
Deep Learning for 3D Human Digitisation

Jorge González Escribano, BAI

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: Aljosa Smolic, Olivier Riviere

August 2021

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jorge González Escribano

August 29, 2021

Deep Learning for 3D Human Digitisation

Jorge González Escribano, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Aljosa Smolic, Olivier Riviere

In this Dissertation, the process of 3D Human Digitisation from single photographs using
Deep Learning techniques is studied. A review of the related work in this field is performed
and an approach that improves the state of the art techniques is presented, obtaining a
working pipeline that yields 3D models that can be directly animated and imported into
video games, animations and other content creation projects.

Acknowledgments

I would like to thank my supervisors Professor Aljosa Smolic and Olivier Riviere, as well

as Susana Ruano and Amar Arslaan, for their helpful comments and advice, which proved

to be invaluable during the development and writing of this dissertation project.

Jorge González Escribano

University of Dublin, Trinity College

August 2021

iii

Contents

Abstract ii

Acknowledgments iii

Chapter 1 Introduction 1

1.1 Main Goal . 3

Chapter 2 Related Work 5

2.1 Image to 3D model . 5

2.2 Image to 3D model with humans . 7

2.3 State of the Art . 8

2.3.1 Pixel-Aligned Implicit Function . 8

2.3.2 PIFu . 9

2.3.3 PIFuHD . 9

2.4 Model Rigging and Animation . 10

Chapter 3 Developed Project 15

3.1 Model Generation . 16

3.2 Texture Projection . 20

3.3 Model Rigging . 22

Chapter 4 Results 29

Chapter 5 Conclusions & Further Work 37

5.1 Example Applications . 37

5.2 Short-term Improvements . 39

5.3 Long-term Improvements . 39

Bibliography 42

iv

List of Figures

1.1 GAN textures . 2

1.2 Complex Animation . 2

1.3 GauGAN . 3

1.4 Main Goal . 4

2.1 Soft Rasterizer Output . 6

2.2 Learning To Infer Implicit Surfaces without 3D supervision Output 6

2.3 BodyNet Output . 7

2.4 SiCloPe Output . 7

2.5 Robust 3D Self Portrait Output . 8

2.6 PIFu Architecture . 9

2.7 PIFuHD Architecture . 10

2.8 Rignet Example . 11

2.9 Neural Animation Example 1 . 12

2.10 Neural Animation Example 2 . 13

2.11 Quadruped Neural Animation Example . 14

3.1 Pipeline . 15

3.2 PIFu and PIFuHD Comparison . 16

3.3 Another PIFu and PIFuHD Comparison 16

3.4 Texturing Artifact . 17

3.5 Top View . 18

3.6 Point Cloud Unregistered . 19

3.7 Point Cloud Registered . 20

3.8 Merged Model Comparison . 21

3.9 Projection Comparison . 21

3.10 Projection Comparison 2 . 22

3.11 PIFu Result Comparison . 23

3.12 PIFu Result Comparison 2 . 26

3.13 RigNet . 27

v

3.14 OpenPose structure . 27

3.15 Model Skeleton . 28

4.1 Output Example . 30

4.2 Hair Geometry . 32

4.3 High Heel Artifact . 33

4.4 High Detail Clothing Output . 33

4.5 Normal Texture Artifact . 34

4.6 Normal Texture Artifact 2 . 35

4.7 Normal Texture Artifact 3 . 36

5.1 High Resolution Model . 41

vi

Chapter 1

Introduction

In recent years, the latest advances in Artificial Intelligence have enabled new ways for

animators, video game developers and content creators to build the assets that they

require for their projects. With these new tools at their disposal, they can either create

some assets to be directly used in their projects or generate a base model that an artist

can use as a source of inspiration. Some examples of artificial intelligence techniques that

have been used for this purpose are:

• Generative Adversarial Networks (GANs) for image and texture genera-

tion: this neural network architecture has gained great notoriety lately as they are

capable of generating very high quality and realistic images. This type of neural

networks are founded on having two different competing networks, one that learns

how to generate realistic images and another one that learns how to spot fake gen-

erated images. This way, they form a feedback loop where the generating network

continuously improves the quality of its generated output. They could be used, for

example, to procedurally generate textures in video games [Fadaeddini et al. (2018),

Amato (2017), Summerville et al. (2018)]; see figure 1.1, or to render photorealistic

scenarios from sketches [Park et al. (2019)] for an artist to grab inspiration from.

One such example of realistic image generation from a sketch is the GauGAN ar-

chitecture, which is at the core of the tool Nvidia Canvas and achieves incredible

results and it is mainly marketed towards artists to serve as a creative reference; see

figure 1.3.

• Deep Learning to build complex animations: many research papers have been

published in the last years that explore novel techniques for character rigging and

animation. These would allow for complex and procedural animations to be used

in video games [Starke et al. (2019)], making it more feasible for small development

1

Figure 1.1: Example of textures generated by a GAN that could be used
inside a video game

studios with less resources to achieve a final quality closer to that of big animation

and video game development companies; see figure 1.2.

