the

hyperparameters regarding the embedding operation, comparison calculation between

embeddings, and the learning (loss) function were varied first since they are the defining

elements of how KGE’s model and learns from data [45]. The regularisation coefficient and

learning rate were also included in this round since they fundamentally affect how the algorithm

and loss function interact with the data.

The second round focused on batching and negative sampling, as these are representative of

how the model learns to distinguish truth from falsehood using its knowledge model [45]. This

left the number of epochs and the embedding dimension to be determined last, in the third

round.

Moreover, to address the need to have values for the hyperparameters not yet validated,  it was

necessary to initialize the hyperparameters that had not been validated yet to starting values.

60



This was done arbitrarily based on a default example set given in PBG [51], as shown below in

Table 3.9.

Batch-related
Hyperparameters
(validated in round 2)

Arbitrary
Initial Value

Batch size 1000

Number of batch
negatives

50

Number of uniform
negatives

50

Epochs and Dimensions
(validated in round 3)

Embedding dimension 100

Number of epochs 100

Table 3.9. The initial values taken by hyperparameters. Note that the hyperparameters validated

in rounds 2 and 3 were taken as the defaults in round 1, and that only those validated in round 3

were used as the defaults in round 2. In round three, all hyperparameters had either been

selected, or were being varied, and thus none had arbitrary values anymore.

Following the searches, their results, both in terms of the hyperparameter sets produced as well

as the performance of the output models, were finally analysed. The conclusions of this analysis

are given in Chapter 6.

3.5.2 The AUC-based search

The AUC-based search was run using a round of the modified grid search to directly predict the

best hyperparameters for the next round. Default values were taken and used exactly as in the

AUC-based search, as described in Table 3.9. This was then repeated two more times to gain a

total sample size of 3 to relate hyperparameter assignments to AUC results.

However, as described in Chapter 4, validating by AUC led to high AUC scores but still very low

r1 scores. As mentioned before, AUC is the probability that a true statement will be preferred

over any false one, whereas r1 the probability that a true statement be preferred over its most

believable negatives. Thus, this effect generally of high AUC and low r1 indicates the model
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lacks specificity and could not well distinguish a true statement and a corrupted true statement

that was made false.

As a result of this observation, the AUC-based search is not expanded upon beyond the first

round, and attention is given to the r1-based search which could produce more robust KGE

models in terms of r1 without excessive loss of AUC-score-based fitness.

3.5.3 The r1-based Search

In the r1-based search, each of the three search rounds these rounds were run three times, and

their results were averaged. These results were used to estimate the best hyperparameters

from the current round, which then were used in the next round. Once again, default values

were taken and used exactly as in the AUC-based search, as described in Table 3.9. By the

end, all hyperparameters had been replaced by their optimised values. The full details and steps

of this search are explained in Chapter 5.

3.6 Structural analysis of KGs and connection to KGEs

Structural analysis of the KGs was performed using three methods. In the first, the numbers of

sinks (i.e., nodes that were always objects), and sources (nodes that were always subjects),

and the number of repeat nodes that were neither sources nor sinks (those that appeared as

both subjects and objects) were calculated. All of these values were collected both in raw form

and normalized to the total number of triples in the graph.

In the second method, the centrality of each node was calculated. Since Sadeghi et al.

established that KGE models typically only can capture graph structural information one degree

out from a given node [47], the nodes’ centrality was calculated simply as their degree. The

distribution of centralities was taken, both unnormalized and normalized to the number of triples

in the graph.

In terms of the KGE models themselves, all datasets considered were run on both of the

hyperparameter sets. When doing so, a baseline of 2 partitions was used, except in the case of

LSR and HGNC which were very small and ran easily on 1 partition. If the baseline number of

partitions resulted in a memory error, then the number of partitions was increased by one until

the model ran without error. The overall pipeline that was followed in this process is summarised

below in Figure 3.3.
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Figure 3.3. An overview of the methods by which analysis was performed. All datasets were run

under both hyper parameter configurations, and their resultant r1 and AUC scores were

recorded. Structural characteristics were calculated, and these results were pooled for

downstream analysis.

The selection of hyperparameters is detailed in Chapters 4 and 5, and a complete

characterization of how the datasets were run under these hyperparameters, as well as the

results, is detailed in Chapter 6, since it depends on hyperparameter search information

covered in the next two chapters.

The result of both of these approaches were tables containing information in the distribution of

these various statistics in the graphs and their corresponding r1 and AUC scores. The best-fit

hyperparameter set for the given dataset, as well as the AUC and r1 scores for that model, were

then connected to the structural information for each dataset. Patterns between these various

characteristics and KGE model performance were then analysed through regression analysis. In

the regression analysis, structural features were used to predict r1 or AUC for each

hyperparameter configuration found in the previous hyperparameter searches. In addition, those

features were used to predict the difference between the effectiveness of both hyperparameter

sets when run on the same KG. The full details of this methodology are dependent both upon

the results of the hyperparameter searches (in Chapters 4 and 5) and the structural features

(presented in Chapter 6); as thus, the methodology by which this analysis was done is included

in greater detail in Chapter 6. Moreover, the results of this analysis, and a discussion thereof,

are given in Chapters 6 and 7.
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4 AUC-Based Search
4.1 Chapter Outline

This section explains the methodology and results of the AUC-based hyperparameter search.

Section 4.2 covers the search for model-related hyperparameters. Section 4.3 conducts an

analysis of the overall predictive power of the KGE model after this round of searches in terms

of both AUC and r1 scores. Since this results in a conclusion that focusing on AUC is a poor

hyperparameter validation decision, Section 4.3 also concludes this section, rather than moving

on to the later rounds of an AUC-based hyperparameter search.

Note again that the term 'hyperparameters' in this section is used broadly to reference both the

parameters to models, as well as model choice decisions such as embedding operators.

4.2 Selecting model-related hyperparameters

In the first round, model-related hyperparameters and model choices were considered. The full

list of considered hyperparameters for this round and the values examined for each of them are

given in Tables 3.4 and 3.5 in Chapter 3.

When running the grid search as described in the methodology, hyperparameters were selected

such that they would most-reliably lead to the highest AUC score for the KGE model. This

search was run in triplicate on the five test datasets: BioPortal, DBSNP, DrugBank, OMIM, and

PharmGKB.

Since a total of 5 hyperparameters were examined, visualizing them all on the same graph was

not feasible. In order to account for this, AUC was plotted against learning rate and the

regularization coefficient for each value of the other parameters.

The averaged results of the three iterations on each of the datasets are displayed below in

Figures 4.1 to 4.6. Please note that darker colors correspond to higher AUCs, which in
turn correspond to better model performance.
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Ranking loss function and Affine operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP

DrugBank

OMIM
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PharmGKB

Figure 4.1. The average effect of hyperparameters on AUC over 3 iterations, when the ranking

loss function and affine operator are used.

Softmax loss function and Affine operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 4.2. The average effect of hyperparameters on AUC over 3 iterations, when the softmax

loss function and affine operator are used.

Ranking loss function and Diagonal operator:

Dataset L2 Comparator Dot Comparator
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PharmGKB

Figure 4.3. The average effect of hyperparameters on AUC over 3 iterations, when the ranking

loss function and diagonal operator are used.

Softmax loss function and Diagonal operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 4.4. The average effect of hyperparameters on AUC over 3 iterations, when the softmax

loss function and diagonal operator are used.
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Ranking loss function and Translation operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP

DrugBank
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PharmGKB

Figure 4.5. The average effect of hyperparameters on AUC over 3 iterations, when the ranking

loss function and translation operator are used.

Softmax loss function and Translation operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 4.6. The average effect of hyperparameters on AUC over 3 iterations, when the softmax

loss function and translation operator are used.

Several trends were noted from the three grid search iterations on these datasets. In most

cases, there are general cross-dataset trends as to which combinations of learning rate and

coefficient work best, although the optimal combination changes based on the operator,

comparator, and loss function in question. When the ranking loss function is used with the affine

operator, the dot comparator with a learning rate of 0.001 is optimal for all datasets. When

softmax is used with the affine operator, the dot comparator still outperforms the L2 comparator

overall and works best with a higher learning rate of 0.01.
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The combination of the diagonal operator with a ranking loss function has a very clear

preference for a learning rate of 0.001 and a regularization coefficient of 0.001, and the

performance of this combination is nearly identical across the five examined datasets. The dot

product comparator once again yields better results than the L2 comparator for this combination.

Changing out the ranking loss function for softmax, but keeping the dot product comparator,

changes this preference. Under those conditions much smaller learning rates and regularization

coefficients of 0.0001 and of 1e-5 respectively are optimal for all five datasets. Interestingly,

however, a learning rate of 0.001 and a regularization coefficient of 0.001 are optimal under

softmax when the L2 comparator is used.

When the dot product comparator and the translation operator are used with either ranking or

softmax as a loss function, a learning rate of 0.01 and a regularization coefficient of 0.1 are

preferred across all datasets. When the L2 comparator is used with translation, the trend is less

general: under ranking loss functions learning rates of 0.01 and regularization coefficients of

1e-5 are optimal, while under softmax the optima are 0.01 and 0.001 respectively. Once again,

in both cases these optima function well across datasets, but it is worth noting that in this case

these parameters sometimes are second-best choices rather than best choices for the given

datasets.

It is worth noting that while many of the differences are decently strong--on the order of a

change in AUC of 0.1--many of them are much smaller. Most of these smaller changes--and

some of the larger ones, even--were well within one standard deviation of each other. Thus,

determining with certainty which of two similarly-valued hyperparameter combinations leads to

better results is not certain.

