*,% \\\7 Trinity College Dublin
% Colaiste na Trionoide, Baile Atha Cliath
= The University of Dublin

School of Computer Science and Statistics

A mobile exam proctoring system with
deep-learning-based human action recognition

Tong Ge

Supervisor: Dr. Ciardn Mc Goldrick

A dissertation
Presented to the University of Dublin, Trinity College
in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science
(Future Networked Systems)

August, 2021

http://www.scss.tcd.ie

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exer-
cise for a degree at this, or any other University, and that unless otherwise stated, is my

own work.

Signed: Date:

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Signed: Date:

ii

A mobile exam proctoring system with
deep-learning-based human action
recognition

Tong Ge, Master of Science in Computer Science
(Future Networked Systems)
University of Dublin, Trinity College, 2021
Supervisor: Dr. Ciardn Mc Goldrick

Abstract

The COVID-19 pandemic has prevented students from congregating to take
traditional in-person exams, shifting the attention of pedagogical institutions
to online exam systems accessed remotely. This research surveys previous
review papers on human action recognition to confirm the feasibility of ob-
taining action features from spatiotemporal data sets such as videos. This re-
search reviews multiple state-of-the-art deep models and optimisation meth-
ods under the premise of achieving a balance between performance, function
and resource demand constraints of mobile devices. Then a deep learning
model is developed to classify the behaviour of examinees to a series of activ-
ities, approved or prohibited by the exam holder. The model evaluation care-
fully considers the model performance in machine learning classification met-
rics and computational performance. Experimental results show that the pro-
posed model achieved over 90% accuracy over 12 exam-related action categor-
ies with 23.6M parameters, making it possible to run inference smoothly on
most modern mobile phones. Finally, this research concludes with a discus-
sion of model design and optimisation experiences with possible directions
for future research in this area.

Keywords: Deep learning, pose-based features, video data, classification,
mobile device, exam proctoring

iii

Acknowledgements

First and foremost, I would like to express my profound gratitude to my supervisor As-
sociate Professor Ciardn Mc Goldrick, who has provided me with constant support and
guidance through each stage of this dissertation. With his patient guidance and gentle
encouragement from time to time, I complete this study with my effort and propose

directions for future research.

I am deeply grateful to Trinity College Dublin and the School of Computer Science and
Statistics for teaching me the theoretical foundation, practical techniques of computer
science and innovative research methods. In addition, the use of web hosting services
and the support of computing power have provided great help for data collection and

model training in this research.

Last but not least, I am thankful to my solicitous parents for their warm cares and finan-
cial funding for supporting me in studying abroad and upholding my chosen academic

path.

Tonc GE

University of Dublin, Trinity College Dublin
August 2021

iv

Contents

Declaration

Abstract

Acknowledgements

List of Figures

List of Tables

List of Algorithms

Abbreviation

1. Introduction
1.1 Research background.
1.2 Researchaims
1.3 Research ethics
1.4 Dissertation overview

2. Literature review

2.1 Data features and classicmethods.

2.2 Online exam security system .
2.3 Deep models detail.

2.3.1 Convolutional neural network

2.3.2 Recurrent neural network

2.3.3 Attention and Transformer ot

2.4 Mobile device optimisation. . .

2.4.1 Mobile optimisation overview oo oL
2.4.2 Evolution from MobileNet to EfficientNet
2.4.3 Optimisation of Transformer Networks

25Related works

2.5.1 Human action recognition overview
2.5.2 3D-CNN and RNN based methods

2.5.3 Transformer-based Neural Networks

3. Design
3.1 Data set collection

3.1.1 Requirements of data set

iii
iv
vii
ix

ix

3.2 Data preprocessing. 29

3.2.1 Face detection with Viola—Jones algorithm..................... 30

3.2.2 Face landmark extraction and face concealment 31
3.3Deepmodeldesign 32
3.3.1 Data loader and inputlayer.................................. 32

3.3.2 The model architecture 33

3.3.3 Loss function and training hyperparameters................... 34

4. Implementation 36
4.1 Data collectionwebapp i 36
4.2 Mobile app implementation................ o i 37
4.2.1 Architecture overviewo oo 38

4.2.2 Display and image processing pipeline........................ 39

4.2.3 Tensorflow Lite adoption and model inference 41

5. Evaluation 43
5.1 Evaluationmetrics i 43
5.2 Deep model evaluationl 44
5.3 Mobile app evaluation................... il 48

6. Conclusion 50
6.1 SUMMATYt 50
62Futurework. 51
Bibliography 52
Arrenpix A. Code repositories 59
ArpenDIX B. Framework details 60
Appendix B.1 Web development.................... 60
Appendix B.2 Deep learning model development...................... 61
Appendix B.3 Android application development. 62
Arrenpix C. Web recorder designs 63
Appendix C.1 Functionality description in user stories.................. 63
Appendix C.2 Participant use cases and user logics. 64
ArpeNDIX D. Model design details 65
Appendix D.1 Output categories, 65
Appendix D.2 Model detailed layers 66
Arrenpix E. Evaluation result 68
Arrenpix F. App showcase 69
Appendix F.1 Web-based data collectionapp 69
Appendix F.2 Deep model equipped mobileapp....................... 73

vi

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1
3.2
3.3

4.1
4.2

51
52
53
54

C1
C2
C3

Projectoverview L

Cubic volume of videodata
Slicing the video cube parallel to the X-Yaxis
CNN applications in vision by LeCun, Kavukcuoglu and Farabet [19] . . .
Residual building blocks by Heetal. [22]
VGG and Residual ImageNet by Heetal. [22]
RNN, unfolded unidirectional RNN and unfolded bidirectional RNN . . .
LSTM and GRU structure comparison by Phi [27]
Scaled Dot-Product Attention [31]
Multi-Head Attention [31] L
The Transformer model architecture [31]
Multi-head attention matrix visualisation [32]
Compare the architecture of ResNet-50 and DeiT-S (ViT-S)[34]
Depthwise, pointwise and atrous convolution [39]
Compare residual block and inverted residual block [40]
The architecture of baseline network EfficientNet-BO [41]
Lite Transformer block [43]
Full self-attention and attention patterns proposed in Longformer [44] . .
2D convolution and 3D convolution [47]
Video Action Transformer Network architecture [53]
Video Transformer Network architecture [54]
Video Vision Transformer model and factorised variants [55]

Haar Cascade structure [57] L
Landmark masked face concealment and face landmark schematic.
Thedata flow

Mobile app architectureand dataflow
Sequence diagram of the multi-threadedapp

Data per category distribution 0 000
Learning rate warm-up
Model training steps Lo Lo
Model validationsteps L Lo

New participant registration,
Registered participantlogin
Participant recording and uploading

vii

El
E2

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20

Confusion matrix on validationdataset 68

Confusion matrix on training dataset 68
Welcomescreen 69
Consent formscreentop L. 69
Consent form screenbottom 70
New participant registerscreen 70
Task selectionscreen 71
Recording screen 71
Review task details 72
Uploadscreen 72
Appwelcomescreen L L o 73
Appregister 73
Filled appregister 74
Mockexamlist. e 74
Appdrawerinmockuser L oo L. 75
Appuserprofile 75
Drawer after profileupdate 76
Deep modelloading 76
Resultindarktheme 77
Result with mouthopen 77
Leaveresult e 78
Lookdownresult 78

viii

List of Tables

1.2

21
2.2

3.1

51
52
53
54

C1
D1

Research objectives and corresponding methods 3
Comparing tasks in NLP and video understanding 22
Video Transformer Network experiment results [54] 26
Model inputtensors. o 33
Confusion matrix in binary classification. 43
The evaluation metrics, the formulae are summarised by Foss [61] 44
Classification report of validationdataset 48
Experiment results on mobile devices 49
User stories for the video data collectionapp 63
Model output for exam activity categories L. 65

List of Algorithms

4.1
4.2
4.3
4.4

User authentication 37
Videouploading 37
Image processing pipeline thread 40
Temporal sampling and triple buffering 42

ix

Abbreviation

AuC

BERT

BoT
CNN
JSON
JSP
JWT
GELU
GRU
13D
LBF
LRCN

LSRA
LSTM
MLP
NER
NNAPI
PHP

Area under the Curve (ROC
Curve)

Bidirectional Encoder Represent-
ations from Transformers

Bottleneck Transformer
Convolutional Neural Network
JavaScript Object Notation
Jakarta Server Pages

JSON Web Tokens

Gaussian Error Linear Unit
Gated Recurrent Unit

Inflated 3D ConvNet

Local Binary Features

Long-term Recurrent Convolu-
tional Networks

Long-Short Range Attention
Long-Short-Term Memory
Multi-layer Perceptron
Named Entity Recognition
Neural Networks API

PHP Hypertext Preprocessor

PoS
R-CNN

ReLU
ResNet
RGB
RNN
ROC
RPC
SVM
VGG
VviT
VTN
ViViT
ur/ux
YOLO

Part-of-Speech

Region-based Convolutional

Neural Networks

Rectified Linear Unit

Residual neural Network
Red-Green-Blue

Recurrent Neural Network
Receiver Operating Characteristic
Remote Procedure Call

Support vector machines

Visual Geometry Group

Vision Transformer

Video Transformer Network
Video Vision Transformer

User Interface / User eXperience

An object detection model abbre-
viated from You Only Look Once

1 Introduction

This chapter introduces the background 1.1 of the current COVID-19 pandemic, leading
to the research questions and aims 1.2 to be achieved in this research. Furthermore, since
human participants are involved in data collection and model training, research ethics
1.3 are discussed. Finally, this chapter also presents the overview and structure 1.4 of
this dissertation.

1.1 Research background

COVID-19 has brought many challenges to higher education. Marinoni, Van’ t Land
and Jensen [1] reiterate the facts released by UNESCO regarding the significant impact
of the pandemic on education in countries around the world. For example, there are ap-
proximately 130 million students, accounting for 89.4% of total enrolled learners, whose
academic career has been vitiated because of the impact of pervading virus caused school
closures.

To better respond to the crisis and allay public concerns caused by the epidemic, the Inter-
national Association of Universities (IAU) launches a survey of the impact of COVID-19
on higher education. Marinoni, Van’ t Land and Jensen [1] present the survey results
showing that COVID-19 has inevitably affected many processes in education, including

teaching & learning, researching, and assessment.

In teaching and learning, most classroom lectures have been substituted by distance
teaching and learning, which may not be difficult for professors and students who are
familiar with computers and the Internet. On the other hand, experiments and research
that require the use of shared professional equipment are much more severely affected.
The survey shows that 80% of researchers have reported that their research progress is

decelerating and moving at a creep.

However, as for assessment and examination, institutions have no way to perpetuat-
ing the traditional assessment methods, which is indicated by Clark et al. [2] as one
of the most important challenges for students. “Learning assessment and examination

approaches will be reviewed, and institutions may choose to invest further in technical in-
frastructures”, said by Marinoni, Van’t Land and Jensen [1] points out the fact. Although
some universities shift from closed-book exams to pure continuous assessments imme-
diately, other educational institutions are craving for new technologies to help them out

of trouble.

As aresult, the motivation of this research is to investigate the feasibility of deep-learning-
based human action recognition techniques in the distance invigilation application and

provide a way for educational institutions to hold exams and reduce labour costs.

In recent years, ubiquitous influences of deep learning methods have brought tremend-
ous advancement to many computer science fields and individual’s daily life. In many
tields, such as computer vision and natural language processing, deep learning approaches
achieved higher performance than traditional algorithms. McCay et al. [3] show that in
the research field of automatic human action recognition, the analysis and reconstruc-
tion of human actions have copious applications, including content-based video index-
ing, intelligent surveillance, human-computer interaction, and virtual reality. Therefore,
this research will explore deep learning techniques to solve automatic exam invigilation

problems in the assessment process of distance education.

This research is also based on previous studies in deep learning and deep model mobil-
isation. Currently, there are some existing models for human posture analysis and detec-
tion. But many of them use static imagery as input and key points of the body as output,
and they are not optimised for mobile devices with limited computing power. Beside,
the personal computer hardware, the bridge between the software system and the phys-
ical space, is not trusted. However, a trusted software environment can be ensured on
mobile phones with hardware attestation functions provided by operating system and

device manufactures.

1.2 Research aims

After clarifying the research background, the research question of this dissertation is

summarised as the following:

Is it possible to understand sequential human actions, using an on-device
camera video input stream with deep learning technologies, to classify the
actions of an exam attendee in respect of approved or suspicious behaviours

to a high level of accuracy?

In order to answer the research question, this research aims to achieve the objectives
through the corresponding methods shown in Table 1.2.

Research objectives Method to achieve objectives

To do the literature review By surveying and analysing the state-of-the-art
technologies of deep-learning-based human ac-
tion recognition

To have an available data set By obtaining a suitable image and video data set
and labelling them for training the model

To design a deep learning model By designing a deep learning model

To code and train the deep model By training the model and fine-tuning hyper-
parameters

To optimise the model for mobile By developing a working mobile app that equips
the model
Table 1.2: Research objectives and corresponding methods

After completing the above objectives, this research will also evaluate the project out-

comes, especially for model performance and other following aspects.
e Model accuracy, precision and other evaluation metrics on the classification task.
e Balanced performance between accuracy and efficiency of the deep learning model.

e User experiences of the overall system.

1.3 Research ethics

According to the requirements of research ethics, any research involving human particip-
ation must have reviewed and got an ethical approval by the Research Ethics Committee.
Obviously, this research is about human activity, and videos also need to be captured
from participants as training and validation data set, so it requires some ethical discus-
sions before conducting research.

The ethics committee raised privacy concerns during the review process that people
in the videos have facial biometric information which directly identifies participants,
and inadvertent capture of sensitive information from surroundings or computer screen

might menace examinees’ privacy.

In terms of privacy, Coghlan, Miller and Paterson [4] philosophically describe the ethical
rationality of online proctoring technologies, which highlights “academic integrity, fair-
ness, non-maleficence, transparency, privacy, respect for autonomy;, liberty, and trust”.
Finally, they conclude that the online proctoring function requires a precedent balancing
between concerns and possible benefits. Educational institutions also have the duty to
take ethical considerations should they decide to adopt the technologies.

Bozkurt and Sharma [5] mention that laws and regulations should strive for online

data protection and privacy, such as the General Data Protection Regulation (GDPR)
in Europe, which gives people more control over their data and regulates enterprises in
storing and transmitting user data. In this way, with the continuous advancement of the
security measures, invigilation and monitoring strategies in online exams, laws and reg-
ulations will protect learners from the side-effects of invigilation and monitoring related

practices.

In order to alleviate the privacy concerns, this research uses anonymisation algorithms
in the data preprocessing process and the mobile app to ensure that participants will be
anonymised in the videos. This process will minimise the presence of any unnecessary
material that might enable the identification of an individual, for example, to cover the
detected face area with extracted facial landmarks. The detailed processing steps and
algorithm details will be explained in chapter 3.

1.4 Dissertation overview

This dissertation comprises six chapters, beginning with this introduction chapter 1,
presenting the research background, aims and ethics, followed by the literature review
chapter 2, which comprehensively reviews previous researches on deep learning models
and the related state-of-the-art works. In chapter 3, this dissertation proposes the deep
learning model used to recognise and classify actions, based on various designing trade-
offs and mobile optimisation methods learned from previous research. Figure 1.1 shows
the project overview, in which these process pipelines and the proposed deep learning
model are implemented in chapter 4, including the video capture and data collection
app, model training and Android app development equipped with the deep model. Fur-
ther, experiments are performed in chapter 5 to evaluate the performance of the model
in terms of efficiency and accuracy and to compare it with other human activity recogni-
tion solutions. Finally, chapter 6 summarises the evaluation results and the experience

of model design and optimisation, and proposes possible future work in this research

area.
n ™
. yoeency @ python
iﬁﬁﬂ% [B——F
(-
Participants Capture App Tagged Clips Anonymisation Model training TensorFlow Lite
Data collection process Model training process

Figure 1.1: Project overview

2 Literature review

This chapter firstly reviews the spatial features of human poses and the temporal features
involved in the video data set, as well as the classic methods used to processing these fea-
tures in section 2.1. Then, section 2.2 surveys the application scenarios of this project, the
online exam security system. Before studying the related research using deep learning,
section 2.3 studies the details of several deep models comprehensively. After under-
standing the related concepts and basic operations and backbones of the deep models,
section 2.5 reviews numerous human action recognition related works based on deep
learning models. Finally, section 2.4 mentions some methods of optimising models so

that it can run on devices with limited computing power such as mobile phones.

2.1 Data features and classic methods

To study the feasibility of this project, and to utilise deep learning methods to classify ac-
tions from sequential imagery features, videos containing pose-based data, comprehens-
ively reviewing the previous research on data features and feature engineering methods
is beneficial to the design of deep models.

Last frame
y . Temporal sliced images
A7 P~ Y
Y T ~]l|||Volume of T=0 T=1 T=2

! ' o "l | lvideo data i,
Jo et e & Iy
Jras AR] £ i ‘
------- 4 r"‘[\ /'%. f]

) First frame -

X Figure 2.2: Slicing the video cube parallel to

the X-Y axis
Figure 2.1: Cubic volume of video data

Video is composed of a sequence of image data and synchronised audio arranged in the
timeline. If the audio data beyond the scope of this study is ignored, the 2D images can
be stacked along the time axis to form a 3D cube representing the video. Figure 2.1 illus-

trates an intuitive representation proposed by Fels and Mase [6], which highlights the

spatial and temporal characteristics for all videos. Further, figure 2.2 shows that regu-
lar video frames produced by slicing the video cube parallel to the X — Y axis so that
computer vision algorithms or deep models for visual tasks can be applied. As a res-
ult, video can be simplified into a series of images to enable applying image processing
technology.