Figure 1.2: Example of a generated animation of a character picking up
an object

• Rendering photorealistic scenarios with Neural Rendering: this is a very

recent field in neural network research that merges artificial intelligence techniques

with physical knowledge of the environment [Tewari et al. (2020)]. It explores new

ways of creating and rendering photorealistic scenarios more efficiently than with

traditional methods, as well as manipulating existing images and videos, maintain-

ing physically correct lighting, perspective, reflections and other light phenomena.

This is relevant to the field of content creation as it allows new sources of cre-

ative inspiration as well as new tools for animation post-processing and real-time

photorealistic video game rendering. This technique is also used by the previously

mentioned generative adversarial neural network GauGAN, which allows its gener-

ated images to be drawn in different styles representing a a variety of environments

and weather conditions; see figure 1.3.

2

Figure 1.3: Example of the different rendering styles that can be applied
to GauGAN

1.1 Main Goal

Following this field of research, this final dissertation project focuses on the creation

of a tool that, by leveraging the capabilities of Deep Neural Networks, enables content

creators, animators, video game developers and artists of all kinds to generate 3D human

models from one single photograph. This would enable smaller and independent studios

and creators with lower budgets to quickly prototype and create human model assets, as

well as enable new possibilities for applications and video games.

A related research overview will be performed, which will allow to formulate the main

goal of this project: improve the state of the art in 3D human model generation in some

way making a direct contribution to this field of research and allow for the final result to

be directly imported into video games and animations. During the development of the

project, a greater scope was achieved as the final working pipeline is capable of producing

a rigged 3D model with higher quality texture than current state of the art techniques.

These rigged models all share the same bone structure, allowing an artist to create an

animation once and use it in all 3D models; see figure 1.4.

As it will be seen in the following section, currently available state of the art tools

and neural models are capable of addressing several of the individual goals presented in

this project, but there is none capable of addressing them all at once and make their

capabilities easily available to users without machine learning knowledge. It is because of

3

Figure 1.4: Example of what this project tries to achieve. Original input
image (left) and 3D rigged model in Blender 3D model edition software
(right)

this that this project is proposed, as it would be able to address this problem and make

itself accessible to a growing audience of content creators.

4

Chapter 2

Related Work

In this section, an overview of the related work is performed, while making way towards

presenting the state of the art in 3D human digitisation.

2.1 Image to 3D model

Rendering is the process of converting a 3D scene into a 2D image, by following a series

of rules that attempt to mimic the way light would interact with the physical objects in

such scene if it were to be real. There are multiple well studied techniques to achieve this,

but the same can not be said for the inverse process, which has only become available

recently thanks to the advances in artificial intelligence. Multiple neural models have been

proposed that are able to predict the three-dimensional structure of inanimate objects

from single photographs. These neural models focus on the digitisation of common objects

such as chairs, cars and aeroplanes.

A good example of these neural models is the architecture ”Soft Rasterizer” [Liu et al.

(2019a)], which was capable of generating high quality meshes from object pictures; see

figure 2.1. One of the properties of traditional rendering techniques is that they are not

differentiable, which means that they can not be used in neural networks as they can

not be optimized using gradient descent. This paper’s main contribution is developing

a differentiable rendering process, which outputs color probabilities instead of discrete

pixels as traditional renders do. This way, it can be used in a neural network that can

be trained to render 3D scenes and then can be inverted to predict 3D scenes from single

images.

Reconstructing the 3D mesh from the output generated by a neural network can be a

complicated task. Simpler reconstruction approaches, such as voxel based reconstruction,

have their quality limited by the size of each voxel and obtain lower resolution meshes.

5

Figure 2.1: Example of an input image (left) and the output produced
by Soft rasterizer (right)

On the other hand, more accurate approaches, such as ray casting based methods, have

the drawback of being too computationally demanding. Later the same year of the pub-

lication of ”Soft Rasterizer”, the paper ”Learning to Infer Implicit Surfaces without 3D

Supervision” [Liu et al. (2019b)] was published, introducing a new way of representing

the 3D reconstructed surface by making use of occupancy fields, which are functions that

determine the probability of a point in space being inside or outside the solid 3D object,

and thus being able to classify which points in space are part of the 3D model. Further-

more, this paper provided a way of applying this technique with unsupervised learning,

obtaining higher fidelity reconstructions of the 3D objects depicted in images than the

current state of the art; see figure 2.2.

Although these neural models are able to produce high quality geometries from single

images, they are very general as they are expected to predict 3D meshes for a wide

variety of objects depicted in the input images. For the purposes of this project, it would

be interesting to review the state of the art in 3D model generation applied exclusively

to human models, as being this specific will probably allow their predictions to be more

close to the ground truth.