4.3 Analysis of predictive power

The high AUCs--many of the optimals being near 0.8--found in the previous section are initially

encouraging. However, r1 scores were universally poor, the highest of them BioPortal) just

under 0.24 and most of them under 0.1. Moreover, the highest AUCs never corresponded to the

highest r1 values in any of the datasets, and the correlations between them were weak.

Considering the r1 and AUC scores for all hyperparameter combinations, the correlations of the

two sets were calculated and are shown in Table 4.1.

75



Dataset Correlation between
AUC and r1 scores

Positively
correlated?

BioPortal -0.5335 No

DBSNP 0.8675 Yes

DrugBank 0.8049 Yes

OMIM 0.7405 Yes

PharmGKB 0.8045 Yes

Table 4.1. Correlation values and directionality between the lists of AUC and r1 scores of each

dataset.

As mentioned in the literature review, there is a very important difference between the two

statistics: AUC reflects the ability to distinguish a true fact from any false one, whereas r1

reflects the ability to distinguish a true fact from a similar, more convincing wrong one made by

corrupting the truth. As thus, AUC only measures a more general predictive modelling ability,

whereas r1 reflects a very precise ability to distinguish truth from convincingly constructed false

statements.

While the correlation values indicate a positive relationship between AUC and r1 for DBSNP,

Drugbank, and PharmGKB, this relationship was not consistent across all datasets. For

bioportal, they were anti-correlated, with higher AUC being linked to lower r1. The presence of

this anticorrelation between the two statistics indicates that maximizing AUC does not

necessarily maximize r1 in all these cases, nor vice versa.

For this reason, it was decided that focusing on AUC rather than r1 would lead to in general

poorer KGE models, since only a more general form of knowledge representation was being

selected for, rather than a specific ability to discern the difference between similar statements

with different truth values. As thus, the AUC-based search was deprecated in favor of a search

based on the r1 statistic, which is detailed in Chapter 5.
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5 r1-Based Search
5.1 Chapter Outline

This section contains 3 main parts, one for each iteration of the search. Section 5.2 covers the

search for model-related hyperparameters, Section 5.3 the search for batch-related

Hyperparameters, and Section 5.4 the search for proper number of epochs and the embedding

dimension. Section 5.5 ends with a discussion of the obtained hyperparameters in the context of

the search methodology. Table 5.1, in Section 5.5, provides an overview of the hyperparameters

chosen at each iteration and as thus is useful to refer to in sections 5.2 through 5.4.

Note again that the term 'hyperparameters' in this section is used broadly to reference both the

parameters to models, as well as model choice decisions such as embedding operators. Also,

please note that darker colors correspond to higher AUCs, which in turn correspond to
better model performance.

5.2 Round 1: Model-related hyperparameters

In the first round, model-related hyperparameters and model choices were considered. The full

list of considered hyperparameters for this round and the values examined for each of them, are

given in Tables 3.4 and 3.5 in Chapter 3.

When running the grid search as described in the methodology, hyperparameters were selected

such that they would most-reliably lead to the highest r1 score for the KGE model. This search

was run in triplicate on the five test datasets: BioPortal, DBSNP, DrugBank, OMIM, and

PharmGKB.

Since a total of 5 hyperparameters were examined, visualizing them all on the same graph was

not feasible. In order to account for this, r1 was plotted against learning rate and the

regularization coefficient for each value of the other parameters.

The averaged results of the three iterations on each of the datasets are displayed below in

Figures 5.1 to 5.6. Please note that darker colors correspond to higher r1s, which in turn

correspond to higher performance.

Even more so than in Chapter 4, it is worth noting that the differences here, being averages over

three rounds, had relatively high standard deviations. Most of the differences observed--save
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those between the best and the worst combinations for any given dataset--were contained

within one standard deviation of each other and as thus cannot be considered significant. While

those with high values are tentatively taken as better, this is not certain.

Ranking loss function and Affine operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP

DrugBank
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OMIM

PharmGKB

Figure 5.1. The average effect of the hyperparameters on r1 over 3 iterations, when the ranking

loss function and affine operator are used.

Softmax loss function and Affine operator:

Dataset L2 Comparator Dot Comparator

BioPortal
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DBSNP

DrugBank

OMIM

PharmGKB

Figure 5.2. The average effect of the hyperparameters on r1 over 3 iterations, when the softmax

loss function and affine operator are used.
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Ranking loss function and Diagonal operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP

DrugBank

OMIM
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PharmGKB

Figure 5.3. The average effect of the hyperparameters on r1 over 3 iterations, when the ranking

loss function and diagonal operator are used.

Softmax loss function and Diagonal operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 5.4. The average effect of the hyperparameters on r1 over 3 iterations, when the softmax

loss function and diagonal operator are used.
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Ranking loss function and Translation operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP

DrugBank

OMIM
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PharmGKB

Figure 5.5. The average effect of the hyperparameters on r1 over 3 iterations, when the ranking

loss function and translation operator are used.

Softmax loss function and Translation operator:

Dataset L2 Comparator Dot Comparator

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 5.6. The average effect of the hyperparameters on r1 over 3 iterations, when the softmax

loss function and translation operator are used.

Several trends were noted from the three grid search iterations on these datasets. First,

BioPortal consistently performs better--over a wide range of hyperparameterisations--than any

of DBSNP, DrugBank, OMIM, and PharmGKB. However, for all the datasets the translation

operation was most enriched for relatively high r1 scores. Within the translation r1 scores,

consistent patterns in hyperparameter combinations were seen across DBSNP, DrugBank,

OMIM, and PharmGKB; however, BioPortal was an exception to these trends under both loss

functions and under both comparators.
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Quite notable, under softmax, the combination of a learning rate of 0.0001 (1e-4) and a

regularization coefficient of 0.001 (1e-3) was the best or second best for all four of those

datasets, BioPortal excluded. The softmax operator outperformed ranking in general for

translation, and for these four datasets L2 distance was similarly preferred over dot product as a

comparator. As thus, these hyperparameters were chosen to be used by those four datasets.

As to BioPortal, a different configuration was clearly needed as the above-mentioned

assignments of hyperparameters were suboptimal, resulting in r1 scores that were among the

lowest rather than the highest. While many different configurations led to relatively high r1

scores for bioportal, the ranking loss function with a translation operator, L2 as a comparator, a

learning rate of 0.01, and a regularization coefficient of 0.1 was particularly good, yielding an

average r1 of 0.23. Moreover, the standard deviation of that point was only 0.0067, reflecting a

very high confidence in the given r1 score under those hyperparameters. Unfortunately, there

were no other datasets that worked with those same hyperparameters, so it was not possible to

estimate whether that assignment would be generalizable given the five testing datasets that

were in use. In any case, these hyperparameters were selected for bioportal.

Thus, the output of this round was not one set of hyperparameters, but two: one for bioportal,

and one for the other four datasets DBSNP, DrugBank, OMIM, and PharmGKB. In the next two

rounds, BioPortal was thus evaluated independently of the other datasets, its configuration no

longer being comparable to theirs.

5.3 Round 2: Batch-related hyperparameters

In the second round, batch-related hyperparameters and model choices were considered. The

full list of considered hyperparameters for this round and the values examined for each of them,

are given in Tables 3.4 and 3.5 in Chapter 3.

When running the grid search as described in the methodology, hyperparameters were selected

such that they would most-reliably lead to the highest r1 score for the KGE model. This search

was run in triplicate on the five test datasets: BioPortal, DBSNP, DrugBank, OMIM, and

PharmGKB.

Since a total of 3 hyperparameters were examined, visualizing them and the corresponding r1

scores on the same graph was not feasible. In order to account for this, r1 was plotted against
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the number of batch negatives and the number of uniform negatives for each value of the batch

size. The averaged results of the three iterations on each of the datasets are displayed below in

Figures 5.7 to 5.10. Note that, although BioPortal is displayed with the other datasets, it was run

on a different hyperparameter configuration (as explained in Section 5.2) and thus cannot be

compared with the four other datasets.

Batch size: 500

Dataset Graph

BioPortal

DBSNP

DrugBank
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OMIM

PharmGKB

Figure 5.7. The average effect of the hyperparameters on r1 over 3 iterations, when the batch

size is 500. Note that for bioportal the loss function used was ranking, while the other datasets

used softmax.

Batch size: 1000

Dataset Graph

BioPortal
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DBSNP

DrugBank

OMIM

PharmGKB

Figure 5.8. The average effect of the hyperparameters on r1 over 3 iterations, when the batch

size is 1000. Note that for bioportal the loss function used was ranking, while the other datasets

used softmax.
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Batch size: 1500

Dataset Graph

BioPortal

DBSNP

DrugBank

OMIM
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PharmGKB

Figure 5.9. The average effect of the hyperparameters on r1 over 3 iterations, when the batch

size is 1500. Note that for bioportal the loss function used was ranking, while the other datasets

used softmax.

Batch size: 2000

Dataset Graph

BioPortal

DBSNP
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DrugBank

OMIM

PharmGKB

Figure 5.10. The average effect of the hyperparameters on r1 over 3 iterations, when the batch

size is 2000. Note that for bioportal the loss function used was ranking, while the other datasets

used softmax.

Similar to what was seen in the first round, BioPortal had a much higher r1 values for nearly all

parameterizations that did any of the other four datasets. However, in this case the differences

between different parameterizations were very small, with the heatmap nearly uniform in most

cases. A similar trend was seen among the other four datasets--the heatmaps nearly uniform,

reflecting a lack of strong influence of any of the hyperparameters on the final r1 score.
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In the case of BioPortal, the variation in the r1 scores for different hyperparameter combinations

was sufficiently low that even an arbitrary choice would not have been poor. However, using

1000 as the batch size, 500 batch negatives, and 100 uniform negatives resulted in a relatively

high r1 score of 0.253, and notably had a low standard deviation of 0.029. As thus, this

parameterization was both reliable and high-scoring, and as a result was selected for BioPortal.