In each static image containing human pose-based features, what features can be used
for posture analysis to classify each image? Thrasher et al. [7] model the features worthy
of attention in human upper body poses and then conduct a pose-based study on mood
recognition by analysing and rating the postures of the head, shoulders, trunk, arms in
video data. The data set in their research is closely analogous to the data set in this
research because both data sets comprise human facial expressions and upper body
poses.

From posture analysis in a single image to human action recognition in sequential im-
ages, it combines pose-based features and video-based data. For example, Yao, Liu and
Huang [8] propose a paper on spatio-temporal feature extraction with a variety of ap-
plication scenarios in automatic human activity recognition, such as video information
retrieval, intelligent surveillance, and human-computer interaction. In future research,
they point out that deep learning can be a powerful tool for processing these spatio-
temporal features and thus will enable the low-level engineered features to fuse with a
deep learning framework.

Before deep learning methods are prevalent in the computer vision field, some previous
studies have built data sets for the human action recognition task and have conducted

studies with classic machine learning methods.

Support vector machines (SVM), a well-known classic machine learning method, has
been applied in many researches related to human action recognition. For example,
Schuldt, Laptev and Caputo [9] extract local events such as size, frequency and velocity
of moving patterns from videos and create a new video database, KTH data set !, to eval-
uate the proposed human actions classification with the SVM method. Using the SVM
method, they carefully model the data representation based on local spatio-temporal fea-
tures and select appropriate features, kernel tricks, and hyperparameters to obtain the

desired results.

Further, Marszalek, Laptev and Schmid [10] believes that human actions are highly cor-
related with background scenes, which means the context of the scene can help identify
human actions in videos. They creatively use movie scripts and movie videos, Hollywood-

2 data set 2, to train “a joint scene-action SVM-based classifier” with script-to-video align-

IRecognition of human actions: https://www.csc.kth.se/cvap/actions/
2Human Actions and Scenes Dataset: https://www.di.ens.fr/~laptev/actions/hollywood2/

https://www.csc.kth.se/cvap/actions/
https://www.di.ens.fr/~laptev/actions/hollywood2/

ment. They explained in detail how to get aligned target actions and target scenes from
movies and also used X2 kernel function in SVM classifier, similar to the research by
Schuldt, Laptev and Caputo [9]. In another example, Soomro and Zamir [11] focus on
action recognition in realistic sports videos. They conduct research on action localisation
and recognition using UCF Sports data set 3, including many sports actions collected

from television channels.

By reviewing the early research in the human action recognition field, the spatio-temporal
features in video data sets and the approaches of organising and building data sets are
introduced. Unlike image classification tasks with numerous public data sets available,
video data sets are always for individual research questions, so there is no public data
set suitable for this research. As a result, creating a data set is a part of this research,
detailed in chapter 3 and chapter 4.

2.2 Online exam security system

In order to learn about the background of the security system of remote exams and pro-
pose a new system that better adapts to the status quo, this research reviews the previous

research on the security system of online exams in this section.

Before the COVID-19 pandemic, the technology of paperless testing through computer
systems has been widely used. For example, TOEFL iBT (Internet-based test) has gradu-
ally replaced the PBT (paper-based test) by using the Internet and computers for paper-
less exams from late 2005. Another example is specific exams that are impossible to be
sat on paper, such as programming competitions or exams requiring running compilers.
Although all these exams were in the form of using computers and the Internet, students
were required to congregate in testing centers.

As a result, most of the previous research in this field assumes that the exam can still
be organised in test centres, so the research direction of exam security focusing on bio-
metric authentication. For example, Traoré et al. [12] propose a multi-modal biometric
authentication framework, including face biometric and dynamic biometric from com-
puter input devices, such as mouse and keyboard. The purpose of biometric authentic-
ation is to prevent imposters in the exam, and the invigilators of the test centre should
detect other cheating in time.

Nowadays, the pandemic segregates students at home for remote exams, invalidating
the previous assumption. There are still some studies proposing new solutions for bio-
metric authentication in exams. In Japan, Yasuda and Ogeta [13] propose a new continu-

ous biometric authentication method based on hand image features, which can prevent

3UCF Sports Action Data Set: https://www.crcv.ucf.edu/data/UCF_Sports_Action.php

7

https://www.crcv.ucf.edu/data/UCF_Sports_Action.php

cheating, especially impersonation due to lack of invigilation. They use a mirror and
a wide-angle lens to capture the images of students’ hands when they take the exam
and obtain the contour features of the hands through image processing. However, any
biometric authentication cannot prevent cheating by the students per se, such as using
mobile phones to search online or seeking help from others.

In 2020, Garg et al. [14] point out that many security issues still exist in online exams, and
propose a system based on Haar Cascade Classifier and Convolutional Neural Network
to detect, track, tag, and identify the student’s face. Although this system innovatively
uses deep learning models, only using facial features and constraints in the design is not
comprehensive compared to action recognition. And another disadvantage is focusing
on facial features may cause contention in privacy risks mentioned in the research eth-
ics section 1.3. For example, students can still cheat with mobile phones during online
exams even with the facial-based security system enabled.

After investigating many previous studies on online exam security systems, it is con-
cluded that most of the research is limited to biometrics authentication, and there is no
readily available security system that equips a deep-learning-based human action recog-
nition model. As a result, this research originally applied the human action recognition

technique to the online exam security system.

2.3 Deep models detail

Machine learning is a branch of artificial intelligence. Deep learning is also a branch
of machine learning, which utilises artificial neural networks for feature learning and
hierarchical feature extraction to replace manual feature engineering in other machine
learning methods. Recently, the research of deep learning is a hot topic in the field of
computer science, and it is also an important method used in the computer vision task
in this research. This section will introduce the details of a variety of deep learning
models related to this research, including CNN, RNN, attention and Transformer struc-
tures. Although the applications or target tasks of these models are different, the design
ideas between them are mutually influential. Therefore, reviewing the development and
design concepts of these previous models will greatly help the design of the model in
this research.

2.3.1 Convolutional neural network

With the rapid development of neurobiology and cognitive science, the concept of artifi-
cial neural networks, a computational model that imitates the structure and function of

biological neural networks, has been proposed as early as the last century. Fukushima

[15] proposed a network created from the animal visual system as well as some key con-
cepts, such as local receptive field, multi-layer perception architecture and translation

equivariance and invariance property (not affected by the shift in position).

In detail, the local receptive field means that each neuron will not perceive the image as a
whole, but will only perceive the local information, then the local perception can be integ-
rated through a multi-layer perception architecture to obtain the global perception. On
the other hand, the property of translation equivariance and invariance is emerging from
the combination of the local receptive field and multi-layer perception architecture.

The study of neurobiology and cognitive science then evolved into a computational model.
For example, Zhang et al. [16] propose the first two-dimensional Shift Invariant Artificial
Neural Network (SIANN). Then, LeCun et al. [17] proposed a original CNN with two
convolutional layers and two fully connected layers using back-propagation method to
train in a supervised learning approach. They also highlighted the term convolution for
the first time, and named this model type as convolutional neural network (CNN). Soon
after the application of this model in handwritten zip code recognition, Zhang et al. [18]

applied it to a practical case of recognising medical imagery.

C| feature C2 feature

T2ps Maps S2 feature
S| feature maps
maps

Full
Connection

\

Subsampling

Convolutions Convolutions

Convolutions Subsampling

Figure 2.3: CNN applications in vision by LeCun, Kavukcuoglu and Farabet [19]

The most revolutionary progress is that LeCun, Kavukcuoglu and Farabet [19] proposed
a modern architecture for this model in 2010, as illustrated in figure 2.3. This structure
comprises three convolutional layers combined in between with two sub-sampling lay-
ers, and two fully connected layers. Sub-sampling, also known as pooling, reduces the
size of feature maps, by retaining only important information to simplify calculation.
Further, it further strengthens the translation invariance, taking maximum pooling as
example, because the translation does not affect the maximum value, the pooling result

remains unchanged.

In the following years of development of CNN, the number of layers in deep networks is
gradually deepening to obtain greater high-level information. In 2012, Krizhevsky, Sut-

9

skever and Hinton [20] proposed AlexNet which use 5 convolutional layers and 3 fully
connected layers. However, as the number of hidden layers increases, the model gets
more complex and prone to overfitting. AlexNet uses the Dropout layer by randomly
breaking neuron connection (setting random input units to zero) in training process to
prevent overfitting. Two years later, Simonyan and Zisserman [21] proposed Visual Geo-
metry Group (VGG) model, in which 3 x 3 size convolution kernels are fully used in a

total of 5 layers, just as the title of the paper, it is a very deep convolutional network.

The experiment in the VGG model concluded that the deeper the number of network
layers, the better the performance. However, as the depth of the model and the number
of parameters continue to increase, the following two significant problems have been
discovered.

1. The network is prone to overfit, requiring more training data, making it more dif-
ficult to train.

2. More storage resources and computing resources are required, but cannot provide
adequate performance boost.

In order to solve these problems, He et al. [22] proposed a residual structure to make
deep network training easier with enhanced performance but fewer parameters and
lower complexity. They first identified that the root cause of these problems is that the
deeper network structure leads to degradation, i.e., the training error and the verific-
ation error both increase since the deeper network does not learn anything but loses
useful features. Then, figure 2.4 illustrates two types of building blocks used in ResNets
with different number of layers. The first typical block just uses cross-layer connection,
a linear layer from input to output connected directly. By denoting the desired under-
lying mapping as H(x), the each layer learns the residual between input x and desired
output F(x) := H(x) — x. As a result, such a residual structure allows the deep network
to adapt to the appropriate depth, i.e., use the identity transform across unnecessary
layers.

Further, figure 2.5 compares the network structure of VGG-19, 34-layer plain, and 34-
layer residual and shows how to use the building block in the actual deep network. Fig-
ure 2.4 also shows a “bottleneck” building block for deeper ResNets, which first uses a
1 x 1 size convolution to reduce the dimensional across channels to reduce the calcula-
tion required in the 3 x 3 convolution.

10

Building block (on 56x56
feature maps) for ResNet-34

256-d

1x1, 256

VGG-19
image
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128

34-layer plain

image

\ 4

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64
3x3 conv, 64

34-layer residual
image

A “bottleneck” building : . .

block for ResNet-50/101/152 . . .

Figure 2.4: Residual build- Figure 2.5: VGG and Residual ImageNet by He et al.
ing blocks by He et al. [22] [22]

3x3 conv, 64

2.3.2 Recurrent neural network

CNN solves the spatial problem of imagery and has been widely used in the field of
computer vision, but it is powerless for data with time-series features. For example,
it is necessary to understand the words sequentially in sentences in natural language
processing tasks. And in understanding videos, it is necessary to understand the rela-
tionship between frames. In these tasks, the recurrent neural network (RNN) emerged
to process the time-series features.

Jordan [23] proposed the Jordan network, by introducing a recurrent connection that
feeds back the output of the whole network to the input layer after a time delay. Later
in 1990, Elman [24] formally defined the recurrent neural network model, in which the
output of each recurrent hidden layer goes to the subsequent layers and feeds back to
the input of the layer after a time delay. The first figure on the left in Figure 2.6 shows
the structure of the simplest recurrent network, with an input-output and a hidden layer,

denoted as x, y and h, where the arrows indicate the flow of data.

The middle unfolded RNN figure shows the sequential structures by unfolding inputs
and outputs of the network in chronological order. The input includes the initial hidden
state a’, a series of data x”, then the model generates sequential outputs y". However,

the model with unidirectional memory has a limitation that the model can only know

11

the history data and cannot foresee the data that is about to be input. For tasks requiring
two-way dependencies, such as natural language processing, each word has a strong re-
lationship associated with other surrounding words, thus a bidirectional RNN structure

is introduced as shown in the right figure in Figure 2.6.

h ! }
-8
! ! ! .
)
T T T
RNN Unfolded RNN Bidirectional RNN
Figure 2.6: RNN, unfolded unidirectional RNN and unfolded bidirectional RNN

However, Hochreiter and Schmidhuber [25] pointed out that simple RNN tends to only
keep short-term memory and is prone to lose long-term memory, because the same
weight of the network is shared at all time steps, and the final gradient tends to disappear

after multiple time steps, proved by Hochreiter’s analysis.

aﬁavg(_t)q) — Y Y TLF (nety (t—m))wiy | (2.1)

Hochreiter and Schmidhuber [25]

Equation 2.1 shows that the back-propagation gradient in simple RNN is equal to the
product of the gradients of each time step after multi-step propagation. An intuitive
explanation is that the gradient is mainly dominated by the short-distance gradient, and

thus it is difficult for the model to learn long-distance dependence.

Long-short-term memory (LSTM) was proposed to solve the problem that the simple
RNN cannot learn long-term dependence by introducing a separated cell state C; to keep
long-term memory. And later on, Gers, Schmidhuber and Cummins [26] introduced I/O
gates, a forget gate to control loss or keep memory in cell state, resulted in the modern
LSTM cell structure shown in the left of Figure 2.7.

LSTM introduces lots of things into RNN, which leads to an increase in trainable para-
meters of each unit, making it harder to create a model with a deeper network. Gated
recurrent unit (GRU) is an improved LSTM algorithm proposed by Chung et al. [28] in
2014. It merges the forget gate and the input gate into a single update gate. It also com-

12

LSTM GRU
forget gate cell state reset gate

r=I

........

input gate output gate update gate
sigmoid tanh pointwise pointwise vector
multiplication addition concatenation

Figure 2.7: LSTM and GRU structure comparison by Phi [27]

bines the cell state and the hidden state. As shown in the right of Figure 2.7, GRU struc-
ture is much simpler than LSTM, making it possible to create a deeper network.

LSTM and GRU only remedy and alleviate the problem of gradient vanish to a certain
extent in RNN, and memory loss can still occur in the case of long-range dependencies.
Most importantly, this network structure has one limitation that made it not suitable
for mobile applications. The enforced sequential calculation process is due to depend-
encies on the result from the previous time, which greatly limits the parallel capability
of calculations, thus making it impossible to achieve reasonable performance on mobile
devices.

2.3.3 Attention and Transformer

The attention mechanism originated from the human experience of perceiving things
either visually or audibly. Intuitively speaking, when we observe something through
sight, we do not pay attention to all the details but paying attention to a certain part that
needs to be focused and giving low attention to the surroundings.

The attention mechanism was firstly added to recurrent neural networks as a visual atten-
tion modelling. In 2014, Mnih, Heess, Graves et al. [29] proposed a recurrent attention
model that combined ideas in RNN and the attention mechanism for image classifica-
tion and achieved good performance. Besides, the researchers discussed and reached
forward-looking conclusions that it can be used in object recognition and video classific-

ation in future work due to the encouraging results achieved.

In 2016, Bahdanau, Cho and Bengio [30] firstly introduced the attention mechanism into

13

the natural language processing field. In their work, they perform translation and align-
ment jointly with the attention mechanism on machine translation tasks because “the
use of a fixed-length vector is a bottleneck in improving the performance of this basic

encoder-decoder architecture”, said by Bahdanau, Cho and Bengio [30].

OQutput
Probabilities

Mask (opt.)

(| Add & Norm ﬁ\

Feed

MatMul
Forward

Q K V
4 A | Add & Norm z

1
Figure 2.8: Scaled Dot-Product —{((Add & Norm) :
. Multi-Head
Attention [31] Feed Attention
Forward Nx
_— =t
Add & Norm_je—~
. Nx I
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t t
| C— J \ ——')
Scaled Dot-Product 4 Positional D A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 2.10: The Transformer model architec-

ture [31]
Figure 2.9: Multi-Head Atten-

tion [31]
One year after the attention mechanism was applied in the machine translation tasks,
Vaswani et al. [31] proposed scaled dot-product attention (Figure 2.8), multi-head at-
tention (Figure 2.9) and the Transformer model (Figure 2.10) that is “relying entirely
on self-attention to compute representations of its input and output without using se-
quence aligned RNNs or convolution”, said by Vaswani et al. [31]. Then, experiments
were performed on the machine translation task using the proposed Transformer model
and achieved better performance and results, making the attention mechanism the most

preferred solution for natural language processing tasks.

14

KT

Vdk

Attention(Q, K, V) = softmax()V (2.2)

Vaswani et al. [31]

Figure 2.8 shows the scaled dot-product attention mechanism, where Q, K, and V rep-
resent Query, Key and Value respectively. Further, formula 2.2 shows the calculation
process of it mathematically. In this formula, the dot-product between Query and Key
matrix represents their similarity, which is normalised by the square root of the dimen-
sion of dy, since dot-product may grow large in magnitude, pushing the softmax activa-
tion function into regions where it has extremely small gradients. The result from soft-
max activation is normalised probabilities representing the attention matrix visualised

in Figure 2.11.

I IHEaIdEI |

Figure 2.11: Multi-head attention matrix visualisation [32]

The idea behind multi-head attention is analogous in using multiple kernel filters in
CNN to help the network capture richer feature sub-spaces on different aspects of data.
Figure 2.9 illustrates the structure of the multi-head attention. It contains linear layers
at inputs and the output, h times the scaled dot-product attention computation process,
and a concatenation layer that combines the outputs of each scaled dot-product atten-

tion.

The building block in the Transformer consists only of multi-head attention and feed-
forward network and does not contain any convolution or recurrent structure. These
building blocks are stacked in multiple layers and connected in residuals to form an

Encoder-Decoder structure that is the Transformer model shown in Figure 2.10.

Another detail worth mentioning in the Figure 2.10 is that the input content needs to add
position encoding because this model is not sequential input, which implicitly includes
position information. If there is no positional encoding added, Transformer will not be
able to capture the order of input sequence, which degenerates it into a bag-of-words

model in natural language processing tasks.

While convolutional neural network (CNN) is in the ascendant among the fields of

computer vision, the Transformer model composed of pure attention mechanism has

15

achieved state-of-the-art results in many natural language processing tasks.