Figure 2.2: Example of an input image (left) and the output produced
by the approach presented on the paper Learning To Infer Implicit Sur-
faces without 3D supervision Output (right)

6

2.2 Image to 3D model with humans

As stated, the previous models allowed to digitise non animate objects. When it comes

to digitizing humans, many options specifically tuned to reconstruct 3D human models

exist:

• The first example of human digitisation comes from the neural model ”BodyNet”

[Varol et al. (2018)], which exhibits an incredible performance when it comes to

identifying human pictures and its body parts. This is great for tasks that require

image segmentation and has many useful applications, as the information analyzed

by this network could be used, for example, to identify the actions being performed

by a human in an image. On the other hand, the 3D reconstructions performed by

this model are not very precise and can not be used as artistic assets; see figure 2.3.

Figure 2.3: Example of an output produced by BodyNet

• The next year, the architecture ”SiCloPe” [Natsume et al. (2019)] was published.

This model focuses on digitising clothed people, putting emphasis on the digitization

of their outfit. The resulting model more closely matches the figure of the human

in the picture, including the shape of the attire and texture, that is reproduced

with high fidelity. On the other hand, the person itself does not have such detailed

geometry. This can be seen, for example, in the lack of facial features; see figure 2.4.

Figure 2.4: Example of an output produced by SiCloPe

7

• The next approach, called Robust 3D Self-Portraits in seconds [Li et al. (2020)],

is able to provide the best results, as it combines a highly defined geometry with

a precise texture. The only drawback to this approach is that it requires multiple

photographs to be taken of the subject we want to digitise, instead of a single

picture; see figure 2.5.

Figure 2.5: Example of an output produced by the approach presented
in the paper Robust 3D Self Portraits in Seconds

2.3 State of the Art

This brings us to the state of the art in human digitisation with the papers PIFu [Saito

et al. (2019)] and PIFuHD [Saito et al. (2020)], published by Facebook Research Lab.

PIFu is the first of them, which introduced the best results in human digitisation while

also including high quality textures, thanks to its novel approach called Pixel-Aligned

Implicit Function. The next year, PIFuHD was published, which is able to improve the

geometry quality even more, but lacks texture.

2.3.1 Pixel-Aligned Implicit Function

Before explaining how the neural model itself works, it is necessary to explain what is the

Pixel-Aligned Implicit Function and why it is necessary in order to better understand it.

The Pixel-Aligned Implicit Function defines whether one point along a projected line

through the three-dimensional geometry is inside or outside the object represented. This

way, we can represent the full 3D geometry if we project a line through the model along

the depth axis for every pixel in the image. This allows for a lower memory requirement in

order to store the full 3D geometry in the neural model, as classical approaches that rely

on space partitioning techniques such as voxels require every single point in space to be

stored, meanwhile with PIFu it is only required to store the parameters of the function.

8

This drop in memory requirements is what allows the model to increase in resolution,

yielding better results.

2.3.2 PIFu

Now that the PIFu function is explained, the inner workings of the neural model can

be described. The neural model is divided into two sub-networks. On the first one, the

input image is fed to an hourglass shaped image encoder which outputs a two dimensional

array of PIFu functions. This output is called the occupancy space, and can be used to

reconstruct the geometry using an algorithm such as marching cubes. The second sub-

network is similar to the first one, but in this case the PIFu function is not used to predict

whether one point in space is inside the model or not. Instead, it is used to predict the

color of such point in space. This way, we end up with a 3D space in which the color

of the model is defined at every point in the space. Now, the vertices recovered from

the first sub-network can be used to query for the corresponding color predicted by the

second sub-network at that coordinates. The final result is a high-fidelity reconstruction

of the person in the input photograph; see figure 2.6.

Figure 2.6: Overview of the archicture of the neural model PIFu

2.3.3 PIFuHD

The improved version of PIFu, called PIFuHD, has a very similar architecture to that

of its predecessor. It also makes use of the Pixel-Aligned Implicit Function and has two

9

sub-networks. The first one, called Coarse PIFu, is identical to the first sub-network of the

original PIFu architecture, but with more and bigger layers. The result is a slightly higher

resolution mesh, but it is not a huge improvement. The memory requirements to store

the network starts to become the main constraint to keep growing this sub-network, as it

is a fully-connected network. The novelty comes from the second sub-network. First, the

original photograph is fed to an image-to-image translation network that estimates the

normal map of the texture of the photograph. Then, using the same technique, the normal

map of the back-side of the person in the picture is predicted. Now, the resulting normal

map is fed to the convolutional version of the first sub-network with higher resolution.

This network being convolutional allows to drop the high memory requirement of the fully-

connected network, with the disadvantage that when predicting the geometry, only the

information in the neighbouring pixels is available. This is not a problem though, as the

purpose of this sub-network is to add details to the main geometry, which was generated

by the fully-connected network. Lastly, the base model and the detailed geometry are

added to obtain a very high-quality mesh, with the drawback being that it lacks texture;

see figure 2.7.

Figure 2.7: Overview of the archicture of the neural model PIFuHD

2.4 Model Rigging and Animation

When it comes to character rigging models, there has not been much research, with the

most notable model being ”RigNet” [Xu et al. (2020)]; see figure 2.8. This model identifies

the articulations in 3D character models and generates an armature that adapts to these

articulations, allowing them to be animated. The way it works is by means of a deep

graph neural network, which receives the 3D model’s mesh geometry as a graph for its

input and predicts the probability of a group of vertices forming part of an articulation.

