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Bibliobuild: a citation network visualisation and

exploration tool

Philippa Gilsenan, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Yvette Graham

Citation networks are important sources of data that have many applications. These
applications have not been fully explored, and existing tools are either hidden behind
subscriptions or outdated. This dissertation, a citation network visualisation and ex-
ploration application, aims to create a modern, fast, and open tool. A micro-framework
service and graph database are utilised to quickly perform data queries and transform
the results into an easy to understand and explore citation network. Filters provide
users with control over the citation network, allowing them to refine its contents, while
statistics provide insights into the network as a whole. The AMiner dataset used con-
tained over 5 million papers. Coupled with the dataset, the network branches out to
show papers indirectly linked to the results matching the search term, creating popu-
lous citation networks to explore. The tool distinguishes inward and outward citations.
This results in two ways to view the citation network, each providing different beneficial
insights, one showing the foundation for the paper, the other showing the relevance of
the paper in future work. A prototype citation prediction model is implemented that
further utilises the data in the dataset, and is used to highlight the papers predicted
to be relevant in the future. This dissertation proves that a fast and useful citation
network tool can be created from open source data.
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Chapter 1

Introduction

1.1 Introduction

In an academic paper, the work of others and sources of information are acknowledged

through citations. While citing helps avoid accusations of plagiarism, they also direct

the reader to sources of background information and sources that backup the paper’s

arguments. It is almost universal for academic papers to contain a number of cita-

tions. Combined, the papers and the citation relationships create a network of papers

commonly referred to as a citation network.

A citation network is a directed graph displaying the citing (or referencing) rela-

tionships between papers. It is a directed graph as each relationship has a defined start

and end paper. Each paper has its own node in the graph and the relationships are

displayed using lines connecting the nodes. The appearance or structure of citation

networks can vary significantly due to the importance or recentness of a paper, and

the level of activity in its field.

Citation networks can provide a variety of insights. These networks can be used

to explore a new field and to discover new papers to read. It is also a form of social

network, displaying who is collaborating with who. Pattern analysis is another form

of insight, and has been used to identify citation cartels, authors colluding to cite each

other’s work unnecessarily in order to inflate the number of citations, and to predict

the direction or trends in fields. Another use of citation data is in bibliometrics, the

statistical analysis of publications, which has applications in hiring and the assignment
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of funding in academia.

However, citation networks are not without their own issues and challenges. Paper

access is frequently protected behind paywalls and private companies guard their cita-

tion datasets closely, for example Google Scholar has no open API. Another difficulty is

the unreliability and incompleteness of data. One such cause is in parsing the citations

as there is no standard format for citations. Papers can also be indexed multiple times

resulting in duplications, and citation data can quickly become stale. This can make

accurate, well populated citation networks difficult to build.

1.2 Motivation

A citation network is a form of discovery and insight into papers, fields, topics, and

authors. However, manually creating a citation network is incredibly time consuming,

involving searching for a paper, identifying the papers it cites and that cites it, and

then repeating the search process for each paper found. Subsequently, the process of

visualising and studying the results of the search process introduces an additional layer

of time, effort, and potential issues.

The motivation behind this project was to automate the process of building citation

networks, providing users with a fast, accurate, and user-friendly application. There

was a focus on providing granular visibility into the individual papers in the network,

enabling the user to view the citation network as a whole, as well as studying its

components. Users would be given control over the network, refining the contents of

the network shown, a functionality missing from several existing solutions. Finally, a

degrees of separation approach was undertaken. This would return not only the direct

citing relationships of a paper, but it would branch out to return those papers indirectly

connected to it. This provides the user with an increased ability to explore a network,

discovering new papers, patterns, and insights.

1.3 Key terms

There are a number of terms that are used frequently throughout this dissertation.

Explanations of these terms are provided here to provide understanding from the outset.
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• Inward citations - the incoming references to a paper from other papers.

• Outward citations - the outward references of a paper to other papers.

• Primary paper - a paper that matches the search phrase.

• Secondary paper - a paper that has a direct relationship with a primary paper.

• Tertiary paper - a paper that has an indirect relationship with a primary paper.

• Hops / degrees of separation - the number of steps in the path between a paper

and the primary paper.

1.4 Structure of dissertation

Chapter 2 presents a summary of the state of the art including the approaches to, and

components in, forming citation networks as well as the different methods of visuali-

sation. Chapter 3 outlines the design of the application and explains the reasonings

behind the design decisions made. The processes undertaken in creating the applica-

tion are outlined in chapter 4. An evaluation of the application is given in chapter 5.

Finally, in chapter 6, a conclusion to the project is provided.
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Chapter 2

State of the Art

This chapter provides a review of the state of the art and a background of challenges

and opportunities in creating citation networks. The review starts with an essential

component of any citation network, a source of citation data. It is followed by a

review of the different database approaches of storing citation data and a survey of the

various means of visualising networks. Finally, to provide a more useful application by

measuring the relevance or importance of papers in a network, the current bibliometrics

and existing machine learning approaches to citation prediction are investigated.

2.1 Datasets

A bibliography tool to aid users in discovering new papers requires bibliographic data.

The quality and quantity of the data has a significant impact on the usefulness of the

application.

Three different options for sourcing citation data were considered: building a

dataset, using an API to an existing citation dataset and downloading an existing

citation dataset.

2.1.1 Building a dataset

The importance of citations cannot be understated in academia. Aside from recognising

the work of others, citations play a key role in the creation of bibliometrics, the analysis
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and generation of statistics of publications. These metrics impact employment and

funding [1].

However, there is no universally accepted and complete source of citation data.

There are several large datasets managed by private companies, including Google

Scholar and Microsoft Academic Service (MAS). Nonetheless, due to concerns about

the accuracy of the data and the reliance on private companies, work continues on

building new citation datasets.

Open-source solutions have been proposed in response to these concerns. One such

semi-automatic process includes [1] which extracts and links references from manually

scanned publications. It was proposed that librarians carry out the necessary labour

involved in scanning the publications. This would not only require the support and

time of librarians, but would not be as fast as utilising existing online stores of scans,

and manual scanning would introduce a significant source of human error.

Difficulties in parsing citations

The parsing of citations themselves can be error prone which results in unreliability

and incompleteness [2] in citation datasets. While referencing styles, such as the com-

mon Harvard referencing style, provide a strict structure to building references, and

reputable publications require specific referencing styles to be abided by, incomplete

citations are still a common occurrence.

Citations include fields such as the paper’s title, author(s), journal, proceedings,

volume, issue, year of publication, page range and URL. As such, a missing field or the

occurrence of fields in the wrong order can result in imprecise parsing and therefore,

an incorrect citation. As found in [3], a missing page number can result in the year

being inaccurately identified as the page number.

This inexactness has been tackled with models, such as a heuristic model in [4],

which breaks a reference into tokens and creates features based on n-grams, different

capitalisations, punctuations, dictionaries containing common first and last names as

well as publishers, and numerical formats including formats for year and page range.

A knowledge base approach focusing on scientific papers is taken in [3]. Various rules

were created to identify whether a PDF contains a scientific paper, including looking

for keywords such as ACM, IEEE or Proceedings. Due to a minimum word count
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threshold, in order to disqualify PDFs predominately containing images, old scans of

papers where text appears in images are ignored. This poses an issue as papers several

decades old are still cited and considered valuable sources of information today. The

citations in the scanned paper are checked against a knowledge base to identify the

fields contained in the citation. The result of which is then analysed to match it to the

most likely referencing format before applying a template specific algorithm to extract

the citation metadata.

Opportunities in parsing citations

Despite the difficulties involved in accurately parsing citations, as not all citations

have equal importance, developing a citation parser introduces new opportunities to

examine the contexts of citations.

With access to the contents of papers, the location and frequency of the citations

can be extracted. The location of a reference, for example whether in the background

or the results, may speak to its importance. A source that is cited frequently can be

considered more valuable or relevant to a paper than a source with a singular reference

[5]. This relevance may be considered positive or negative, without the context of the

citation it is impossible to know the sentiment of a reference. For instance, a disgraced

paper may be regularly referenced and held up as an example. With access to the full

text, sentiment analysis, a popular form of machine learning, can be applied to provide

additional insight to citation networks.

While it involves considerable work to parse citations, creating a parser provides an

opportunity to gather additional data about the citations. This data can later be used

to examine and visualise citation relationships in new, productive ways that would

not be possible when confined to the citation data contained in most existing citation

datasets.

2.1.2 Datasets

There are a number of large datasets that could be utilised in lieu of building a new

dataset for this project, specifically DBLP or Microsoft Academic Graph. It should be

noted that, despite their widespread use, the datasets are also susceptible to reliability

and completeness issues.
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Microsoft Academic Graph

Microsoft Academic Graph (MAG) is one of the most utilised citation datasets. Snap-

shots of its citation dataset can be downloaded, which requires an Azure subscription,

and are updated approximately every fortnight [6].

Its data has been used to analyse research trends in the field of computer science [7],

create static rankings of articles using article-level Eigenfactors [8], enhancing author

profiles by visualising the impact of an author’s published work (also with article-level

Eigenfactors) [9], and to visualise the impact of research [10] to name a few.

However, as announced in a blog post in 2021 [11], Microsoft is retiring its Microsoft

Academic Services (MAS) after 2021 which means the data behind the MAG will no

longer be updated.

DBLP

The Digital Bibliography & Library Project (DBLP) is a dataset of computer science

bibliographies. It does not require a subscription and is free to download [12] in XML.

It has been used to explore venue metrics as an alternative to citations metrics in

scoring authors and institutions with a Gaussian model [13], visualising the changing

of focus in topics over time [14] and detecting communities from citation networks [15].

2.1.3 APIs

While no papers were found using APIs to build citation networks while researching the

state of the art, a number of citation APIs do exist. A brief introduction to three APIs

are given. One API in particular, Google Scholar, is frequently used as a benchmark

in tests on citation dataset coverage and staleness.

Google Scholar

Google Scholar is one of the largest players in the bibliographic database arena. It

crawls the internet to build its dataset. As it indexes by paper, not by journal or field,

it has the widest range of papers, including papers from conferences and journals,

academic papers such as theses and dissertations, as well as academic books. New

papers are added to Google Scholar each week. Although, updates to existing papers
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can take from six months to over a year to appear as it involves recrawling the website

it indexed the paper from [16].

There is no official Google Scholar API. However, there are third party APIs, such

as SerpApi [17], and Python libraries, such as Scholarly [18], that can be used to query

Google Scholar and receive formatted JSON in response. It is also possible to send

a generic Python request which retrieves the contents of the webpage which can be

manually parsed.

Elsevier

Elsevier is a scientific publisher that indexes academic papers to provide analytical and

search tools. Its citation dataset is comprised of paper metadata, including abstracts,

and citation data. It contains over 82 million papers and over 1.7 billion citation

relationships gathered from over 7000 publishers [19].

There is an official Elsevier API to query its dataset which requires an API key.

There is institutional access which enables those tied to a university to create API keys

without a subscription. However, there is a weekly quota on the number of requests

that can be made, and restrictions on the number of requests per second [20].

OpenCitations

Unlike Google Scholar and Elsevier, OpenCitations is a not-for-profit organisation. Its

origins began in 2010 as a one-year project. However, it has since grown to contain

nearly 66 million bibliographic entries and over 1 billion citation relationships [21].

There are a number of official APIs to query OpenCitations’ citation datasets. No

information could be found on request quotas or throttling rates.

2.1.4 Considerations

Staleness

Two factors of staleness are considered. The first compares the API and dataset

approaches. API calls return largely up-to-date data with brief periods of staleness

due to caching. Datasets on the other hand are snapshots of a particular point in time

and inevitably incur a larger degree of staleness. Datasets require regular updating
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which introduces a new task and a possible source of error due to parsing, formatting

and ingesting the new snapshots.

The second factor considers how often the datasets themselves are updated. MAS

has a slower update rate than Google Scholar which means the data in the dataset is

stale for longer periods of time and issues with the data, such as duplicate entries, take

longer to be fixed [22].

Coverage

One study comparing the coverage of Google Scholar, MAS, and DBLP in the field

of engineering ranked the sources in that order, with Google Scholar having indexed

98.96% of the 1067 studies, MAS 97.46% and DBLP 93.43% [23].

Another study corroborates this ranking, but makes an important note that while

Google Scholar contains more citations than MAS, the citations in MAS originate more

equally across the different disciplines, while Google Scholar citations are more focused

on computer science [22].

2.2 Storing data

If utilising a dataset, it can be stored in a database in order to query the data efficiently.

There are two approaches to storing networks in databases: native and non-native. In

the native approach, the database is designed and optimised to store graphs from the

outset. On the other hand, in the non-native approach, the database is adapted to

store a graph. With a non-native approach, as the database is not optimised for graph

search, performance and scalability can be affected.

Citation networks are composed of nodes, also called vertices, and edges, repre-

senting relationships between the nodes. Graphs can be directed or undirected. If the

graph is directed, such as a citation graph, the edges in the graph have source and

target nodes. It may be required to store properties or attributes about the nodes and

edges. For example, if a node represents a paper, it may be desirable to also store

paper properties such as DOI, title, or field of study.
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2.2.1 Non-native approach

Relational databases are a common non-native approach. They store data in tables

made up of rows and columns. Connections can be established between tables using

foreign keys.

When a citation network is stored in a relationship database, the nodes are usually

stored in one table and edges in another, with each row in the node table being a

unique paper and each row in the edge table being a unique relationship [24]. For

larger citation networks with millions of papers and citations, this can lead to lengthy

tables.

Join operations are used to connect the two tables when building a citation network.

This method becomes more inefficient as the size of the tables grow [24]. Another

consideration is that nodes and relationships may end up stored distantly from each

other in memory which can impact query latency.

2.2.2 Native approach

Graph databases are newer technologies and take a different approach to storing node

and edge values. Unlike in relational databases where the relationships between the

nodes are made at the run time of a query through joins, graph databases store rela-

tionships as their own entities [25]

Graph databases are operationally more extensive and expensive when storing the

data. When a node is created, the node and its edges are stored next to its adjacent

nodes, in a method called index-free adjacency. This results in fast retrieval times as

the nodes have physical RAM addresses and point to the adjacent nodes [26].