In 2018, Devlin et al. [33] published the Bidirectional Encoder Representations from
Transformers (BERT) model, in which the Mask Language Model (MLM) and Next Sen-

tence Prediction (NSP), two methods are used in the pre-training process to make Trans-

formers capture the relationship between words and sentences. The amazing results in

many NLP tasks from this model became the most important contribution that started
a new era of NLP in 2018.

As a result, the Transformer model gradually replaced the RNN-based seq2seq model

that inherently has sequential computing and long-term memory loss issues. Innovative

design concepts from the Transformer model are also carried forward from the fields of

natural language processing to computer vision territory.

Input Image

Input Image

w | Ll Ly
by | |
e 4T
EEEN
| |
(Stem) Linear Projection of Patches
| Rl 1] Ve
[Stage 1] [class] token -
Residual Block x 3
Stage 2 Position Embedding
Residual Block x 4 ‘
e Stage 3 N (Transformer Encoder)
| :
e (LayerNom]
L N
BN ReLU MHSA
1 X 1 Conv
BN
LayerNorm
RelLU *
_ Residual Block X 6) MLP
[Stage 4]
Residual Block x 3 Transformer Block X 12
[Avg Pool] } [class] token
(Classifir) (Classifier

)

(a) ResNet-50

(b) DeiT-S (ViT-S)

Figure 2.12: Compare the architecture of
ResNet-50 and DeiT-S (ViT-S)[34]

16

Recent studies are exploring the applica-
tion of Transformers architecture in the
field of computer vision recently, such as
Data-efficient image Transformers (DeiT)
and Shifted window (Swin) Transformers.
Many researchers have tried to introduce
the attention mechanism in imagery tasks
and compared model designs and res-
ults with widely-adopted CNN-only mod-
els such as ResNet, illustrated in Figure
2.12.

However, Dai et al. [35] pointed out
that the performance of Transformers-
based vision models still has a gap com-
pared with state-of-the-art convolutional
They also showed that the

generalisation is worse than convolutional

networks.

networks because of the lack of the right
inductive bias in the Transformers-based
vision models. As a result, they proposed
a hybrid model that married convolution
and attention, leading the future research

direction from this attempt.

2.4 Mobile device optimisation

After introducing the background and details of several deep models related to achiev-
ing the research goals, mobile device optimisation for deep models is another focus of
this research. To protect user privacy by running model inference on mobile devices
with limited computing power means model architecture, computational and spatial
complexity need to be optimised. In this section, I will discuss the mobile optimisation re-
search of deep models, especially the CNN and Transformers used in this research.

2.4.1 Mobile optimisation overview

In order to run deep learning models on mobile devices, it is necessary to understand
the target platforms. Deng [36] investigated the support of the mobile hardware ar-
chitecture and mobile operating system for deep learning, as well as the status quo of
mobile deep learning frameworks, such as Tensorflow Lite, CoreML and etc. Then he
explained the model compression techniques such as algorithmic optimisation and joint

software-hardware co-design.

In 2020, Chen et al. [37] conducted an in-depth survey of the important compression and
acceleration techniques on mobile devices, and classified them into “pruning, quantisa-
tion, model distillation, network design strategies, and low-rank factorisation.” Prun-
ing and quantisation are the two techniques for compressing model parameters to save
storage, while model distillation, network design strategies are the two techniques for

improving the inference speed of model.

In detail, pruning is a compression technique to trim unimportant weights in models,
then achieve model sparsity to allow compression algorithms to become more effective
and reduce the storage cost. This compression technique may also bring about little
speed increase, because some unnecessary residual paths may be short-circuited. An-
other model compression technique is quantisation that directly lower the precision of
the model parameters, e.g. use 16-bit float instead of 32-bit float. The process can be car-
ried out in the model deployment and conversion even after the training is completed.
These two compression technologies may bring uncertain and insignificant acceleration,
so the improvement of model calculation performance mainly depends on model distil-

lation and network design strategies.

The idea of model distillation is derived from transfer learning, which has a two-step
training process, first pre-training the model on a large dataset and then fine-tuning
the pre-training model on another smaller data set. The model distillation process has
similar ideas that transfer dark knowledge from the teacher network to train a smaller

student network. Then, the large teacher network is converted into a small network while

17

retaining the performance close to the teacher network. Although model distillation is a
very effective optimisation and has quite a lot of successful researches in the NLP field,
the implementation is more complicated, because transferred knowledge needs to be

carefully defined according to different models.

2.4.2 Evolution from MobileNet to EfficientNet

The network optimisation strategy for CNN models is covered in the evolution process of
MobileNet and EfficientNet. This subsection will introduce vital ideas and innovations
proposed by each version.

Howard et al. [38] proposed a lightweight convolutional neural network focused on mo-
bile devices, namely MobileNet. The first version of the proposed model uses sequential
convolutional layered architecture like VGG but replaces standard convolutions with
depthwise separable convolutions to greatly reduce the calculations required in convo-

lutions.

(a) Depthwise conv. (b) Pointwise conv. (c) Atrous depthwise conv.

Figure 2.13: Depthwise, pointwise and atrous convolution [39]

The depthwise separable convolution splits the standard convolution into two opera-
tions, depthwise convolution (Figure 2.13 (a)) and pointwise convolution (Figure 2.13
(b)) respectively. In detail, Formula 2.3 expresses the calculation of standard convolu-
tion, and it has the computational cost of Dk - Di - M - N - Dg - D, where M and N denote
the number of input and output channels; Dk and D denote the dimension of kernels

and feature maps.

Gin= Y Kijmn Firitisjim (23) Giim =Y Kijm Frrictirj1m (24)
1,/,m 1,
’ Howard et al. [38] ’ Howard et al. [38]
Formula 2.4 shows that depthwise convolution uses only one convolution kernel for each
channel, and there is one to one map from each input channel to each output channel,
thus the computational cost is Di - Dk - M - Dr - De. The pointwise convolution is a
standard convolution with kernel size of 1 x 1 that perform a combination of the inputs

along the channel direction, so the computational costis M - N - Dr - Dg. By comparing

18

computational cost formulae, total deduction for depthwise separable convolution is % +

1
2-
Dy

(a) Residual block (b) Inverted residual block

Figure 2.14: Compare residual block and inverted residual block [40]

One year after the release of the first version of MobileNet, Sandler et al. [40] contrib-
uted two new ideas in the second version to further optimise the performance of the
MobileNet model. The first one is the inverted residual building block shown in Figure
2.14 (b). As compared in the figure, the original residual design in ResNet (Figure 2.14
(a)) reduce dimension first and extraction with standard convolution, but in inverted
residual design, the dimension is increased first and use depthwise convolution in the
middle. The second alternation is using a linear bottleneck in the last layer in each in-
verted residual building block to avoid feature information lost in non-linear activation,
especially for Rectified Linear Unit (ReLU) that always outputs zero gradients for any

neuron weights zero (dead neuron).

In 2019, Tan and Le [41] proposed EfficientNet that inherited the design ideas from Mo-
bileNetV2 with a systematical methodology to scale up the model in network depth,
width and input resolution to obtain better balance between accuracy and efficiency.
Figure 2.15 illustrates the architecture of the proposed baseline network EfficientNet-B0.
The network is mainly composed of mobile inverted bottleneck convolution(MBConv)
proposed in MobileNetV2. The result shows that it achieves a Top-1 accuracy of 77.1%
on ImageNet with 5.3M parameters and 0.39B Flops.

|
|
|
|
|
|
|
|
|

o~ ©o
® & = o~ ~ ™~
& & & 3 3 g S 8 8 3 T b= b= o o o o o
g clelcsle|dlel(d|lve|ls v 0|s|e|d[e(dlelflv|f v|fv|(2|lelR|vw (@ v |8
B4 el X | X|(vw| X || X || X | Q] X Q] XN X || X|[=] X |=| X |x| X |x| >X|x| X |x| X|x
< J|@|J|@Z2 %6 R B[R SX[@G X B[X6 [|X |6 [X| 0|6 |6 6[8]6]|Z
QD= S| Sle] L|e| Lo L|e - | o .| ~ | & L= S B < B I~ B >3 Bl > R I3 B I3
SO 1~ R -~ i -~ i~ et~ e = -3 e <00 I~ 1~ I~ - - 0 I e [~
F £ £ £ €™ £ £ £ £ cerer>er>™er™er™er™c €
H I} <] <] o o o <] 5] o o <) <] <) o o o
O (8] (8] o Q (8] (8] (8] (] (8] (8] [&] (&) O O O [&]
o 1] o fu1] [a1] 1] o o [11] [a1] om m 1] [11] m [11]
= = = = = = = = = = = = = = = =

Figure 2.15: The architecture of baseline network EfficientNet-B0 [41]

Two years after the debut of EfficientNet, Tan and Le [42] proposed the second version
of EfficientNet in 2021, which has a smaller model and faster training and achieves state-
of-the-art results on ImageNet.

19

2.4.3 Optimisation of Transformer Networks

Wau et al. [43] pointed out that even though Transformer-based models achieve state-of-
the-art results in natural language processing tasks ubiquitously, it is unsuitable for run-
ning on mobile devices because the self-attention mechanism puts a lot of pressure on
storage and computation. To tackle the problem, Wu et al. [43] proposed a Lite Trans-
former model that uses Long-Short Range Attention (LSRA) to replace standard full

self-attention used in Transformer.

Figure 2.16 displays the structure of the pro-

l L5] posed Long-Short Range Attention that one
- D group of heads models the local context
[Embedding J with convolution while another group fo-

cuses on the long-distance relationship with

O full attention. This method takes advant-

age of the convolution that is good at cap-

Conv turing local features with small calculation

l'l-r
..-l-

resource required while using the attention
Local

GLU Extractor mechanism that is good at long-distance.

It concludes that using self-attention only

[Embedding J overemphasises the local features, and it is
~ 4 possible to use another modelling method
l FFN] in Transformer-based models.

Figure 2.16: Lite Transformer block [43] Beltagy, Peters and Cohan [44] published
Longformer model, another optimised Transformer-
based model, almost at the same time in

April 2020, which also pointed out that the self-attention mechanism has limitations
when targeting long sequences, depicted in Figure 2.17 (a).

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window
Figure 2.17: Full self-attention and attention patterns proposed in Longformer [44]
In full n? attention, the time and space complexity are all increased quadratically with
the sequence length n, because the Queries at each location needs to pay attention to

Keys at each location. An idea proposed in Longformer uses three different attention

patterns to build a sparse attention matrix rather than a complete attention matrix.

20

The first method is to use a fixed-size sliding window that goes through each token to
calculate local attention (Figure 2.17 (b)). In this way, each token only needs to pay
attention to the tokens within the sliding window size w. Although it undermines some
long-distance attention ability, it greatly reduces the amount of calculation required to
O(w X n) in terms of computation complexity.

The second method is using a dilated sliding window (Figure 2.17 (c)) in attention to
create larger receptive field, which is analogous to using dilated CNN in atrous convolu-
tion. This method also has computation complexity O(w x n), but expands the receptive
tield size to / x d x w, where | denotes the number of layers in Transformer, and d for
dilation rate.

The third method is designed specifically to handle tasks that require global attention
(Figure 2.17 (d)), such as text classification and question answering. For example, in
classification tasks, a [CLS] token is added to the head of all tokens with a global atten-
tion mark, indicating that the token requires global attention computation on all other
tokens in the matrix. And in question answering tasks, the question and document are
concatenated together and input to the model. Then mark the entire question sentence

to calculate the global attention, and find the answer in the document.

In a recently published paper, Mehta et al. [45] summarised three previously extensively
studied methods to optimise the efficiency (higher performance with fewer parameters)
on Transformer-based models, which are:

1. Improving transformers

(a) Improving the usage of self-attention on long sequences. (Longformer pro-
posed by Beltagy, Peters and Cohan [44])

(b) Explaining multi-head attention and possible redundant representations.

(c) Learning better representations, e.g. using convolution (Lite Transformer
proposed by Wu et al. [43])

2. Model scaling: a common way to improve the performance of deep models.
Increasing dimensions in width-wise scaling and stacking more blocks in depth-

wise scaling, which is analogous to the model scaling ideas in EfficientNet.
3. Improving sequence models
(a) Using better token-level representation.

(b) Using model compression, pruning and distillation.

21

2.5 Related works

The previous two sections introduce the model backbone related to the project and a
series of optimisation methods that can enable models running on mobile devices. This
section will mainly explain the background of video-based human action recognition
tasks and two deep-learning models that are mainly targeted to such tasks, namely 3D
Convolutional Neural Networks (3D-CNN) and Transformer.

2.5.1 Human action recognition overview

Video understanding, like natural language processing, is a class of many subtasks and
has many similar types of tasks as shown in Table 2.1. Compared with text classification
tasks in natural language processing, one type of classification task in video understand-

ing is human action recognition based on sequential pose features in a video.

Task type NLP task Video understanding task

Sequence labelling | Part-of-speech (PoS) tagging, | Action labelling with start and
Named Entity Recognition | end frame position

(NER)

Classification Based on sentiment, language | Based on action, environment
or topic or topic

Generative tasks Translation, summarisation, | Video caption, video summar-
Question—Answering isation, Question-Answering

based on video context

Table 2.1: Comparing tasks in NLP and video understanding

Both video-based data set and text-based data set have characteristics of sequence, which
brings the similarity of these tasks described in Table 2.1. However, video data sets are
also different from the text and have their complexity. Wu, Sharma and Blumenstein
[46] reviewed the wide range of applications and challenges involved in human action
recognition in videos, as well as the deep learning-based techniques proposed to ad-
dress the challenges. One challenge is that videos are divided into different classes,
for example, single or multiple viewpoints and the modalities include monochrome (in-
frared) sequence, RGB sequence, depth image sequence, and skeleton point sequence.
As for deep models, 3D-CNN, combinations of CNN and RNN was widely used before

the Transformer architecture emerged.

Considering that most mobile phones capture monocular RGB sequences, therefore, my
research only investigate this video modality. Besides, the subsection 2.5.2 will detail the
3D-CNN and models combined from CNN and RNN.

22

2.5.2 3D-CNN and RNN based methods

The standard two-dimensional convolution uses a two-dimensional kernel filter on each
channel, and only two-dimensional features can be extracted. Tran et al. [47] reviewed
many previous 3-dimensional convolutional networks (3D-CNN) and highlighted rel-
evant applications on spatiotemporal features in video dataset. As shown in Figure 2.18,
2D convolutional kernel filters are expanded to 3D and allow them running on multiple
channels simultaneously. 3D-CNN is widely used in tasks that process multiple im-
ages at the same time, such as medical computed tomography (CT) scan data and video
data.

Hkg j - kg“;’ —>

output

w output
\

(a) 2D convolution (b) 3D convolution

Figure 2.18: 2D convolution and 3D convolution [47]

The difference between the proposed 3D convolution and the multi-channel 2D convolu-
tion is that the 3D convolution uses weight-sharing kernel filters, while the multi-channel
2D convolutional kernel filters have different weights for each channel and ignore adja-

cent channels in computation.

Back to 2011, Baccouche et al. [48] firstly applied a composed architecture of 3D con-
volution and RNN to the human action recognition task. In this work, 3D convolution
is firstly used for learning spatiotemporal features automatically, followed by an RNN
“ to classify each sequence considering the temporal evolution of the learned features
for each timestep”, said by Baccouche et al. [48]. The researchers also spotted the per-
formance drawback of the RNN and will investigate the possibility of using a single-step

model in future work.

One year after, Ji et al. [49] proposed a human action recognition model composed
purely of convolutional operations. The premature network design is shallow and does
not use residual connections, which are very similar in architecture to LeNet, consist-
ing of multiple convolutional layers and pooling layers. In addition, they add some
designed features (optical flow fields in many directions) to input, which is not an end-

to-end trainable network.

After several years of development, Tran et al. [47] proposed model Convolutional 3D
(C3D) that achieved the state-of-the-art in video tasks in 2015. This model does not
involve the input of additional handcrafted features at all, but it also exposes some

23

weaknesses of the 3D convolution. For example, 3D-CNN cannot use pre-trained res-
ults from 2D images, such as ImageNet. Also, the network has too many parameters,
which is prone to over-fitting in the case of using an insufficient amount of video train-

ing data.

To overcome the weaknesses of using CNN or RNN individually, Simonyan and Zisser-
man [50] proposed a Two-Stream network. The network consists of a spatial flow fo-
cused on each image frame and a temporal flow focused on the calculated optical flow.
Based on the idea of using the Two-Stream network, Feichtenhofer, Pinz and Zisserman
[51] pointed out that the fusion process in the last Softmax layer caused losses and 3D
convolution can perfectly fuse the spatiotemporal information in the convolutional lay-

ers.

In 2018, Carreira and Zisserman [52] summarised the previous research on different
methods used in the field of action recognition, which is also discussed in this subsec-
tion, namely ConvNet+LSTM (CNN+RNN), 3D ConvNets (3D-CNN) and Two-Stream
network. Based on these previous ideas, Inflated Two-Stream 3D ConvNets (I3D) is pro-
posed and achieved good results on both HMDB-51 and UCF-101 data sets.

2.5.3 Transformer-based Neural Networks

Girdhar et al. [53] first incorporated the Transformer architecture into deep-learning-
based action recognition tasks and proposed the Video Action Transformer network to
identify and locate human actions in video data sets. The architecture of the proposed
Video Action Transformer is shown in Figure 2.19 that the state-of-the-art model of 2019,
Inflated Two-Stream 3D ConvNets (I3D) is used to extract features from video clips. The
target task of this model is to recognise and locate human actions. It not only needs to
detect the position of all people in the video but also classify the actions of each people, so
the network structure is very complicated and cannot be applied on mobile devices.