10

Then, depending on an user controllable parameter called ”bandwidth”, the algorithm

clusters these possible articulations and outputs the resulting skeleton structure. This

allows the end user to control the number of articulations in the model indirectly, but

not in a precise manner, as the resulting articulation count for a given bandwidth value

is also dependant on the geometry of the input model. Even if the correct value for a

desired articulation count was found by means of trial and error, there is no guarantee

for two human-like bipedal 3D models to be given the exact same bone structure.

Figure 2.8: Example of RigNet neural model

With regard to animating the rigged models, there are multiple highly specific alter-

natives based on neural approaches. For example, the paper ”Local Motion Phases for

Learning Multi-Contact Character Movements” [Starke et al. (2020)] presents a neural

framework based on deep learning that helps with animating 3D models performing ac-

tions which have multiple contact points with the environment they are interacting with,

such as sports like basketball. It does this by using motion capture data as training input

and differentiating the local points in the model that change in response to a specific

contact. Then, the model allows to mix and blend different animations to generate more

complex ones that react to a player input and the character’s environment; see figure 2.9.

The paper ”Neural Animation Layering for Synthesizing Martial Arts Movements”

[Starke et al. (2021)], published one year after the previous paper was published, im-

proves upon its previously proposed framework by producing a new neural layer that

helps with controlling and generating the different animations, as well as adapting them

to the interaction with a highly dynamic object. This is specially suitable, for example,

for martial art character animations, in which the target of one interaction (the opposing

player’s target) will also be continuously moving and changing, making it necessary to

adapt the character’s animations to any possible state the opposing character may be in;

see figure 2.10.

11

Figure 2.9: Example of basketball animations generated by the model
presented in the paper ”Local Motion Phases for Learning Multi-
Contact Character Movements”

Lastly, the paper ”Mode-Adaptive Neural Networks for Quadruped Motion Control”

[Zhang et al. (2018)] present their novel architecture Mode-Adaptive Neural Networks,

which enables artists to automatically generate movement animations for quadruped mod-

els. This architecture is composed by gated layers that try to predict the position and

rotation of the character bones in the next frame depending on their position on the cur-

rent frame and the user’s input. Quadruped characters are way harder to animate than

biped characters, so the results of this study can be of special value as they may save a

great amount of time to animators; see figure 2.11.

12

Figure 2.10: Example of martial art animations generated by the model
presented in the paper ”Neural Animation Layering for Synthesizing
Martial Arts Movements”

13

Figure 2.11: Example of a quadruped character animated with the neu-
ral model proposed in the paper ”Mode-Adaptive Neural Networks for
Quadruped Motion Control”

14

Chapter 3

Developed Project

After performing an investigation of all the related research, the pipeline in figure 3.1 was

developed.

Figure 3.1: Overview of the project’s pipeline

First, the background will be removed from the input image, as it is required by

PIFu and will help PIFuHD generate a better result. Then, a 3D model is predicted by

both PIFu and PIFuHD. The resulting models are merged to obtain a result with high

quality geometry and texture. Then, the input image is projected onto the front side

of the resulting merged model. Now, this model is rendered from different perspectives

and its pose is estimated. The resulting poses will be used to reconstruct the 3D pose

and the coordinates of its articulations will serve as starting and ending points for its

reconstructed skeleton. This skeleton is imported into blender, along with the previously

generated 3D model. Both the skeleton and the model are aligned and the latter is rigged

using the Bone Weight algorithm. The output of this last stage will be a fully rigged

3D character that can be animated and imported into any video game development or

animation software. The animations have still to be created by hand or by other means,

but once they are made for one model, they can be copied and pasted over any other

model generated this way as they all share the same skeleton structure.

15

Now in the following sections each of the steps composing the pipeline will be explained

more in depth.

3.1 Model Generation

The first step in the development process was finding a way of merging the highly defined

geometry of PIFuHD with the texture generated by PIFu.

Figure 3.2: Comparison of the models produced by PIFu (left) and
PIFuHD (right) of the same image

Figure 3.3: Another comparison of the models produced by PIFu (left)
and PIFuHD (right) of the same image

16

The initial approach consisted of taking the vertices generated by the PIFuHD network

and feeding its coordinates to the color sub-network of PIFu instead of the ones generated

by it. This led to some strange colors in places where PIFu would not generate geometry,

so another approach had to be taken. The selected approach consisted on generating

both the PIFu and the PIFuHD 3D models and then for each vertex in the PIFuHD

model assign the color of the closest vertex on the PIFu model, this way it was ensured

that the coordinates that were queried for the texture would be valid. To achieve this, a

kd-tree structure was used to store the vertex coordinates and perform nearest-neighbour

finding operation more efficiently. This led to better results, but some of the resulting

models had texturing artifacts on the sides; see figure 3.4. An attempt to use the average

color of multiple neighbouring vertices was made, but no great quality improvement was

found and the idea was dropped.