2.2.3 Comparison of native and non-native performance

One aspect where a native graph database solution is clearly superior to a non-native

solution is in the scalability of the database. In non-native solutions such as relational

databases, performance noticeably decreases as the size of the database grows. The

increasing size involves more complex and computationally expensive join operations

as the whole table must be scanned to gather the nodes and edges required to build a

citation network [24]. In contrast, due the storing of adjacent nodes in close proximity,
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graph databases tend to have a much more consistent level of performance as the

database grows [26].

This performance comes with an increased storage cost. In a comparison of disk

space usage between a native graph solution, Neo4j, and a non-native relational solu-

tion, MySQL, it was found that the native solution required approximately double the

amount of storage [24]. Using an AMiner citation dataset, it was found that to store 2

million nodes and 8 million edges it took approximately 544 MB in MySQL and nearly

1,000 MB in Neo4j [24].

Existing projects

MySQL, a relational database management system, has previously been used in many

citation projects. In a project to incorporate citation visualisations into author pro-

files, a snapshot of the MAG dataset comprised of 127 million papers and 528 million

citations was stored in a MySQL database. While the performance of the system was

not discussed in detail, it was noted that to gather the data for an author profile could

take several minutes [9].

Another project, which visualises the impact of an author’s work using concentric

circles containing those papers citing the author’s papers, stored the same MAG data

in a MySQL database. However, there was no mention of performance in the analysis

of the system [27].

Neo4j was used in [24] to store and query the AMiner dataset, containing 2 million

papers and 4 million citation relationships. The project sought to identify the topics

of the papers using a Latent Dirichlet Allocation (LDA) model, and show the topic

circulation over time. The propagation of the topics could be used to see if the topic

was gaining or losing popularity and could help direct research.

2.3 Visualisation

The application had a focus on helping users, especially those new to a field, discover

papers to read. The data in a citation network can be visualised in a wide variety of

ways in order to achieve this goal. However, care needs to be taken to show enough

data to be useful to the user without the volume of data or manner of displaying it
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being overwhelming or cluttered.

A range of different approaches were reviewed from simplistic tabular methods to

three-dimensional interactive methods. The visualisation methods proposed in the

projects below primarily deal with inward citations alone, while this project utilised

both inward and outward citations. This introduced additional factors to the visuali-

sation, such as bi-directional relationships and potentially larger numbers of nodes.

2.3.1 Range of approaches

Two projects, BiblioViz [28] and PaperCube [29] reviewed a range of visualisation

methods when creating their applications.

BiblioViz was devised from studying the systems arising from the InfoVis 2004

contest [28]. They decided a graphical method was the most appropriate form to

display the relationships in the metadata between different papers. Furthermore, while

these relationships are better grasped through visual means, having a large variety of

distinct visual forms could be confusing or overwhelming for users.

The authors considered visualisation forms across four categories, namely table, net-

work, node (minus the network) and other, before deciding on a two-pronged approach

of network and table. A key factor in their decision was the pre-existing familiarity

of users with these forms. Tables were utilized to highlight trending data, with the

x-axis showing the year. On the other hand, network graphs were utilized to highlight

relationships between papers.

PaperCube was created to display citation networks with a focus on highlighting

collaboration, or relationships, between authors [29]. The process of discovering where

a paper lies in the general context of its field or topic can be arduous and time-

consuming. The authors state this process is less intuitive when references are simply

listed instead of displayed in a visual manner. A visual manner can make relationships

between papers clear and does not require navigating away from the original paper and

therefore losing focus on the original paper.

The project incorporated five different methods of visualising the data. Circle view,

which shows a large central circle surrounded by smaller circles showing the paper’s

citations, and collaborators view were the most popular methods from their user study.

These views are graphed as interconnected nodes. Papers per year, tree map, and paper
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graph were less popular with their users due to the large amount of data displayed.

The authors concluded that multiple views were not necessarily beneficial, instead

adding features to give the user more control over the view is preferable. The user study

found the paper views were more beneficial than the author views, but the author view

was still a popular functionality. By displaying both the paper and author networks,

papers that appeared irrelevant to the user’s research but are actually important to

their research can be highlighted.

2.3.2 Combination approach

Similar to BiblioViz with its double view utilising a network graph and tables, Im-

pactVis [10] also took a combined approach. The authors also tackled the limitations

and issues with measuring the impact of an author by quantitative measures such as

h-index or citation count alone. For example, does the impact of the research change

over time?

The authors followed the Visual Information-Seeking Mantra [30] which outlines

good practices on displaying information, namely “Overview first, zoom and filter,

then details-on-demand” [30]. They were also conscious that displaying large amounts

of data could create clutter, devaluing the usefulness of the tool, and through informal

interviews with prospective users, they learned that users wanted the ability to explore

the data themselves interactively.

A matrix is displayed in the center of the ImpactVis user interface with both axes

showing the year range in question. The cells of the matrix contain a coloured box

with its size proportional to the number of citations and publications. Bar charts are

attached to the left, top and right sides of the matrix. On the left and right sides of

the matrix, bar charts display the number of publications and citations respectively

by year. On the top of the matrix sits a bar chart, which shares the same x-axis

as the matrix, that displays the number of citations received within each given year.

ImpactVis provides a clean, uncluttered way to provide the user with multiple views

of the same data.
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2.3.3 Tree approach

A family tree approach was taken in [31] to create a Java applet to visualise citations.

The papers that were referenced by a paper were considered ancestors and the papers

citing a paper were considered descendants. The years were listed horizontally across

the top of the page. Below each year, the first twenty-five characters of each paper

title published in that year in the tree were displayed in a column.

The approach worked well to provide an overview of how large numbers of papers

interacted. However, while written in 2012, there was no ability to zoom and the applet

required Java to be installed. As large numbers of papers are displayed across a wide

range of years, it is difficult to view the titles of the papers. Finally, no data aside from

paper titles, authors and abstracts are visible.

2.3.4 3D approach

CyBiS, Cylindrical Biplot System, was created to visualise the results of scientific

paper searches [32]. The authors also found that displaying results in a linear, text

format made it difficult for users to identify correlations and other relationships between

the papers returned. Similar to PaperCube [29], multiple views of the results were

undesirable as users may lose focus of the current context.

CyBis is a Java web application that displays papers as spheres in a 3D cylindrical

format. The publication date is represented along the x-axis with the y-axis and z-axis

showing paper relevance to the search terms. This relevance is shown using the height

and depth of the sphere. Colour coding was used to display the number of citations,

with the darker the shade of red denoting the more citations.

The creators of CyBiS, like the creators of ImpactVis [10], followed the practices in

displaying information laid out in Visual Information-Seeking Mantra [30]. The user

hovers over a sphere (paper) to get a quick view of the key paper metadata, additional

metadata is displayed in a table if the user clicks on the sphere. The tool also enables

the user to rotate and zoom.
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2.3.5 Concentric circle approach

A concentric circle approach was taken in [27] using data from Microsoft Academic

Search. The authors proposed a solution to display the overall influence of an author’s

total body of work. Similar to ImpactVis [10] and CyBis [32], the authors note how

visualisations enable the user to discover patterns and relationships in data more easily

than linear or quantitative methods alone.

The center node represents an author’s entire body of work. Spiralling out from

the center node are all the publications which cited a piece of work in the central node

(secondary nodes). The citations among these publications are shown with thin, grey

lines between the secondary nodes. The authors used Eigenfactor, a measure of the

importance of a journal, to scale the size of the nodes. Finally, the nodes in the circle

are colour coded by field.

2.3.6 Timeline approach

A timeline approach showing the papers written and authors collaborated with for

each year is proposed in VisualBib [33], a web application to create, visualise, and

share bibliographies. Two datasets were used: Scopus, which required the user to have

their own subscription) and OpenCitations.

The bibliography was graphed chronologically, and icons and author names were

used to visualise the bibliography with dashed lines representing citations. However,

paper titles are not shown in the interface by default and their number of citations is

not visible. This approach is beneficial in showing an author’s collaborators over time

while limited in visualising elements with multiple, bi-directional relationships.

A useful feature of the application was the generation of URLs that contained

query strings. This enables the sharing of exact searches as well as saving pages with

bookmarks.

2.4 Graphing and relationships

An expectation from the beginning of the project was that one way the application

would display citation networks in the user interface would be as graphs as they are a

standard practice in displaying relationships. The nodes in a graph represent objects,
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or the papers in a citation network, and the edges are the lines that connect the

nodes that show relationships, such as author and reference relationships in a citation

network. Graphs can be used to identify patterns, show trends over time, and discover

connections between elements that would be difficult to find in textual forms.

2.4.1 Issues arising in graphing

While graphs are an intuitive way to display and read nodes and relationships, the

method is not without issues. One issue is storing graphs as the choice of storage has

performance and storage implications.

Five common implementations of graph data structures, namely edge list, adjacency

list, incident list, adjacency matrix, and incidence matrix were compared in [34]. The

efficiency of the algorithms and their space requirements were the main criteria used

in the evaluations. The authors decided upon adjacency lists to use in their reference

mapping tools due to its speed at finding cited and referenced papers, its relatively

fast search and small space requirements. The paper also discussed issues surround-

ing citations, including incomplete citation databases, duplicate papers, and the best

citation format for parsing.

Another issue arises when the structure or layout of the graph is suboptimal for

readability and comprehension. Tessellation, when applied to graphs, is where there

are no elements overlapping and no gaps in the graph. A lack of tessellation means

network graphs can become difficult to read as they become more dense causing labels

for nodes to start overlapping and connections between nodes become blurred.

An approach to generating tessellated network graphs in proposed in [35]. A con-

ventional force-directed algorithm is employed to reduce clutter in the network graph,

such as overlapping nodes or edge crossings. Voronoi tessellation is then applied; the

area of the screen is divided into cells, allowing for a cell for each node element. To find

the optimum location of each node, the following process is repeated: the barycenter

of each Voronoi cell is located and the corresponding cell co-ordinates is moved to the

updated barycenter. The authors also incorporated a type of anisotropic Chebyshev

distance, a method to adjust the width of the Voronoi cells, to ensure the label fits

within the cell.
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2.5 Bibliometrics - measuring scientific impact

The data in a citation network has other uses aside from visualisation. Bibliometrics,

the creation of statistics from publication data, can be calculated to provide further

insights into the papers and authors in the network.

2.5.1 Existing quantitative metrics

Three common bibliometrics to measure an author’s influence are the h-index, g-index

and i10-index. The h-index was created in 2005 by Hirsch [36]. It calculates the value,

h, where h of the author’s papers have at least h citations.

G-index, an alternative to h-index, was proposed by [37] in 2006. It takes into

account the distribution of citations. Articles are sorted by decreasing number of

citations. The g-index is the largest unique citation count, g, where the sum of author’s

top g article’s citations are at least g2.

The i10-index was proposed by Google Scholar Citations (GSC) in 2011. GSC

enables authors to view and explore their citations as well as adding publications to

their profile. As the name suggests, i10-index measures the number of papers with 10

or more citations [38].

2.5.2 Quantitative metrics concerns and pitfalls

Gaming the metrics

Concerns around the accuracy of the indices are well reported. As Google Scholar

collects data using crawlers across a broad range of websites, from publishers to uni-

versities to personal, it can result in duplicate citations.

These duplicate citations can have a favourable effect on the bibliometrics. In a

study using a small dataset comprised of the body of work of 11 researchers, it was

found that 8 of the 11 researchers had at least one duplicate publication in their GSC

profile [39]. When duplicates were removed from the citation lists, half of the citation

counts were deflated by two or more citations. Of the 11 researchers, over half had

their h-index decrease by at least 1. Similarly, the i10-index of four of the researchers

dropped by up to 4 points.
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As previously mentioned, due to the wide catchment of Google’s crawlers, multiple

versions of the same article may be indexed. There is another way these duplicates

can affect bibliometrics. GSC provides the functionality to merge different versions of

the same article from different sources. A disreputable author may merge unconnected

articles to inflate their h-index as the citations of the papers are merged in the process.

This works best when the papers have little to no overlapping citations. However,

consequently this manipulation approach may have an adverse effect on other metrics

based on the total number of citations such as the i10-index [40].

Additionally, self-citations are not distinguished from external citations [41]. This

means a researcher can frequently cite their own work in order to improve their in-

dices. Also, the varying reputations of journals are not taken into account. One could

argue that publications in prestigious journals that require strict adherence to stan-

dards and ethics with low acceptance rates should be distinguishable from disreputable

publications and should be included as a weight in measuring impact.

Citation life cycle variations

Citation patterns can be vastly different depending on the field. In their study [42] of

the citation cycles in four fields of economic research (applied, applied theory, econo-

metric methods, and theory), the authors found noticeable differences between the

peak number of citations, duration of peak citation levels, and active citation lifespan

across the fields. Applied and applied theory overall performed much better over the

three factors than econometric methods and theory. In particular, theoretical papers

had the lowest peaks and durations. While econometric methods followed the same

patterns as theoretical papers, successful papers excelled and tended to perform the

best overall across the four fields. This posits that an index that does not take field into

account would not be able to accurately state the impact or position of a researcher in

their field.

The limitations of quantitative metrics such as the h-index was also discussed in

[10]. The indices do not provide insight into how the researcher’s impact changes over

time. Researchers in fields where citation life cycles are slow burners and those in fields

with short burst citation life cycles are viewed the same. Another limitation outlined

was the influence of collaborators on an individual researcher. The indices do not
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include factors such as the researcher’s placement on the author list. As a result, the

lead author and the least contributing author benefit equally from the citation count

of a paper.

2.6 Machine learning approaches to relevance

The bibliometrics discussed in the previous section do not provide insight into the fu-

ture. They are focused on historical data and to provide present-day insights. However,

a large volume of academic work is published each year. This considerable quantity

leads to questions such as: what work is groundbreaking or important, and what is the

future direction of a field?

As bibliometrics play an important role in hiring and funding, the challenge of

predicting the future relevance of a paper, author, or field has garnered more attention

in recent years.

Machine learning models have been created that examine the different citation life

cycles, and use a range of inputs, or features, to predict future citation counts. These

features predominately fall into three categories, author-centric, venue-centric, and

topic-centric. Due to the heterogeneity of academic fields, it is difficult to develop a

one-model-fits-all solution.