For the other four datasets, there was some patterning--as well as relatively high-scoring

hyperparameter combinations under a batch size of 500. In this case, there was a slight

preference towards lower numbers of batch negatives, and middling values for uniform

negatives. In particular, using 100 batch negatives and 250 uniform negatives was optimal or

near-optimal for all of these four datasets. As thus, these hyperparameters were chosen from

the four datasets.

5.4 Round 3: Epochs and embedding dimension

In the third and final round, the embedding dimension and number of epochs to use, as

explained in Tables 3.4 and 3.5 in Chapter 3.

When running the grid search as described in the methodology, hyperparameters were selected

such that they would most-reliably lead to the highest r1 score for the KGE model. This search

was run in triplicate on the five test datasets: BioPortal, DBSNP, DrugBank, OMIM, and

PharmGKB. Note that, although BioPortal is displayed with the other datasets, it was run on a

different hyperparameter configuration (as explained in Sections 5.2 and 5.3) and thus cannot

be compared with the four other datasets.

The averaged results of the three iterations on each of the datasets are displayed below in

Figure 5.11.
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Dataset Graph

BioPortal

DBSNP

DrugBank

OMIM
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PharmGKB

Figure 5.11. The average effect of the number of epochs and embedding dimension on r1 over

3 iterations.

The difference in r1 scores for different dimensions and epochs was relatively low for all

datasets considered, similar to what was seen in the previous round. However, there were some

clear patterns.

For bioportal, when epochs were under 200, there was a clear preference towards higher

dimensions for higher r1 values. However, when the number of epochs was equal to or

exceeded 200, lower embedding dimensions were preferred. The single best r1 score came

from 400 dimensions and 50 epochs, with 200 dimensions and 50 epochs coming in second

place. However, the combination of very high dimensions and low epochs was concerning--that

sort of a parameterization would very easily lead to overfitting, and especially since the grid

search was done on subsetted data it was difficult to be confident that the model was not using

the higher dimensions to memorize data rather than understand it. This is doubly true since

learning true patterns, rather than simply memorizing common mappings, would be expected to

require more epochs to do. As thus, the second-best hyperparameterisation was chosen to

reduce the chance that the model would overfit.

For the other four datasets, low numbers of epochs yielded the lowest scores in almost all

cases, regardless of embedding dimension. However, interestingly, the use of 200 epochs and

100 dimensions was universally either the best or second best for these datasets. As thus,

these two values were selected.
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5.5 Analysis of the hyperparameters

Ultimately, two different sets of hyperparameters were created: one for BioPortal, and one for

DBSNP, DrugBank, OMIM, and PharmGKB. Very notably, in almost all cases the distribution of

r1 scores given different hyperparameter combinations for DBSNP, DrugBank, OMIM, and

PharmGKB matched very closely. This reflects a similarity in these datasets, and a possibility of

finding other datasets that may also be similarly described by the hyperparameters found for

this set.

Since BioPortal was in a set of its own, it is less clear how many other datasets its parameters

could be expected to match. Similarly, since BioPortal was significantly larger than the other four

datasets, it is unclear if the difference in the optimal hyperparameters is an effect of size or of

structure of the datasets. Chapter 6 will continue this discussion with an analysis of graph

structure and how it relates to hyperparameter choices, taking into account as well other

datasets of various sizes to determine whether there is an effect of size or just one of structure.

For reference, a summary of all the selected hyperparameters from both hyperparameter sets is

given below in Table 5.1. Table 5.2, directly following, gives a summary of the final r1 scores

from each hyperparameter validation round described above, as well as those scores obtained

by running the full datasets with their respective hyperparameter sets. Note that, for ease of

reference, the set of parameters that best fits KGEs for BioPortal will be referred to as the

“BioPortal configuration” herein, and the hyperparameter set corresponding to the other

datasets as the “general configuration.”

BioPortal (“BioPortal Configuration”) DBSNP, DrugBank, OMIM, and PharmGKB
(“General Configuration”)

Hyperparameter Value

Model-related
Hyperparameters

Comparator L2

Learning rate 1e-2

Loss function Ranking

Operator Translation

Hyperparameter Value

Model-related
Hyperparameters

Comparator L2

Learning rate 1e-4

Loss function Softmax

Operator Translation
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regularisation
coefficient

1e-1

Batch-related
Hyperparameters

Batch size 1000

Number of batch
negatives

500

Number of uniform
negatives

100

Epochs and
Dimensions

Embedding
dimension

200

Number of epochs 50

regularisation
coefficient

1e-3

Batch-related
Hyperparameters

Batch size 500

Number of batch
negatives

100

Number of uniform
negatives

250

Epochs and
Dimensions

Embedding
dimension

100

Number of epochs 200

Table 5.1. A summary of the hyperparameter sets chosen for both BioPortal (individually) and

for the remaining four datasets (together).

Dataset Round 1 Round 2 Round 3 Full datasets
(post-round 3)

BioPortal 0.2304 0.2525 0.2363 0.3894

DBSNP 0.1020 0.0737 0.0776 0.1306

DrugBank 0.0945 0.0627 0.0647 0.1067

OMIM 0.0684 0.0713 0.0463 0.1209

PharmGKB 0.0742 0.0443 0.0609 0.0757

Table 5.2. The r1 scores obtained in each of the three rounds listed above, as well as those

obtained by running KGE models on the full datasets using the selected hyperparameters. Note

that the values obtained for the three rounds are averages over a sample size of three, while

data for the full datasets is a point-estimate since running the datasets in triplicate was not

feasible within the time limitations of this work.
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6 Results
6.1 Overview of the Results

Section 6.2 presents the base results obtained from the KGE models: number of partitions used

and the r1 and AUC scores of each dataset run under the selected hyperparameter models.

Section 6.3 continues to explain the structural metrics identified for each dataset. Section 6.4

concludes the sections with a synthesis of these two sets of results and proposes a framework

by which variations in model performance and hyperparameter set choice can be understood.

6.2 KGE Model Results

When running the KGE models, different numbers of partitions were required for each. The

number of partitions depended not only upon the size of the raw dataset, but on the

configuration used and on the dataset itself. In fact, several similarly sized datasets such as

BioPortal, GOA, and KEGG needed different numbers of partitions to run, indicating that the raw

size of a dataset alone is not a perfect predictor of KGE model memory consumption. The data

for the number of partitions used on each dataset is shown below in Table 6.1.

Dataset Number of
partitions: BioPortal
configuration

Number of
Partitions: general
configuration

Datasets used in the
hyperparameter
searches

BioPortal 5 5

DBSNP 2 2

DrugBank 2 2

OMIM 2 2

PharmGKB 2 2

Datasets not used in
the searches

GOA 6 4

HGNC 1 1

KEGG 9 5

LSR 1 1
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Table 6.1. The number of partitions used for each dataset under both hyperparameter

configuration options.

The results for the r1 and AUC scores for each dataset with each hyperparameter configuration

are given below. All of these results were obtained after running the KGE model using the

corresponding number of partitions given in Table 6.2.

Dataset r1 AUC

Under BioPortal
Configuration

BioPortal 0.3894 0.8100

DBSNP 0.1907 0.6853

DrugBank 0.2068 0.7115

OMIM 0.1381 0.6634

PharmGKB 0.1312 0.6814

GOA 0.3099 0.7362

HGNC 0.1257 0.6629

KEGG 0.2948 0.7126

LSR 0.1873 0.6716

Under General
Configuration

BioPortal 0.3912 0.8103

DBSNP 0.1306 0.7013

DrugBank 0.1067 0.7190

OMIM 0.1209 0.6428

PharmGKB 0.0757 0.6584

GOA 0.2373 0.7622

HGNC 0.0711 0.6860

KEGG 0.0938 0.7841

LSR 0.14600 0.6976
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Table 6.2. The r1 and AUC scores of each model-configuration pair that was tested.

Within the context of these results alone, there are a few trends worth noting. AUC scores

universally exceed r1 scores, often by two to four times the raw numeric value. As mentioned in

Chapter 4, this is indicative of the models being much better suited to general knowledge than

to specific knowledge. While the models can distinguish a true statement from arbitrary false

statements effectively (as measured by the relatively high AUCs) they cannot nearly as

effectively distinguish a true statement from similar, but false, statements (as measured by r1).

Even in the datasets with the highest AUCs (such as BioPortal and GOA), the AUC score

approximately doubles the observed r1 score.

In Chapter 4, it was noted the AUC and r1 were not consistently correlated. This statement was

revisited in the light of the final results. The r1 and AUCs scores of each model were plotted

against each other for each of the two hyperparameter configurations used, as shown in Figure

6.1.

Figure 6.1. A plot of the r1 and AUC scores of each model tested against each other, for each

of the two hyperparameter configurations. A trendline is given, and it’s R2 value is shown in the

upper-right hand corner.

In the BioPortal configuration plot the trend is clearly linear, and the data points were spread out

roughly evenly along the length of the line. The R2 value of this correlation was 0.8650, meaning

that roughly 86.5% of the variation in either r1 or AUC can be explained by understanding

variation in the other one alone.

The fact that the correlation was positive, as well as its high value, indicate that in the final

model general and specific knowledge (as measured in r1 and AUC) are more strongly
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correlated than was seen in the first round of the hyperparameter search. Overall, this reflects

an increase in the predictive and understanding power of these models: the choice of better

hyperparameters brought these two forms of understanding closer into alignment, reflecting an

increase in the alignment of both generalized and specific knowledge. As thus, while the low r1

scores indicate that the models are far from perfect, the stronger correlation of r1 and AUC

reflect a better ability to use and represent knowledge in the KG though the resultant KGEs.

While exploring the cause of this effect is beyond the scope of this work, this result generally

indicates a capacity to model the data at hand at both the specific and general levels.