Figure 3.4: Texturing Artifact when merging PIFu texture and PIFuHD
geometry

These artifacts were found to be generated due to the fact that both PIFu and PIFuHD

predict the geometry of the models they generate to have very different depth as it can be

seen in figure 3.5, leading to the closest vertex not belonging to the same body feature.

In order to fix this issue, a way of mapping PIFuHD vertices to the ones in PIFu

17

Figure 3.5: Top view of PIFu and PIFuHD models

belonging to the same feature is required. This was achieved by means of model registra-

tion, performed with the Python library ”probreg” [Kenta-Tanaka et al. (2019)]. Multiple

model registration algorithms were tried and their results compared to find the best candi-

date for this use case, and lastly the Support Vector Registration [Campbell and Petersson

(2015)] algorithm was selected to perform non-rigid model registration. This is a com-

putationally intensive task, and in order to be able to process these models with tens of

thousands of vertices, the non-rigid registration is performed on a downsampled version

of the original model. This lower quality model is enough to retain the main features of

the human model, such as the head and the arms, but loses the geometry related with

facial features, for example, which is not necessary for the current task.

The following pictures illustrate this process. In figure 3.6, PIFuHD model is drawn

in green and the PIFu model is drawn in red. Here it can clearly be seen that the features

in both models do not match with each other, specially in the head area. The first step

is registering the PIFuHD geometry to that of PIFu with the goal of obtaining a series

of parameters that will be used to map the vertices in one model to the other. Then,

we apply this transformation to each of the vertices PIFuHD geometry. In the following

picture the transformed geometry can be seen in blue along with PIFu’s original geometry

in red. As it can be seen in figure 3.7, they more closely match together.

Now, if the nearest neighbouring vertex to each of the remapped vertices is found then

the texturing artifacts have been solved and a model that combines both high quality

geometry and texturing has been achieved, effectively having improved the results over

the current state of the art. Figure 3.8 illustrates this improvement. The pseudocode of

18

Figure 3.6: Visualization of PIFu and PIFuHD geometry

the algorithm used in this step can be seen in Algorithm 1.

Algorithm 1 Merging of PIFu texture with PIFuHD geometry

1: tree← Calculate kd-tree from PIFu geometry vertices coordinates
2: P ← Calculate model registration from PIFuHD to PIFu
3: for v in PIFuHD geometry do
4: v′ ← Apply P to v
5: w ← Query tree for nearest neighbour to v′

6: Transfer color from w to v
7: end for

The output model of this stage is encoded using Wavefront OBJ format. All the

model’s information is encoded in plain text, which means that the information contained

in the file can be processed and manipulated using any text editor and text manipulation

libraries found in every programming language. The use of this formatting enables faster

development as less time has to be invested in writing code specific to 3D model file

manipulation.

19

Figure 3.7: Visualization of PIFu and PIFuHD geometry after model
registration

3.2 Texture Projection

After making this improvement, a way of further improving the texture quality was de-

veloped. The original photograph used as an input to the pipeline contains high quality

information about the texture that currently is not being used, and the possibility of pro-

jecting it onto the improved model was explored. First, it would be necessary to match

both the photograph’s features with the model features. To do this, the affine transfor-

mation that correlates the most extreme points in both the image and the 3D geometry

in the frontal plane was calculated and then applied to the image. Then, the color of

each vertex in the model was blended with the color of its corresponding pixel in the

image, by using a function dependent on the dot product between the vertex normal and

the forward vector. This way, the color transition in the borders of the model would be

smoothed, otherwise the boundary between the projection and the PIFu generated color

would be too sharp and noticeable. Figures 3.9 and 3.9 show the results.

Currently this computation is performed sequentially on the CPU, but could be con-

20

Figure 3.8: Merged Model Comparison. Original PIFu model (left),
merged models with texturing artifact (center) and merged model with
registration (right)

verted to a GPU program with a framework such as CUDA, in order to perform this

computation in parallel and greatly speed it up.

Figure 3.9: Visualization of the merged model without projection (left)
and with projection (right)

After performing all these steps, the resulting model has already a noticeably better

quality than the existing state of the art. In figure 3.11 an example is shown where

the effects of these steps are the most meaningful. First, the face geometry can be seen

to be much better defined after merging PIFu and PIFuHD models together, while still

maintaining a base texture. Then, after projecting the original picture, the patterns in

the texture shown on the attire worn by the model can be distinguished, as well as the

texturing in the shoes and specially in the face.

Another example worth highlighting is the one shown in figure 3.12, where the 3D

model generated originally by PIFu contained many flaws, such as glitched texture gener-

ation and weird geometry, such as a wobbly lower leg and floating geometry chunks, which

would make this model unusable for most purposes. After running this model through the

21

Figure 3.10: Another example in which PIFu output (left) is compared
with the merged and projected model (right) using an input picture
with higher resolution

pipeline, the resulting 3D model was completely suitable for its use in video games and

animations, in addition to he quality improvements in facial features after merging with

PIFuHD geometry and projecting the input photograph. The texturing glitches caused by

PIFu’s color generation remained on the sides of the model, but were made less noticeable

thanks to the texture projection step.