2.6.1 Existing approaches

Citation life cycle approach

The rate of citation for scientific papers is generally thought to follow the following

format: the citation growth rate increases for approximately the first two to three

years, before levelling off and then finally declining [43].

A two stage process to predict citation counts is proposed in [43]. The authors

identified six categories of citation patterns:

• PeakInit : papers which peak between 2 and 4 years after publication, after which

experience exponential decay.

• PeakMul : papers which have a number of different peaks over time.
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• PeakLate: papers which receive few citations in the first five years of publication,

after which they experience a peak then exponential decay.

• MonDec: papers which peak in the initial year following publication, after which

they either remain constant or decrease.

• MonIncr : papers which experience only increases in citation counts or remain

constant for an extended period of time.

• Other : papers that did not receive at least one citation each year.

Papers were assigned to one of the six categories using a Support Vector Machine

model which was trained using features across three categories: author-centric features,

e.g. author productivity, venue-centric features, e.g. long term venue prestige, and

paper-centric features, e.g. total number of authors. The model was then trained for

each category to predict the number of citations a paper would receive. Author-centric

features, in particular the average productivity of the authors, were found to be the

best at predicting the number of citations.

Impact of early citers

The impact of early citers on citation prediction was examined in [44]. The experiment

included 10,000 papers that were published prior to 1996. Four models were evaluated

on their ability to predict long-term scientific impact (LTSI) with citation prediction.

The models were linear regression, Gaussian process regression, classification and re-

gression trees, and lastly support vector regression (SVR).

The same features were used to train all models. There were four main categories

of features, including paper-centric, author-centric, and venue-centric, similar to other

prediction models, as well as early-citer centric. The early-citer centric features in-

cluded publication count, citation count, and co-authorship distance. As papers can

have multiple authors, the highest publication and citation counts across all authors

is selected for each early citing paper and then averaged to get a single value for the

feature. For the co-authorship distance, the minimum co-authorship distance across

the authors for each early citing paper is selected and then averaged.

Of the four models, the SVR model had the most accurate predictions. The au-

thors found that early citers have a considerable impact on future citations and LTSI.
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Early citers were classified as influential and non-influential with influential authors

having high publication and citation counts. Influential early citers were found to have

a negative effect while the opposite was true for non-influential early citers. One rea-

son provided was that citations from influential early citers are potentially stealing

attention. This effect was found to be stronger where the early citers are nearer to the

paper’s authors in the collaboration network.

Convolutional neural network approach

A convolutional neural network (CNN) to predict the citation frequency of papers as

a means to measure its possible scientific impact was proposed in [45].

The current number of citations alone is not an efficient means of predicting future

citations as it favours older papers. It is also not appropriate for fields with slower

citation growth rates, such as the social sciences. Citation growth rates are not uniform

and extreme patterns such as sleeping beauties can occur.

Machine learning models can produce classification outcomes, for example good or

bad, or regression (numerical) outcomes. The authors chose a CNN regressor. It takes

features of a bibliographic network as its input and outputs its predictions of citation

counts for 10 years after the paper publication. The authors’ model was evaluated on

a subset of the AMiner dataset, including papers and citations from 1980 to 1985.

Similar to [43], author related features improved the prediction accuracy followed

by venue related features. However, keyword features were found to have only a slight

improvement on efficiency.

Link prediction problem approach

Another application of predicted citation counts is gauging the prospective impact or

influence of authors. The citation of papers creates a network between the authors of

the papers. This is a directed network as the edges or relationships between papers

have an origin node, the paper doing the referencing and an end node, the paper being

referenced. Weights can be assigned to these edges to represent a variety of factors

such as number of citations the paper received, total number of citations of the authors

and so on.

In [46] a novel approach is undertaken by treating the prediction process as a link
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prediction problem where both links and weights are predicted. This process has an

added difficulty as citation networks evolve over time. Link prediction does not factor

in time, such as the age of the link. Two citation networks with an identical structure

may have evolved very differently to their current states.

Two citation datasets, AMiner and HEP-Th, were used in the experiment. Twelve

samples were extracted from the datasets, six from each source. The six AMiner

samples contained citations from 2002 to 2009 and the six HEP-Th samples from 1992

to 2003. A dynamic metric was introduced to factor the changes in citation network

trends. The metric measured the proximity of researchers. In conjunction with the

dynamic metric, features such as a paper’s number of citations, and the number of

citations from unique researchers were used to predict citation counts.

The authors highlighted the need for feature selection to improve the accuracy of

citation prediction.

2.6.2 Topic citation prediction approach

Citation prediction can have higher-level bibliometric applications. Researchers and

institutions can be concerned with how a field as a whole is set to grow or decline over

the coming years instead of the performance of a specific paper.

A model for predicting research topic citations was proposed in [47]. It utilised

two citation datasets, MAG with abstracts from AMiner. Over 50,000 papers were

involved, all of which were focused on software engineering. The authors acknowledged

the focus on a singular field meant the model would not translate fully to predicting

other fields. It was also noted that a topic may be winding down, but influential or

fundamental papers in that topic can continue to be highly cited.

2.6.3 Feature engineering

There are a range of data points that can be used as features in a citation prediction

model. However, some of these data points may have more of an impact on the accuracy

of the model than others. By identifying which features are most efficient, the model

can be simplified and more papers can be predicted as not all papers will have the full

list of data points.
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This feature selection task was addressed in [48] to see which features across four

categories were best at predicting future citation count. The categories included paper

features, author features, venue features, and network features, which are used in the

majority of citation prediction models reviewed. The authors examined the impact the

features in the categories had firstly as a whole and then individually on the citation

count predictions.

Three models were used: deep neural network (DNN), multiple linear regression

(MLR) and support vector machine (SVM). The citation counts were predicted for

3 and 5 years after publication. The ArnetMiner dataset, containing papers from

computer science publications, was used in their experiment. A subset of the data,

10,000 papers from 2000 to 2005 with more than the average number of citations for

the year published, were selected.

The SVM model was the best of the three models tested at predicting the citation

counts. It was found that removing the author-centric features had the largest impact

on the accuracy of the predictions, and using only the author features had similar

results to using all the features. When the author features were removed individually

and tested, the authors’ average number of citations was most indicative of future

citation count. There was a smaller, but noticeable, difference after removing venue-

centric features.

2.7 Conclusion

The sections in this chapter covered the key components in the formation and structure

of citation networks which greatly informed the creation of this application. The ex-

isting literature provided key insights that helped improve the performance, usefulness

and design of the application, and helped avoid pitfalls.
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Chapter 3

Design

3.1 Introduction

This chapter outlines the design and structure of the application, from the source of the

citation data to the formation of a citation network in the user interface. It follows a

chronological structure in which each subsequent section builds upon the prior section.

3.2 Citation dataset

The project required a source of citation data. It was decided to use a pre-existing

citation dataset which would be stored in a database. The reasons were two-fold, the

first was to improve performance by eliminating the need to call external APIs which

would introduce network latency and would expose the project to request throttling

and quota limitations. The second reason was to gain more control and usability over

the data. An API provides restricted access to a data source, in order to build a

citation network, each paper would need to be queried individually to get its citations.

Subsequently, each of those citations would need to be queried individually to get their

citations. In a local database, a custom query can be written which would retrieve the

data in a much more efficient manner.

The AMiner citation dataset, created by [49], was selected and downloaded from

[50]. The latest version at the time was v13.7 created on the 14th of May, 2021. It

contains 5,354,309 papers and 48,227,950 citation relationships. The dataset’s contents
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comes from DBLP, a computer science bibliography database which is formatted in

XML while the AMiner dataset is formatted in JSON [50].

Each paper has its own entry in the JSON file. The entry contains fields such as the

paper’s title, year, ISBN and DOI, as well as a UUID for the paper. It should be noted

that the existence and population of these fields vary across the papers. Also included

is an author key which contains a list of dictionaries, each containing the UUID of

an author and their name. Finally, the references key contains a list of UUIDs of the

papers it references.

A full list of the fields in the dataset and their population frequencies is provided

in Appendix A.2.

3.2.1 Other data sources considered

The challenges and opportunities involved in creating a citation parser were appealing.

However, it would take a considerable amount of time, and access to a significant

volume of PDFs to parse enough papers to create a minimum viable citation dataset.

This would result in less time to, and fewer possibilities in, visualising the citation

data.

Initially, development focused on retrieving citation data from live API calls. Two

APIs were tested, Google Scholar and Scopus. When using Google Scholar, requests

were throttled after approximately 10 calls. Compounding the low request threshold,

multiple requests were required to retrieve a paper’s metadata, authors and citations.

Also, the API did not have the functionality to return a paper’s own references. The

other API, Scopus, queries Elsevier’s citation database. It requires an API key with a

weekly quota of 5,000 requests for authors and 20,000 requests by title [51]. It returned

fewer results than Google Scholar, and like Google Scholar it does not return a paper’s

own references.

3.3 Database

After the decision to use a citation dataset, the next key design decision was to de-

termine how to store the citation dataset. The advantages and drawbacks of using

native versus non-native database solutions for storing graphs are discussed in subsec-
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tion 2.2.3. It was decided that a relational database would not be an optimal method

of storing the citation dataset. A key reason being that as the data is not tabular,

and creating a query to return a citation network would involve multi-level joins which

would have performance implications.

Due to the dataset’s interconnected nature, a graph database was a more appropri-

ate choice as it performs queries on connected datasets significantly faster [52][53][54].

This is pertinent as a paper may be connected to thousands of other papers bi-

directionally, with inward and outward citation relationships.

The graph database solution chosen was Neo4j [55]. It is open-source, therefore it

did not require a subscription, unlike alternatives such as Amazon Neptune [56]. Criti-

cally, it is fast and supports Python, which was the planned language of the application.

It is widely used, with comprehensive documentation, and an active community.

In a Neo4j database, three types of data are stored: nodes, edges, and attributes.

Nodes store individual entities which are connected by edges. In this case, papers and

authors would be stored as nodes while the relationships, references and authorships,

would be stored as edges. Properties of the nodes and edges such as title and year for

paper nodes and name for author nodes would be stored as attributes.

3.4 Service

In order to create the citation network, first the data needed to be fetched from the

database and formatted. Secondly, a user interface would be required to handle user

input (in order to search for a paper), and to visualise the citation network. A key

design decision to make was whether to combine these two functionalities into a single

application, or create a citation API service and another service to handle the web

application.

3.4.1 Data operations

It was decided to use Python for the data operations in the first step. The driving

factors behind this decision were familiarity with powerful Python data manipulation

and analysis libraries, and the ability to connect directly to the Neo4j database with a

Python driver. The speed of the data libraries was particularly important as, due to
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the nested nature of the database results, several formatting processes would be needed

to convert the results into a table-like structure.

It was then decided to use a micro-framework to host the data operations. A micro-

framework is a minimalistic framework used to create applications or services quickly

without including some functionalities such as user accounts or roles and permissions.

The service would act as an API, with different endpoints to handle the different

requests for data from the user interface.

3.4.2 User interface

Two options were considered for building the user interface. Web applications can also

be built using Python micro-frameworks. For the data service, the endpoints would

return data formatted in JSON, for the user interface the endpoints would render

webpages created from HTML templates.

The other option would be to create a standalone user interface application using

a JavaScript framework such as ReactJS. It would make the UI fast, the handling of

interactivity easier due to states, and components of the web page could be updated

without reloading the page. However, it would take longer to set up and would require

maintaining two code bases, which would take development time away from the data

and feature aspects of the application. As there was more of a focus on the applications

of the data than the frontend element, as well as for manageability, it was decided to

build the user interface using a Python micro-framework.

3.4.3 Service framework

Flask [57] was chosen as the framework for the data and web services. It is lightweight

and flexible. Importantly, it can return both JSON for the data process and webpages

in HTML for the visualisation process. It also meant the data and web services could

be combined into a single service.

A template engine called Jinja2 [58] is used to create the webpages. A template

for a page or component can be designed in a HTML script. These templates have

all the same functionalities as regular HTML scripts, including importing Cascading

Style Sheets (CSS) and JavaScript files from local storage and websites. However, as

a Jinja2 template, if statements, for loops, while loops, variables are possible. When
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Flask renders the Jinja2 template, it passes as arguments the variables necessary to

populate the page. For example, if loading a page to show a detailed view of a paper, a

dictionary containing the attributes of the paper could be passed as an argument and

the values used to populate the template.

Jinja2 also supports template inheritance, meaning one template can inherit or

import another. A base Jinja2 template was designed to contain a common structure

to apply to every page. This template included the navigation bar at the top of the

page, universal imports, and styling such as background color and font. This prevented

code repetition or duplication, and changes to the application design could be made

in one file which would be applied to every page in the application. The template for

each page in the application inherited this base template.

3.5 Citation network design

One of the earliest design decisions was to display the citation network in a graph

format. As covered in section 2.3, multiple papers found graphs to be the best form

of displaying networks as, unlike other forms of visualisation such as tables, it enables

showing multiple relationships between the nodes clearly and in a format intuitive

to understand. The papers would be displayed as nodes, or dots, in the graph, and

citations shown using edges, or arrows, between two nodes.

Graphs can display a range of data attributes without the use of words which frees

up additional space. For example, by color-coding and scaling the size of the nodes

and edges. As the graph could display a large number of papers, this meant that the

relevance of the papers could be communicated to the user using node size, making it

easier to identify papers of interest in the network.

3.5.1 Components of the network

Citation direction

A key design decision regarding the contents of the citation network was to only show

one direction of citation, inward or outward, at a time. One reason for restricting the

citation direction was to reduce clutter in the citation network graph. By including

both options, the direction of the citations would need to be very clearly distinguished
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in the graph. While this could be done with arrows and color-coding, the additional

space this would require would make the graph harder to read. It would also result in

more overlapping elements in the graph.

Another reason is that inward and outward citations provide different insights into a

paper’s relationships. Inward citations show the relevance of the paper as the citations

are from newer papers, they can also show if the work proposed in the paper has been

built upon. Outward citations show the foundation of the paper as those papers were

used to form the basis of the paper’s proposal. By showing the outward citations, the

foundational history of the topic can be viewed going back in time. When learning

about a field, papers that have the most relationships, and therefore can be argued are

most relevant in the citation network, can be identified for research.