Input clip 13D base - § Multi-head, multi-layer Tx Head
embedding
RPN over center RolPool i 9 i v '
o i@ 4 iE 4 @ }
frame features
Layer
ﬂ B A ==
‘ @ Softmax] E— N+1
¢ i] — way
aitenton - classification
@ Q Q Bounding box
Tr i

Convolutional feature regression
unk map from 13D

Weighted Sum Dropout Dropout

Figure 2.19: Video Action Transformer Network architecture [53]

If the target task is not to mix recognising and localising like the famous object detection
model YOLO, the region proposal network (RPN) network used to obtain the position

24

can be removed. In this way, the paradigmatic architecture of using spatial convolution
firstly and then temporal Transformer inspire research on classification tasks in the video
understanding field.

In February 2021, Neimark et al. [54] proposed the Video Transformer Network (VIN),
which intuitively uses Transformer to model long-range context relationships in videos
for classification tasks. The architecture of this network is clearly shown in Figure 2.20.
It first uses the spatial network backbone f(x) to extract features from frames, adds
position embedding frame index number PE, to extracted feature vectors, and finally
uses a fully connected multi-layer perceptron (MLP Head) to generate classification res-
ults.

MLP Class ID
Head ? “absedling*

Temporal attention-based encoder

A A A .

o) I Prij w I frid

a a a a i = F ==
A A A S

flz) flz) Flz) flz) flz) flz) flz) flz)

PEp
CLS Token
PE1
i
PEz
iz

Figure 2.20: Video Transformer Network architecture [54]

This research used Kinetics-400 as training and evaluation data set, and implemented the
proposed model in PyTorch framework based on Facebook SlowFast* code base. They
used a powerful 8-V100-GPU machine for experiment, in which each GPU has 16GB

memory, enabling them to conduct experiment on the large-scale video data sets.

As for contribution, they proposed a novel modular transformer-based model for the
video classification task that is much more performant and efficient compared to previ-
ous methods. Under this modular model, they also experimented and evaluated two
spatial backbones, ResNet and Vision Transformer (ViT), as shown in Table 2.2. The
table shows that the ResNet (CNN-based) scheme has lower computation complicity

4PySlowFast: video understanding codebase: https://github.com /facebookresearch /SlowFast

25

https://github.com/facebookresearch/SlowFast

than ViT-based scheme, which is denoted in inference GFLOP, but the ViT-based back-
bone brings a higher accuracy to the model.

Model training | training | validation| params | inference | top-1
runtime | epochs runtime | (M) GFLOPs
(mins) (mins)
R50-VTN 62 40 32 168 1,059 71.2
R101-VTN 110 40 32 187 1,989 72.1
ViT-B-VIN(1 layer) | 107 25 48 96 4,214 78.6
ViT-B-VTN(3 layers) | 130 25 52 114 4,218 78.6

Table 2.2: Video Transformer Network experiment results [54]

Almost at the same time in March 2021, Google researchers Arnab et al. [55] published
Video Vision Transformer (ViViT) that is a pure-transformer based model for video
classification tasks. The first Figure 2.21 shows the architecture of the proposed model
without factorisation with three model variants that factorise the different components

of the transformer encoder in spatial and temporal dimensions to enhance efficiency.

MLP
Head l—» Class

Factorised i Factorised i Factorised

Transformer Encoder Encoder i Self-Attention i Dot-Product
i
Position + Token [) ' i
Embedding
- e s t
@ C_Fese)
B
= ' - : - '
- - L v S v T L T S
1 [O
B Embedto| G | Wuli-Fead { V| o ‘ '
= tokens DotProduct 3 Lo Vo T
@ | ||| ——— | | | e | e
CO—
..1 -.2 - -.N

Figure 2.21: Video Vision Transformer model and factorised variants [55]

These researches on Transformer-based networks on video classification are important
references to my research. From here on, reviewing a variety of related studies has taught
me a lot and give me a clear direction for designing optimised model for the application
of exam invigilation. I need to complete the following tasks for model design in the
next design stage: To design the model with appropriate spatial backbone and temporal
Transformer backbone; and to optimise the model so that it can run on mobile devices

with limited computing power.

26

3 Design

After reviewing related previous studies, this chapter will discuss various possible designs
and rationales for the system design before actual implementation according to project
requirements.

Firstly, the design of the data collection process is introduced in section 3.1, including
the data type to be collected, the labelling approach and the functionalities that need to
be implemented in the data collection app.

Secondly, it is necessary to design the data preprocessing pipeline in section 3.2 accord-
ing to the anonymity requirement detailed in research ethics (section 1.3), and transform
the data to make it suitable for model input.

Thirdly, the design of a deep model suitable for solving the problem of this research is
detailed in section 3.3, based on the related previous research and the background of
deep models.

3.1 Data set collection

To build a video data set suitable for this research, in section 2.1, I reviewed the feature
engineering and classic machine learning models before the deep-learning. The feature
engineering process is directly related to the understanding of the characteristics of the
data set. It helps to design the data set collection scheme and the depth model architec-
ture.

The main difficulty in human action recognition tasks lies in the acquisition of video data
sets. In detail, it is difficult to obtain enough data in both number and quality to train-
ing deep-learning models, especially for a video data set. Although many public data
sets for video understanding exist, unfortunately, they cannot be used in this research.
For example, the Kinetics data set contains many labelled human actions, but none of
these actions is a student taking the exam. Therefore, this research cannot use the public
data set, which leads to the first step in my research: to collect a labelled video data set
containing different actions of students taking the exam.

27

The design of the data collection process has two aspects: one is to clarify the require-
ments for the video data set, and the other is to design the data collection process and
the functionalities needed in the collection app according to the requirements.

3.1.1 Requirements of data set

The purpose of constructing a data set is to train a deep model to solve my research
problem. In the research problem, the on-device camera video input stream is used as
the input, so the format and modality requirements for the video data set are monocu-
lar RGB video. Besides, considering that the actual use case is videoing from different
angles, so the data set should contain multiple angles. In this research, to simplify the

data collection process, multiple angles are the front and side.

Another aspect is the appropriate video length in the data set. Too long videos may
contain multiple actions that should be classified into different categories, while a too
short video may result in too few data features to classify. Based on the experience in
public video data sets, this study designs the length of every video clip in the data set to
be 10 seconds.

From my experience of doing classification tasks in machine learning, the amount of data
in each category should be roughly balanced. An unknown category whose data volume
does not exceed the others can be added to the multi-classification task to represent an

activity beyond examination.

Based on the above discussion, the video data collection requirements are finally sum-

marised as the followings:

e The data set contains monocular RGB videos taken from the front and side of the

target examinee.
e The length of each video clip in the data set should be equal to 10 seconds.
e Each video should be labelled with a target category when captured.

e An “unknown’ category should be added. The total amount of the unknown la-
belled data should be less than or equal to the total number of the other.

o The effective categories should cover all the activities that examinees may perform

during the examination.

o The total amount of videos in each effective category (excluding Unknown) should
be roughly balanced.

After the data set requirements are determined, the functional requirements of the data

collection APP are also clarified. The design before development and implementation

28

adopts the user story method commonly used in the agile software development pro-

cess.

User stories are informal descriptions of features from the user’s perspective, which in-
tuitively explains how various users interact with the system, so as to define the sys-
tem functions. Usually, user stories are formed in natural language description, for ex-

ample:
As a [role], I can [capability], because [reason].

Appendix C.1 Table C1 lists the key contents of user stories in the data collection app.

3.2 Data preprocessing

After collecting videos uploaded by participants to create a video data set, data prepro-
cessing is the next process of adjusting the data to meet the research ethics requirements
processing it into an input format suitable for the model data loader. The video encoding
format defined in WebRTC specification is video/webm, with three types of video codecs
available in different browsers — VP8, H.264, and the latest VP9 that supports lossless
compression. Most of these video codecs use lossy compression to reduce the size of
transmitted data, especially for online use cases. Although the lossy compression may
change the video slightly, the alteration is too small to be distinguished, and the com-
pressed video is visually original. Therefore, there is no impactful data loss in the lossy

compression progress.

The compression reduces the size of transmitted data, but the side-effect is computation
overhead in decompression. If the model data loader decodes the video data during the
training process, it will consume lots of CPU during the decompression and anonymisa-
tion process. An optimisation method is decoding the video into a sequence of pictures
in the data preprocessing process to reduce the computational overhead in the training
process. An anonymous algorithm will be applied to each frame and save the results in
picture format. In this way, the data loader only needs to load the processed pictures

during the training process.

According to research ethics requirements, the data preprocessing process will use an
anonymisation algorithm to minimise the presence of facial details that might enable
the identification of an individual. The anonymisation algorithm cannot directly mask
the face completely. Because the facial information contains many features that help
the model to classify activities, such as the direction of sight, the lip movement during
speaking, etc.

29

The anonymisation algorithm should strike a balance between the complexity of imple-
mentation, performance, and the ability to keep research related facial features. In the
research, a simple two-step algorithm, namely feature masked face concealment, is used

to extract the key facial features while covering the other facial areas.

The following two subsections will introduce the details of the two-step process in the
anonymisation algorithm. The first step is to find and locate faces in the video, and the

second step is to extract facial feature points and perform masking on each frame.

3.2.1 Face detection with Viola—Jones algorithm

Viola and Jones [56] proposed a fast object detection approach using Haar-like features,
namely Viola—Jones algorithm, which extracts features from input images using a series
of adjacent rectangular regions. This operation is very similar to the convolution oper-
ation in convolutional neural networks. However, the difference is that the proposed
Haar Cascade uses predefined feature extraction kernels, such as edge features, line fea-
tures, etc. The classifier part uses AdaBoost algorithm, a famous Boosting method in en-
semble learning, in which it trains many weak classifiers to form a more accurate strong

classifier.

Currently, this algorithm is very mature and has been widely used in many studies. For
example, a previous study of virtual exam controller proposed by Garg et al. [14] was
introduced early in the literature review section 2.2. In this case, they use Haar Cascade
Classifier to detect, tag, and identify the students face and using deep learning to apply

exam constraints.

Technically, Haar Cascade Classifier use cascade structure to form multiple stages to
classify face regions as shown in Figure 3.1. This classifier has four vital features that
enable it to be widely used in face detection tasks quickly, summarised by Garg et al.
[14] as follows:

=
-l == ==

T T T
Stage 1]H[Stage 2 }—{ Stage n]HE

All subwindows

Using Haar-like features.

Detect

m F F“ face

Using the integral picture.

Using AdaBoost learning.

Rejected subwindows

subwindow

e Using cascading classifiers.

Frc magc
Figure 3.1: Haar Cascade structure [57]

OpenCV has provided a good implementation, cv::CascadeClassifier' and a variety of

lcascadedetect.cpp: https://github.com/opencv/opencv/tree/4.5.3/modules/objdetect /src

30

https://github.com/opencv/opencv/tree/4.5.3/modules/objdetect/src

trained models? for selection. In addition, the API design for this module is clear and
easy to use. The trained model can be loaded through cv::CascadeClassifier::load method,
and then cv::CascadeClassifier::detectMultiScale can be used to locate the face positions

in the input image and return the result of faces in the format of rectangular areas.

To summary, this Haar Cascade object detection method is suitable for real-time face de-
tection on mobile devices with the advantage of requiring a small amount of calculation.
Therefore, this research will use this method to perform the face detection procedure in
the anonymisation algorithm.

3.2.2 Face landmark extraction and face concealment

As mentioned above, after obtaining the position of faces from the input video, it also
needs to extract face landmark points and overlay them on the top after masking face
details.

A highly efficient and accurate face alignment algorithm was proposed by Ren et al. [58]
in 2014. This research still uses classic machine learning methods for low computation
complexity by using a combination of random forest and global linear regression to re-
gress key points of facial features. It learns the local binary features (LBF) of each key
point through random forest, then combines the features and uses linear regression to
obtain the key points. A facial landmark detection survey study published by Wu and Ji
[59] concluded that this regression-based method has both good performance and fast

speed.

0w

Figure 3.2: Landmark masked face concealment and face landmark schematic

2 Available models: https://github.com /opencv/opencv/tree/4.5.3/data/haarcascades

31

https://github.com/opencv/opencv/tree/4.5.3/data/haarcascades

The left picture in Figure 3.2 illustrates an exemplar face image (anonymised result)
with landmark masked face concealment applied. The right side in the figure displays
the schematic of the face landmarks used in this research. The schematic has 68 key
points to locate face landmarks in the image. These key points can represent many facial
features, such as face orientation, lips movement and other details without exposing

unrelated details in classifying exam activity.

In OpenCYV, this algorithm is also implemented in extra contrib modules. The class of
detecting face landmarks with LBF algorithm is defined in cv::face::FacemarkLBF?, and
the corresponding trained model* is provided by the algorithm contributors. In addi-
tion, the algorithm implementation inherits the simple and easy-to-use API of the object
detection framework in OpenCV. Generally, using FacemarkLBF::loadModel method to
load trained model and FacemarkLBF::setFaceDetector to set a custom face detector func-
tion where Haar Cascade will firstly detect face regions in the input image.

3.3 Deep model design

Since deep networks have the duties of feature extraction, deep learning methods no
longer require manual feature engineering. But it is still necessary to consider that dif-
ferent deep networks have inductive biases (preferences) for different feature types. The
literature review section 2.3 has reviewed models detail and instinct properties. For ex-
ample, CNN has properties of translation invariance and is suitable for imagery features;
Transformers has properties of long-range dependency modelling and adapts to time-

series features.

The model design procedure includes not only the network architecture but also the
data loader. The latter is responsible for reading the result from the previous data pre-
processing procedure and transforming them into the tensor shapes required by the
model input layer. Because the data loader is the foremost part of the model design,
this section will begin with the detail of loading data. Then, the deep network archi-
tecture for the research goal will be detailed, as well as the output layer for generating
probability results.

3.3.1 Dataloader and input layer

The data loader is a binding bridge between the processed data set and the model input
layer, which converts the data format from the former into information that the model’s
input layer can accept. As discussed in pre-processing section 3.2, the results from the

3facemarkLBF.cpp: https://github.com/opencv/opencv_contrib/blob/4.5.3/modules/face/src
4LBF model: https://github.com/kurnianggoro/GSOC2017/raw/master/data/Ibfmodel.yaml

32

https://github.com/opencv/opencv_contrib/blob/4.5.3/modules/face/src
https://github.com/kurnianggoro/GSOC2017/raw/master/data/lbfmodel.yaml

previous procedure are individual video frames saved in picture format. Thus, any pic-
ture library in Python can read the inputs into memory, such as OpenCV, which was

also previously used in data pre-processing.

Table 3.1 shows the design of tensors of the model’s input layer. The model needs to
input these two tensors in each step in training or inference. The first tensor in the table
represents the image sequence, and the second tensor describes the frame position in

the image sequence corresponding to the original video clip.

Tensor ID | Name Shape Description
0 Images | [1,3,16,224,224] | [Batch size, RGB channels, Frames,
Height, Weight]
1 Positions [1,16] [Batch size, Frame position |

Table 3.1: Model input tensors

In detail, the first tensor represents the image sequence, which is a five-dimensional ar-
ray defined in tensor shape. The first number of this tensor shape is batch size, which
represents the number of samples utilised in one iteration. Usually, in the model train-
ing process, the batch size should be increased as much as possible under the resource
allowance of the hardware so that more samples can be taken into account when calculat-
ing the back-prorogation gradient and avoid over-fitting. In the inference process after
model training and deployment, the batch size is always one. The second part of the
tensor shape is channels, which represents the three channels of red, green and blue in
the case of an RGB image. The third number in the tensor shape is the number of frames
uniformly sampled from the video. The last two numbers in tensor shape are the height

and width of the image.

The second tensor represents the frame position number in the video clip. This position
number will be used as position embedding in the temporal backbone network to capture
the temporal features. A larger number of frames in one iteration can give more data to
the model, improve the accuracy and the ability to predict long-term activities, but it also
requires longer capture time and computing resources. To strike a balance between the
model performance and resources required, I define the number of frames and frame

positions in each iteration to be 16 in this study.

3.3.2 The model architecture

After the data loader converts the input data into a suitable format for the input layer,
the next step is to select a spatial backbone and a temporal backbone, then design a data
flow to connect them in the model architecture. The block flowchart in Figure 3.3 shows

33

the data flow from the input layer through spatial and temporal deep networks to the

final category possibility output.

As for the spatial backbone, this research uses a minimal

Tensor input_0

EfficientNet-BO backbone pre-trained on the ImageNet Images
data set to do spatial feature extraction from frames. The ¢
detail and evolution history of EfficientNet is reviewed in Bs=BxF

subsection 2.4.2. To summary, it is a further optimisation

Normalisation

v

from MobileNet, also a CNN deep network designed for
. . CNN spatial Tensor input_1
mobile devices. backbone Positions
As for the temporal backbone, Longformer is used in Positional
embedding

this research as a temporal encoder with global attention
in [CLS] token and local sliding window attention pat-
tern. In subsection 2.4.3, many previous studies have poin- Transformer

. . . -~ temporal
ted out the high computational complexity of the self ool
attention mechanism in Transformer, and proposed cor- MCLS] token
responding improvements to facilitate running on mobile MLP Head
devices. classification
The output layer receives hidden states of the [CLS] token Category
from the Transformer-based temporal encoder and out- possibility

puts the normalised category probability. This research
uses two fully connected dense layers as the multiple layer ~ Figure 3.3: The data flow
perceptron classification header reviewed in Figure 2.20, Video Transformer Network ar-

chitecture.

The output dimension of the first dense layer is equal to the output shape of the tem-
poral encoder, and a Gaussian Error Linear Unit (GELU) is used for nonlinear activation
mapping. The final output layer dimension of the model is the number of classification
categories.