3.3 Model Rigging

Now that the texture quality has greatly improved over the base model, another way of

improving the results was explored. The next step to make a 3D model that could be

directly used in animations or video games would be rigging it and animating it, thus a

research into the existing methods of automatically rigging was performed. Surprisingly,

there are not many approaches making use of neural models that reliably rig and animate

3D models. This may be due to the wide range of different kinds of models that are used

in this kind of projects, so it may be difficult to find an approach that can fit them all.

The state of the art in this field is led by ”RigNet”, a neural network based approach

that calculates the armature and rigs articulated models. A look into the research paper

reveals a very good performance and high quality results, that could probably be used to

save an artist many hours of work. On the other hand, it has a major drawback that would

make this approach unsuitable for the purposes of this project, as it yields unpredictable

22

Figure 3.11: Comparison between PIFu’s generated model (left) and the
resulting merged and projected model (right)

results on the structure of the armature predicted for each model. As it can be seen in

figure 3.13, different human-like geometries yield different skeletons, as the neural model

would calculate two or three bones in the arm, for example. This makes this approach

inadequate as it would be better to have an homogeneous structure across every armature

generated, so it would be easier to animate them.

The second researched approach consisted on leveraging the pose estimation capabili-

ties of the OpenPose [Osokin (2018)] model. It is used to estimate the pose of humans in

pictures with high quality results and the returned results always have the same structure,

making them predictable and suitable to be automatically animated; see figure 3.14. It

has the only problem that it only outputs the predicted skeleton structure as a JSON file

instead of a rigged model, making it necessary to have a post processing step to merge

the model with the estimated armature. Also, it is used to predict the pose of humans in

pictures, so the 3D geometry can not be directly fed to the model.

23

First, a rendering program was written using the library ModernGL, a high level

abstraction layer over OpenGL, that takes the 3D model as an input and outputs a series of

renders of the model taken from multiple perspectives with an orthogonal camera. Then,

these images are fed to OpenPose. Lastly, the resulting bone coordinates are collected

and the transformation applied by the camera when rendering is undone, obtaining the

coordinates of each bone’s head and tail in the 3D space. An example can be seen in

figure 3.15.

Now that the armature of the model is generated, before being able to animate it it is

required for the model to be ”rigged”. Rigging is the process where each vertex of the 3D

mesh is assigned to a bone to be moved with it. In more complex models, one single vertex

can be assigned to multiple bones and its position calculated as a weighted average, so the

animation works as expected in places such as the joints, where the mesh is expected to

be flexible. Most of the existing approaches are algorithmical, with the only neural based

alternative being ”RigNet”, which was deemed unsuitable for the current project. The

first approach, called Pinoccio [Baran and Popović (2007)], is an algorithmic approach first

published in 2007. The second option would be to use the ”Bone Heat” algorithm used by

Blender’s automatic bone weighting function. There is not much information about this

algorithm, but it is presumably based on the Pinoccio algorithm. Lastly, the algorithm

”Bone Glow” [Wareham and Lasenby (2008)] exists, which claims to yield better results

than the Bone Heat algorithm, specially in edge cases.

From all of them, the Blender approach was chosen as it was deemed the most conve-

nient. It is one of the most used 3D modeling softwares and as such has a big community

that could be used for support if required. It also has a Python 3 console that would give

the possibility of applying some transformations to both the model and the skeleton if

required.

The raw JSON output from OpenPose is processed and the information about the

position and perspective of the render cameras is used to reconstruct the model’s estimated

skeleton in 3D space. Using a Blender Python script an armature is constructed using

OpenPose pose information. The 3D model from the previous stage is imported into

Blender. The current version of this tool does not keep the texture stored as color per

vertex in Wavefront OBJ files, so as a workaround, the OBJ model is first imported

into MeshLab [Cignoni et al. (2008)], another 3D model manipulation software, using

its Python library ”pymeshlab” [Muntoni and Cignoni (2021)], and then is exported as

PLY (Standford Triangle Format) format. This converted file can now be imported into

Blender and keep its color information. Then both are aligned vertically and horizontally

by calculating the affine transform that maps the most extreme points of both objects

and scaling down slightly the armature from its geometrical center. Then, its depth is

24

also aligned. Lastly, the Bone Weight algorithm is used to rig the model. There is a glitch

with the latest versions of Blender where the algorithm may fail in models in which some

vertices are too close together. The way to overcome this is scaling up both the armature

and the model’s mesh, applying the rigging algorithm and then scaling them back down.

Then the resulting textured and rigged model is saved as a Blender scene file ready to be

imported into any video game or modeling and animation software.

25

Figure 3.12: Comparison between another PIFu’s generated model (left)
and the resulting merged and projected model (right). The PIFu gen-
erated model can be seen showing many flaws, which were later fixed
by the pipeline.