Author nodes

Author nodes are only displayed in the citation network when the user has searched

by an author’s name. The motivation behind this decision was to reduce the number

of different node types in the graph. Each node type provides different information,

and by limiting the variety of nodes shown more nodes of one type can be displayed

at a time, providing a deeper level of insight into the citation network. A paper can

have a single author to thousands of authors. If all the authors were displayed in the

graph by default, it would reduce the number of papers that could be displayed, and

as a result, it would show fewer degrees of separation.

The user would still be able to view all the papers written by a particular author by

using the author search. The author nodes are displayed in the author search as there

can exist multiple authors with the same name. The papers of all of these authors

are returned in the results, and by showing the author nodes, the papers can be easily

distinguished by author using edges in the graph.

Example of a search by paper title

A citation network is shown in Figure 3.1. The user searched by the exact title of a

paper, Peak classifier for bar code waveforms, and selected to view the inward citations

in the graph.
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3.6 Future citation count prediction

Displaying a large citation network is useful for gaining insight into the activity in

the network as well as making identifying patterns easier. Notwithstanding, it requires

more work to judge the importance or relevance of a paper when more nodes are present.

One popular way of measuring the importance of a paper is its citation count. However,

comparing the citation counts of papers with different ages is not a fair comparison.

As a result, a machine learning model would be applied to predict the future number

of citations for the papers. This would enable the system to rank papers for relevance

more fairly, and identify recent papers that are potentially going to become relevant in

their field. As the item being predicted was a paper’s predicted future citation count,

a regression model was appropriate for the task as they predict continuous numerical

values. The other primary category of prediction, classification, was not applicable as

it predicts discrete categories.

The citation network for each search is passed through the model to have the

citation counts of its papers predicted. The papers with the highest citation counts are

highlighted in the graph with a blue outline in order to bring them to the attention of

the user.
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Figure 3.1: Screenshot of a citation network showing inward citations.
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Chapter 4

Implementation

This chapter explains in detail the processes behind creating the application. It begins

with sourcing and storing the citation data in section 4.1. After which, in section 4.2

the service to provide the application is explained. Section 4.3 explains the processes

behind creating and visualising a citation network. The components of the results page

are outlined in section 4.4 and the interactivity functionality in section 4.5. Finally, in

section 4.6 the machine learning approach to citation prediction is explained.

4.1 Dataset and database

In a Neo4j database, both nodes in a relationship must exist in order for the relation-

ship to be created. If uncertain whether both nodes exist, a MERGE query can be

performed which checks for their existence, creating a node if it does not exist, before

creating the relationship.

Initially, while learning and experimenting with the database, the insertion of the

dataset took place using the Python driver. The ingestion was carried out in batches

of 10,000 nodes until the database contained 250,000 papers. This database was used

for the initial learning and testing of queries. However, this method of ingestion had

performance implications.

Upon research, it was discovered that data could be ingested considerably faster

using the command line tool Neo4j Admin. This would require the creation of indi-

vidual CSV files for each node and relationship type. The command would ingest all
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the nodes (skipping duplicates) and would then create the relationships (skipping bad

relationships). Notably, this command can only be performed on an empty database.

4.1.1 Dataset formatting

In order to create the node and relationship specific CSV files, the data needed to be

formatted and exported from a JSON file to CSV files. This was done in Python. The

JSON file was too large (13 GB) to load in one go, causing memory issues. The split

Unix command was used to divide the file into 36 parts. This was possible as each line

in the JSON file was a different entry.

Aside from the first sub-file, all other files began with a comma. The preceding

comma was removed and opening and closing square brackets were added to the start

and end of the ingested text to convert it into a valid JSON list in string form. The data

could then be converted to a JSON object and, from that object, a Pandas DataFrame

created. Pandas [59], is a Python library for data manipulation and analysis. A

DataFrame is a tabular data structure comprised of rows and columns. A DataFrame

can be created from and converted to a range of data formats, including CSV files, lists

and dictionaries.

Paper nodes

The id key, id, could have two formats, the predominant format being a string, while

occasionally formatted as a dictionary with the id accessible by the $ oid key. The

nested id values were extracted to match the unnested string format.

Aside from id processing, the other crucial piece of formatting involved handling

new line characters. These new line characters would break the data ingestion so all

these characters were removed across the entire dataset. This was specifically an issue

with the abstract.

The paper DataFrame column headers were then renamed so when the data was

converted to CSV, the CSV headers would be in the Neo4j format. The paper nodes

CSV contained multiple keys including title, ISBN, and start and end page numbers.

However, only two keys were guaranteed to appear for each paper: :LABEL set to

Paper and paperId:ID containing the UUID of the paper.
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Paper relationships

The paper nodes would be connected with reference relationships. The DataFrame

contained a references column which contained a list of papers referenced for each

paper. In order to create relationships for each individual reference, each reference

would need to have a different line in the CSV. The references column was exploded in

Pandas, essentially creating a new entry in the DataFrame for each reference.

The paper references CSV contained three keys: :TYPE set to REFERENCES,

:START ID to the id of the paper doing the referencing, and :END ID to the id of the

paper being referenced.

Author nodes

The formatting of the author nodes took the longest amount of time due to the level

of nesting. Each row contained a list of dictionaries with author information. This

column was transformed so there was an individual row in the DataFrame for each

dictionary entry. Each key in the dictionary was extracted and a new column was

created to hold the key values.

The author nodes CSV contained three keys: :LABEL set to Author, authorId:ID

set to the UUID of the author, and name.

Author relationships

The paper and author nodes would be connected with authored relationships. The

DataFrame containing the formatted author data was used with no additional process-

ing required. The paper-author relationship CSV contained three keys: :TYPE set to

AUTHORED, :START ID the id of the author, and :END ID to the id of the paper.

4.1.2 Dataset ingestion

The formatting process was carried out on each of the 36 dataset files. The results of

which were appended to the four CSV files. Once the CSV files were fully populated,

the data could be ingested into the Neo4j database. The command used to ingest the

data is available in Appendix A.1.
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Step Formatting Section Average Duration

1 data ingestion 9.30s
2 initial formatting 1.97s
3 venue formatting 57.40s
4 paper nodes 17.78s
5 paper relationships 4.08s
6 author formatting 189.94s
7 author nodes 0.86s
8 author relationships 0.97s

Table 4.1: The average times for each section of the formatting process.

The formatting process took approximately 3 hours while the ingestion took under

10 minutes. It took on average 4.7 minutes to ingest, format, and convert each sub-

dataset file to a CSV. As shown in Table 4.1, the formatting steps took up the bulk

of that time. Unsurprisingly, formatting the author DataFrame from rows of lists of

dictionaries to individual rows for each dictionary took the most time. A breakdown

of the formatting times per sub-dataset file can be seen in Appendix A.3.

Ingestion issues

The formatting was initially developed and tested using the aa subset file and the

resulting CSVs were used to test the ingestion process. This process identified format-

ting issues in the dataset, such as the abstracts containing new line characters and

unescaped quotations. These new line characters would split the abstract text over

multiple lines, but the subsequent abstract lines would then appear as new nodes. As

Neo4j expects the rows to follow the same format, and contain unique identifiers which

would not be present in the additional abstract lines, the ingestion process would error

out. As a result, the aa formatting and ingesting process took several iterations to

catch all the breaking characters.

Finally, due to warnings of inadequate heap size when using Neo4j admin tool, the

heap size was increased from 1GB to 2GB to handle concurrent operations [60].

35



4.1.3 Indexes

In the initial testing of the citation database, the queries were taking significantly

longer than desired. The queries were simple paper or author look-ups so more exten-

sive queries including degrees of separation for a paper would take significantly longer

than the simple look-ups. The query performance had to be improved to make the

application usable.

Two indexes were added to tackle this issue. An index is a copy of part of the

data in the database with the objective of making queries faster. In Neo4j, indexes

can be applied on both nodes and relationships and can be on a single property of

the node or edge, or multiple properties. Indexes on multiple properties are called

composite indexes. There are two main drawbacks in using indexes. The copy of the

data increases the storage demands of the database, and future writes are slower. The

need for faster queries outweighed the corresponding increase in storage, and as the

database was unchanged throughout the rest of the development, slower writes were

not an issue.

Indexes created in project database

Indexes were added to the titles of paper nodes and to the names of author nodes. It

was decided to index by the title and name fields instead of by the UUIDs as the user

searches by paper title or author name, not ids.

The following commands were used to create the indices:

CREATE INDEX paperTi t l e Index FOR (n : Paper ) ON (n . t i t l e )

CREATE INDEX authorNameIndex FOR (n : Author ) ON (n . name)

The indexes significantly improved the performance of the queries. In Table 4.2, the

performance of two queries are compared on the non-indexed and indexed databases.

One query is a look-up of a paper by its title, the other is a look-up of an author and

the papers they have written.

4.1.4 Querying the database

The Neo4j database is queried using an open-source query language called Cypher.

The language focuses on specifying what you want returned and not how to return the
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Field Query Non-Indexed Time Indexed Time

paper title A solution to the problem of ... 51.95s 0.11s
author name Theo Pavlidis 37.13s 0.14

Table 4.2: Comparison of the query performance on the non-indexed and indexed
databases.

results.

A user can search using the title of a paper or the name of an author. This can

be an exact match search or a like match, where the field contains the search term.

As discussed in subsection 3.5.1, inward and outward citations can provide different

insights into a citation network and the user selects one of these options when searching.

An example query is shown in Listing 4.1, where a paper is searched for by its

exact title and its outward citations, and the outward citations for those papers up to

3 degrees away, are returned. This query will be used in the next section to explain

the structure of the Cypher queries used.

1 MATCH (a : Paper {
2 t i t l e : ‘ Experiments with C l a s s i f i e r Combining Rules ’

3 })
4 OPTIONAL MATCH path=(a)−[ r :REFERENCES]−>(b)

5 CALL {
6 WITH b

7 OPTIONAL MATCH paths = (b : Paper )−[h :REFERENCES∗1..3]−>( c )

8 WITH c , paths , h

9 LIMIT 10

10 RETURN c , h , l ength ( paths ) as hoppies

11 }
12 RETURN a , b , r , c , h , l ength ( path ) as hops , hoppies

13 LIMIT 100

Listing 4.1: Cypher query to return a paper, its outward references, and the outward

references of those papers up to 3 degrees away.
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4.1.5 Query structure

Querying the search term

The first component of the query is the only one that changes based on the search type

and match type. In this search, the user is searching by a paper title. As a result, the

node type Paper is specified on line 1. If the search was for the name of an author,

the node type would be Author. In the case of a LIKE search, the clause in the curly

brackets is removed and a WHERE clause with wildcards is added after the closing

round bracket on line 3.

Relationships

In Cypher, if a clause of the query returns no results, the final response will be null.

This would pose an issue if a paper exists in the database, but it does not have any

referencing relationships (secondary or tertiary nodes as outlined in section 1.3) in the

specified direction. Even though the primary node, the paper, exists it would not be

returned. As a result, the sub-queries to return the secondary and tertiary papers are

set as optional matches, as seen on lines 4 and 7, to ensure the primary node is returned

if no secondary or tertiary nodes exist.

In Cypher, nodes are specified in round brackets and relationships in square brack-

ets. The relationship is situated in-between the known node and the result node.

The direction of the relationship is signalled with arrows either side of the referencing

brackets. The relationship type is set to REFERENCES on lines 4 and 7 as author

relationships are not pertinent to retrieve the secondary and tertiary papers. By re-

stricting the node types checked, it also improves performance. The arrow’s position

on the right hand side of the referencing brackets on lines 4 and 7 mean that in this

case the query is looking for out-going references.

To enable hops, an asterisk followed by the minimum hop degree, then two inter-

mediary dots, .., and lastly the maximum hop degree, is appended to the relationship

type as seen on line 7.

38



Returning values

The tertiary query is located within a CALL clause in order to limit the number of

tertiary nodes returned for each secondary node to 10. This prevents a secondary

paper with a large number of tertiary nodes from constituting the majority of the

search results.

The path variables initialised on lines 4 and 7, path and paths, store the route

between each primary node and secondary node, and each secondary node and tertiary

node respectively. The scalar function length() is used in the return statement to return

the individual hop count for each secondary and tertiary node. The number of hops is

later used for weighting and styling in the citation graph.

In order to prevent the citation graph from becoming too cluttered, a maximum of

100 nodes is returned. The ORDER BY sub-clause returns the nodes from closest to

furthest from the primary node using the hops field so the most relevant papers to the

search are returned. This ensures that secondary nodes are prioritised over tertiary

nodes.

Example queries for each of the four search options are available in Appendix B.

4.2 Service

An instance of Flask was created to serve the frontend of the application and to handle

requests to the Neo4j database.

4.2.1 Application routing

A Flask application can have multiple pages, created using @route function decorators

for each page. Essentially, with routes Flask matches the URL to its corresponding

function and triggers it. The Python function carries out the necessary operations to

fulfil the request. At the end of the function, Flask renders the response. This response

could be a JSON object or a HTML page.
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4.2.2 Creating the webpages

The webpages were designed using Jinja2 templates. When rendering the templates,

the values of the arguments passed could be displayed in the webpage using double

curly brackets, {{ variable }}. Conditional statements and iteration loops could be

created using similar notation. The HTML elements to be contained in the body

of the statement would be preceded by {% statement %} and followed by {% end

statement %}. For example, a for loop would start with {% for x in list %} and end

with {% endfor %}.

Pages such as the results page had multiple components. These components had

their own templates. For example, the results page included a filters panel. The panel

had its own template as did the different filter input types. This modularity increased

the reusability of the templates and meant the components of pages could be moved

or restyled easily.

4.2.3 Application design

The pages were styled using CSS frameworks, Bootstrap [61] and Tailwind [62]. Two

frameworks were utilised as Bootstrap provides structural components such as modals

but has limited styling, while Tailwind provides more extensive styling functionalities

but, as of the time of writing, no components.

The generic Bootstrap CSS was used. However, Tailwind enables you to customise

your CSS script and configuring your own script will remove unused elements to make

loading times faster. Tailwind was installed using NPM and custom stylings were

added to the configuration script to provide a theme colour, button style, and font to

the application. The configuration was then compiled into CSS and the script added

to the project.

Form rendering and validation, for example when searching for a paper, was imple-

mented using the Python package WTForms.