In this study, considering the difficulty of data set collection, 12 activities were designed
in Appendix D.1 Table D1, covering the common types of remote exams. This table also
contains related descriptions and predefined risk levels for each activity, expressed in
three alert levels.

3.3.3 Loss function and training hyperparameters

The categorical crossentropy loss is a commonly used loss function in classification tasks.
In TensorFlow, if the labels is in one-hot representation, CategoricalCrossentropy loss should

be used. In the case of labels provided as integers, SparseCategorical Crossentropy should

34

be used. Since this study uses a deep learning model to solve the multi-classification
problem where the label of each data sample is a integer category index of the matching
category, the appropriate loss function is tf.keras.losses. SparseCategorical Crossentropy.

Many hyperparameters are involved in the deep model training process, where the model
performance is closely related to fine-tuning. The process of training any deep model
involves two important hyperparameters, batch size and learning rate. The batch size
represents the number of samples input to the model in each iteration. The learning
rate represents the update factor of the model weight moving toward a minimum of
the loss function. A larger batch size allows the trainer to better calculate the back-
propagation gradient with more samples, where appropriately increasing the learning
rate can make the model converge faster. A too-large learning rate will cause an oscillat-
ing loss value making the model difficult to converge. Conversely, a too-small learning
rate will slow down the training process and make the optimiser easier to get stuck at
saddle points.

Because the Transformer has high versatility and low inductive bias than CNN, many
previous studies have shown that learning rate warm-up is an effective and necessary
design to prevent over-fitting when training Transformer-based deep networks. An intu-
itive explanation for the learning rate warm-up is that the model knows nothing about
the data attributes and distribution at the beginning of training. Using a large learning
rate at the beginning will cause the model to over-fit the first few samples immediately,

making it hard to remedy it in the subsequent training steps.

Equation 3.1 shows the learning rate scheduler function, where d,,qe; defines the max-
imum learning rate applicable to the model complexity, and step_num defines the num-

ber of iterations to reach the peak learning rate.

Irate = d_0'5, * min (step_num_o'5

ode , step_num - Warmup_steps_1'5> (3.1)

Vaswani et al. [31]

There are many more hyperparameters other than the learning rate for the training pro-
cess, but they are less important than hyperparameters that directly controlling the model
complexity and the training process. For example, some hyperparameters used in data
augmentation — scaling factors, cropping ranges and possibilities for each augmentation
operation. Stronger data augmentation can better prevent overfitting but may introduce
more noises in the training process. To reduce the search space for hyperparameter fine-
tuning, this study reviews the implementation of related researches to set those less im-
pactful hyperparameters.

35

4 Implementation

After designing the overall system, the next step is to program and implement the sys-
tem. This chapter introduces three system modules, the data collection app is developed
with React in section 4.1; the deep learning model is programmed in Python 3 with
TensorFlow 2.5; adapting the model to the mobile app on Android with TensorFlow Lite
and React Native framework in section 4.2. The selection rationales of these frameworks
and libraries are detailed in Appendix B.

4.1 Data collection web app

This section introduces several key user logics and algorithms in the data collection web
application. From the user’s perspective, the data collection system mainly provides
three user processes: new participant registration, participant login and the core func-
tion of participant recording and uploading, which are illustrated in Figure C1, C2 and
C3 respectively.

Figure C1 shows the registration process for new participants. According to the research
ethics, each participant needs to clearly understand the research content and provide
consent before registering an account. Another worth mentioning is that the system will
generate a random password in the registration process and send it to the email provided
by the registrant. This registration process can prevent the system from collecting users’

private passwords.

After the registration process, Figure C2 depicts the authentication process for registered
participant. The participant will input the email address and the random password re-
ceived during the registration process. If a participant forgot or lost the random pass-

word, he or she can request a new random password and restart the login process.

Figure C3 shows the main workflow of the data collection app after the participant logs
in. In the task selection stage, the web front-end first queries the currently available tasks
from the back-end and display them in a list that participant can select. Each task has
detailed text and picture descriptions, which is easy for participants to understand.

After the participant selects desired tasks, the next step is video recording. The sys-
tem uses the web real-time communication (WebRTC!) API provided in most modern
browsers to record videos for the participant. Finally, in the upload step, participants

IReal-time communication for the web: https://webrtc.org/

36

https://webrtc.org/

can review each recorded videos and decide whether to upload or try rerecording.

The user registration and login process in the web app adopts a common secure authen-
tication paradigm for online applications. Algorithm 4.1 displays the process of user
authentication, where the password is double hashed and salted in back-end database
storage. In addition, the system uses short-term-valid JSON Web Tokens (JWT) as the
access credentials for RPC calls, also incorporating the mechanism of a periodic token

refresh, which further enhances system security and protects users’ privacy.

Algorithm 4.1: User authentication Algorithm 4.2: Video uploading
Data: Email e, Password p Data: Blob video data v
Result: Auth T,, Refresh T, Result: Data in chunks c|x]

1 Web browser front-end: 154 3x10%; // gRPC 32768 bytes

EP < concat(e, p) h < sha256(EP) read limit
send(e, h); 2 fori < Oto {ww do
3 bieft <— i X 's;

2 Back-end: receive(e, h); 1 bright <

3 if user e does not exist then max((i + 1) X s, sizeof (v));

4 t return error; 5 cli] <= vbiert : bright);

5 if berypt hash compare h failed then 6 | send(i,cli]);

. t return error; 7 progress <— receive();

. 8 if receive progress failed then
// Authenticated

7 Ta ¢ JWT ({userDetail, authUUIDY); | ° | retum error;

s T, < JWT (refreshUUID); 10 updateUl(progress);

9 return T,, T,; no| it

Algorithm 4.2 shows the process for segmenting large video data before uploading it
to the backend server. This segmentation algorithm runs on the browser front end,
using slice in binary large object (Blob) API for slicing the video. The communication
between the front-end and back-end uses the gRPC bidirectional streaming. When the
front-end uploads data, it also receive acknowledgement and receiving progress from
the server.

4.2 Mobile app implementation

After the data collection app is implemented, the data collection process begins. While
waiting for the data set to be collected, I designed the deep model as detailed in section
3.3. After the design of the model is completed, the data loader and the deep model are

implemented using Python programming language and TensorFlow framework. The im-

37

plementation of EfficientNet (tf.keras.applications.efficientnet.EfficientNetB0) and the MLP
classification head (tf.keras.layers.Dense and tf.keras.layers.Dropout) is composed directly
from the TensorFlow Keras-style high-level APIs. The Longformer implementation uses
the Hugging Face Transformer? library. The detail of each layer in the implemented
model is shown in Appendix D.2. After finish implementing and training the deep

model, the remaining research goal is to port the deep model to Android platform.

Although the most widely used programming language for Android development is
Java, this project does not use Java except for the automatically generated initialisation
codes and native function bindings, Instead, this study uses React Native to develop
Ul and application logic. Even though JavaScript development is more convenient, it is
single-threaded and is not suitable for high performance parts in the application. For
the parts that require high performance, such as the image pipeline, the anonymisation
process, and the deep model inference process, the C++ programming language is used

for multi-threaded Android native development.

4.2.1 Architecture overview

The architecture of the mobile application developed in this research is shown in Fig-
ure 4.1. The arrows in the figure indicate the direction of data flow and clearly show
dependencies across different functional blocks. The left half of the figure describes the
user interface and user interaction logic developed using React Native, and the right half
describes the core functions of the application developed using C++. These two parts

use React Native Javascript Interface (JSI) for communication.

React Native (JavaScript) Android native (C++) Partial
Confi |ResultReporter implemented
. NativeModules +|React Native | JavaScript Report > . Network :
EventEmitter Proxy “ JSI Results| Reporter Thread i Reporter
l T v Control] onVideoFrame onMLResult
Redux-Saga Display 9ueue |ma|ge Triple | . l;/lodel 5)—,
X x Thread pipeline 5 > inference (&
Thread Thread |
v A A °
Store [€«— Reducer [€«— Action
Y Y Y
| Redux T OpenCV TensLQtrFIow gRPC
} T ite
mapStateToProps mapDispatchToProps
Prispalen orToP Native libraries %' 0 A
Y Y Y
Native Native NNAPI Native
Component Container OpenGL Camera Socket
React Ul components Android native libraries

Figure 4.1: Mobile app architecture and data flow

The core functions of this project in the native part shown on the right side in Figure

2Hugging Face Transformers: https://huggingface.co/transformers/

38

https://huggingface.co/transformers/

4.1 is much worth discussing than Ul implementation on the left side. These core func-
tions include displaying images without lag and running model inference at the same
time. To achieve the goal, this project implements these functions in C++ by using multi-
threading to enable asynchronous processing for display (a real-time task), model infer-
ence and network transmission (time-consuming tasks). It can better take advantage of
the multi-core of the mobile phone processor, and time-consuming tasks will not affect

the real-time task, which ensures a smooth user experience.

:Display Thread :Image Pipeline :Model Thread :Report Thread
CameraStart : ' ' ‘
P startThread ' ' '
; — —
OpenCV
grabFrame
cv::Mat
[{tbb::parallel_pipeline
IpipelineSto rotate
PP P cvtColor
anonymise
Display
4??99?9? __________ -b enqueue onVideoFrame |
IpipelineStop DANativeWindow :i bTripIeBui‘fer ready |:|gRPC stream
11111 @
N update Frame [121> Model
sampling [3 13 3 Inference
' 4 {414
>

. l Write ERead EventEmit
— ' ' swap . snap

' @ _________ onMLResult
E J E} IS

Figure 4.2: Sequence diagram of the multi-threaded app

The sequence diagram in Figure 4.2 describes the interactions between four threads in
the Android application. After the user enters the exam screen, the display thread will
receive the processed image data through a queue and update the display. After the
exam begins, the model inference thread will be started to receive processed image data
from a triple buffer, and performs model inference, then informs the result report thread
after getting the result.

The rest of this section will introduce in detail the multi-threaded design for the core
function, including display thread, image processing pipeline thread, and model infer-
ence thread.

4.2.2 Display and image processing pipeline

This subsection introduces a real-time task involving the display and image processing
pipeline in the app. The image processing pipeline firstly receives an image from a cam-

39

era on the mobile phone then transforms and anonymises it with OpenCV. The display
thread is responsible for receiving the image processed by the image processing pipeline
and showing it through OpenGL. This process is a real-time task, where the display pro-
cess takes less time than the image processing process. The display thread needs to wait
for the processed image data from the processing pipeline thread. Therefore, transfer-
ring data across two threads should use the producer-consumer programming paradigm
with the blocking queue data structure.

A queue is a commonly used first-in-first-out (FIFO) data structure of a sequential organ-
ised collection of entities which can be modified by enqueue (adding entities at one end)
and dequeue (removing entities from the other end). A thread-safe blocking queue is a
queue that may block in dequeue operation or enqueue operation. If the blocking queue
has already been empty, a dequeue operation will block the calling thread until new data
are available in the queue. Conversely, a enqueue operation will block the calling thread

if the blocking queue has already full.

Algorithm 4.3: Image processing pipeline thread

Data: Readable image stream v of cv::VideoCapture
Result: Processed image array p[| of cv::Mat
1 initialisation; // OpenCV VideoCapture, CascadeClassifier, FacemarkLBF
2 STOP <+ false;
3 while not STOP do
4 Pbgr < read(v);
5 Pgrey < cvtColor(ppgr, BGR2GRAY); // Grey is used for detecting face
6 Phalf resize(pg,ey,O.Sf,O.Sf); // Scale down for better preformance
7 Phaif < equalizeHist (ppaf); // Histogram equalisation for better
adaptation to different environmental lighting
8 f[] < CascadeClassifier :: detectMultiScale(ppair, parameters);
9 I[1[] < FacemarkLBF :: fit(ppaf, f[]);
10 for i < 0 to sizeof f[] do
11 Panonymous <— drawCover (ppgr, f[i]);
12 Panonymous <— draWLandmarks(panonymou5/ /[’] [])/'

13 Prgba < cvtColor (panonymous, BGR2ZRGBA); // ANativeWindow requires
image in RGBA format

14 enqueue(displayQueue, prgp,); // Enqueue to display thread

15 addlmage(panonymous); // Preform temporal sampling and add to the

current writing queue in the triple buffer

Algorithm 4.3 shows the simplified processing procedure in the image processing pipeline
thread, which includes reading camera data, performing anonymisation, and sending
the processed data to other threads. For the display thread, it only needs to dequeue the
RGBA data processed and converted by Algorithm 4.3 from the displayQueue, and invoke
the Android API to set the OpenGL texture. In this way, the new frame will be displayed

40

in real-time from the OpenGL rendering loop.

4.2.3 Tensorflow Lite adoption and model inference

Although Google provides some ready-made models and easy-to-call Java bindings, it
is necessary to use C++ for custom model workflow. Besides, not all deep models im-
plemented in TensorFlow can be converted to the Lite version due to limited operators
compatibility. In the deep model conversion stage, this project firstly loads the trained
model, then uses the from_keras_model mode® of the TensorFlow Lite converter by spe-
cifying SELECT_TF_OPS* parameter to allow the usage of certain TensorFlow operators

in the TensorFlow Lite version.

To reduce the app size and make the converted model generated in the previous step
better adapt to mobile devices, this project strips unnecessary operators by compiling the
executable binary files from TensorFlow Lite source code according to the document.
Besides, another important reason why this project chooses to compile libraries from

source code is to use TFLite C++ API as documented in the official guide®.

One failed attempt is trying to use the built-in optimisation of the TensorFlow Lite con-
verter, such as pruning and quantisation introduced in mobile device optimisation sec-
tion 2.4. However, due to an unresolved issue’ in the TensorFlow v2.5.0 library, further
optimisation attempts are failed. After this issue of library is solved in the future, the
model should be able to be further optimised.

After converting the model into the TFLite version and building the runtime binary, then
it is time to implement the model inference thread. As mentioned earlier, the key task
in the model inference thread is to use the frames received from the image processing
pipeline for temporal sampling to write sampled frames to the triple buffer and invoke
the TensorFlow Lite library. The temporal sampling algorithm as shown in Algorithm
4.4 is to sample 16 images from the video stream at an equal time interval same as one

iteration in the model training process (25fps).

As for triple buffering, it is a bridge that connects the image processing thread and
model inference thread. This data structure type has been widely used in the producer-
consumer paradigm to deal with the inconsistency of the consumer has a slower speed
than the producer. When the producer is much faster than the consumer, some data loss
is inevitable, so it is only necessary to ensure that the consumer gets the latest data in

this scenario.

3TensorFlow Lite converter: https://www.tensorflow.org/lite/convert#convert_a_keras_model_
“Select TensorFlow operators: https://www.tensorflow.org/lite/guide/ops_select

SReduce TensorFlow Lite binary size: https://www.tensorflow.org/lite/guide/reduce_binary_size

6Use TFLite C++ API: https://www.tensorflow.org/lite/guide/android#use_tflite_c_api

"Did not get operators or tensors in subgraph: https://github.com /tensorflow /tensorflow /issues/45313

41

https://www.tensorflow.org/lite/convert#convert_a_keras_model_
https://www.tensorflow.org/lite/guide/ops_select
https://www.tensorflow.org/lite/guide/reduce_binary_size
https://www.tensorflow.org/lite/guide/android#use_tflite_c_api
https://github.com/tensorflow/tensorflow/issues/45313

Algorithm 4.4: Temporal sampling and triple buffering

Data: Processed images from pipeline x| |; Current frame index Cpame

Result: Temporal sampled images queue s[16]; Image index array p[16]

Thow < getTime(); // Assume time in second for simplex
Taiff < Trnow — Tast;

f < {Td’ffXTAlIgGETFPSJ; // Sampling frames at Os(frame 0), 0.4s, 0.8s,

N =

W

1.2s, 1.6s...6s(frame 15)
4 if f > MAX_POSITION_EMBEDDINGS — 2 then
// Position embedding overflown, restart frame sampling
5 Tiast <= Tnow;
6 Cframe 0
7 empty s and p;
g8 if f > sizeof s then
// Sampling a frame to the queue
o | push(s,x);
10 pUSh(p/ Cframe);
11 if sizeof s == BATCH_FRAME_NUM then

// Finish sampling 16 frames
12 Tiast < Thow;
13 Chrame < 0;
14 flipWriter (); // flip the triple buffer
15 empty s and p; // clear old data after flipped to new buffer

The implementation of triple buffering is an strengthened special case of ring buffering.
In the triple buffering, there are three buffers in the memory, one is snap for reading
from the consumer, and the other two are for flip writing from the producer. When
the consumer reads, the newly written buffer will become a reading snap, and then the
producer will write the released buffer and the remaining buffer. Thanks to the atomic
operation support provided by C++, Neves [60] proposed a lock-free triple buffer im-
plementation for the processes of creating snap and flip writing.

One problem with the initial version of this project is that the model inference thread
may read empty data from the triple buffer because the image processing pipeline takes
time to produce. To tinkle this problem, a readLastBlock is implemented using mutex and
a conditional variable to block the model inference thread until the first set of image data
is valid. After completing the implementation of temporal sampling and triple buffering,
this project only need to copy the reading snap into tensor and invoke the TensorFlow
Lite inference API to get the result.

42

5 Evaluation

After implementing system functions and confirming that the system is operating nor-
mally, it is necessary to evaluate the collected data quality, deep model performance,

and mobile app performance.

This chapter first introduces each module that may need to be evaluated and the com-
monly used evaluation metrics in section 5.1. Then, the deep model and the mobile app
will be evaluated in section 5.2 and section 5.3 respectively.

5.1 Evaluation metrics

In this study, the application of the deep model is to solve a multi-classification problem
that classifies the video input from a mobile device into different exam activities. To
introduce the evaluation metrics of multi-classification problems, it is necessary to start

with the simplest binary classification problem.