26

Figure 3.13: RigNet Output Example

Figure 3.14: Structure of a pose estimated by OpenPose

27

Figure 3.15: Generated model with skeleton

28

Chapter 4

Results

In the pictures seen in figure 4.1 some of the resulting models are shown as they are

output from the pipeline. The original images are animated and these are some frames

extracted from them. They can be seen as part of a ”walking” animation which was

created for one single model and copied to all the others, which is possible thanks to all

of them sharing the same armature structure. It can be seen that the results are pretty

good, with the geometry showing distinctive features, a good texture applied to them and

being reasonably animated. In some of them some features can be clearly distinguished,

such as the button of the shirt or the belt of the trousers.

Overall, the quality of the generated geometry is pretty good. The hands may be

very simplified depending on the posture the model was holding them in the original

image: if the palms of the hands were to be looking towards the camera, it would be

possible for PIFuHD to generate the finger geometry, but as in these examples they were

perpendicular to the camera, the geometry of the fingers is way too complex along the

depth axis for a single PIFu ray to define.

There are specially important parts of the geometry, like the facial features and hair,

that is generated with a high level of quality. On top of the highly defined facial features,

the picture projection improves even more the quality of the 3D model when facing the

camera. Figure 4.2 is an example were the generated 3D model shows a highly detailed

hair geometry which shows volume around the face of the model, while still achieving a

well defined texture even on the interior face of the hair geometry.

The generated geometry is not perfect though, as there are some generated artifacts

that can be observed in these models. For example, in this model it can be seen that

the geometry of the shoes is not well defined, being a mixture between a sports shoe

and a high-heel. This may be because in the original photograph, the shoes can be seen

tilted forward, either by the perspective of the camera or the pose of the model. In either

29

Figure 4.1: Example output

case, the neural model seems to have learned that a downward looking shoe is probably

a high heel. Another example where this phenomenon can be seen is in figure 4.3, where

geometric features such as the knees and the folding of the shorts are correctly generated

and the texturing of the shorts is also well defined, but PIFuHD failed to correctly generate

the 3D mesh of the shoes, which probably should be more similar to running shoes instead

of high heels.

In these other examples seen in figure 4.4, it can be clearly seen that the high heels

the models are wearing are more accurate. On the other hand, there is a small issue with

the texture these models display on the back side. On the front side they can be seen

wearing colorful and detailed clothing, but the coloring generated by PIFu seems to have

lost these details. It is, as stated, a problem that only happens with models wearing an

attire in which the occluded side has a complex pattern of coloring. This also happen

with objects such as belts, that may fade when rotating from the front side of the model

towards the back side. Other high frequency texturing features but that only occur on

the front side of the attire, such as shirt buttons, do not suffer this problem. This is

probably the most noticeable issue with the generated models, and possible workarounds

are proposed on the ”future work” section.

The model texturing is, in fact, the source of other issues in some edge cases, such as

30

in this one. As it was explained before, PIFuHD generates a normal map texture from

the input picture in order to improve the quality of the generated geometry. The neural

model tasked with the normal map texture generation seems to have associated a sharp

transition between a bright color and black color as probably being a shadow casted by

the clothing due to a folding. This is usually true and provides good results in features

such as shirt necks and foldings, but in a shirt with a texture black lines forming white

squares give rise to the following artifacts. As it can be seen in figure 4.5, the model

shows a strange rugged texture.

As described during the PIFu architecture introduction, an image to image translation

neural model is used to infer the back side normal map from the front side normal map.

Because of this, any glitch on the front normal texture will leak into the back normal

texture, as it is the case with this example. Due to the irregular front normal map caused

by the checker pattern texture, the artifacts that propagate to the back side normal map

end up causing more geometry issues that can be noted in the previously mentioned figure.

Another attire texturing pattern where this phenomenon has been observed is in black

and white orizontal stripes, such as in figure 4.6. In this case though, the deformation

caused by the normal map artifacts appear to be constrained to a specific part of the 3D

model in both the front and the back face and does not propagate to other parts of the

model. Other complex mesh features, such as the bow tie in the trousers, appear to have

been generated with high quality and without noticeable artifacts.

The normal map artifact propagation to the back side issue can be fixed by estimating

the back normal map from a projection of the PIFu model with its predicted texture

applied. As the back side texture tends to lose these texture details, the resulting image

would have a more uniform texture similar to that seen in the previous examples, leading

to a more accurate geometry. On the other hand, this would only fix a small part of the

issue, as the front side normal map prediction issues would prevail. The only possible

solution would be training the image to image translation neural network with more

examples, so it avoids generating these kinds of roughed geometry patterns.

Still, not every model dressed with a pattern that could potentially generate glitched

normal map ends up being unusable. For example, in figure figure 4.7, the jumper worn

by the model shows black and white squares, which cause the neural model to generate

geometry on the normal map texture around the square seams. This can be better noticed

on the PIFuHD model, as its texture corresponds to the 3D model’s normal map. On the

other hand, on the finished model, the geometry generated around this texture is barely

noticeable.