Theme colours

Tailwind has preconfigured colour palettes. Each colour in the palette contains a range

of shades for that colour from light to dark. A lime green palette was selected as the
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theme colour of the application. This colour would be used to highlight text, such as

page headings or a paper title, and in buttons and icons. A grey colour palette was

chosen for the background of the page with the navigation bar at the top of the page

using a grey four shades darker.

Distinguishing the page components

The results page in particular had multiple components, including the graph, table,

filters, statistics, and detailed paper view. Background colours were used to make

it easier to distinguish where the components start and end. As a grey background

was applied to all webpages, components were given a white background to clearly

differentiate the component boundaries. The borders of the components were also

rounded to soften their edges.

Distinguishing the page actions

The results page had many actions corresponding to the multiple components. These

actions had different levels of importance. The primary actions of the page, such as

the buttons to view the results as a graph or table, should be more noticeable than the

secondary actions, for example the button to launch the statistics modal. The buttons

for primary actions were given colourful solid backgrounds, while the secondary actions

had a transparent white background, but with colourful borders and button text. The

different stylings would make the page easier to navigate, especially for new users.

4.2.4 Connection to the database

A Neo4j Python driver was used to connect the service to the database. The connection

was established upon the creation of the application, with the URI and credentials

retrieved from environment variables. The same connection is used for all requests in

the lifetime of the instance.

4.2.5 Query response formatting

The data returned by the Neo4j driver is a Neo4j result object. In order to access,

filter, and calculate statistics on the data quicker and easier, for example in calculating
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node sizing, the result object would be converted into a DataFrame. The Neo4j result

object has an attribute to convert the object into a list. This list was then converted

into a DataFrame.

There are seven columns in the DataFrame, one for each node type (3), each rela-

tionship type (2), as well as for both hop counts.

The list of columns returned can be seen below.

1. Primary nodes

2. Secondary nodes

3. Tertiary nodes

4. Primary-secondary relationships

5. Secondary-tertiary relationships

6. Hops (primary and secondary nodes)

7. Hoppies (tertiary nodes)

The node and relationship columns contain dictionaries, and in these dictionaries

are the properties. For ease of use, the keys from these dictionaries would need to be

extracted and a new column created for each key.

Primary node formatting

The primary node column stores the nodes that matched the search term inputted by

the user. The node type, paper or author, depends on which type the user selected for

their search. While secondary and tertiary nodes are always papers, as there are two

potential node types for primary nodes, the formatting process for primary nodes was

slightly different in order to handle both types.

The column containing the primary nodes is extracted from the DataFrame. A new

DataFrame was created by extracting the unique keys in the dictionaries, creating a

new column for each key and populating the new column with the corresponding value

in the row’s dictionary. The old column that contained the dictionaries is then removed

from the DataFrame.
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The process results in a DataFrame containing only primary nodes with a key for

each property. For example, if the search was by paper title, the columns contain paper

metadata such as the year, DOI, and abstract. On the other hand, if the search was

by author name, the columns contain the author id and name. The number of hops is

not calculated for primary nodes in the Cypher query so a default value of 0 is set for

the primary nodes.

Secondary nodes

As previously mentioned, the secondary nodes contain only paper nodes. The process

of extracting the node properties from the dictionaries followed the same formatting as

the paper primary nodes. However, not all columns were dropped. The hops column

applied to secondary nodes and was therefore kept. The resulting DataFrame contains

the keys from the dictionaries as columns and the hops column.

Tertiary nodes

The tertiary node formatting differed from the secondary node formatting in one aspect.

In the Cypher query hops refers to the number of edges between the primary and

secondary nodes and hoppies between the secondary and tertiary nodes. Hoppies could

range from 1 to 3 degrees of separation from the secondary node. In order to get the

degrees of separation of the tertiary nodes to the primary node(s), the hop count of the

tertiary paper’s corresponding secondary paper and its hoppies value were summed.

Joining all the data

The three DataFrames, for the primary, secondary and tertiary nodes, were then

merged. If the search was by paper title, all three DataFrames have the same columns

and when merged, the resulting DataFrame contains a single instance of each unique

key.

If the search was by author name, the author-specific columns will appear in the

merged DataFrame, and secondary and tertiary node rows will have null set for those

author keys. Also, the hop number of the papers written by the author(s), the sec-

ondary papers, is set to 0 and the hop counts for the tertiary papers are reduced by

1.
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Finally, using the unique paper and author ids, duplicate rows are removed from

the DataFrame. Duplicate primary and secondary nodes can appear as the response

returns an entry of the primary and secondary nodes for each tertiary node. The entire

formatting of the search result takes approximately 0.20 seconds.

Data formatting

General formatting is then applied to fields that are involved in node sizing or in

generating the various results statistics. In the Neo4j database, some numeric data is

stored as strings. Such columns include the citation count, reference count, and year

columns. In order to perform operations on these fields later, the columns are cast from

a string containing a float, to a float, then to an integer. Columns containing lists,

including the keywords and field of study columns, are converted from a list containing

a string of a list, to a list.

Paper and author nodes had their own id keys in the DataFrame, paperId and

authorId respectively. In the future, to order the DataFrame by the same order of the

nodes in the network, a common index column is created containing the corresponding

node ids. This will later be used when creating a list of node labels from the DataFrame.

If the order did not match, the wrong metadata would appear in the labels.

4.3 Creating the citation network

4.3.1 Creating the network structure

The Neo4j graph instance returned by the driver does not contain the co-ordinates

of the nodes which are necessary in order to graph the citation network. While a

visualisation library would be used to display the citation network in the user interface,

the major libraries cannot graph networks by themselves as they cannot position the

nodes in the graph. As a result, a network Python library was required to calculate

the co-ordinates of the nodes in the citation network.
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Networkx - storing networks

NetworkX [63] was the network library used to create the network graph co-ordinates.

It has four key graph methods for storing nodes, edges, and their attributes:

• Graph: class for undirected graphs, multiple edges not supported.

• DiGraph: class for directed graphs, multiple edges not supported.

• MultiGraph: class for undirected graphs, multiple edges are supported.

• DiMultiGraph: class for directed graphs, multiple edges are supported.

During the initial development, basic graphs were created using the Graph class

to test converting the Neo4j graph result to a NetworkX graph object. However, as a

citation network is a directed graph, after the initial development the directed graph

classes were tested. The directed graph classes resulted in graphs where there were a

cluster of nodes in the center of the graph surrounded by an outer ring of secondary and

tertiary papers. This meant the structure of how the papers branched out, the hops,

from the primary nodes were lost. As a result, to keep the formation of the branching,

the MultiGraph option was used instead, as edge directions could be later indicated

in the graph using the visualisation library. MultiGraph was chosen over Graph as it

is possible for two papers to cite each other and MultiGraph facilitated showing both

edges in the network graph.

Node positioning algorithms

NetworkX has twelve node positioning algorithms which determine the co-ordinates

of each node in the network. Most of the options, such as the bipartite layout which

positions the nodes in the graph along two straight lines, and spiral layout which

positions the nodes in a spiral, were not appropriate structures for a citation network.

Two node positioning algorithms for undirected graphs were tested, Fruchterman-

Reingold force-directed algorithm (or spring layout) and Kamada-Kawai path-length

cost-function. Both methods have a spring premise where nodes are either attracted

to or repulsed by each other. The edges are thought of like springs, to keep those nodes

connected close and repel those not connected.
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The Fruchterman-Reingold algorithm attempts to position the nodes so that the

edges connecting them are all approximately the same length while reducing the number

of crossing edges in the graph [64]. It aims to mirror the underlying symmetry in the

branching to make the layout of the graph more aesthetically pleasing.

In the Kamada-Kawai path-length cost-function [65], instead of springs existing just

between adjacent nodes as in Fruchterman-Reingold, springs exist between all nodes.

The length of the spring is equivalent to the graph distance, where graph distance is

the shortest path, or fewest number of edges, connecting the two nodes.

The symmetry and reduced edge crossings of the Fruchterman-Reingold algorithm

resulted in the most comprehensible and aesthetically pleasing graphs, and as a result,

it was chosen over Kamada-Kawai. The reduced overlapping edges was important

to improve the readability of the citation network in the user interface and to make

viewing the relationships between nodes easier.

Network creation process

The first step in the implementation process involved creating an instance of Multi-

Graph. The nodes were then extracted from the Neo4j graph result. As nodes in

NetworkX can have properties, the paper and author attributes were added as prop-

erties. Paper nodes stored properties such as the year, number of hops and number

of citations. Author nodes stored the author’s name and id. The nodes with their

properties were then added to the MultiGraph instance.

The edges were then extracted from the Neo4j graph result. Edges can also store

properties and the relationship types of the edges, REFERENCES or AUTHORED,

were added. The individual edges were then added to the MultiGraph instance includ-

ing their start and end nodes, relationship id, and properties.

Once the graph had been populated with all the nodes in the citation network, the

positions of the nodes were created with the Fruchterman-Reingold layout function.

These co-ordinates were then added to the edge attributes to connect the nodes.
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4.3.2 Visualising the citation network

Graphing the citation network

While NetworkX can create and examine network structures it cannot display them.

A dedicated visualisation library would be required to transform the NetworkX graph

instance, containing the co-ordinates and properties of the nodes and edges, into a

visible representation of the citation network in the user interface.

Initially Matplotlib, a Python visualisation library, was used to visualise the net-

work. However, the application was later migrated to Plotly, another visualisation

library, due to its ability to render interactive plots, the greater control over design

elements such as axes, and its better documentation.

Network graphs can be created with Plotly using a scatter plot instance. Scatter

plots consist of dots (or nodes) positioned along the X and Y axes. The nodes display

the relationship between the axes values. For example, showing the share price of

a company over time. A network graph can be plotted on a scatter plot using the

co-ordinates generated by the node positioning algorithm in NetworkX.

Displaying the node attributes

Displaying the nodes in the citation network as dots alone would not provide the user

with adequate information about the papers. Information is displayed in two formats,

node labels and text boxes appearing when the node is hovered upon.

If node labels were displayed for all paper and author nodes, the graph would

become cluttered with the nodes, edges, and labels overlapping and becoming hard to

distinguish. As a result, not all labels are immediately visible in the graph. While all

primary node labels are displayed, unless there are more than 5 primary nodes, only

the label of every 10th secondary or tertiary node is displayed.

An inability to view the papers behind the nodes would not be conducive to ex-

amining a citation network. As the network graph would not initially display all the

node labels, a feature was added to display basic information about the node when the

user hovers over the node in the graph. Aside from the paper’s title, the hover text

box displays the year, and hop, citation, and reference counts. A note at the bottom

of the hover box informs the user that they can view additional information about the

paper by clicking on the node (instead of hovering over it), this detailed paper view
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is described in subsection 4.4.4. An example of the hover text box can be seen in

Appendix C.2.

Node colour and size

The nodes are colour co-ordinated and their sizes scaled to help the user differentiate

between nodes of different types, degrees of separation, and number of citations. The

node colours were determined by node type. Primary nodes, those matching the search

term, were coloured green, and all secondary and tertiary nodes were pink. The node

sizes were scaled by hop count, year, and the number of inward or outward citations

(depending on which the user selected in the search input).

Creating a node size scale

A base node size was calculated for each hop count using the Python range function,

an interval count, and a maximum node size. The range function creates a sequence

of numbers with each element increasing or decreasing from the previous element by

a set increment. The interval, or number of elements in the range, was the maximum

node size plus one. The additional hop count was due to the hop count of primary

nodes being set to 0, otherwise the range would be short one value. The list of base

sizes was reversed, sorted decreasingly, so the base size for a hop count could be used

as the index in the list.

Weighting the year and citation counts

A buffer was added to the base size based on the year and citation count of the paper.

As newer papers tend to have fewer citations than older papers, a basic calculation was

implemented to weight the citation count by the year it was published.

Firstly, a maximum buffer size was calculated as half the difference between the

base node sizes to ensure that it was easy to differentiate between nodes of different

degrees of separation.

The next step involved normalising the year and number of citation columns in

the DataFrame. These normalised values were individually multiplied by the buffer

size to get a year buffer and a citation count buffer. The normalised year used to

get the year buffer means that newer papers would be larger than older papers. The
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normalised citation count means papers with more citations are larger than those with

fewer citations. This balanced out the difference in citations of old and new papers.

These buffers were added to the base size to calculate the final node size.

A machine learning approach to citation count prediction was later developed. The

models created did not have a sufficient level of accuracy to be used in the node sizing

so the approach outlined above was kept. The machine learning approach is expanded

upon in section 4.6.

4.4 Results page components

The results page displays the search parameters in a panel at the top of the page.

The page contains two views of the citation network, graph and table, only one view

is shown at a time, as well as a detailed paper view which displays comprehensive

information about a paper. There are two initially hidden components, a filter panel

that filters the contents of the citation graph, and a statistics modal that provides

network wide statistical insights. These components are initially hidden to provide a

larger space for the citation network views. The components of the results page are

outlined in more detail in the subsections below.

4.4.1 Graph view

The main component of the results page is the graph view of the citation network.

It takes up the largest amount of space on the page and it is the default view of the

citation network. However, in a panel above the graph there is the option to toggle

between the graph and table views. The panel also contains a legend for the graph,

explaining the meaning behind the colours of the nodes.

An example of the graph view of a citation network is shown in Figure 4.1. The

user searched by the exact title of a paper, A solution to the problem of touching

and broken characters, and selected to view the inward citations in the graph. The

subsequent component screenshots were from the same search.

Two more graph view screenshots are available in the Appendices. In Appendix

C.1, the citation network shown was created from a search for an author’s name. In

Appendix C.2, a search for paper titles containing ‘interactive visualization’ was made.
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This network contains outward citations.

Figure 4.1: Graph view of a citation network.

4.4.2 Table view

A key benefit of displaying a citation network as a graph is the ability to clearly see the

relationships between the nodes. However, the graph cannot display a large volume of

data perceptibly. As a result, a table view was added to the results to display a larger

volume of data.

A table view was chosen as the paper nodes contain the same keys, and the columns

would make it easier to scan data. The table has five columns: title, year published,

number of hops, number of citations, and number of references. The rows are ordered

first by the number of hops ascending, then by year ascending. This puts the primary
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nodes at the top of the table, immediately visible to the user, and the papers with the

largest degrees of separation at the bottom.