Prediction

Positive Negative

Positive | TP: a correct result where the | FN: a wrong result where the
model correctly predicts the | model predicts the positive
positive class class to negative class

True

Negative | FP: also a wrong result where | TN: also a correct result
the model predicts the negat- | where the model correctly
ive class to positive class predicts the negative class

Table 5.1: Confusion matrix in binary classification

Table 5.1 shows the confusion matrix, a matrix commonly used to visually express the
performance evaluation of a classifier. In the binary classification problem, there are four
values in this matrix, namely True Positive(TP), False Negative(FN), False Positive(FP)
and True Negative(TN), as explained in the table. It is worth noting that the diagonal

43

elements starting from the upper left corner represent the samples whose predicted la-
bel is equal to the true label, while the off-diagonal elements are samples incorrectly

predicted by the classifier.

The binary classification problem has many evaluation metrics calculated using the four
values in the confusion matrix, such as accuracy, accuracy, and recall. In order to adopt
these metrics in multi-classification problems, a common solution is to convert it into n
numbers of binary classification problems, that is, for a certain category, samples that
are correctly classified as that category are True Positive, and samples that are correctly
classified as not that category are True Negative. In multi-classification problems, the
definition of some metrics have expanded to allow different ways of averaging. Table
5.2 illustrates widely used evaluation metrics summarised by Foss [61] under multi-

classification model evaluation scenario, where M denotes macro-averaging.

Metric Formula Meaning
Average |1 k TP + TN; A average per-class ratio between the num-
accuracy k & TP; + TN; + FP; + TN;ber of correctly classified samples and the

total number of samples.

k .
Precision R L For each category, calculate the precision
kiZ TP+ FPi separately, and then take the average.
1& TP
Recall -y For each category, calculate the recall sep-
k= TPi+ FN; arately, and then take the average, showing
the average per-class effectiveness of a clas-
sifier to identify labels.
2 X Precisi Recall
Fl-scorep X Trecisiony x xecam The harmonic mean of the macro-average

Precision Recall .
ecisiony + Recally precision and recall.

Table 5.2: The evaluation metrics, the formulae are summarised by Foss [61]

This study will then evaluate performances of the deep model using confusion matrix,

average accuracy, as well as precision, recall and F1-score all in macro-average.

5.2 Deep model evaluation

Due to the relatively short period for data collection in this study, from the beginning
of 2021 June to the end of July, the total size of validly labelled videos collected was
approximately 440MB. By decoding these videos and videos randomly selected from
the public data set Kinetics as the Unknown category into images, the total size of these

images is approximately 2.3GB.

44

1000
900
800
700
600

500

400

300

200 I I

1 I 1. | [l i. L.«
0 1 2 3 4 5 6 7

8 9 10 11

o O

B Training set Validation set

Figure 5.1: Data per category distribution

Figure 5.1 shows the per-category data distribution after dividing the anonymised data
into training and validation sets. The horizontal axis of the histogram shows a total of 12
categories from 0 to 11. Table D1 in the model design chapter introduced the definition
of each category. As for the vertical axis, it represents the number of labelled samples.
A labelled sample has one label and 16 frames from temporal sampling in a video clip.
To ensure that the validation data set has enough samples to illustrate the model per-
formance, one-third of the total data set is divided into the validation data set, and the
remaining two-thirds are used for training the deep model.

Overfitting is an unavoidable problem in deep learning, especially when using a com-
plex model on small data sets. It is a phenomenon that the model loses its generalisa-
tion application ability, which manifests as the model has extremely small loss and very
high accuracy on the training set, however, a overfitted model will perform badly on the
validation set. The main reasons for overfitting and the corresponding solutions are as
follows:

1. The size of the data set does not match the complexity of the model.

Solution: To use data augmentation or reduce the model complexity.

2. There are errors in the data sets, e.g. data have wrong labels, unshuffled data res-
ulting in distribution difference between the training set and the validation set.
Solution: To visually inspect the data sets and ensure reliable data set labelling
and distribution.

3. Over-training, the model has been trained too much.

Solution: To reduce the number of training epochs or use the early-stop mechan-

45

ism to detect increasing loss in the validation set.

In this study, the above three solutions are all applied in the training process to avoid
overfitting. In detail, the early-stop mechanism is implemented the model trainer, which
monitors the loss value on the verification set after each training epoch. Once the verific-
ation loss is found to increase, it will stop training. The data loader uses common data
augmentation methods in computer vision to perform the same transformation on the
same batch of input data, such as scaling, randomly cropping, and flipping horizontally
and vertically. Besides, the data sets are carefully validated and visually checked using
Jupyter notebook with matplotlib.animation library.

Figure 5.2 visually illustrates the result from the warm-up learning rate scheduler func-
tion introduced in the training hyperparameters design subsection 3.3.3. The figure cov-
ers the training iterations to 6000 as the training process is expected to be completed
within 10 epochs. Because this study uses a relatively small self-built data set and the
deep model has a reduced complexity for mobile devices. The figure shows that the
learning rate increases linearly and reaches the peak at the 2000t iteration, which is
defined as a hyperparameter in the model trainer. After the learning rate reaches its
peak, it gradually decreases with a negative exponent, making the training process enter
the final fine-tuning stage.

Figure 5.3 and Figure 5.4 display

the model training and validat- 0001757

ing iterations. At the beginning 0:001501

of the first epoch training, al- 50'00125'

though the learning rate is low, go.oomo-

the loss decreases steadily during § >°°°7°]

this training epoch, indicating — °%9%°]

that the learning rate warm-up is %9927

effective to alleviate the overfit- ~ 0-000001 ' ' ' | | |
ting. If there was no learning rate 0 1000 2000 Tra?:‘;‘t)ep 4000 5000 6000

warm-up mechanism, the train- . .
Figure 5.2: Learning rate warm-up

ing loss would drop dramatically

at the beginning, and the loss might increase in the subsequent training process, indic-
ating that the model was overfitted. At the end of the first training epoch, the learning
rate is about 0.00084, the loss drops to 1.92, and the accuracy on the training set achieves
0.4. As for the validation after the first training epoch, both the loss and the accuracy is
about 0.8 because no data augmentation applied to the validation data set, making this

data set is easier to classify.

Starting from the second epoch, the training loss instantly drops to about 1, and the

46

accuracy increases to 0.6 because all the training data has been completely input into
the model once, thus, the model has already considerably understood the data form
and distribution. During the training process, the loss of the training data set is always
dropping, but the loss in the validation data set starts to rise from epoch 4, which means
that over-train the model leads to overfitting.

34
loss
3
2.6
22 epoch 2 epoch 3 epoch 4 epoch 5
1.8
1.4
1 - : —
0.6
accuracy
0.2
-0'2V\Dﬂ'?MOOWNOO#OOOOONOO\DNl\l\l\ﬂ'oO\OOOMI\MO\O
N T O VXNV RXAAXNLOOVMOE —NF DR~ 00O
—F AN NTFTINEOOROS N T ORI OANN OSSN —A O n >
Step e A = =~ = AN ANANAANAANNN NN ™
——— train accuracy train loss
Figure 5.3: Model training steps
1.4
1.2
loss epoch 2 epoch 3 epoch 4
1 ,’W T
accuracy
0.8 “",/\,.M,..m
0.6
0.4
0.2 Sign of overfitting
0
O T XN OO FTONOODTOANYOTOANOOT N0 DT 0 O
S ATV EORA AT N OXAN—TANNOORNDA NN OSRNOD
—_ = = = = AN AN ANANANANAN@O®N®NNN NN T
—— val accuracy val loss

Figure 5.4: Model validation steps

Appendix E Figure E1 and Figure E2 shows two confusion matrices on validation and
training data set, respectively. It is clear that most of samples are on the diagonal of the
matrices, which means that they are classified correctly in both training and validation
data set. The validation result vitally reflects the model performance on samples that

have not been used in the training process.

According to the formulae introduced in the evaluation metrics section 5.1 above, Table
5.3 shows a classification report of the validation data on Average Accuracy; Precision,
Recall and F1-Score on macro average. For those categories where precision and recall

are 1.00, all samples in those categories are correctly classified. This classification report

47

highlights two data insights, first is that some samples from the Unknown category are
classified to the other categories of exam activity, especially for the Leave category 5;
second is that some samples labelled with 10 Drinking are classified to the 9 Scratching

category.
Precision | Recall | F1-Score | Support
0 Unknown 1.00 0.97 0.98 301
1 Look screen 0.99 1.00 0.99 189
2 Look down 1.00 1.00 1.00 89
3 Look side 1.00 1.00 1.00 64
4 Look back 1.00 1.00 1.00 31
5 Leave 0.87 0.94 0.90 35
6 Speaking 1.00 1.00 1.00 75
7 Look up 1.00 1.00 1.00 32
8 Use phone 0.98 1.00 0.99 122
9 Scratching 1.00 0.75 0.86 28
10 Drinking 0.83 1.00 091 39
11 Typing 1.00 1.00 1.00 22
Accuracy 0.98 1027
macro avg 0.97 0.97 0.97 1027
weighted avg 0.98 0.98 0.98 1027

Table 5.3: Classification report of validation data set

As for the first data insight, the Unknown category has more false-negative results than
the others, which means that some videos from the Unknown category were classified
into the categories of exam activity. Different proportions of the Unknown category
to the exam activity categories will change the willingness of predicting the Unknown
category. In this study, the ratio of Unknown category size and the size of the total exam
activity categories is % = 0.42. In future works, more samples can be added into the

Unknown category in the training data set to reduce false negatives in this category.

The second data insight is the misclassification between category 9 and category 10. This
problem is mainly due to insufficient training data and a certain similarity in these two
categories. For example, in both scratching and drinking activities, the participant needs
to raise their hand first, do an action covering the face, and finally put their hand down.
If more training data is available in future work, the performance of these two categories

can be easily improved.

5.3 Mobile app evaluation

Since this study has the research scope of mobile platforms, experimenting with com-

putation performance evaluation is necessary to show the deep model is optimised to

48

run inference on mobile devices. The experiment in this research uses two mobile phone
models from OnePlus. The first is the OnePlus 5, a bit old phone released in June 2017,
and the second is the OnePlus 8, one of the top phones from last year, unveiled on April
14, 2020. Table 5.4 shows the hardware details of these phones with the experiment res-
ults of average frame rate expressed in frames per second (FPS) metric.

Device SoC cru Process Accelerator RAM | FPS
Kyro 280 Adreno 540 GPU
OnePlus 5 | Snapdragon 835 10nm 8GB | 18
2.46 GHz Hexagon 682 DSP
Kyro 585 Adreno 650 GPU
OnePlus 8 | Snapdragon 865 7nm 12GB | 28
2.84 GHz Hexagon 698 DSP

Table 5.4: Experiment results on mobile devices

The result from the OnePlus 8 shows that the mobile app runs fast and smoothly on the
high-end phone manufactured last year. Therefore, from 2021 and in the future, there
will be no hardware performance barriers for mobile phones to running the deep model
implemented in this study.

As for the result from the OnePlus 5, an old mobile phone released four years ago, the
frame rate result is lower than the result from the OnePlus 8. Although users of old
mobile phones may feel that the camera display in the app is a little lag and delayed,
it does not crash or affect the user operation, Ul response effect and the deep model
inference because of the well-designed multi-threading architecture in the mobile app.
Besides, exam attendees should not stare at or operate the invigilating mobile phone
during the exam, slight lag and delay in the camera display affect nothing in the practical

use case. As a result, a little old phones should be able to run the app as well.

This study originally planned to evaluate more devices and more performance metrics.
However, due to the limited device resources, short research period and foreseeable cum-
bersome tasks, this part of the work has become one possible direction of future research.
For example, future research may conduct a user study to evaluate the user interface and
user logic in the proposed mobile app after the integration with an online exam platform.
Besides, future research may evaluate more metrics on the computational efficiency,
such as utilisation rate of CPU, GPU and neural network accelerator. More in-depth
evaluation can further unveil the performance bottleneck in the deep model or program

tasks so that future researches can optimise the system much specifically.

49

6 Conclusion

The previous chapters have outlined each part of the system from the design and im-
plementation aspects. The evaluation chapter has shown and critically analysed the ex-
periment results of the deep model evaluation and the mobile application performance
in multiple evaluation metrics. This chapter will summarise the evaluation results and
draw research conclusions regarding the research question and propose possible future
work in this field.

6.1 Summary

The evaluation results have verified the research question that it is possible to classify
the exam attendee’s activities into approved or prohibited behaviours using an on-device
camera video input stream. Through my enormous efforts contributed to this research
project and dissertation, I have completed this study and summarised my contributions
to the following points.

e This study spots an urgent need during the COVID-19 epidemic on a human action
recognition task — the remote exam invigilation.

e This research surveys and reviews previous research on the design details and mobile
optimisation insights of many related deep models.

e This study designs and implements a web-based app to collect labelled video data
from research participants.

e This study designs and implements a deep model to accomplish the research goal by
applying the deep-learning-based video understanding technique.

e This study ports and optimises the proposed deep model to Android mobile devices,
which validates the feasibility of running the app equipped with the deep model.

e This study evaluates the proposed deep model in multiple metrics and conducts per-

formance experiments on two Android phone models, OnePlus 5 and OnePlus 8.

The solution proposed in this research only solves remote exam invigilation in phys-
ical space, ensured exam attendees only interact with the device used to sit the exam.
The limitation of the solution lies in the inability of controlling software on the personal
device. For example, a dishonest student can use remote desktop software to enable
impersonation, letting others cheat for the exam through the Internet. Because the dis-
honest student does not do any prohibited activities in the physical space, the solution

does not apply to this situation.

50

6.2 Future work

As for future work, the possible future research directions in the field of remote exam-
ination invigilation are considered based on the project outcomes shown above, which
is mainly four directions — data set volume, deep model optimisation for both model
architecture and mobile devices, integration with online exam platforms and areas of
security and privacy. The first two of these research directions are pushing forward the
deep model performance. And the last two directions are considering more user experi-
ence engineering or related to security and privacy, which is beyond the research scope

of deep learning.

In detail, the first enhancement direction is generally effective to any deep models, that
is, to increase the total data set volume. The evaluation result unveils that the deep
model still has the potential and capacity to train on larger data sets. Future research
can integrate data collection into the mobile app and continuously improve the model

to adapt to various video angles.

The second way of improving the system performance is to further optimise the deep
model on the accuracy and computational complexity. Factorised model variants used
in Video Vision Transformer network proposed by Arnab et al. [55] pointed outa method
to further enhance the performance of deep models designed for video understanding
tasks. The idea behind the factorisation is to decompose the monolithic structure of
the spatial encoder first and then the temporal encoder into more and smaller encoders
distributed in layers. More communications and fusions between spatial and temporal
data facilitates the model to capture richer features across spatiotemporal space.

In 2021 August, as this dissertation is about to be completed, Chen et al. [62] proposed
a Mobile-Former that bridges MobileNet and Transformer. They creatively proposed a
parallel design of MobileNet and Transformer, interspersed with the bidirectional fusion
of “MobileNet at local processing and Transformer at global interaction”, which takes
the advantage de mutuo auxilio (of mutual aid) from both convolution and Transformer.
Future works may use the Mobile-Former to achieve better computational efficiency and
more representation power. Besides, more deep learning frameworks are worth trying
out in the model implementation. For example, Reiss [63] presented that PyTorch used
TorchScript to enable running on mobile devices and supported NNAPI by the end of
2020. On this basis, A deep learning library for video understanding research! is pub-
lished during this research period and is worth trying in future work.

IPyTorchVideo: https://github.com/facebookresearch/pytorchvideo

51

https://github.com/facebookresearch/pytorchvideo

Bibliography

Giorgio Marinoni, Hilligje Van” t Land and Trine Jensen. ‘The impact of Covid-19
on higher education around the world’. In: IAU Global Survey Report (2020).

Ted M. Clark et al. “Testing in the Time of COVID-19: A Sudden Transition to Un-
proctored Online Exams’. In: Journal of Chemical Education 97.9 (2020), pp. 3413-
3417. por: 10.1021/acs.jchemed.0c00546.

Kevin D. McCay et al. “Abnormal Infant Movements Classification With Deep
Learning on Pose-Based Features’. In: IEEE Access 8 (2020), pp. 51582-51592. por:
10.1109/ACCESS.2020.2980269.

Simon Coghlan, Tim Miller and Jeannie Paterson. ‘Good proctor or” Big Brother”?
Al Ethics and Online Exam Supervision Technologies’. In: arXiv:2011.07647 (2020).
arXiv: 2011.07647 [cs.CY].

Aras Bozkurt and Ramesh C Sharma. ‘Education in normal, new normal, and next
normal: Observations from the past, insights from the present and projections for
the future’. In: Asian Journal of Distance Education 15.2 (2020), pp. i—x.

Sidney Fels and Kenji Mase. ‘Interactive video cubism’. In: Proceedings of the 1999
workshop on new paradigms in information visualization and manipulation in conjunc-
tion with the eighth ACM internation conference on Information and knowledge manage-
ment. 1999, pp. 78-82.

Michelle Thrasher et al. ‘Mood Recognition Based on Upper Body Posture and
Movement Features’. In: Affective Computing and Intelligent Interaction. Springer
Berlin Heidelberg, 2011, pp. 377-386. por: 10.1007/978-3-642-24600-5_41.

Li Yao, Yunjian Liu and Shihui Huang. ‘Spatio-temporal information for human ac-
tion recognition’. In: EURASIP Journal on Image and Video Processing 2016.1 (2016),
pp- 1-9. por: 10.1186/s13640-016-0145-2.

Christian Schuldt, Ivan Laptev and Barbara Caputo. ‘Recognizing human actions:
a local SVM approach’. In: Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004. Vol. 3. 2004, 32-36 Vol.3. por: 10.1109 /ICPR.2004.
1334462.