Under the general configuration, the results were not as clear. While the overall R2 value was

0.4717, the data points were almost all clustered in a single cluster at low values of r1. Only two

points, at r1 values of 0.2373 and 0.3912 respectively, were significantly distanced from that

cluster. These two data-points came from the KEGG and Bioportal datasets respectively.

Moreover, by removing these points from analysis, the correlation between r1 and AUC became

negative, with an R value of -0.0227 and a corresponding R2 value that approached zero, at

0.0051. Thus, while the overall trend is linear, nearly all of the strength of the detected linearity

comes from only two points pulling the correlation upwards to higher positive values, and a

cluster of other points whose correlation is insignificant.

Overall, this reflects a failing of the general configuration, especially in comparison to the

bioportal configuration. For it, increasing specific knowledge (as reflected by r1) did not

necessarily correspond to an increase in general ability to discern true facts against any false

ones (as reflected by AUC). Moreover, the deviation KEGG and BioPortal points from the trend

visible in the rest of the points suggests that much of the supposed correlation may be an

artefact of their high scores, rather than a reflection of the r1-AUC trend of any model under the

general configuration. Overall, this casts a level of doubt on the fitness of the general

configuration for all datasets.

Even more interestingly, the general configuration yielded its best scores on datasets it had not

been created to accommodate (Bioportal and KEGG). Those datasets it was trained on were

(DBSNP, DrugBank, OMIM, and PharmGKB) were all a part of the uncorrelated cluster at low r1

values. In fact, the BioPortal configuration outperformed the general configuration on all

datasets except one: BioPortal. However, in the case of BioPortal, the observed r1 scores of

0.3894 under the BioPortal configuration and 0.3912 under the general configuration have a
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very small difference, and it is possible that this variation is due to chance. However, due to time

limitations and due to the time expense of running the KGE models, obtaining secondary or

tertiary estimates for the r1 values of BioPortal under both configurations was not feasible, so

the statistical significance of this (and all other) differences could not be assessed beyond the

level of point estimates.

The departure of these results from the expected ones--that the BioPortal configuration would

be optimal for BioPortal by a large margin and the general configuration would be similarly

superior for DBSNP, DrugBank, OMIM, and PharmGKB from which it was created--casts doubt

on the hyperparameter choice. However, it must be noted that these are all point

estimates--most of the models took on the order of 1 to 5 days to run, and as thus running them

multiple times was not feasible in the time available. These are thus point estimates, and the

degree of their variation is unknown.

Supposing the general trend outlined above is indeed generally true, however, this suggests

three possible conclusions. For one, it is likely (as noted in Table 4.5.1.1 in Section 3.8) that the

difference in structure between the subsetted data and the full datasets led to sub-optimal

hyperparameter selection. Second, it is very possible that the iterative method by which

hyperparameters were selected was improper, since it was biased by the initial, arbitrarily

chosen values and thus could have failed to converge on optimal hyperparameters. For the

third, it is possible that BioPortal and KEGG, the only two datasets to have relatively high r1

scores under the general configuration, are significantly structurally different in some manner

from the rest of the datasets, which performed universally poorly under that configuration

despite having varied levels of success under the Bioportal configuration.

In order to address these questions, the structure of all datasets in question was analysed, and

the results of this are detailed in the following Section 6.3.

6.3 Structural Results

Several structural elements of the graphs were considered, as explained in Section 3.6 of the

Methodology. The first and simplest was size, measured in the number of triples, of each

dataset. The data for the size of each dataset is given in Table 6.3.
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The numbers and ratios of sources, sinks, and repeated triples in the graph were also

considered. In this case, the number of unique triples that were only subjects (i.e., sources),

only objects (i.e., sinks) or were used on both sides of different predicates (repeats) were

counted. These values were also considered in proportion to the number of triples in the graph,

and all of these metrics are given in Table 6.4.

Finally, the distribution of the centralities of all nodes in the graph was measured. Since the

range of these distributions was immense, and since the differences in each dataset could be

effectively and comprehensively characterized with relatively few percentiles, the data is given in

tabular form. The 1st quartile (or 25th percentile), 2nd quartile (median or 50th percentile), 3rd

quartile (75th percentile), 90th percentile, maximum, and average centrality values were

calculated for each graph. Moreover, the ratio of the maximum centrality value to the number of

triples in the graph was calculated. These values are displayed in Table 6.5.

Dataset Number of
Triples

Datasets used in
the searches

BioPortal 91058582

DBSNP 12633560

DrugBank 6497964

OMIM 10504995

PharmGKB 7113312

Datasets not
used in the
searches

GOA 86404416

HGNC 4267572

KEGG 89195261

LSR 60701

Table 6.3. The size in triples of each of the datasets considered.
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Dataset Number
of Sinks

Number
of
Sources

Number
of
Repeats

Ratio of
Sinks to
Triples

Ratio of
Sources
to Triples

Ratio of
Repeats
to Triples

Datasets
used in the
searches

BioPortal 13623972 4385915 4577592 0.1496 0.0482 0.0503

DBSNP 2981629 586130 550671 0.2360 0.0464 0.0436

DrugBank 2079154 414454 399251 0.3200 0.0638 0.0614

OMIM 4507308 1121071 1122401 0.4291 0.1067 0.1068

PharmGK
B

2811465 641974 521171 0.3952 0.0902 0.0733

Datasets
not used in
the
searches

GOA 15674396 3073804 3091543 0.1814 0.0356 0.0358

HGNC 1897778 415958 416245 0.4447 0.0975 0.0975

KEGG 27216889 8622153 8504190 0.3051 0.0967 0.0953

LSR 26089 6137 6130 0.4298 0.1011 0.1010

Table 6.4. The count and ratio of sinks, sources, and repeated entries in each dataset. Ratios

given are to the total number of triples in the graph.

Dataset Avg 1st
quartile

2nd
quartile

3rd
quartile

90th
percentile

Max Max to
Triples
Ratio

Datasets
used in the
searches

BioPortal 9.293
9

1 2 6 15 6504014 0.0714

DBSNP 7.080
1

1 1 1 17 697049 0.0552
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DrugBank 5.210
4

1 1 1 12 428085 0.0659

OMIM 3.732
2

1 1 1 7 1185612 0.1129

PharmGKB 4.119
1

1 1 1 8 666924 0.0938

Datasets
not used in
the
searches

GOA 9.216
3

1 1 1 16 6080694 0.0704

HGNC 3.688
8

1 1 1 8 416264 0.0975

KEGG 4.977
4

1 2 2 12 12115498 0.1358

LSR 3.767
2

1 1 2 8 4359 0.0718

Table 6.5. The distribution of centralities among all entities in the graphs. All percentile values

presented are all raw numbers, not normalised to the number of triples in the graph.

Within the scope of the structural results alone, several notable trends present themselves. With

regard to the analysis of sources, sinks, and repeats, in all datasets considered there were

many more sinks than there were either sources or repeats, often by a factor of 10. Moreover,

sources and repeats tended to occur within similar numbers within a given dataset. It is

particularly notable that these graphs contain many literal values, which in RDF can only be

objects, making them sinks. Moreover, all subjects have to be URLs. As thus, this tendency to

have far many more sinks than sources or repeats reflects a greater tendency towards

single-use objects and literals.

Moreover, the proportions of sinks, sources, and repeats were similar across all datasets

considered. The ratio of sinks varied from 0.15 to 0.44, with an average of 0.32. The ratio of

sources and repeats both varied from 0.036 to 0.11 and averaged at 0.076 and 0.074

respectively. This similarity across datasets suggests that the biomedical datasets here are

more similar than they are different, and that they all have a strong skew to having many sinks
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and relatively few items that are either only sources, or that are used on both sides of a

predicate.

Turning to the centrality data, a second major bias of the datasets becomes clear: in all but two

datasets (those being BioPortal and KEGG), the median centrality of entities is 1. In other

words, seven of the nine considered datasets have at least half of their data stored in entities

that appear in a triple only once in the entire KG. At an even higher extreme, six datasets

(excluding BioPortal, KEGG, and LSR) have 1 as their third quartile as well, indicating that at

least 75% of their entity data is contained in entities that only appear once in the entire KG.

Even in the cases of BioPortal, KEGG, and LSR, their median and third quartile centralities are

all very low--below 10 in all cases. Even at the 90th percentile, no graph has an entity with

degree centrality exceeding 20.

Given this, as well as the aforementioned bias towards sinks over either sources or repeats, as

well the trend of these datasets to contain literal strings as data storage mechanisms, it is clear

that all these datasets are very biased towards few-use objects and object literals. Quite notably,

however, are the extreme values of the maximum centralities observed in the graph. All of these

graphs are marked by a tendency to have very few entities that are used on many occasions. In

the case of bioportal, where the maximum centrality is 6504014, that single entity is present in

approximately 7% of all triples in the KG. KEGG, at an even higher extreme, has a single entity

present in approximately 13% of all triples. DBSNP, at the lowest extreme, has its most central

entity present in approximately 5.5% of all triples. Note that this interpretation of the max

centrality to number of triples ratio can only be approximate: while uncommon, it is possible that

an entity could appear twice in the same triple as the subject and object, which would increase

its centrality without increasing the number of triples it is involved in.

This sort of extreme bias towards many low-centrality sinks and few high-centrality nodes is a

hallmark of all these biomedical datasets. This similarity already suggests why similar patterns

of optimal hyper parameter combinations were seen in the r1-based search in Chapter 5, and

also suggests that their datasets in total have more in common than they have apart. Moving

into Section 6.4, this relationship will be investigated in full.
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6.4 Synthesis of Results

6.4.1 Measuring correlation of structure with KGE performance

In order to ascertain how structure of the graph related to the optimal set of hyperparameters,

regression analysis was performed to analyse the power of the structural elements to predict r1

and AUC scores. When doing so, the data for both hyperparameter configurations were run

separately, so that the relationship between structure and KGE performance could be analysed

in the context of the given hyperparameters. This also allows predicting the difference in scores

for a dataset of the same structure under both models, and thus allows estimating the best-fit

hyperparameter configuration using that data. This second direction is the topic of Section 6.4.2.