On the left hand side of each paper title is a quick search link. This will open the

search page in a new tab in the user’s browser with the search term pre-populated to

the title of the paper and the search type set to paper title.

In the number of citations and number of references columns, the largest values are

highlighted in blue. This enables the user to identify the corresponding paper title at

a glance.

Figure 4.2 shows the contents of the citation network as a table.

Figure 4.2: Table view of a citation network.

4.4.3 Summary statistics

The citation network can return up to 100 nodes. This would make approximating

or manually calculating statistics from the results difficult. A sample statistic may

be what are the oldest, median, and latest years of publication in the network. This

can provide insight into how active the field is, or in other words, are the papers still

relevant today. For example, if the latest paper in the network was published in 1992,
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there has been no activity in nearly three decades.

The minimum, maximum, median, and total range (the difference between the

minimum and maximum figures) values are calculated across the papers in the network

for the year, citation count, and reference count. The user can click on the minimum

and maximum figures to display the paper(s) behind the statistic. This makes the

process of finding which paper was published most recently significantly easier than

scanning the hover text of all of the nodes. The median value is used over the mean

value as a small number of papers have tens of thousands of citations. As most papers

in the database have less than 100 citations, these extremely cited papers drastically

inflate the average citation count.

The top ten keywords across the citation network are also calculated. A list of all

the keywords appearing in the papers is compiled. This list has two uses. First, the

top 10 most occurring keywords are calculated, which provides an insight into what are

the predominant topics in the network. Secondly, the papers in the citation network

can be filtered using the keywords filter in the filter panel. The list of keyword options

for this filter comes from the same list. Duplicate instances of words are removed and

the list is sorted alphabetically.

Figure 4.3 shows the statistics generated on the citation network as a whole. Due

to the high top citation count, the max citation figure was clicked upon to view the

title behind the figure.

4.4.4 Paper view component

As outlined in subsection 4.3.2, the user is provided with basic information about the

paper when hovering over the node. There were text fields that would have been too

long to have in the hover text box, such as the paper’s abstract. Also, as the hover

text boxes are not static on the page, if links were included in the box the user might

lose the hover text box while moving their mouse when attempting to click on a link.

As a result, a detailed paper view component was added to display all the information

about the paper in a more user-friendly format.

The user can view the paper’s details by clicking on a node. As mentioned in

subsection 4.3.2, users are informed of this at the bottom of the hover text box that

pops up when their mouse appears over the paper’s node in the graph. The paper view
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Figure 4.3: The statistics modal component containing insights into the citation net-
work.
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component appears underneath the citation graph and the page automatically scrolls

down so the component comes into view.

The following fields for a paper are displayed:

• Abstract

• Authors

• DOI

• Keywords

• Language

• Number of citations

• Number of references

• PDF link

• Title

• Year published

There are two links in the component. The first is a URL to an open access PDF

version of the paper. However, this is only displayed when a link exists. Additionally,

there is a quick search link, also implemented in the table view in subsection 4.4.2,

which opens a search for the paper in a new tab in the user’s browser.

Figure 4.4 shows the detailed view of a paper, including the author and the abstract.

4.4.5 Filter panel

A citation network contains nodes across different years, fields, languages, and so on.

It can be beneficial to reduce the quantity of nodes displayed to examine an aspect of

particular interest. For example, viewing only those papers published in recent years.

This required the citation network to be filterable.

There are 7 available filters:

1. Citation count range (numerical range inputs).

54



Figure 4.4: The detailed paper view component displaying all information for a paper.

2. Reference count range (numerical range inputs).

3. Year count range (numerical range inputs).

4. Hop count range (numerical range inputs).

5. Languages (a multi-select list).

6. Keywords (a multi-select list).

7. PDF available (a checkbox input).

Numerical range inputs

The citation, reference, year, and hops count filters enable the user to set maximum

and minimum values, and only papers that fall within the range are returned. The

default minimum and maximum values of each filter are set to the actual minimum

and maximum values in the result data.

The hops count range provides the user control over the degree of branching to

display in the graph. For instance, if the user wanted to view only the matches to their

search term, they could select 0 as both the minimum and maximum value.

Multi-select lists

The languages filter contains a list of the unique languages the papers in the results

are written in, while the keywords filter consists of the unique keywords in the papers.

55



The user can select multiple options from each list. The filter returns the papers that

contain any of the selected options in the list.

Traditionally, papers are mostly cited by other papers in their field. However, cross-

field citations do occur and create a link between the different fields. The keyword filter

enables the user to view only the papers with the keywords they are interested in and

so papers belonging to different fields can be isolated.

Checkbox input

The dataset contains URLs to PDFs for some of the papers. The papers are hosted

on the AMiner website and are open access. The PDF available checkbox enables the

user to filter out those papers that do not have a URL to display only the open access

results.

Also, beneath the filters there is a reset button that will remove all the user’s filters

and restore the citation network to its original state.

Figure 4.5 shows the list of filters available in the panel on the left hand side.

Figure 4.5: The filter panel component enabling the user to control the contents of the
citation graph.

56



4.5 Client-side interactivity

JavaScript is used to provide client-side interactivity, essentially handling all clicks and

inputs of the user.

A summary of interactivity provided includes:

• Handling input changes.

• Toggling between the graph and table views.

• Displaying the filter side bar and statistics modal.

• Displaying the detailed paper view.

• Filtering the nodes in the citation network graph.

• Displaying the papers behind the figures in the statistics modal.

• Adding paper titles as annotations to the citation network graph.

4.5.1 Filtering the citation graph

It is fast and clean to update the Plotly graphs in Python. However, this would involve

sending requests to the server each time a filter is changed. The data behind the citation

networks would need to be cached to avoid repeatedly querying the database with the

same query every time a single user changed their filters.

Plotly has a JavaScript version. This meant that operations such as filtering the

nodes in the graph could be handled on the client-side instead of sending a new request

to the server to redraw the graph every time a filter was changed. In other words, the

graphs are initially created in Python Plotly and are later updated in JavaScript Plotly.

Plotly graphs have a transform attribute which can take a list of filters to filter the

graph by. Basic filters, where there is one option to filter or search for and the column

to search in is made up of single, unnested values, are simple to add.

The data behind the graph is contained in the data key. A Plotly graph can contain

multiple sub-graphs, called traces, layered on top of each other. The index 0 is used

to get the trace containing the node data. The data for the edges, which connect the

nodes, are contained in another trace in the plot.
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4.5.2 Creating filters for different data types

As covered in subsection 4.4.5, there are three generic types of filters: boolean, range,

and select inputs.

The range filter involved adding one to two filters to the transform list. One filter

for the minimum value for the field, another for the maximum value for the field.

However, both filters were not always required. For example, if the user changed the

minimum value, a filter would be added to set the minimum value for that field. If the

user did not change the maximum filter, a maximum filter would not be required and,

as a result, only one filter would be added to the transform list.

The multi-select filter took a list of the selected values, and checked to see if any of

those selected values appeared in the field being filtered for each node. The field being

filtered could have different data types. The language field in the data contained single

string values while the keyword field was made up of arrays of strings.

As the transform filters do not support filtering for an array of values or in an array

of values, a new key was created in the data to enable a multi-select filter. The value

of the key would store an ordered list of booleans for whether each node contained any

of the selected options. The values of this new key were generated by looping through

the field’s values and adding true if there is an intersection between the selected input

values and the node’s values, otherwise adding false to the new key’s list of values.

The multi-select filter could then be added to the transform list by setting the value

being filtered for to true, and data being filtered to the list of booleans.

Resetting the filters

A reset filters button was added to the filter panel to reset the citation graph and the

input filters back to their original values. The graph was reset to its original structure

by setting the transforms list to an empty list. However, after doing so, the filters in

the UI would still contain the old selected values.

The input values in the user interface were reset to their original values individually

in JavaScript. The value of the multi-select inputs were set to null to uncheck all

selected values, and the value of the checkbox was set to false, to become unchecked.

In order to reset the range filters back to their original states, default value attributes

were added on input creation so the original value could be retrieved from the input
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element and then set as the current value.

Figure 4.6 shows the results of a hop filter on the citation network. The maximum

hop count was set to 2. Also, the graph lines were enabled, using the toggle above

the statistics and filter buttons. The unfiltered graph can be viewed in Figure 4.1 for

comparison.

Figure 4.6: Example of a filtered graph where the maximum number of hops is 2.

Trial of an analytic dashboard library

Due to prior experience with JavaScript, handling the client-side interactivity was not

an unfamiliar task. However, one key aspect that would have benefited from dedicated

third-party libraries were the operations involving the citation network graph.

An alternative to the protracted filtering of the graph data in JavaScript would be

to use Plotly Dash [66]. Dash is based on Plotly, Flask, and ReactJS, and is used to

create analytic applications.

The application is a dashboard page that can contain one or more components. The

components can be different visual means including tables, charts, and filters. Instead

of handling the clicks on the components and the filter changes with JavaScript listeners
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and manually filtering and redrawing the page, Dash uses callbacks. The callbacks are

function decorators that call a Python function. The data behind the components can

be easily updated in the function using Pandas, or the graph type changed or restyled.

As Flask is used behind Dash, it would require running an application instance of

Flask to handle all the non-dashboard routes, and a Dash instance to serve a citation

dashboard. The Flask instance would be passed as an input to the Dash instance. Both

instances would be required as a plain Flask service couldn’t serve the Dash endpoints,

and the Dash service can only serve the dashboard endpoints.

Dash was incorporated into the project mid-way through. This involved a restruc-

turing of the project to make both the Flask and Dash instances compatible. Each

user would need their own citation network dashboard containing only the results of

their search. However, Dash does not handle the underlying dataset of the dashboard

changing very well. If another user were to run a search, the underlying data of the

other users would be updated as well. It was then decided not to use Dash in order to

facilitate multiple users using the application at a time.

4.6 Machine learning approach to citation predic-

tion

As mentioned in the design in section 3.6, a citation prediction model would be im-

plemented to further utilise the citation dataset and provide additional features to the

user. An overview of the process to create the model is as follows, the first task was to

create a training dataset containing a range of features that could be used as inputs

to the model. The next step involved choosing an assortment of models and testing

them to determine the most accurate model. Once the model was decided, a process

called feature engineering could then take place. This involves trialling the various

features and applying different pre-processing steps to the features to determine the

permutation with the highest accuracy.

4.6.1 Creating the training dataset

Papers published between 2005 and 2015 were chosen as their citation rate would have

passed their peak and would have begun to level off. In order to perform natural
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language processing on the text fields, only papers written in English were included.

Those papers made up the vast majority of the citation database, and would mean

that commonly occurring words with little value, called stop words, and tokenisation,

reducing a word to its root, would only need to concern one language. Finally, the

paper must have non-null values for its abstract, title, venue name, reference count,

citation count, and keywords.

Many of the papers reviewed in section 2.6 had success with author- and venue-

centric features. As a result, the most populated venue field, the name, is included in

the list of paper attributes retrieved for the training dataset.

The author features were more complicated to retrieve. Two items were desired,

the average and maximum number of author citations for the paper. This required, for

each paper, getting its authors and all the papers they have written. The average and

maximum number of citations the author’s papers have received is calculated, before

the average and maximum number of citations across all authors is calculated for the

paper. The logic behind these fields is that new papers by authors whose published

papers frequently receive a large number of citations are more likely to receive a higher

number of citations than those of authors with few or no citations.

Cypher query

A Cypher query was written to retrieve all the required data for the training dataset

for a given year. A Python script ran this Cypher query for each year in the 2005 -

2015 range and stored the output to a JSON file.

Formatting data

The years were individually ingested and formatted before being merged. Similar to

the process mentioned in section 4.2.5, data had to be extracted from dictionaries to

unnest the results to make operations such as filtering and sorting easier and faster.

Papers with null values for the author features, the average and maximum number of

author citations for the paper, were removed. Later, the script was rerun to remove

papers with more than 50 citations as papers with thousands of citations were extreme

outliers. Finally, a random sample of 10,000 papers per year were selected. These year

samples were combined and stored in JSON to form the final training dataset.
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4.6.2 Model selection

Once the training dataset had been generated, the model selection and evaluation

process could begin. Four regression models across different levels of complexity and

approaches were evaluated. These models, linear regression, ridge regression, linear

support vector regression, and k-nearest neighbors regression, are outlined in the fol-

lowing four subsections. The Python scikit-learn library was used to implement these

models [67].

Linear regression

Linear regression assumes there is a linear relationship between the inputs of a model

(the features) and the output. It attempts to find a line that best fits this relationship

in order to make predictions. The scikit-learn LinearRegression model uses ordinary

least squares, the most common method of estimating output values.

Linear regression was the simplest model chosen as it does not have any hyperpa-

rameters. Hyperparameters are model inputs that are used to control how the model

is trained. In order to find the hyperparameter value that yields the most accurate

predictions, a range of values for the hyperparameter are selected. A model is trained

using each value and the accuracies of the models are compared to determine the op-

timal value. As the linear regression flavour used had no hyperparameters only one

instance of the model had to be run in the model evaluation.

Ridge regression

Ridge regression is an extension of linear regression. Unlike linear regression, it has

a regularisation hyperparameter. A model can have several inputs, however, not all

inputs will have the same contribution to the prediction, as some inputs will be more

influential in creating accurate predictions. In order to weight the inputs by their

influence, each input is assigned a value called a coefficient. A cost function reduces the

coefficient values of the inputs that contribute the least to the prediction, essentially

giving them a penalty. The size of the penalty is determined by the regularisation

hyperparameter.
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Linear support vector regression

Support vector regression (SVR) is a regression implementation of the support vec-

tor machine (SVM) classification process. SVMs are used when the dataset is not

immediately linearly separable. Unlike the previous models covered, it takes a mul-

tidimensional approach by adding a new dimension (a z-axis). The dataset can be

linearly separated along this z-axis. When transformed back to the initial plane, the

line appears as a circular boundary between the classes. In SVR, the boundary line, in-

stead of separating classes, is used to estimate the continuous output values. A penalty

hyperparameter is also used in linear SVR.

Nearest neighbours regression

Nearest neighbours regression (k-NN regression) does not take a linear approach to

making predictions. Instead, it assumes similar data points will appear in proxim-

ity of each other. Therefore, in order predict the output of another data point, the

data point’s k-nearest neighbours are located. In regression, the output values of these

neighbours are averaged to predict the data point’s output value. In k-NN regres-

sion, the hyperparameter used is k, the number of neighbours to use in the prediction

calculation.