52

https://doi.org/10.1021/acs.jchemed.0c00546
https://doi.org/10.1109/ACCESS.2020.2980269
https://arxiv.org/abs/2011.07647
https://doi.org/10.1007/978-3-642-24600-5_41
https://doi.org/10.1186/s13640-016-0145-2
https://doi.org/10.1109/ICPR.2004.1334462
https://doi.org/10.1109/ICPR.2004.1334462

[17]

[18]

[20]

[21]

Marcin Marszalek, Ivan Laptev and Cordelia Schmid. ‘Actions in context’. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 2929-2936.
por: 10.1109/CVPR.2009.5206557.

Khurram Soomro and Amir R. Zamir. ‘Action Recognition in Realistic Sports
Videos’. In: Computer Vision in Sports. Cham: Springer International Publishing,
2014, pp. 181-208. 1sBN: 978-3-319-09396-3. por: 10.1007,/978-3-319-09396-3_9.

Issa Traoré et al. ‘Ensuring online exam integrity through continuous biometric
authentication’. In: Information Security Practices. Springer, 2017, pp. 73-81.

Shoko Yasuda and Hiroyuki Ogeta. ‘Examinee Authentication from a Hand Image
on a Tablet Computer for Preventing Impersonation(% 7 L' v ~#liiR % Fu 72
REBRICB T 2B A EMM 2 HINE UZFRARIC K 2 RANGEEE) . In: Japan Journal
of Educational Technology(H A E T2 2w X 5E) 44.4 (2021), pp. 419-429. por:
10.15077 /jjet.44107.

Kavish Garg et al. “Convolutional Neural Network based Virtual Exam Controller’.
In: 2020 4th International Conference on Intelligent Computing and Control Systems
(ICICCS). IEEE. 2020, pp. 895-899.

Kunihiko Fukushima. ‘Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position’. In: Biolo-
gical Cybernetics 36.4 (1980), pp. 193-202.

Wei Zhang et al. ‘Shift-invariant pattern recognition neural network and its op-
tical architecture’. In: Proceedings of annual conference of the Japan Society of Applied
Physics. 1988.

Yann LeCun et al. ‘Backpropagation applied to handwritten zip code recognition’.
In: Neural computation 1.4 (1989), pp. 541-551.

Wei Zhang et al. ‘Computerized detection of clustered microcalcifications in di-
gital mammograms using a shift-invariant artificial neural network’. In: Medical
physics 21.4 (1994), pp. 517-524.

Yann LeCun, Koray Kavukcuoglu and Clément Farabet. ‘Convolutional networks
and applications in vision’. In: Proceedings of 2010 IEEE international symposium on
circuits and systems. IEEE. 2010, pp. 253-256.

Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘Imagenet classification
with deep convolutional neural networks’. In: Advances in neural information pro-
cessing systems 25 (2012), pp. 1097-1105.

Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition’. In: arXiv preprint arXiv:1409.1556 (2014).

53

https://doi.org/10.1109/CVPR.2009.5206557
https://doi.org/10.1007/978-3-319-09396-3_9
https://doi.org/10.15077/jjet.44107

[22]

[23]

[31]

[32]

[33]

[34]

Kaiming He et al. ‘Deep Residual Learning for Image Recognition’. In: 2015. arXiv:
1512.03385 [cs.CV].

MI Jordan. Serial order: a parallel distributed processing approach. Technical report, June
1985-March 1986. Tech. rep. California Univ., San Diego, La Jolla (USA). Inst. for
Cognitive Science, 1986.

Jeffrey L Elman. ‘Finding structure in time’. In: Cognitive science 14.2 (1990),
pp- 179-211.

Sepp Hochreiter and Jiirgen Schmidhuber. ‘Long short-term memory’. In: Neural
computation 9.8 (1997), pp. 1735-1780.

E. Gers, J. Schmidhuber and F. Cummins. ‘Learning to Forget: Continual Predic-
tion with LSTM". In: Neural Computation 12 (2000), pp. 2451-2471.

Michael Phi. Illustrated Guide to LSTM’ s and GRU’ s: A step by step explanation.
Sept. 2018. UrL: https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-
a-step-by-step-explanation-44e9eb85bf21.

Junyoung Chung et al. ‘Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling’. In: (2014). arXiv: 1412.3555 [cs.NE].

Volodymyr Mnih, Nicolas Heess, Alex Graves et al. ‘Recurrent models of visual
attention’. In: Advances in neural information processing systems. 2014, pp. 2204-2212.

Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. ‘Neural Machine Trans-
lation by Jointly Learning to Align and Translate’. In: (2016). arXiv: 1409.0473
[cs.CL].

Ashish Vaswani et al. ‘Attention Is All You Need’. In: (2017). arXiv: 1706.03762
[cs.CL].

TensorFlow Authors. Transformer model for language understanding. Aug. 2021. URL:

https://www.tensorflow.org/text/tutorials/transformer.

Jacob Devlin et al. ‘BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding’. In: (2019). arXiv: 1810.04805 [cs.CL].

Jianyuan Guo et al. “"CMT: Convolutional Neural Networks Meet Vision Trans-
formers’. In: (2021). arXiv: 2107.06263 [cs.CV].

Zihang Dai et al. ‘CoAtNet: Marrying Convolution and Attention for All Data
Sizes’. In: (2021). arXiv: 2106.04803 [cs.CV].

Yunbin Deng. ‘Deep learning on mobile devices: a review’. In: Mobile Multime-
dia/Image Processing, Security, and Applications 2019. Ed. by Sos S. Agaian, Vijayan
K. Asari and Stephen P. DelMarco. Vol. 10993. International Society for Optics and
Photonics. SPIE, 2019, pp. 52-66. por: 10.1117/12.2518469.

54

https://arxiv.org/abs/1512.03385
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.tensorflow.org/text/tutorials/transformer
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2107.06263
https://arxiv.org/abs/2106.04803
https://doi.org/10.1117/12.2518469

[49]

[50]

Yanjiao Chen et al. ‘Deep Learning on Mobile and Embedded Devices: State-of-
the-art, Challenges, and Future Directions’. In: ACM Computing Surveys (CSUR)
53.4 (2020), pp. 1-37.

Andrew G. Howard et al. “‘MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications’. In: (2017). arXiv: 1704.04861 [cs.CV].

Liang-Chieh Chen et al. ‘Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation’. In: Proceedings of the European Conference on
Computer Vision (ECCV). Sept. 2018.

Mark Sandler et al. ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2018, pp. 4510-4520.

Mingxing Tan and Quoc V. Le. ‘EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks’. In: (2020). arXiv: 1905.11946 [cs.LG].

Mingxing Tan and Quoc V. Le. ‘EfficientNetV2: Smaller Models and Faster Train-
ing’. In: (2021). arXiv: 2104.00298 [cs.CV].

Zhanghao Wu et al. ‘Lite Transformer with Long-Short Range Attention’. In:
(2020). arXiv: 2004.11886 [cs.CL].

Iz Beltagy, Matthew E. Peters and Arman Cohan. ‘Longformer: The Long-Document
Transformer’. In: (2020). arXiv: 2004.05150 [cs.CL].

Sachin Mehta et al. ‘DeLighT: Deep and Light-weight Transformer’. In: (2021).
arXiv: 2008.00623 [cs.LG].

Di Wu, Nabin Sharma and Michael Blumenstein. ‘Recent advances in video-based
human action recognition using deep learning: A review’. In: 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 2865-2872. por: 10.
1109/1JCNN.2017.7966210.

Du Tran et al. ‘Learning spatiotemporal features with 3d convolutional networks’.
In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 4489-
4497.

Moez Baccouche et al. ‘Sequential Deep Learning for Human Action Recognition’.
In: Human Behavior Understanding. Springer Berlin Heidelberg, 2011, pp. 29-39.
1sBN: 978-3-642-25446-8.

Shuiwang Ji et al. ‘3D Convolutional Neural Networks for Human Action Recogni-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.1 (2013),
pp. 221-231. por: 10.1109/ TPAMI.2012.59.

Karen Simonyan and Andrew Zisserman. “Two-Stream Convolutional Networks
for Action Recognition in Videos’. In: (2014). arXiv: 1406.2199 [cs.CV].

55

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2004.11886
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2008.00623
https://doi.org/10.1109/IJCNN.2017.7966210
https://doi.org/10.1109/IJCNN.2017.7966210
https://doi.org/10.1109/TPAMI.2012.59
https://arxiv.org/abs/1406.2199

Christoph Feichtenhofer, Axel Pinz and Andrew Zisserman. ‘Convolutional Two-
Stream Network Fusion for Video Action Recognition’. In: (2016). arXiv: 1604 .
06573 [cs.CV].

Joao Carreira and Andrew Zisserman. ‘Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset’. In: (2018). arXiv: 1705.07750 [cs.CV].

Rohit Girdhar et al. ‘Video action transformer network’. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 244—
253.

Daniel Neimark et al. “Video Transformer Network’. In: (2021). arXiv: 2102.00719
[cs.CV].

Anurag Arnab et al. “ViViT: A Video Vision Transformer’. In: (2021). arXiv: 2103.
15691 [cs.CV].

P. Viola and M. Jones. ‘Rapid object detection using a boosted cascade of simple
teatures’. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001. Vol. 1. 2001, pp. I-1. por: 10.1109/CVPR.
2001.990517.

Mooseop Kim, Deokgyu Lee and Ki-Young Kim. ‘System architecture for real-time
face detection on analog video camera’. In: International Journal of Distributed Sensor
Networks 11.5 (2015), p. 251386. por: 10.1155/2015/251386.

Shaoqing Ren et al. ‘Face Alignment at 3000 FPS via Regressing Local Binary Fea-
tures’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). June 2014.

Yue Wu and Qiang Ji. ‘Facial landmark detection: A literature survey’. In: Interna-
tional Journal of Computer Vision 127.2 (2019), pp. 115-142.

André Pacheco Neves. Triple Buffering as a Concurrency Mechanism. Jan. 2012. urc:
http://remis-thoughts.blogspot.pt/2012/01 /triple-buffering-as-concurrency_30.html.

Vicki Foss. Multiclass Classification Model Evaluation. Dec. 2018. URL: https://parasite.
id/blog/2018-12-13-model-evaluation/.

Yinpeng Chen et al. ‘Mobile-Former: Bridging MobileNet and Transformer’. In:
(2021). arXiv: 2108.05895 [cs.CV].

David Reiss. PyTorch Mobile Now Supports Android NNAPI. Dec. 2020. urt: https:
//medium.com /pytorch /pytorch-mobile-now-supports-android-nnapi-e2a2aeb74534.

Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

56

https://arxiv.org/abs/1604.06573
https://arxiv.org/abs/1604.06573
https://arxiv.org/abs/1705.07750
https://arxiv.org/abs/2102.00719
https://arxiv.org/abs/2102.00719
https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/2103.15691
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1155/2015/251386
http://remis-thoughts.blogspot.pt/2012/01/triple-buffering-as-concurrency_30.html
https://parasite.id/blog/2018-12-13-model-evaluation/
https://parasite.id/blog/2018-12-13-model-evaluation/
https://arxiv.org/abs/2108.05895
https://medium.com/pytorch/pytorch-mobile-now-supports-android-nnapi-e2a2aeb74534
https://medium.com/pytorch/pytorch-mobile-now-supports-android-nnapi-e2a2aeb74534

[67]

[68]

[75]

[76]

[77]

Joseph Howse and Joe Minichino. Learning OpenCV 4 Computer Vision with Python
3: Get to grips with tools, techniques, and algorithms for computer vision and machine
learning. Packt Publishing Ltd, 2020.

Nishant Ghanate, Kartik Bhagat and Sandeep Gamot. ‘Smart Security System: A
Surveillance System Based on OpenCV and Android Platform’. In: SAMRIDDHI:
A Journal of Physical Sciences, Engineering and Technology 12.SUP 1 (2020), pp. 32—
35.

Martin Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems’. In: arXiv: Distributed, Parallel, and Cluster Computing (2015).

Pramod Singh and Avinash Manure. ‘Introduction to TensorFlow 2.0". In: Learn
TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python.
Berkeley, CA: Apress, 2020, pp. 1-24. 1sBn: 978-1-4842-5558-2. por: 10.1007 /978-1-
4842-5558-2_1. URL: https://doi.org/10.1007 /978-1-4842-5558-2_1.

Benoit Steiner et al. ‘PyTorch: An imperative style, high-performance deep learn-
ing library’. In: Advances in Neural Information Processing Systems. 2019, pp. 8026—
8037.

Felipe De Almeida Florencio et al. ‘Performance Analysis of Deep Learning Librar-
ies: TensorFlow and PyTorch’. In: Journal of Computer Science 15.6 (2019), pp. 785-
799.

Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

Chunjie Luo et al. ‘Comparison and Benchmarking of Al Models and Frameworks
on Mobile Devices’. In: (2020). arXiv: 2005.05085 [cs.LG].

Anubhav Singh and Rimjhim Bhadani. Mobile Deep Learning with TensorFlow Lite,
ML Kit and Flutter: Build scalable real-world projects to implement end-to-end neural
networks on Android and iOS. Packt Publishing Ltd, 2020.

Umi Fadlilah, Bana Handaga et al. “The Development of Android for Indonesian
Sign Language Using Tensorflow Lite and CNN: An Initial Study’. In: Journal of
Physics: Conference Series. Vol. 1858. 1. IOP Publishing. 2021, p. 012085.

Weijian Chen, Shujing Wang and Jingeng Wang. ‘Realtime Multi-Person Pose Es-
timation Based on Android System’. In: 2020 International Conference on Intelligent
Computing, Automation and Systems (ICICAS). IEEE. 2020, pp. 286—289.

Ryan Dahl. Nodejs - A JavaScript runtime built on Chrome’s V8 JavaScript engine. June
2021. ure: https://web.archive.org/web/20210607053216/https: //nodejs.org/en/.

57

https://doi.org/10.1007/978-1-4842-5558-2_1
https://doi.org/10.1007/978-1-4842-5558-2_1
https://doi.org/10.1007/978-1-4842-5558-2_1
https://arxiv.org/abs/2005.05085
https://web.archive.org/web/20210607053216/https://nodejs.org/en/

[79]

[80]

[81]

Facebook. React - A JavaScript library for building user interfaces. June 2021. URL: https:
//web.archive.org/web/20210607044826 /https:/ /reactjs.org/.

Dan Abramov and Andrew Clark. Redux - A Predictable State Container for S Apps.
June 2021. ure: https://web.archive.org/web/20210601113657 /https:/ /redux.js.org/.

Alex Banks and Eve Porcello. Learning React: functional web development with React
and Redux.” O'Reilly Media, Inc.”, 2017.

Bonnie Eisenman. Learning react native: Building native mobile apps with JavaScript.
” O’Reilly Media, Inc.”, 2015.

58

https://web.archive.org/web/20210607044826/https://reactjs.org/
https://web.archive.org/web/20210607044826/https://reactjs.org/
https://web.archive.org/web/20210601113657/https://redux.js.org/

Appendix A Code repositories

The source code is submitted to college along with this dissertation, and the GitHub
source code repository will be enabled for public access after graduation.

e Dissertation source code in IXTEX
https://github.com/comword /TCD20-DP-Dissertation

e Data collection web recorder
Front-end: https://github.com/comword/TCD20-DP-WebRecorder
Back-end: https://github.com/comword/TCD20-DP-WebRecorderServer

e Data processing and deep learning model
https://github.com /comword /TCD20-DP-DeepModel

e Student mobile application
https://github.com /comword /TCD20-DP-MobileApp
Submodule libraries:

— Compiled OpenCV binary for Android
https://github.com /comword /opencv-android-bin

— Compiled Tensorflow Lite binary for Android
https://github.com /comword /tflite-bin

— Compiled gRPC binary for Android
https://github.com/comword/grpc-android-bin

59

https://github.com/comword/TCD20-DP-Dissertation
https://github.com/comword/TCD20-DP-WebRecorder
https://github.com/comword/TCD20-DP-WebRecorderServer
https://github.com/comword/TCD20-DP-DeepModel
https://github.com/comword/TCD20-DP-MobileApp
https://github.com/comword/opencv-android-bin
https://github.com/comword/tflite-bin
https://github.com/comword/grpc-android-bin

Appendix B Framework details

Because the scope of this research is relatively wide, covering data collection, model im-
plementation, and mobile app implementation, many frameworks and libraries are used
in implementing the system. Obviously, depending on target platforms, the program-
ming language used in each part is also different. The next subsections will introduce
both programming languages and frameworks used to develop the corresponding sub-

system.

Appendix B.1 Web development

Web technology is developing and advancing rapidly, which is the reason for the extens-
ive use of web technology in this study. From the earliest era of directly programming
HTML, CSS, and JavaScript, the web technology developed through templated server-
side-rendering, such as PHP Hypertext Preprocessor or Jakarta Server Pages (JSP). Re-
cently, web development has become more structured and engineered by using client-
side rendering framework for front-end, such as React, Vue or Angular and microservice
framework for back-end. Cross-platform UI frameworks such as Electron, React-Native,
and Weex make web technology the preferred solution for developing cross-platform

applications on the client side.

Web technologies have been majorly used both in the web-based data collection app and
the mobile app user interface/user experience(UI/UX) design. TypeScript, a strongly
typed programming language building upon JavaScript, is used for the web front-end
development of the data collection app. As for the back-end development, this study
uses Golang for a better gRPC experience.

Node.js is used as the front-end development environment in this study. It was initiated
by Dahl [77] in mid-2009, aimed to create a high-efficient JavaScript runtime. Node.js
is built on Google Chrome’s V8 JavaScript engine, one of the most efficient JavaScript
engines and is widely adopted in front-end development because of its powerful package

manager and excellent ecosystem for rich frameworks and libraries.