The structural features selected to measure the effect of the high prevalence of sinks versus

sources and repeats were the ratios of sinks and repeats to triples. The ratio of sources to

triples was not included, since in all cases it was nearly identical to the ratio of repeats to triples

and thus was redundant. Moreover, adding in more features on datasets with few data points

can lead to machine learning models overfitting by memorizing data rather than learning general

trends, which would make interpretation of the results less clear.

The ratio of the maximum centrality to the number of triples, as well as median, 3rd quartile, and

90th percentile centralities were used to represent the effects of centrality. Notably, the first

quartile was not included since it was identical in all datasets.

These features were used to predict the r1 and AUC scores of all models in two rounds. In the

first round, they were kept separate from each other and used to predict both AUC and r1

scores given both hyperparameter configurations. This resulted in a total of 8 models, whose

results are given in Section 6.4.1.1. In the second round the most important features from the

first round were pooled, resulting in a smaller set of models whose results are given in Section

6.4.1.2.

All data values were normalised prior to running the regression models, and all regression

models were run with 5-fold cross-validation using an L1 (or “Lasso”) penalty. The Lasso

regression penalty was chosen since it tends to drive the values of parameters that are not

needed in the regression decision to zero, thus providing an easy tool for the detection of which

structural elements are important and which are of no use for gaining predictive power. Since all

input values were normalized, the parameter values themselves can be used as an estimate of
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their importance to the regression decision within the context of a single model: those with

higher values represent structural features that have a created correlation to the final r1 or AUC

score obtained by the KGE model. It must be noted, however, that care must still be taken in

this interpretation of the parameter values, especially since interaction terms were not

considered and thus some effects of the variance of each parameter on the model may not be

fully contained in the given data.

For each case, the overall predictive value of the model was assessed using its R2 score, and

the relative importance of each of the structural features by the absolute value of the coefficients

assigned to them.

6.4.1.1 Predictive Analysis Round 1

The cross-validation plots and selected hyperparameters to the regression models are given in

Appendix I. The R2 results thereof are included here in Table 6.6, and the parameters to each

feature in the model are given in Tables 6.7 and 6.8. Note that since the input values were

normalised, within the context of any one model these parameter values can be compared using

their relative value as a metric for importance in the prediction.

Data used BioPortal Configuration General Configuration

Sink-repeat
ratios

Predicting AUC:
0.7735
Predicting r1:
0.9076

Predicting AUC:
0.8078
Predicting r1:
0.6278

Centrality
distribution

Predicting AUC:
0.7663
Predicting r1:
0.8282

Predicting AUC:
0.7807
Predicting r1:
0.8129

Table 6.6. The R2 scores of each model, when run on the full datasets under the given

configuration.

Model Sinks:Triples
ratio

Repeats:Triples
ratio

Predicting r1, BioPortal
configuration

-0.1359 0.0674

Predicting AUC, BioPortal
configuration

-0.0508 0.0139
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Predicting r1, general
configuration

-0.1089 0.0375

Predicting AUC, general
configuration

-0.0782 0.0399

Table 6.7. Coefficient values corresponding to each feature in the sinks-source-repeat ratio

dataset, for each of the regression models created.

Model Median
centrality

3rd quartile
centrality

90th percentile
centrality

Max centrality
to Triples Ratio

To r1, BioPortal
configuration

0.0290 0.0237 0.0373 0

To AUC,
BioPortal
configuration

0 0.0238 0.0121 0

To r1, general
configuration

0 0.0675 0.0199 -0.0115

To AUC, general
configuration

0.0273 0.0009 0.0188 0

Table 6.8. Coefficient values corresponding to each feature in the centrality distribution dataset,

for each of the regression models created.

Note that an R2 value of zero represents a no correlation; this occurs when the model always

predicts a constant value. As thus, regressors with an R2 value of 0 can be interpreted as being

no better than a baseline regressor that always predicted the average value, and those with an

R2 value above zero thus can be interpreted as outperforming such a baseline regressor.

All models examined achieved R2 values of at least 0.60, with the best model yielding an R2

score above 0.90. While all of the models based on sink and repeat frequencies used both

features in the final regression model, none of the models using centrality distribution statistics

used all of the available features; in all cases one or two were driven to zero.

To first consider the results of using sink and repeat frequencies to predict the obtained r1 and

AUC scores, there is a clear correlation between these features and both r1 and AUC scores.

Under the BioPortal configuration, both scores were predicted with high accuracy. As shown in
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the R2 scores, the models were able to explain 77.35% and 90.76% of the variation in AUC and

r1 scores respectively. The relative success at predicting both of these is expected, as it reflects

the strong correlation observed between the AUC and r1 scores under the BioPortal

configuration as noted in Section 6.2.

Under the general configuration, these features were able to explain 80.78% of variation in AUC

scores, but only 62.78% of variation in r1 scores. The wider gap between these two R2 scores is

similarly expected, as it was noted in Section 6.2 that the correlation between AUC and r1 for

the general configuration was weak.

In this case, both features (the ratio of sinks to triples and the ratio of repeats to triples) were

used in all the models; none of them were eliminated by being assigned a coefficient value of

zero. As such, it can be concluded that both of these structural features are useful for predicting

AUC and r1 scores of the KGE models in the absence of other available predictors.

Interestingly, in all cases the sinks to triples ratio was given higher weight than the repeats to

triples ratio by the regressors, suggesting that the extremity of the sparsity of the graph as

measured by the relative number of sinks is very important in determining how KGE models

learn to score high on specific (r1) and general (AUC) knowledge metrics. The relatively lower

weight of the repeats to triples ratio suggests that repeats, which may repeat many times or just

once, are not as strongly indicative of model performance but still are necessary to gain a more

complete picture of model success.

Turning to the centrality distribution-based model, the R2 results were much closer to each other

for all models. Of all the cases selected, predicting the model AUC score under the BioPortal

distribution has the lowest R2 score, which was still quite high at 0.7663. The highest score

obtained was for predicting r1 under the BioPortal configuration, at an R2 value of 0.8282.

Overall, the closeness of the R2 values for all these cases suggests that the centrality

distribution is a more broadly applicable metric for predicting model performance at both the

specific (r1) and general (AUC) knowledge levels.

Interestingly, despite the low correlation between AUC and r1 under the general configuration

observed in Section 6.2, the R2s for both of those models were closer than the R2s for the

BioPortal configuration, which had a much higher correlation between AUC and r1. However,

unlike in the case of the sink and repeat ratio data, in this case not all features were used. This
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suggests, immediately, that predicting specific knowledge modelling ability (r1) and general

knowledge modelling ability (AUC) of datasets under both configurations may be based upon

different structural features of the KGE at hand.

However, if that is the case, it was not completely captured in the data obtained here. There

were no clear patterns of preference to higher weight of any one feature to predicting r1 or AUC

across hyperparameter configurations. In fact, the weights given to the features of each model

differed significantly from the weights given to the features of all other models, which limited the

generalisability of these results.

That notwithstanding, the 3rd quartile and 90th percentile of the centrality distributions were

quite notable assigned non-zero weights in all cases, indicating that they all made a contribution

to model performance. However, the parameter to the 3rd quartile feature of the regressor to

AUC under the general configuration was nearly zero, at 0.0009. Median centrality was only

included in two models and the ratio of the maximum centrality to the number of triples only

included in one, as shown in Table 6.8. In tandem with the generally high parameter values

assigned to these features, this suggests that the 3rd quartile and 90th percentile centralities

are the most generally important to predictions of r1 and AUC scores of the KGE models of the

features considered here.

Considering again the structural statistics displayed in Table 6.5, the relatively low use of the

median centrality becomes clear. Of all the datasets examined, only two of them (BioPortal and

KEGG) had a median centrality greater than 1. As thus, median centrality can be to an extent

seen as a proxy for these datasets alone, as none of the others varied in that metric. This

highlights that BioPortal and KEGG as datasets are very significantly structurally different from

the others: they were the only two to have a median centrality greater than one, and this

difference was enough that it was specifically modelled in the regressors even after

cross-validating to control for overfitting.

While the 3rd quartile centrality value was only greater than one in three datasets (BioPortal,

KEGG, and LSR), this wider use was enough to make it useful to predictions of all the models

created. 90th percentile centrality, and the ratio of the maximum centrality to the number of

triples, were both different across all datasets.
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In considering why the ratio of the maximum centrality to the number of triples was relatively of

little use to the models, there are two major explanations. In one case, it may encode redundant

data to another one of the included features, thus making it superfluous. In the other case, it

may not be of significant use to the prediction because of a lack of ability to correlate with r1 and

AUC themselves. In order to investigate this, the R2 values between each of the three other

features (median, 3rd quartile, and 90th percentile centrality) were calculated and pairwise plots

of them were constructed. This data is shown in Figure 6.2.

Figure 6.2. A plot of the median, 3rd quartile, and 90th percentile centralities of each model

against the max-centrality to triples ratio. A trendline is given, and it’s R2 value is shown in the

upper-right hand corner.

In the first two graphs using median and 3rd quartile centralities, the R2 value is very low but

also of little relevance: the data is clearly non-linear in those cases, and by inspection the trend

line is clearly not a fit to the data. By inspection, both have no significant correlation, linear or

otherwise, to the max-centrality to triples ratio value and thus could not be encoding redundant

information that made this last feature unneeded.