Training the models

The models were trained and evaluated with the top performing model being used in

the subsequent feature engineering. All models were trained using the same dataset

with 100,000 data points and the same features. Only the numerical features were

considered in the initial model training. These features were the age of each paper,

and the average and maximum number of author citations for each paper. This was

due to time constraints as three of the models would be trained multiple times and

including textual features would have added a significant amount of time. The inputs

were normalised to scale their values between 0 and 1. A range of hyperparameters

were chosen for each model, aside from linear regression. The values selected are shown

in Table 4.3.
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Model Hyperparameter Values

Linear regression N/A
Ridge regression 0.001, 0.01, 0.1, 1, 10
Linear support vector regression 0.001, 0.01, 0.1, 1, 10
Nearest neighbours regression 2, 6, 10, 20, 25, 30

Table 4.3: The hyperparameters tested for each model.

Model results

As the models were trained, the training durations and the mean squared error results

were logged. Mean squared error (MSE) is a metric used to evaluate regression models.

It measures the squared difference between predicted and actual output values for each

training data point, and averages these values to get a single figure. In using MSE, the

smaller the value the better as it means a smaller error.

The results of the model training are presented in Table 4.4. The k-NN models

out-performed all the other models having the lowest MSEs, while the Linear SVR

models had the highest errors of all the models. As a result, the k-NN model which

took 25 neighbours into account, which had the smallest errors at 94.57 and therefore,

the highest accuracy, would be used in the subsequent feature engineering. While the

models were compared using MSE, the appropriateness of MSE as a metric is evaluated

in subsection 5.3.2.

4.6.3 Feature engineering

The model would be trained using text and numerical features. There were three

numerical features, the age of the paper, and the average and maximum number of

author citations for the paper and five text features, the abstract, field of study list,

keywords list, paper title, and venue published.

The numeric and text fields would be processed, or transformed, individually to

determine the most accurate processing settings for each feature before finally training

the model using all eight features.
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Model Hyperparameter Time to Train MSE

1 KNeighborsRegressor 25 0.22s 94.5732
2 KNeighborsRegressor 20 0.23s 95.2758
3 KNeighborsRegressor 30 0.21s 96.3170
4 KNeighborsRegressor 10 0.21s 102.7988
5 KNeighborsRegressor 6 0.2s 108.4233
6 Ridge 1 0.0s 127.6799
7 Ridge 10 0.0s 127.9446
8 Ridge 0.1 0.0s 127.9769
9 LinearRegression N/A 0.02s 130.1210
10 Ridge 0.01 0.0s 130.5524
11 Ridge 0.001 0.01s 132.5357
12 KNeighborsRegressor 2 0.23s 140.9298
13 LinearSVR 1 0.06s 148.4468
14 LinearSVR 0.1 0.04s 150.8688
15 LinearSVR 0.01 0.04s 152.9121
16 LinearSVR 10 0.19s 153.7204
17 LinearSVR 0.001 0.04s 162.1879

Table 4.4: Results of the initial model training.

Numerical features

The numerical features were normalized, or scaled, between 0 and 1 using Scikit-learn’s

MinMaxScaler.

Text features

The text features needed to be transformed from strings into a matrix of numbers as

text cannot be inputted into the models directly. This was done using Scikit-learn’s

TfidfVectorizer. There are two components to the transformation. The first is the

vectorizer which converts the text into the matrix of word, or term, counts. Each word

is given its own count in the matrix for each data point. Secondly, tf-idf which stands

for term frequency–inverse document frequency, is used to measure how important a

term is within a document in a collection of documents. Term frequency measures

the number of appearances of a word in a document. Inverse term frequency is used

to reduce the noise of terms that appear across the collection of documents, to bring
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Feature Maximum Frequency Minimum Frequency MSE

abstract 0.5 1 133.69
fields of study 0.5 0.15 139.99
keywords 0.7 0.1 135.03
title 0.8 1 131.97
venue name 0.6 1 114.96

Table 4.5: The final transformation settings for each text feature.

attention to words that are frequent in the document, but not throughout the collection.

A tf-idf score is given to each term.

For each text feature, a set range of maximum and minimum document frequencies

were tested. The maximum frequency would ignore words that appeared in over a

certain percentage of the papers in the training dataset, while the minimum frequency

ignores words that appear in less than a certain percentage of papers. While the

stopword attribute of the tf-idf vectorizer was set to ignore English stop words in all

tests, the maximum frequency setting acts as a corpus-specific stop word filter. The

maximum frequency, max df, was tested first with no minimum frequency restrictions.

The range of values tested were decimals that are treated as percentages: 1.0, 0.9, 0.8,

0.7, 0.6, 0.5. The first value, 1.0, is the default.

Once completed, the max df setting with the most accurate MSE was selected,

and used while testing the minimum frequencies, the min df attribute. The range

of minimum percentages tested were 0.05, 0.1, 0.15, 0.2. The default of 1 was not

included as it was used in the maximum frequency test. The most accurate minimum

percentage was then selected to have the best transformation settings for the feature.

This process was carried out for each text feature, the results of which are displayed

in Table 4.5.

Combining the features

As different transformations were to be applied to each feature, a Pipeline tool was

used to apply the custom settings for each feature before training the model in one go.

This negates the need to fit and train the model to each feature individually. A baseline

model was trained containing all of the features. However, as some features may not

contribute to the accuracy of the model, or may reduce the accuracy of the model,
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Features Removed MSE Accuracy Change

no features removed 117.4027 N/A
abstract 116.3936 improved with removal
age 118.0543 disimproved with removal
fields of study 114.2065 improved with removal
keywords 119.5785 disimproved with removal
avg. author citation count 116.5596 improved with removal
max. author citation count 115.8625 improved with removal
title 120.1386 disimproved with removal
venue name 135.0993 disimproved with removal

Table 4.6: Model accuracy having removed each feature.

Features Removed MSE Accuracy Change

no features removed 114.9687 N/A
age 115.8157 disimproved with removal
keywords 112.9933 improved with removal
title 115.0972 disimproved with removal
venue name 135.2885 disimproved with removal

Table 4.7: Model accuracy having removed each feature - iteration 2.

the model was trained a further 8 times, each time holding out a different feature to

discover the effect on the accuracy.

The removal of a feature was said to improve the accuracy of the model if the MSE

decreased, while if the MSE increased with the omission of a feature, the feature was

said to improve the accuracy of the model. As seen in Table 4.6, removing the abstract,

fields of study, and both author fields had a positive impact on the accuracy of the

model.

The process was repeated two more times, each time removing the features where

the accuracy improved when they were omitted. The results of the second iteration

are shown in Table 4.7, and the third in Table 4.8. Only the keyword feature had a

negative impact on the accuracy from the second iteration. As a result, it was removed

before the third iteration. As the error increased in the third iteration when any of the

features were omitted, no more features were removed.
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Features Removed MSE Accuracy Change

no features removed 114.1638 N/A
age 117.8458 disimproved with removal
title 115.7669 disimproved with removal
venue name 132.3162 disimproved with removal

Table 4.8: Model accuracy having removed each feature - iteration 3.

4.6.4 Final results and model deployment

The final model was trained using the age, title, and venue name features, and had

a MSE of 114.1638. As the ideal MSE figure is close to zero, this prototype model

did not have a sufficient level of accuracy to have the predictions be incorporated into

the application as numerical values. The results of the model and the metric used are

evaluated in subsection 5.3.1.

Model deployment

However, it was discovered that the results of one the models had surprising accuracy

in identifying the papers with the top citation counts. This was found while checking

did the same papers appear in the lists of papers with the top 10 citation counts in

the actual and predicted results. A basic model using the title and keywords correctly

predicted a top 10 citation count for, on average, 6.5 of the top 10 papers in the test

values. As a proof of concept test, this model was saved using the Python serialiser

pickle. The papers in the citation network were passed through the model, and the

papers with the top 10 citations were outlined in blue in the citation graph to highlight

those papers to the user.
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Chapter 5

Evaluation

There are two aspects to the application’s evaluation, the performance impact of adding

indexes to the citation database, and the completeness of the database results versus

that of a citation API, and two aspects of the citation prediction evaluation, the accu-

racy of the model and the metric used.

5.1 Performance impact of the indexes

The performance impact of the two indexes applied to the database were tested by

running a series of queries on a non-indexed version and an indexed version of the

database, and comparing their durations. As outlined in subsection 4.1.3, the title

property was indexed in paper nodes and the name property was indexed in author

nodes.

5.1.1 Paper index

A random sample of 100 titles were used in the paper index test. Each title was queried

three times. The first time was a simple look-up query that returned only the paper’s

metadata. The second query built upon the first query but also returned the direct

inward citations to the paper. Finally, the third query, which built upon the second

query, returned the inward citations for the paper up to 4 degrees away. No limit was

set on the maximum number of papers that could be returned in order to measure a

range of citation network sizes.
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Query attributes, such as query type, paper title, database version (whether the

index was present), and duration were all logged. After the completion of all queries,

the log file was parsed in Python. The log entries were grouped by query type and

database status. The following statistics were calculated for each group: minimum,

maximum, and mean durations, and standard deviation.

The results of the paper index test can be seen in Table 5.1. As expected, the in-

dexed queries were several times faster than the unindexed queries. This is particularly

noticeable in the advanced queries, where the average time using the indexed database

took less than a second, while with the non-indexed database, it took on average 1

minute and 20 seconds. The non-indexed queries also had a much larger standard

deviation, especially the basic queries. The minimum and maximum times of the basic

queries had a 6.6 minute difference. On the other hand, the indexed times had a range

of under 2 minutes.

Interestingly, the basic queries had the highest mean duration, as well as the biggest

standard deviations for both the non-indexed and indexed databases. One reason for

this is that after the basic queries, Neo4j caches the results. As the queries build upon

each other, the subsequent queries only need to retrieve the nodes for the additional

degree(s) of separation from the previous query, which are adjacently stored in memory

allowing for fast retrieval.

The longest unindexed query, which took 7.76 minutes (466.80 seconds), was to get

the citation network for Improving rule extraction from neural networks by modifying

hidden layer representations, returning the inward citations up to 4 hops away. The

network contained 347 nodes and 359 relationships. The same query using the indexed

database took 0.44 seconds. In summary, the queries on the indexed database were

faster and their performance more consistent.

5.1.2 Author index

A random sample of 50 author names were used to test the author index. The sample

size was reduced due to the total duration of the non-indexed paper queries taking

several hours. Another factor was that unlike in the paper test, the basic author

query would contain a relationship, and it was predicted this would further increase

the runtime of the tests.
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Query Level Indexed # Queries Min. Mean Max. Std.

basic no 100 42.38 83.82 466.80 65.58
basic yes 100 0.02 6.48 113.55 20.84
intermediate no 100 4.56 68.83 180.00 35.37
intermediate yes 100 0.02 0.05 0.21 0.03
advanced no 100 42.56 80.89 223.75 48.90
advanced yes 100 0.04 0.99 14.33 2.37

Table 5.1: Comparison of the test paper query durations on a non-indexed database
vs an indexed database.

As with the paper index test, the 50 authors were queried in three different ways.

The first got the author metadata and the author’s papers. The second returned the

same data as the first, as well as the direct inward citations of the author’s papers.

Finally, the third query got the author, their papers, and the papers’ inward citations

up to 4 degrees away. The log files were formatted and the statistics generated using

the same process as the paper test.

The results of the author index test can be seen in Table 5.2. As with the paper

index test, the database version with the index had a far faster and more consistent per-

formance. One interesting difference between the non-indexed database performance

across the two node types was that the author queries had a far wider range of times,

with a significantly smaller minimum time and a significantly larger maximum time.

The longest unindexed query, which took 17.76 minutes (1066.92 seconds), was the

basic query to get the papers written by Yingchun Zha, interestingly the advanced

query to get the author’s papers and the inward citations up to 4 hops away took 7

seconds. The network contained 2 nodes and 1 relationship. The same query using the

indexed database took 0.07 seconds.

5.2 Completeness of the citation results

The completeness of the application’s search results was then evaluated. The goal of

this evaluation was to see if there were citations for a paper in the database that were

not returned by the query. The test was conducted by comparing the results of a

Cypher query, that returns all inward citations for a paper, to a list of citations for the
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Query Level Indexed # Queries Min. Mean Max. Std.

basic no 50 0.47 45.60 1066.92 159.69
basic yes 50 0.02 12.57 303.28 45.46
intermediate no 50 5.16 7.42 14.75 2.31
intermediate yes 50 0.01 0.12 0.76 0.17
advanced no 50 5.31 10.22 75.81 12.30
advanced yes 50 0.02 3.20 47.07 9.63

Table 5.2: Comparison of the test author query durations on a non-indexed database
vs an indexed database.

same paper from a citation API.

5.2.1 Citation API selection

The citation APIs outlined in section 2.1.3 were tried to ascertain which were possible

options for the test. The citation API selected as the baseline was OpenCitations. Its

REST API has an endpoint that returns a list of citations for a given DOI [68].

Google Scholar was not a viable option due to severe request throttling, and insti-

tutional access to Elsevier did not include permission to use its citation endpoint.

5.2.2 Data for evaluation

The evaluation dataset consisted of 100 random paper DOIs retrieved from the Neo4j

database. The only restriction was the papers had to have a non-null DOI. This was to

enable accurate matching of papers between the database and OpenCitations citation

results. The papers had between 1 and 103 citations.

Retrieving the citation data from the Neo4j database

The Cypher query to retrieve the data is shown in Listing 5.1. Each test paper was

queried individually and the results written to a JSON file.

72



MATCH ( a : Paper {{ doi : ‘{ doi } ’}})

OPTIONAL MATCH ( a)<−[ r :REFERENCES]−(b)

RETURN a . t i t l e , a . doi , b . doi , b . t i t l e

Listing 5.1: Retrieve the citations for a paper by its DOI.

Retrieving the citation data from OpenCitations

The API’s citations endpoint was individually queried using the same 100 DOIs as

used in database queries. An example request is https://opencitations.net/index/

coci/api/v1/citations/10.1002/adfm.201505328. Following the same process as in

the database test, the results of the requests were stored in a JSON file.