The data collection app requires a user interface, implement data flows, thus, using a
mature front-end framework is the best choice. Although many famous frameworks to
choose from, such as React, Vue and Angular, I finally decided to use React, a declarative,
efficient, and flexible JavaScript library for building user interfaces. Because it is less
complex compared to the other alternatives and it is being supported and maintained

60

by Facebook [78]. It also has a good ecosystem and many successful apps are developed
based on it, which is beneficial to explore in the project.

As for Reduy, it is a predictable state container for JavaScript applications also a good
companion with React, developed by Abramov and Clark [79]. It helps create applic-
ations that behave consistently and predictably with complicated states, and keeps the
states and connects each state with views in React. Any action that causes change to the
state is reversible with a time-travelling debugger, which provides a great developing
experience.

Appendix B.2 Deep learning model development

In the field of deep learning, TensorFlow and PyTorch are two famous and widely used
frameworks. They both support the use of GPU for acceleration in the model training
process, but there are still many differences in programming paradigm and application

areas.

PyTorch is an open source Python library widely used in the academic. It was published
in early-2017 by the Facebook’s Al Research Lab. In 2019, Steiner et al. [69] pointed out
that Caffe, TensorFlow (version 1.x at that time), and Theano all construct a static com-
putation dataflow graph to achieve high performance at the cost of usability, debugging,
and flexibility, but PyTorch is a framework with dynamic eager execution, which enables
high usability without sacrificing performance. Another study by Florencio et al. [70]
in the same year conducted a detailed comparative study on the performance of Tensor-
Flow and PyTorch. After data analysis, they concluded that TensorFlow has higher GPU
utilisation, but the PyTorch shows better overall performance.

As for TensorFlow, Abadi et al. [67] proposed that it is a deep learning framework
developed by the Google Brain team in 2015. It has a relatively long history in the
deep learning field and is widely adopted in enterprises and industries. In TensorFlow
1.x version, the computation dataflow graph is statically defined through tf.session and
tf.placeholder before running the model. This old way sacrifices usability for performance
and makes it impossible to set breakpoints to view data during the computation process,
which causes great inconvenience to the debugging progress.

However, after the release of TensorFlow version 2.0, the previous deficiencies have been
well addressed. Singh and Manure [68] compared the major changes of TensorFlow
from 1.x to 2.0 in three aspects, including usability, performance, and deployment. In
terms of usability, the framework provides easier APIs, which are divided into Keras-
based high-level APIs and low-level APIs. Through the high-level API, a deep layer can
be directly created with one line of code in high-level APIs, such as tf.keras.layers.Dense

61

to create a fully connected layer. Low-level APIs allow direct data manipulation, such as

tf.matmul for matrix multiplication and tf.transpose for matrix transpose.

In terms of performance on mobile devices, Luo et al. [73] highlighted that only Tensor-
Flow Lite supports NNAPI delegate, an Android Neural Networks API available after
Android 8.1, “aiming to accelerate for Al models on Android devices with supported
hardware accelerators”, said by Luo et al. [73]. The experiment result also shows that
TensorFlow Lite with NNAPI delegate achieves the fastest inference speed in the per-
formance comparison across multiple models.

In order to maximise the performance and computational efficiency, this study imple-
ments the deep learning model using the TensorFlow framework because the target de-
ployment platform is the Android mobile devices, and TensorFlow Lite has the best com-
patibility and support for Android.

Appendix B.3 Android application development

As an early and widely used deep learning framework, TensorFlow has a mature de-
ployment process and application example on mobile devices. For example, Fadlilah,
Handaga et al. [75] developed an Android app for sign language by using TensorFlow
Lite to run a convolutional neural network. This framework not only has a large num-
ber of successful application precedents but also has detailed documents, books, and
tutorials. Singh and Bhadani [74] wrote a book that shows multiple examples of Tensor-
Flow Lite deployment and mobile application development with Flutter framework, a

UI toolkit in Dart programming language released by Google.

The Flutter framework is more efficient and developed by Google, in which all Dart code
can compile by ahead-of-time (AOT) into native code during deployment. However,
the usage of Dart programming language is rare, which means a high learning cost for
developers and the available libraries are far less than mainstream programming lan-
guages.

A more famous framework is React Native maintained by Facebook, which fully uses the
existing web technology to develop iOS and Android mobile applications. By adopting
this framework, front-end developers familiar with React framework can develop mobile
applications without difficulties and learning costs. Since its release in 2015, Eisenman
[81] pointed out that it has attracted a large number of front-end developers and can use
a majority of existing JavaScript libraries.

As aresult, this study chose to use the React Native framework to implement the mobile
app with deep model deployed in TensorFlow Lite library.

62

Appendix C Web recorder designs

Appendix C.1 Functionality description in user stories

move all contributions

User role | Capability Reason

Researcher | Publish new tasks, delete unneces- | The task list needs to be updated
sary tasks and change description | in real time according to required
of tasks activity categories

Researcher | Query videos contributed and up- | Obtain videos to train the model
loaded by participant

Researcher | Delete opt-out user’s information | According to research ethics re-
and uploaded videos as required | quirements

Participant | Read the informed consent form | According to research ethics re-
and register an account if agree quirements

Participant | Login and authenticate to the app, | Basic requirements for any access-
reset forgotten password through | controlled system
email

Participant | Select the currently available tasks | The videos uploaded by the user
published by the researcher and | should be automatically labelled
start the recording process by the system

Participant | Record the videos through the on- | Main function of the system
device camera

Participant | Review and record recorded | Main function of the system
videos to server

Participant | Decide to opt-out the study and re- | According to research ethics re-

quirements

Table C1: User stories for the video data collection app

63

Appendix C.2 Participant use cases and user logics

RS

New
participant

RO

Registered
participant

Login
participant

A
Agreemen

Disagree

Fill register
form

Email
receive
password

Figure C1: New participant registration

Input
credentials

Submit

Authenticated

@

Figure C2: Registered participant login

Select tasks

@

Email
receive
password
Record Review and
videos upload
Until finish
all selected

64

Figure C3: Participant recording and uploading

Appendix D Model design details

Appendix D.1 Output categories

ID Activity | Alertlevel | Description

0 Unknown The model cannot predict the current activity
that may be a non-exam activity

1 Look screen The student is looking at the screen

2 Look down Alert The student is looking under the table, which
maybe using the phone

3 Look side The student is looking outside the computer
screen, maybe reading a book on the table

4 Look back The student turned and is looking behind, maybe
hiding something

5 Leave The student is out of the camera range

6 Speaking Alert The student has obvious lip movement and may
be talking to others

7 Look up The student looks up at the ceiling, may be relax-
ing or thinking a difficult question

8 Use phone Alert The student are obviously using a mobile phone

9 Scratching The student is scratching the head or face and
may be thinking a difficult question

10 Drinking The student is drinking water

11 Typing The student is typing on the keyboard and an-
swering exam questions

12-15 Unused - Allow for adding more activities

Table D1: Model output for exam activity categories

65

Appendix D.2 Model detailed layers

Name Type Output Shape Param #
Images input as the shape (Batch, Channel, Frame, Height, Width)
input_1 InputLayer ?,3,16,224,224 0
tf.compat.vl.shape TFOpLambda 5, 0
tf.__operators__.getitem SlicingOpLambda 0
tf.__operators__.getitem_2 SlicingOpLambda 0
tf.compat.vl.transpose TFOpLambda ?,16,224,224,3 0
tf. math.multiply TFOpLambda 0
tf.__operators__.getitem_3 SlicingOpLambda 0
tf.__operators__.getitem_4 SlicingOpLambda 0
tf.__operators__.getitem_1 SlicingOpLambda 0
tf.reshape TFOpLambda 2,2,2,? 0
Images process to (Batch x Frame, Height, Width, Channel)
efficientnetb0 Functional ?,7,7,384 3759267
layer_normalization LayerNormalization ?,7,7,384 768
global_max_pooling2d GlobalMaxPooling2D ?, 384 0

The CNN-based backbone (EfficientNet-B0) output extracted features
The frame indices input as the shape (Batch, Index), add position embedding

tf.reshape_1 TFOpLambda ?,?7,7? 0
tf.compat.vl.shape_1 TFOpLambda 3, 0
tf.__operators__.getitem_5 SlicingOpLambda 0
tf.__operators__.getitem_7 SlicingOpLambda 0
tf.broadcast_to TFOpLambda ?,1,384 0
tf.concat TFOpLambda ?,7?,384 0
tf.compat.vl.shape_2 TFOpLambda 3, 0
tf.__operators__.getitem_8 SlicingOpLambda 0
tf.math.floormod TFOpLambda 0
tf. math.subtract TFOpLambda 0
tf. math.floormod_1 TFOpLambda 0
input_2 InputLayer ?,16 0
tf.convert_to_tensor 2 TFOpLambda 2,2 0
tf.compat.vl.pad_3 TFOpLambda ?,? 0
tf.__operators__.getitem_6 SlicingOpLambda 0
tf.cast 2 TFOpLambda ?,? 0
tf.zeros TFOpLambda ?,? 0
tf.math.floormod_2 TFOpLambda ?,? 0
tf.compat.vl.pad TFOpLambda ?,? 0
tf.convert_to_tensor TFOpLambda 3,2 0

66

tf.compat.vl.shape_4 TFOpLambda 2, 0
tf.compat.vl.transpose_1 TFOpLambda ?,? 0
tf.ones TFOpLambda ?,? 0
tf.broadcast_to_1 TFOpLambda 7,1 0
tf.compat.vl.pad_1 TFOpLambda ?,?2,7? 0
tf.__operators__.getitem_10 SlicingOpLambda 0
tf.cast TFOpLambda ?,? 0
tf.concat_1 TFOpLambda ?,? 0
tf.math.subtract_2 TFOpLambda 0
tf.compat.vl.shape_3 TFOpLambda 3, 0
tf.where TFOpLambda ?,? 0
tf.convert_to_tensor_1 TFOpLambda 2,2 0
tf.zeros_2 TFOpLambda ?,7? 0
tf.__operators__.getitem_9 SlicingOpLambda 0
tf.compat.vl.pad_2 TFOpLambda 2,7 0
tf.compat.vl.pad_5 TFOpLambda ?,? 0
tf. math.subtract_1 TFOpLambda 0
tf.math.not_equal TFOpLambda ?,? 0
tf.compat.v1l.transpose_3 TFOpLambda ?,? 0
tf.zeros_1 TFOpLambda ?,? 0
tf.cast_3 TFOpLambda ?,? 0
tf.cast_4 TFOpLambda ?,7? 0
tf.compat.vl.pad_4 TFOpLambda ?,? 0
tf.__operators__.eq TFOpLambda ?,? 0
tf.where_1 TFOpLambda ?,? 0
tf.compat.v1l.transpose_2 TFOpLambda ?,? 0
tf.where_2 TFOpLambda ?,7? 0
tf.cast_1 TFOpLambda ?,? 0
Extracted features, attention mask, and position embedding input to the Transformer
vtn_longformer_layer VTNLongformerLayer ?,?,384 19667712
tf.__operators__.getitem_11 SlicingOpLambda ?,384 0
layer_normalization_1 LayerNormalization 7,384 768

MLP head to output the classification

dense_1 Dense ?, 384 147840
dropout_8 Dropout 7,384 0
dense_2 Dense ?,16 6160

Total params: 23,582,899
Trainable params: 23,542,668
Non-trainable params: 40,231

67

89

Appendix E Evaluation result

-250
-200

- 150

True

-100

-50

Prediction

Figure E1: Confusion matrix on validation data set

Prediction

Figure E2: Confusion matrix on training data set

- 800

Appendix F App showcase

Appendix F.1 Web-based data collection app

Introduction Agreement Tasks Recording
Study of Posture
Analysis A
LAl
in online tests E I ‘ H
Hello

Some introduction text

Some motivation text

Select theme

@® System (O Light (O Dark

Figure F1: Welcome screen

69

Introduction Agreement Tasks Recording

TRINITY COLLEGE DUBLIN
INFORMED CONSENT FORM

LEAD RESEARCHERS: Tong Ge

BACKGROUND OF RESEARCH: The COVID-19
pandemic has prevented students from
congregating to take traditional in-person exams.
Attention has focused on the many online exam
systems that are accessed online or remotely e.g.
via personal computer or device. This study seeks
to refine, develop and enhance new concepts for
online exam settings, through the use of deep
learning models of posture detection on PC and
mobile devices, having informed regard to the
balance between performance, function and
resource demands and constraints.

PROCEDURES OF THIS STUDY:

1. Aweb-based app will be used to carry out
the video capturing process, and you will
read more details about the study there.

2. Anumbered token and a password will be
sent to you after you choose to participate in
the study. Please use it should you wish to
opt-out of the studv at anv staae orior to

Figure F2: Consent form screen top

PARTICIPANT'S NAME:
PARTICIPANT'S SIGNATURE:
Date:

Statement of investigator’s responsibility: | have
explained the nature and purpose of this research
study, the procedures to be undertaken and any
risks that may be involved. | have offered to answer
any questions and fully answered such questions. |
believe that the participant understands my
explanation and has freely given informed consent.

RESEARCHERS CONTACT DETAILS: geto@tcd.ie
RESEARCHER’'S SIGNATURE:
Date:

| am 18 years or older and am competent to
provide consent.

| have completely read and understood the
informed consent form above.

By signing this document, | consent to
participate in this study.

Figure F3: Consent form screen bottom

Introduction ~ Agreement Tasks Recording

Study Participation

Informed Consent Form

First name ™
Last name™*
Email *

Captcha

| am human @
hCaptcha

Privacy - Terms

Figure F4: New participant register screen

70

o o ©)] o o 2]

Introduction Agreement Tasks Recording Introduction Agreement Recording Uploading

Front typing A

seconds, sit upright in front of the laptop and type on
it.

[] Side typing v

TURN MY CAMERA ON

Side typing ™
1/1

Please video from left or right side of you and lasts for 30
seconds, sit upright in front of the laptop and type on it.

ST @ FINISH

Figure F5: Task selection screen Figure F6: Recording screen

71

Introduction ~ Agreement Recording Uploading
Videos [+
Task
D 1 Create time Duration Status
name
Side 07-25 .
. 17%
O speaking 14:07:32 00:30
Figure F7: Review task details Figure F8: Upload screen

72

Appendix F.2 Deep model equipped mobile app

14:30 OK®Ai4 14:30 (R B PPy
. < Register
Invigilator
Veritas Exams -
Invigilator
Register
First name | Last name
Email
Password
Log in
Confirm password
Mock login
Figure F9: App welcome screen Figure F10: App register

73

1431 W OECAiY

< Register

Invigilator

Register

— First name Last name ——
Tong { Ge

— Email

geto@tcd.ie

— Password

Strong

— Confirm password

Password is not matching

{ BACK ‘ SIGN UP

Figure F11: Filled app register

14:32 (R B PIVAR
e Exam list
PENDING EXAMS PAST EXAMS
Mock exam 0 >
Mock exam 1 >

Figure F12: Mock exam list

74

14:32

Unknown user

Unknown email

Exams
-3 Profile

E> Sign out
m Test camera

Theme

System @ Light O

Dark O

Figure F13: App drawer in mock user

75

14:32 M (R B PIVAR

@ Profile
About you
— First name — Last name

Tong Ge
— Student ID — Birthday

12345678 01-Jan-1997
Options
Theme System @ Light O Dark O
Use camera Back O Front @

Figure F14: App user profile

14:33

Tong Ge
Exams
2 Profile
B Sign out

Loading models

m Test camera

Theme)

Loading...
System @ Light O Dark O

Figure F15: Drawer after profile update Figure F16: Deep model loading

76

0.00010192790068686008

0.8884097933769226

0.0030647784005850554

0.000024808312446111813

0.00001761227576935198

0.005142790265381336

0.042907215654850006

Figure F17: Result in dark theme

77

0.005898771341890097

0.29819416999816895

0.00784402433782816

0.00018114924023393542

0.000037060195609228685

0.08738566190004349

0.5095117092132568

Figure F18: Result with mouth open

15:01 &3 RE P

N rrr—

0.028107956051826477 0.010727642104029655

0.0000024484158984705573 0.001036979490891099

0.00019070375128649175 0.9849985241889954

0.00002878105988202151 0.000018793145500239916

0.001038387417793274 0.000028367736376821995

0.9704127907752991 0.0006105027277953923

P 0.00005186745329410769 __ o 0.000049703812692314386
Figure F19: Leave result Figure F20: Look down result

78

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviation
	Introduction
	Research background
	Research aims
	Research ethics
	Dissertation overview

	Literature review
	Data features and classic methods
	Online exam security system
	Deep models detail
	Convolutional neural network
	Recurrent neural network
	Attention and Transformer

	Mobile device optimisation
	Mobile optimisation overview
	Evolution from MobileNet to EfficientNet
	Optimisation of Transformer Networks

	Related works
	Human action recognition overview
	3D-CNN and RNN based methods
	Transformer-based Neural Networks

	Design
	Data set collection
	Requirements of data set

	Data preprocessing
	Face detection with Viola–Jones algorithm
	Face landmark extraction and face concealment

	Deep model design
	Data loader and input layer
	The model architecture
	Loss function and training hyperparameters

	Implementation
	Data collection web app
	Mobile app implementation
	Architecture overview
	Display and image processing pipeline
	Tensorflow Lite adoption and model inference

	Evaluation
	Evaluation metrics
	Deep model evaluation
	Mobile app evaluation

	Conclusion
	Summary
	Future work

	Bibliography
	Code repositories
	Framework details
	Web development
	Deep learning model development
	Android application development

	Web recorder designs
	Functionality description in user stories
	Participant use cases and user logics

	Model design details
	Output categories
	Model detailed layers

	Evaluation result
	App showcase
	Web-based data collection app
	Deep model equipped mobile app