The final graph does show a very roughly linear spread of points that is roughly fit by the

trendline. As thus, the R2 value can be interpreted as a measure of redundancy between the two
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features: the more correlated they are, the more redundancy information they encode. However,

the R2 value is somewhat low at 0.2646, indicating that variation in the 90th percentile centrality

values can only explain 26.46% of the variation in the max-centrality to triples ratio values (and

vice versa). To put this in other terms, however, this means that the two variables have a

correlation of 0.5144, which while not particularly strong is still not particularly poor.

As such, it can be concluded that the two features do encode some amount of redundant

information. However, the low-to-moderate correlation and R2 values indicate that they do differ

significantly and encode different aspects of the graph structure. This is largely as expected,

since both do directly encode some information about the centrality distribution, though from

different perspectives. Therefore, it is most likely that the reason that the max-centrality to triples

ratio was driven to zero by the Lasso model is due to a combination of some redundant

information being shared between it and the 90th percentile centrality feature and lack of

relevance to the prediction task of the variation in it that is non-redundant.

Overall, these results suggest that the 3rd quartile and 90th percentile of the centrality

distributions are particularly relevant to understanding both the specific (r1) and general (AUC)

knowledge modelling abilities of KGE models across both configurations. It should be noted,

however, that these results only hold in the context of this data, which has an extreme skewness

in the centrality distribution. In other, less skewed KGs, it would not be reasonable to expect

these same features to be the only, or even the most, important features relating to structure

and performance.

However, the success of using these structural features to predict performance immediately

yields a major finding of this work: that structure and performance are inherently related for

KGEs in the context of a single hyperparameter configuration, and that this pattern extends

even across different hyperparameter configurations. Moreover, it highlights that this high

predictive power can be obtained in the absence of explicit modelling for graph size, suggesting

that structure is more important than sheer size for understanding model performance under

different hyperparameter configurations.

6.4.1.2 Predictive Analysis Round 2

As a second step, all features whose parameters were non-zero for predicting either r1 or AUC

were combined into a single feature set, which was used to train a second model. The one
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exception was the 3rd quartile centrality feature for predicting AUC under the general

configuration: it’s value of 0.0009 was nearly zero and very small compared to the values of the

other parameters in that model, and as thus it was discarded so that the next model would be

more simple in terms of the feature count.

It should be noted that this combined model was created only after examining the sink /

repeat--based and the centrality-based data individually, since creating a regressor on all of the

data immediately without verifying that it was relevant would almost certainly lead to overfitting

and overconfidence in the results since the number of data points would be relatively small

compared to the number of features.

Models were again created using 5-fold cross-validation on a Lasso regressor, and the full

details on cross-validation and hyperparameter selection are given in Appendix II. The R2

results thereof are included here in Table 6.9, and the parameters to each feature in the model

are given in Table 6.10. Note that since the input values were normalised, within the context of

any one model these parameter values can be compared using their absolute value as a metric

for importance in the prediction relative to the others.

Regression
Task

BioPortal Configuration General Configuration

Predicting AUC 0.9340 0.8517

Predicting r1 0.8804 0.9303

Table 6.9. The R2 scores of each model, when run on the full datasets under the given

configuration.

Model Median
centrality

3rd
quartile
centrality

90th
percentile
centrality

Max
centrality
to Triples
Ratio

Sinks:
Triples
ratio

Repeats:
Triples
ratio

To r1,
BioPortal
configuration

0.0268 0.0105 0 NA -0.0497 0

To AUC,
BioPortal
configuration

NA 0.0224 -0.0006 NA -0.0322 -0.0008
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To r1,
general
configuration

NA 0.0406 -0.0692 -0.0322 -0.1248 0.0208

To AUC,
general
configuration

0.0308 NA 0.0058 NA -0.0238 0

Table 6.10. Coefficient values corresponding to each feature in the centrality distribution

dataset, for each of the regression models created. NAs were introduced when a given feature

was not included in the model.

Looking at the results of the models using pooled feature sets, the R2 values of the models are

overall notably higher than those obtained in the previous round in which sink / repeat ratio data

and centrality data were kept separate. The lowest R2 value obtained was 0.8517, and the

highest was 0.9430. All of the R2s, as seen in the centrality-based models in the previous

section, were close to each other for predicting both r1 and AUC.

Overall, this greater level of success could arise from two sources, which are not mutually

exclusive: the use of a greater number of features in some models, which adds more

information and may lead to some level of overfitting; or else the use of more relevant features

to the task at hand that allow the model to focus on only the most important aspects of structure.

In this case, the first source is possible, considering that only one of the models here used a

greater total number of features (5) than had been used in previous rounds (2 and 4, from round

1). However, the best performing model used only 4 features, no more than had previously been

considered, and still outperform all models from round 1 in terms of R2. Moreover, many of the

models drove the parameters of various features to 0, in one case resulting in only 3 features

actually having any impact on predictions. As a result, it is reasonable to conclude that the

increase in performance comes much more from the inclusion of more relevant features than

from the simple inclusion of more features.

Of all the features considered, only the sinks to triples ratio was given a non-zero parameter

value in all of the models. Moreover, in all but one case (the case of predicting r1 under the

general configuration) its absolute parameter value was relatively high compared to the

parameter values of the other features considered in the model.
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Interestingly, all of the other parameters either take NA values (having not been of use in the

previous round to the prediction) or zero (not being of use in this round despite having been of

use in the previous round) for at least one of the four models. However, of the features that were

included in these models (i.e., those that were not given NAs), only 2 in total were assigned

parameters of 0 in the regression model: 90th percentile centrality was driven to zero once and

the repeats to triples ratio was driven to zero twice. A third parameter value assigned to the ratio

of repeats to triples in the model predicting AUC given the BioPortal configuration was assigned

a value of nearly zero, at -0.0008, and in one other case a parameter value even smaller

(0.0006) was assigned. These were far lower than the other parameter values for those models

and as thus are likely of very little importance to those models. Similarly, when predicting r1

given the general configuration, the repeats to triples ratio had the lowest parameter value by a

significant margin, even though it was decidedly non-zero.

This de-emphasis of the ratio of repeats to triples is much to be expected. Since this ratio also

reflects the centrality distribution of the KG, it is likely to encode a significant amount of

redundant information to that given by the quartiles and percentiles. To address this, once again

plots and R2 values were obtained between this feature and those suspected to contain

redundant information: the 3rd quartile centrality, 90th percentile centrality, and max-centrality to

triples ratio. This data is shown below in Figure 6.3.
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Figure 6.3. A plot of the 3rd quartile centrality, 90th percentile centrality and max-centrality to

triples ratio of each model against the ratio of repeats to triples. A trendline is given, and it’s R 2

value is shown in the upper-right hand corner.

In the case of the first plot, the 3rd quartile centrality is not only clearly not correlated to the ratio

of repeats to triples, but the trend is clearly nonlinear. The trend line shown clearly does not

capture the form of the data, for which most variation in the ratio of repeats to triples is not in the

direction of the variation of the 3rd quartile centrality values. However, both the 90th percentile

centrality and the max-centrality to triples ratio appear to be linearly correlated to the ratio of

repeats to triples, with R2 values of 0.2445 and 0.4893 respectively. This means that they both

can explain a moderate or significant proportion (24.45% and 48.93%) respectively of the

variation in the ratio of repeats to triples. However, it must be noted that these values are not

additive. Moreover, the max-centrality to triples ratio was only used in one dataset, and that

dataset was one of the only two to assign a non-zero parameter to the repeats to triples ratio

feature. While the 90th percentile centrality was included in several models, in one case the

parameter of both it and the ratio of repeats to triple were driven to zero, and in other it was

driven to nearly zero (0.0006) whereas the ratio of repeats to triples was driven to zero.

However, the previous round did establish that the ratio of repeats to triples is of importance to

models when only it and the ratio of sinks to triples are considered. As thus, it is likely that the

inclusion of both sink / repeat ratio data and centrality distribution data made this feature

superfluous and unnecessary to explain KGE performance given KG structure.

Overall, this data suggests two major findings. First, it is possible to use the structural

characteristics of a KG to very accurately predict the ability of a given KGE configuration to

model specific knowledge (reflected in r1) and general knowledge (reflected in AUC) with very

high accuracy and in the absence of modelling for graph size explicitly. Second, the distribution

of centrality, as well as understanding the prevalence of sinks vs repeats in the dataset, are both

of particular value in this prediction even if the exact metrics of each of those features that are

most useful does vary.

The context of this work must be noted, however. The reason, for example, that the ratio of

sources to triples was not included was that it correlated very strongly with the ratio of repeats to

triples. Had it not been so strongly correlated, it very well may have been an important

118



predictive factor as well. Moreover, the use of only certain percentiles for measuring the

distribution of centralities is an artefact of the data at hand and not a general rule: lower

percentiles for centrality had little to no variation (often being 1 for all datasets) and thus would

be of no use in a predictive task. In the context of other datasets where this rule would not hold,

many other percentiles of the centrality distribution, as well as other centrality measures, may be

of significant predictive power.

6.4.2 Identifying the best configuration based on structure

In terms of r1 scores, identifying the best configuration for each dataset could not be formulated

as a classification problem, since in all cases except the BioPortal dataset, the BioPortal

configuration outperformed the general configuration. As previously noted, since the two

BioPortal r1 scores under both configurations are so similar, it is difficult to tell if the difference is

significant or due to chance, and thus placing it into either class definitively is uncertain at best.

In any case a simple classifier that always preferred the BioPortal configuration would already

be achieving perfect or near-perfect results.