5.2.3 Evaluating the application’s completeness

For each paper, the citations from both sources were compared. Two lists were created,

one containing the citations only present in the database results and the other, the

citations only present in the OpenCitations results.

The DOIs of the citations in the latter list were then queried in the database. If the

DOI was present in the database, it was predicted one of two scenarios had occurred.

First, the Cypher query did not identify the citing relationship between the two papers,

and as a result, the citing paper was missing from the results of the query. The second

scenario was that the citation dataset ingested into the database did not contain the

citing relationship between the two papers.

The 100 papers combined had 1,645 citations. Of these 1,645, 19 papers that cite

one of the 100 test papers are present in the database, and appear in the OpenCitations

results, but not in the database results.

The 19 missing citations were spread across 13 papers. Nine test papers were

missing 1 citation in the database results, 3 test papers were missing 2, and one test

paper was missing 4 citations. As the missing citations did not appear as inward

citations to the 13 papers, a reversed query, where the outward citations were obtained

for the 19 papers, was written to discover why the relationships were not identified.

The reversed query returned a list of the paper’s references. These lists were checked

to see if they contained any of the test papers. Twelve of the missing papers had an
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empty reference list. Six of the missing papers had a populated references list but the

test papers were not in them. Finally, one ‘missing paper’ was a self-citation.

In summary, the application returned all the citations it had in its database.

5.2.4 General observations of the results

General statistics were calculated to compare the number of citations from each data

source. A breakdown of the total number of citations can be seen in Table 5.3. Overall,

OpenCitations returned 128 more citations than the database. An interesting discovery

was that there were only 671 citations that appeared in the results of both datasets,

where the citations were for the same paper.

Upon further inspection, it was discovered that a paper could have multiple DOIs.

For example, the paper FORMLESS: scalable utilization of embedded manycores in

streaming applications has the DOI 10.1145/2248418.2248429 in the database, but

the DOI 10.1145/2345141.2248429 is returned from OpenCitations. The DOIs were

resolved using the online tool at https://www.doi.org/ and both resolved to the

same paper, however, published in different journals. The database DOI referred to the

version published in LCTES ’12: Proceedings of the 13th ACM SIGPLAN/SIGBED

International Conference on Languages, Compilers, Tools and Theory for Embedded

Systems, and in OpenCitations, to the version published in ACM SIGPLAN Notices,

Volume 47, Issue 5.

In order to determine were there more occurrences of two different DOIs being used,

and if so to see its impact on the number of common citations, a regular expression

was written to find more occurrences. This was possible as the characters to the left of

the forward slash, and the digits after the last full stop, were identical in both DOIs.

However, only the above scenario was found.

As the database returned 128 fewer citations than OpenCitations, it was desired

to see whether this was due to the database returning fewer citations on average per

paper, or was it down to the database containing only a small fraction of a few test

papers’ total citations. In other words, was the dataset’s coverage smaller across all

papers, or did a handful of papers contribute to the figure.

In Table 5.4, it can be seen that only 23 test papers had the same number of cita-

tions from both sources. Forty-four papers had more citations from the database than
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Count

Total number of citations 1,645
Total number of Neo4j citations 1,094

(423 unique)
Total number of OpenCitations citations 1,222

(551 unique)
Total number of common citations 671

Table 5.3: Breakdown of citation counts in completeness evaluation dataset.

Papers Count

Sources had equal citations 23
Neo4j database had more citations 44
OpenCitations had more citations 33
Total 100

Table 5.4: Completeness evaluation sources with the most citations by paper.

OpenCitations, 11% higher than the number of test papers with more OpenCitations

citations (33 papers).

5.3 Evaluation of the machine learning approach

In this evaluation the process to train the citation prediction model and the accuracy of

the results are reviewed. The metric used in measuring the accuracy is also evaluated.

5.3.1 Citation prediction model

The machine learning model undertaken was a prototype, not a fully fledged model.

The MSE of the final model, 114.1638, is not accurate enough to be implemented into

the application. There are a few changes that could have been made in the testing

process, as well as a few areas of future work.

There are a number of machine learning model types that were not tested due to

time constraints. This includes recurrent neural networks (RNN) which would have

been interesting to test, especially in working with the text features. The untested

models could be far more accurate at predicting citation counts.
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The training dataset itself had 100,000 entries. A larger dataset could have been

beneficial, especially with the sizable number of features when including all of the

text feature transformations. More papers could capture the relationships between the

different input features and the predicted field better. A random sample of data was

used for the dataset, while the number of entries were equal for each year, further

research could be applied to ensure the dataset is a good representation of the citation

dataset.

Multiple other statistics could be generated from the database and used as features.

However, the process would need to run more permutations of the features to find the

combination of features with the highest accuracy. Another area that could improve

accuracy is testing more feature transformation settings, including different scalers for

numerical features and count limits on the vocabulary size, different stop word libraries,

and different tokenisation and preprocessing methods for text features.

5.3.2 Mean squared error metric

The mean squared error (MSE) metric was used throughout the model selection and

feature engineering process as a judgement of accuracy. However, this metric is not

without its faults. The MSE score is not unit-free, meaning that its value does not

remain constant when the underlying distributions are changed. This means the value

can be improved by altering the scale of the prediction distribution [69].

For example, the ideal MSE value is as close to zero as possible. In the steps

undertaken in the implementation of the model, the value being predicted, the number

of citations, was not normalised. The lowest MSE recorded was 94.5732. However,

if the y of the model, the field being predicted, is normalised, the MSE plummets to

0.0479. Despite this considerable improvement in the MSE score, it did not result in a

improvement in the predictions.

5.4 Summary

This chapter evaluated the design decision to implement two indexes in the database

and tested the completeness of the database functionalities to query and locate citation

relationships. The indexes added greatly improved the performance of the application
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and was a valuable design decision. The database queries were successful in returning

all the citations it contained for a paper. Missing citations, where a paper that cited

another was not returned in the results, was due to the relationship not being included

in the dataset.

The citation prediction model is still in its infancy. Changes to the testing process

and areas of future work are suggested. Finally, the metric used throughout the process

and its drawbacks are identified.
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Chapter 6

Conclusion

6.1 Conclusion

A citation network exploration application was implemented in this work. An AMiner

citation dataset was ingested into a Neo4j graph database. Indexes were added to both

nodes types, paper and author, to improve performance. A micro-service was created

that takes user search parameters, retrieves the citation data for those parameters,

and returns an interactive citation network. The citation network can be viewed in

graphical and table form. Users can filter the data in the graph, and can view statistics

about the network. Users have a choice of search methods, by paper title or by author

name, by matching the exact term or partial matches, and lastly by inward or outward

citations.

The application is fast. Database queries, to return a citation network including

papers up to four hops away, take on average less than a second. The entire search

process, from pressing the go button on the search page to the results page rendering,

takes approximately 1.07 seconds. This process includes formatting and visualising the

citation network data, compiling the statistics, and building the filters.

The results are complete, as assessed in subsection 5.2.3. The 5 million papers and

48 million citations mean the citation networks are not sparse, and with the degrees of

separation even papers with a single citation can have a populous network graph.

The application aims to aid the user in discovery. The nodes in the citation graph

can be filtered by year, number of citations, number of references, hops, keywords,
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languages, and by PDF availability simultaneously.

Finally, with the prototype citation prediction model, the predicted top papers in

the network are calculated and highlighted in the graph. At a glance, the user can

see papers of potential relevance without the need to view each node in the graph

individually.

6.2 Future work

There are four key areas for future work, the citation prediction model, expanding the

search functionality, PDF parsing, and expanding the citation database.

The citation prediction model is the primary area of opportunity. There are a

number of actions that can be taken to improve the accuracy of the model. These

actions have been outlined in subsection 5.3.1. Also, the predicted citation counts have

further applications, including predicting the future relevance of authors and fields.

In the current version of the application, it is possible to search by paper title and

author. A beneficial enhancement would be to enable searching by topic, where the

resulting citation network would show the most important papers, and those papers

predicted to be important, for that topic. One use of this search feature would be

in identifying the best papers to read when exploring a field for the first time, or in

predicting the direction of the field.

The AMiner dataset contains links to PDFs for a number of the papers. This

introduces the opportunity to examine the context behind the citation. Sentiment

analysis and statistics could be performed on those PDFs to provide further insight

into a citation network. For example, if a source is cited regularly in a paper, it can

be argued it is more important than a source that is cited once. As a citation is not

always positive, by performing sentiment analysis on the context of the citation, it

can be guessed whether the offerings of a paper are viewed positively or negatively.

Papers that receive particularly positive or negative mentions could be highlighted in

the network.

Finally, the dataset utilised contained 5 million papers, predominately from the

field of computer science. In order to become useful to students and academics in

other fields, either a new dataset containing papers across multiple fields could be

used, or additional field-specific datasets could be merged with the AMiner dataset,
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to expand the coverage of the citation database. This would have the added benefit

of incorporating more cross-field citations that can identify interesting collaborations

between different fields.
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Appendix A

Dataset

A.1 Dataset ingestion

neo4j−admin import \
−−database=neo4j \
−−skip−dup l i ca te −nodes \
−−skip−bad−r e l a t i o n s h i p s \
−−nodes=imports / papers . csv \
−−nodes=imports / authors . csv \
−−r e l a t i o n s h i p s=imports / p a p e r r e f s . csv \
−−r e l a t i o n s h i p s=imports / a u t h o r r e f s . csv

Listing A.1: The command to ingest the CSV files into the Neo4j database.
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A.2 Dataset fields

Field Populated % Populated Not Populated % Not Populated

abstract 3864877 72% 1489432 28%

doi 4001707 75% 1352602 25%

fos 5003384 93% 350925 7%

isbn 842450 16% 4511859 84%

issn 2101353 39% 3252956 61%

issue 2011224 38% 3343085 62%

keywords 4182722 78% 1171587 22%

lang 4726363 88% 627946 12%

n citation 4775108 89% 579201 11%

n references 5354309 100% 0 0%

page end 4469228 83% 885081 17%

page start 4608990 86% 745319 14%

pdf 652343 12% 4701966 88%

title 5353918 100% 391 0%

volume 2853562 53% 2500747 47%

year 5354295 100% 14 0%

Table A.1: The fields in the citation dataset and their populations.

A.3 Dataset formatting times
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Subset File Number of Nodes (at end) Formatting Duration (mins)

1 aa 149999 4.55
2 ab 150000 4.53
3 ac 150000 4.87
4 ad 150000 4.80
5 ae 150000 4.73
6 af 150000 4.78
7 ag 150000 4.80
8 ah 150000 4.32
9 ai 150000 4.08
10 aj 150000 4.18
11 ak 150000 4.73
12 al 150000 4.80
13 am 150000 4.58
14 an 150000 4.73
15 ao 150000 4.85
16 ap 150000 4.28
17 aq 150000 4.40
18 ar 150000 5.33
19 as 150000 4.87
20 at 150000 4.57
21 au 150000 4.32
22 av 150000 3.62
23 aw 150000 4.35
24 ax 150000 5.05
25 ay 150000 4.95
26 az 150000 4.83
27 ba 150000 5.00
28 bb 150000 6.50
29 bc 150000 6.55
30 bd 150000 6.42
31 be 150000 5.00
32 bf 150000 4.25
33 bg 150000 4.33
34 bh 150000 4.20
35 bi 150000 4.55
36 bj 104310 2.83

5354309 169.53

Table A.2: The formatting times for each subset of the citation dataset.
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Appendix B

Cypher Queries

B.1 Searches by paper title

Exact match query

MATCH ( a : Paper {
t i t l e : ’ Experiments with C l a s s i f i e r Combining Rules ’

})

OPTIONAL MATCH path=(a)−[ r :REFERENCES]−>(b)

CALL {
WITH b

OPTIONAL MATCH paths = (b : Paper )−[h :REFERENCES∗1..3] −>( c )

WITH c , paths , h

LIMIT 10

RETURN c , h , l ength ( paths ) as hoppies

}
RETURN a , b , r , c , h , l ength ( path ) as hops , hoppies

LIMIT 100

Listing B.1: Search for exact paper title.

Where contains query
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MATCH ( a : Paper )

WHERE a . t i t l e =˜ ’ .∗ The r e l a t i o n s h i p between .∗ ’

OPTIONAL MATCH path=(a)−[ r :REFERENCES]−>(b)

CALL {
WITH b

OPTIONAL MATCH paths = (b : Paper )−[h :REFERENCES∗1..3] −>( c )

WITH c , paths , h

LIMIT 10

RETURN c , h , l ength ( paths ) as hoppies

}
RETURN a , b , r , c , h , l ength ( path ) as hops , hoppies

ORDER BY hops , hoppies

LIMIT 100

Listing B.2: Search for paper titles containing search term.

B.2 Searches by author name

Exact match query

MATCH ( a : Author {name : ’Yun Xu’ } )

OPTIONAL MATCH path=(a)−[ r :AUTHORED]−>(b)

CALL {
WITH b

OPTIONAL MATCH paths = (b : Paper )−[h :REFERENCES∗1..3] −>( c )

WITH c , paths , h

LIMIT 10

RETURN c , h , l ength ( paths ) as hoppies

}
RETURN a , b , r , c , h , l ength ( path ) as hops , hoppies

ORDER BY hops , hoppies

LIMIT 150

Listing B.3: Search for exact author name.
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Where contains query

MATCH ( a : Author )

WHERE a . name =˜ ’ .∗Yun .∗ ’

OPTIONAL MATCH path=(a)−[ r :AUTHORED]−>(b)

CALL {
WITH b

OPTIONAL MATCH paths = (b : Paper )−[h :REFERENCES∗1..3] −>( c )

WITH c , paths , h

LIMIT 10

RETURN c , h , l ength ( paths ) as hoppies

}
RETURN a , b , r , c , h , l ength ( path ) as hops , hoppies

ORDER BY hops , hoppies

LIMIT 150

Listing B.4: Search for author names containing search term.
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Appendix C

Application Screenshots

C.1 Screenshot of search by author

Please see next page for screenshot.

C.2 Screenshot of search where title contains search

query

Please see two pages ahead for screenshot.
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Figure C.1: Screenshot of a citation network following a search by author name.
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Figure C.2: Screenshot of a search for paper titles containing ‘interactive visualization’,
returning outward references, with the year filtered for 2000-2016.
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