However, this fact alone is very interesting. While a determination of optimal hyperparameters

could not be made, these results suggest a hierarchy of hyperparameter set optimality in the

context of the highly left-skewed centrality distribution structure seen here. While the BioPortal

configuration cannot be claimed to be optimal, in all cases it is approximately as optimal as, or

often much more optimal than, the general configuration in terms of r1 scores. Taking this into

account, in tandem with the very high accuracy with which r1 can be predicted given graph

structure, suggest that there is a strong relationship between structure of a KG and KGE

performance, and that similarly structured datasets will display perform similarly under the same

hyperparameter configurations. This further suggests that finding an optimal or near-optimal

hyper parameter set to match all of these similarly-structured datasets should be possible, even

though such a set was not found here. Verifying that a similar trend holds for datasets of similar

structure, but with vastly different structures than those seen here, is left as a future direction.

The optimal dataset for different AUC values did vary between the two configurations, and could

be formulated as a classification problem. However, the inability to understand r1 results in this

fashion, as well as the greater applicability of high-r1 classifiers to downstream tasks that

require identifying a true statement from many plausible alternatives, suggested using a different

approach that could accommodate the data from both approaches at once.
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As a result, identifying the ideal dataset was formulated as a regression problem. In this

formulation, the same structural characteristics discussed in Section 6.4.1 were used to regress

to the difference in r1 and in AUC scores between the datasets. In this case, the difference was

defined as the score under the BioPortal configuration minus that under the general

configuration. In this way, the extent to which one dataset was better than the other was

measured as a function of graph structure, allowing for a continuous understanding of structure

and configuration suitability rather than a discrete one, and admitting the use of data that could

not be effectively understood or modelled in a classification problem.

This problem was approached just as in Section 6.4.1: with a Lasso regressor, cross-validated

with 5-fold cross-validation, run first on the sink / repeat ratios and the centrality distribution

statistics individually. Pooling of the results was not done, since no significant predictors were

found in the first round. The details by which this round of models was created are given in

Appendix III.

The R2 results of each of the models are included here in Table 6.11, and the parameters to

each feature in the model are given in Tables 6.12 and 6.13.

Data used Predicting AUC Predicting r1

Sink-repeat
ratios

0 0

Centrality
distribution

0 0

Table 6.11. The R2 scores of each model, when run on the full datasets under the given

configuration.

Model Sinks:Triples
ratio

Repeats:Triples
ratio

Predicting r1 0 0

Predicting AUC 0 0

Table 6.12. Coefficient values corresponding to each feature in the sinks-source-repeat ratio

dataset, for each of the regression models created.
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Model Median
centrality

3rd quartile
centrality

90th percentile
centrality

Max centrality
to Triples Ratio

Predicting r1 0 0 0 0

Predicting AUC 0 0 0 0

Table 6.13. Coefficient values corresponding to each feature in the centrality distribution

dataset, for each of the regression models created.

These results show that, in contrast to the former high predictive power of structure on model

performance within the context of a given configuration, that prediction of the difference between

the scores obtained between the two configurations above the baseline level is not feasible

using Lasso linear regression on the structural metrics identified here.

Since this linear regression failed, a second attempt was made in which the predicted scores

under the final models from section 6.4.1.2 (including all relevant structural characteristics) were

used to estimate the difference in the score between the two hyperparameter sets. This was

formulated as follows: letting fBio and fgen respectively be the prediction models for the r1 or AUC

scores under the BioPortal and the general configuration from Section 6.4.1.2, the difference

between the models, fdiff, was modelled as:

𝑓
𝑑𝑖𝑓𝑓

= 𝑓
𝐵𝑖𝑜

− 𝑓
𝑔𝑒𝑛

This was done separately for the models to predict r1 and AUC scores. Plots of the predictions

for the differences in r1 and AUC scores versus the true observed differences in those scores

are shown below in Figure 6.4, along with a trend line and the associated R2 value.
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Figure 6.4. Plots of the predicted difference in r1 and AUC scores for both configurations versus

the observed difference. A trendline is given, and it’s R2 value is shown in the upper-right hand

corner.

Interestingly, this approach did yield results with explanatory power for the difference between

predicted and observed scores. In the case of predicting the difference between r1 scores for

the two models, the trend appears moderately linear although there is a notable cluster in the

center that does not seem to fit the linear trend quite as well. Overall, the predicted values have

an R2 of 0.6652 with respect to the observed values, indicating that the difference can be

predicted with moderate accuracy.

In the case of the AUC score difference, it appears that the trend line is being pulled towards a

single distant point which is far separated from a cluster of points that do not have clear linearity.

While the R2 value for the entire dataset is 0.5490, which would seem to indicate a decently

strong predictive power, removal of this one point reduces the R2 to 0.0134, reminiscent of

nearly no predictive power at all. While, therefore, the difference in r1 scores seem to be

decently well modelled by the difference in the predicted r1 scores for both configurations, the

ability to model the difference in AUC scores based on the predicted difference from the two

configurations is dubious at best.

There are many possible explanations for the difficulty in predicting AUC accurately. At one

level, there are many different factors that vary between the two hyperparameter configurations

and the multiplicity of that variation could compound and obscure any trends that would have

been seen had the two configurations differed in only one or two ways. In addition to that, it is

possible that predicting the difference between the optimal score obtained under both datasets

given graph structure is indeed possible, but that it requires different structural characteristics

than those identified here. These two effects also likely explain why the R2 score for predicting

the difference in r1 scores between the two configurations is not higher, although the reason that

r1 is predictable while AUC is not predictable is not clear.

Moreover, since interaction terms between structural features were not analyzed, it is possible

that such a trend could only be explained by the interaction of various structural elements.

However, as mentioned before, the scarcity of data-points means that adding in a large number
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of interaction features would almost certainly lead to data memorization and model overfitting.

As thus, analysis of interaction terms is left as a future direction.

Overall, this suggests that while predicting model performance under a given configuration is

very possible (as seen in Section 6.4.1) predicting the performance of different hyperparameter

sets cannot be done with the same predictive power. Particularly, the issue of the

hyperparameter configuration being a black box was not possible to overcome: since the two

configurations differed in many ways, trying to estimate the difference in performance between

different configurations without modelling all of these extra features was fundamentally limited.

However, as previously noted, adding in all these features would likely produce more overfitting

as the number of features would be much too high relative to the number of data points.

Creating a model that combined KG structural data with hyperparameter choices to predict

performance was thus left as a future direction, but one of great importance.

As a final note, the question of hyperparameter selection can be formulated as a classification

or as a regression problem. While the former suggests a way to choose from a small number of

disparate configurations, the latter if created would allow for choosing between a large number

of untested configurations if both structural characteristics and hyperparameter values are

included as features. As such, the latter allows for a search of optimal hyperparameters that

have never been tested, even in the absence of a grid search. However, it is simultaneously

less certain (possibly outputting a configuration that has never been used or tested before) and

more complex (including a great many more features). The exploration of the pros and cons

between the classification and regression approaches, as well as whether the regression

approach is applicable across general datasets, is also left as a very relevant and important

future direction.
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7 Discussion
7.1 Overview of the Discussion

Section 7.2 presents a qualitative summary of the major findings and their significance. Section

7.3 continues to discuss the expected contribution of these findings to the field, and notes some

of the most important future directions for research to build upon these findings. Section 7.4

discusses the limitations of these results and future directions that could address them. Section

7.5 concludes with a brief set of final observations from this work.

7.2 Overview of Major Findings

Overall, this work failed to determine a set of optimal cross-dataset hyperparameters for

biological LOD datasets. However, it found a very clear and strong effect of KG structure on

hyperparameter choice and model performance. The three major findings of this work which are

described below.

First, despite the goal set out at the beginning of this work, a set of hyperparameters that could

be applied across different biological LOD datasets was not found. However, it was found that in

the context of similarly-structured KGs, hyperparameter configurations that led to high

performance for one dataset led to higher performance for nearly all the others. Likewise, it was

seen that hyperparameter configurations with low performance for one dataset tended to lead to

worse performance on other, similarly structured datasets. This suggests that the optimal

hyperparameter set should also be shared across similarly-structured datasets, although this

hypothesis could not be verified in this work and is left as a future direction.

Second, it is demonstrated that, under two different hyperparameter configurations, the ability of

two different KGE model configurations to model specific knowledge (as measured by the r1

score) and general knowledge (as measured by the AUC score) can be predicted with very high

accuracy. In particular, at least 85% of the variation in both these scores can be explained using

structural characteristics of the KG alone.

Third, it is demonstrated that although the r1 and AUC scores under a given hyperparameter

configuration can be very easily determined from the structure, modelling the difference

between predicted and observed r1 and AUC scores for the two configurations is notably less
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accurate. In particular, in the case of predicting the difference in AUC scores, it is unclear

whether the relatively strong predictive power is due to a true trend or to an outlier point.

Obtaining more data and re-analysing it in this context would help to elucidate this question, and

examining whether other graph structural statistics and their interaction terms would help to

create models with higher predictive power, is left as a future direction.

Very notably, the observed similarity of the DBSNP, DrugBank, OMIM, and PharmGKB datasets

in the r1-based hyperparameter search suggests that the effects observed here are

representative of a larger effect of KG structure on KGE embedding quality. For those datasets,

during the hyperparameter search in almost every case they displayed almost exactly the same

response to different combinations of hyperparameters. While the subsetting method used was

found to be imperfect (not replicating the original KG structure perfectly), these results for the

sub-graphs still reveal a very strong influence of graph structure on model performance and

response to different hyperparameter choices.

The most important structural characteristics to predicting model performance and predicting

which configuration would be ideal are twofold: the ratios of the number of sinks and repeated

entities to the number of triples in the graph, and the descriptive statistics of the distribution of

node centralities in the KG. In this case all of the datasets had an extreme left skew in their

centrality distributions, and as a result the response of KGs with non-left-skewed centrality

distributions to these or other structural features was not determined. However, it is

hypothesized that various percentile markers of the centrality distribution would remain highly

relevant in those cases.

7.3 Expected Contribution

It is expected that this work contributes to relational learning and bioinformatics in four key

ways.

First, it demonstrates that KGE performance is very responsive to structure--particularly the ratio

of sinks and repeated entities to the size of the KG and the distribution of the centrality of nodes

in the KG.

It also demonstrates that the performance of a KGE in terms of specific and general knowledge

modelling ability with a given set of hyperparameters can be predicted with very high accuracy
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considering only KG structure. This allows a very rapid prediction of what KGs may fit a given

set of hyperparameters using only a linear regression model, rather than a time-intensive grid

search.

Moreover, it highlights the ability to predict, with moderate accuracy, the difference in

performance of a given KG dataset between different KGE model configurations /

hyperparameters using only KG structural characteristics. This is also found to be possible using

a simple linear regression model, and if the accuracy were improved would allow rapid detection

of the best hyperparameter set to use without the need to run a grid search for new KGs.

The work also shows that many of the common biological LOD datasets have a very heavy left

skew in terms of the distribution of their centralities, and that that has a very significant impact

on model performance. Research into the effects of this on biological data will help to increase

the accuracy of bioinformatics tools based on KGEs, as well as to facilitate the creation of new

KGE models by determining if they would operate effectively on predetermined hyperparameter

sets that had been curated for other KGs.

The work also leaves two important future directions, which if followed up could provide critical

novel insights to the field. First, this research suggests that it would be possible to create a

linear regression model that predicts model performance not only based off of the KG structure,

but also upon discrete and continuous hyperparameters. If done, this would allow for the rapid

detection of optimal hyperparameter configurations--even those never examined before--without

the need to do a grid search. Moreover, since the linear regression model would be easily

differentiable, finding all of its maxima for a given structure could be formatted as an equality- or

inequality- constrained optimisation problem to set bounds on the graph structure in the problem

space, and thus allow gradient-based optimisation methods to very rapidly find the ideal

hyperparameter configuration for a KG with a given structure.

Secondly, exploring the pros and cons of predicting optimal hyperparameter sets using the

above approach (based on regression) or a classification approach (classifying a dataset to

known hyperparameter sets based on KG structure) is similarly merited as an enabler for faster,

more efficient, and possibly more optimal hyperparameter selection.
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7.4 Limitations of this Work

Since the method for selecting hyperparameters was found to be sub-optimal for the intended

datasets (as outlined in Chapter 6), the hyperparameter sets produced are known to be

imperfect. This is likely a result of having subsetted the graphs, producing subgraphs that could

be easily grid-searched, but whose structure was notably different in some respects from the

structure of the original KG. Unfortunately, the extent by which they vary from the optimum

configurations was impossible to estimate, as the optimal configurations are not known. As a

result, the results of this study are best seen as presenting data in the context of arbitrary

hyperparameter configurations, rather than optimal or near optimal ones. However, the

structural analysis of KGE scores under these configurations remains valid, because that

analysis made no assumption of optimality of the configurations which it was predicting.

It should be noted that in this study, the contents of triples are entirely ignored. The contents of

string literals were not scanned to attempt to learn what they said, everything was simply

represented as an entity. Further analysis into the effect of reading the contents of literals, rather

than simply treating them as black boxes, on hyperparameter choice is similarly merited.

Interestingly, in that case the internal structure of nodes rather than just their relationship

patterns could be expected to influence hyperparameter choice.

In addition, in this work only biomedical datasets were considered, and all of these datasets

were observed to have an extremely strong skewness of centrality values. Given the findings of

this research, examining how other datasets with very different centrality distributions than those

seen here interact with optimal hyperparameters to KGE models is expected to be of benefit to

the relational learning and KGE fields as a whole.

Finally, in this work even the final hyperparameter configurations identified yielded low r1 scores

which never exceeded 0.4, and AUC scores that never exceeded 0.85. Scores observed in the

hyperparameter search were similarly low, often significantly lower. However, the reason for

these low scores was not directly identified. As outlined in Wang et al., KGs learn by

understanding the relationships between entities [45]. This suggests, then, that entities with very

few observed relationships would be relatively hard to learn to embed properly. Therefore, it

stands to reason that an effect of structure would be observed here as well, very likely in terms

of the number of sinks and sources in the graph relative to the number of triples in total. This
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effect may be partly agnostic to the hyperparameters involved, although this determination could

not be made with the data available. Further research in this direction would be merited.

7.5 Final Observations

It is hoped that this work contributes to the understanding of hyperparameter choices not only in

the realm of KGEs, but in the context of machine learning models generally. The finding that the

structural elements of KGs are very highly predictive of model performance under different

hyperparameter configurations suggests that data structure and model choice may be best

understood in the context of each other.

Creating machine learning models by which structural elements could lead to optimal

hyperparameter prediction and predictions of model performance, as mentioned in Section 7.2,

is well merited. Moreover, it would be equally merited to extend this work to other machine

learning domains, to understand if all hyperparameters and model performance--or only those

for KGEs--can be modelled as a function of dataset structure.

The author of this work hypotheses that such dataset-structure based approaches would yield

similarly fruitful results, advancing understanding of machine learning models and facilitating

optimal hyperparameter selection in machine learning domains outside of KGEs alone.
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Appendix
I. Cross validation of structure-performance regression models, round 1
Figure I.1 below gives all cross-validation plots created during 5-fold cross-validation.

Cross-validation was performance against alpha, the hyperparameter to the regression model

that serves as a coefficient to the L1 penalty term, and evaluated in terms of the mean-square

error (MSE) score of the regression model. The effectiveness of all these classifiers was

measured by their AUC scores. All values of alpha were cross-selected over the range of 1e-3,

1e-2, 1e-1, 0.5, and 1.

Data used BioPortal Configuration General Configuration

Sink-repeat
ratios

Predicting AUC:

Predicting r1:

Predicting AUC:

Predicting r1:

Centrality
distribution

Predicting AUC: Predicting AUC:
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Predicting r1: Predicting r1:

Figure I.1. Cross-validation plots for all models created.

Based on the above plots, values of alpha were selected that led to minimal MSE (means

squared error) values were selected, subject to a set of criteria to avoid over- and under-fitting.

The selection criteria were as follows: all else being equal, larger values of alpha were preferred

since smaller values of alpha can drive the penalty term to zero and lead to overfitting. Similarly,

the extreme high-end values of alpha (notably the value of 1) were avoided in the absence of

strong evidence in favour of them, since such values often lead to underfitting. Smaller values of

alpha were selected when their standard error interval was small, and when their point-estimate

MSE values were notably below those corresponding to higher alpha values. The results

obtained from this are shown below in Table I.1.

Data used BioPortal Configuration General Configuration

Sink-repeat
ratios

Predicting AUC:
1e-3
Predicting r1:
1e-3

Predicting AUC:
1e-3
Predicting r1:
1e-3
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Centrality
distribution

Predicting AUC:
1e-2
Predicting r1:
1e-2

Predicting AUC:
1e-2
Predicting r1:
1e-2

Table I.1. The selected values of alpha for each regression model.

II. Cross validation of structure-performance regression models, round 2
Figure II.1 below gives all cross-validation plots created during 5-fold cross-validation.

Cross-validation was performance against alpha, the hyperparameter to the regression model

that serves as a coefficient to the L1 penalty term, and evaluated in terms of the mean-square

error (MSE) score of the regression model. The effectiveness of all these classifiers was

measured by their AUC scores. All values of alpha were cross-selected over the range of 1e-3,

1e-2, 1e-1, 0.5, and 1.

Regression
Task

BioPortal Configuration General Configuration

Predicting AUC

Predicting r1

Figure II.1. Cross-validation plots for all models created.
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Based on the above plots, the values of alpha were selected. The selection criteria were as

follows: all else being equal, larger values of alpha were preferred since smaller values of alpha

can drive the penalty term to zero and lead to overfitting. Similarly, the extreme high-end values

of alpha (notably the value of 1) were avoided in the absence of strong evidence in favour of

them, since such values often lead to underfitting. Smaller values of alpha were selected when

their standard error interval was small, and when their point-estimate MSE values were notably

below those corresponding to higher alpha values. The results obtained from this are shown

below in Table II.1.

Regression
Task

BioPortal Configuration General Configuration

Predicting AUC 1e-3 1e-3

Predicting r1 1e-1 1e-3

Table II.1. The selected values of alpha for each regression model.

III. Cross validation of model score difference regression models, round 1
Figure III.1 below gives all cross-validation plots created during 5-fold cross-validation.

Cross-validation was performance against alpha, the hyperparameter to the regression model

that serves as a coefficient to the L1 penalty term, and evaluated in terms of the mean-square

error (MSE) score of the regression model. The effectiveness of all these classifiers was

measured by their AUC scores. All values of alpha were cross-selected over the range of 1e-3,

1e-2, 1e-1, 0.5, and 1.

Data used Predicting AUC Predicting r1

Sink-repeat
ratios
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Centrality
distribution

Figure III.1. Cross-validation plots for all models created.

Based on the above plots, the values of alpha were selected. The selection criteria were as

follows: all else being equal, larger values of alpha were preferred since smaller values of alpha

can drive the penalty term to zero and lead to overfitting. Similarly, the extreme high-end values

of alpha (notably the value of 1) were avoided in the absence of strong evidence in favour of

them, since such values often lead to underfitting. Smaller values of alpha were selected when

their standard error interval was small, and when their point-estimate MSE values were notably

below those corresponding to higher alpha values. The results obtained from this are shown

below in Table III.1.

Data used Predicting AUC Predicting r1

Sink-repeat
ratios

0.5 1e-1

Centrality
distribution

0.5 1e-1

Table III.1. The selected values of alpha for each regression model.
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