31

Figure 4.2: Example with high quality generated hair geometry while
also maintaining high fidelity texture

32

Figure 4.3: Example of a 3D model where the shoes were mistaken with
high heels

Figure 4.4: Example of an output generated of images where the models
were wearing an attire with higher detail

33

Figure 4.5: Example of geometry artifact due to normal mapping

34

Figure 4.6: Another example of geometry artifact due to normal map-
ping, where the rest of the model remains unaffected. Input image (left),
resulting model front face (upper-right) and resulting model back face
(bottom-right)

35

Figure 4.7: An example where a potentially glitch-causing clothes tex-
ture does not cause any disruptive geometry. Input texture (top), PI-
FuHD generated model (bottom-left) and final model (bottom-right)

36

Chapter 5

Conclusions & Further Work

Overall, I would say that the project was a success, as I was able to achieve every goal and

was capable of going even further and developing more improvements for the digitisation

pipeline that makes the models available for use as assets in video games and animations.

Almost every model can be used at least as a reference for artists to create the final asset

and many of them can be used directly with minor modifications or no modifications at

all. It is worth to note that, even though the image projection step seems only like a minor

improvement of the final quality of the model, I believe that it can have a huge impact

on the final perceived result. In the environments that these models are aimed to be used

in, that is video games and animations, it is expected for the human characters appearing

in them to be mostly viewed from the front side. For example, when interacting with a

human character in a video game, or watching someone talk in an animation, they will be

mostly showing the front side as they will be looking at the camera or player character,

that is, they will be showing the side in which the texture resolution is the highest. When

the human character is not in the main view there will be times when the other sides

with lesser texture quality will be shown the most, but as stated previously, they will not

be on the main view and less attention will be paid to them, making the lower quality

texture less noticeable.

5.1 Example Applications

The main application of this project would be creating human models for their use in

animations and video games. For example:

• It could be used for users to create their own personal avatar in social style video

games, where players could use avatars that more closely resemble themselves. This

would be enabled by the 3D avatar being created with a single photograph that

37

could be directly taken in front of the mirror by the player, as other approaches

that would require more cumbersome processes for the automatic 3D model to be

generated, such as asking another person to capture a video around the player

and using photogrammetry to generate a model with higher resolution, could make

potential players lose their interest in the game due to the added work required in

order to try it.

• It could also be used in small toy-like smartphone applications. For example, you

could take a picture of a friend standing next to you, point the smartphone’s cam-

era to the table and have a small figurine of them dancing on the table through

augmented reality. Again, the ease and convenience of creating the 3D model with

just taking one single picture of the subject is what could enable these kinds of

applications to be successful.

Computationally speaking, going through the complete pipeline is an expensive pro-

cess, especially for the 3D geometry generation process as PIFuHD has a high memory

requirement. Also, the computational requirement could be a barrier for it to be run in

mobile devices. On the other hand, modern smartphones are beginning to incorporate ar-

tificial intelligence acceleration modules, such as the latest Pixel phone by Google, which

will come with their tensor computing units. Also, there is the possibility of performing all

the computationally intense operations in the cloud and returning the processed model to

the user, as sending the input image and downloading the resulting model is expected to

have a networking overhead of only around 20 Megabytes, most of which comes from the

currently uncompressed model and could be improved by using compression algorithms,

which is very little for most of current internet connections.

These applications were mainly targeted towards a non-technical market and providing

entertainment value, but the potential of this project does not stop here, as it could also

be shaped to be used as a professional 3D modeling tool. One single picture could be

taken of a human model wearing the desired attire for an animation or video game, and

the resulting 3D model would just be required to be slightly adjusted to remove any

imperfection or add more detail. This would help an artist by reducing the time required

to model the complete attire from the ground up and texturing it. Using the raw output

model also has its applications as it could be directly used first as a prototype and then

refined for the final product.

38

5.2 Short-term Improvements

There are still ideas being worked on that can improve the project in the short term.

More precisely:

• As explained before, the generated models use the pose information generated by

OpenPose. This means that posing information could be directly captured from a

camera and animate the generated model in real time. Furthermore, creating the

animations is currently the only step that would be required to be performed manu-

ally by an artist, but there is the possibility of animating these models by capturing

someone performing the animations using a camera and porting them to the models

armature, which should be a simple task as both would share the same estimated

pose structure generated by OpenPose. This drops the requirement of having a

green room full of cameras and an animation model wearing a motion capture suit,

enabling smaller studios and content creators to capture realistic animations with

just two smartphone cameras.

• For simplicity of development, the model created with the current pipeline uses

a technique called “color per vertex” in order to store the texture of the models.

This means that the color of the model is only defined at each vertex and that it

is interpolated for displaying the pixels in between, meanwhile with a traditional

texturing approach the color could be defined at every pixel if the texture used has

high enough resolution. This means that currently the texture storage methodology

acts as a bottleneck limiting the quality potential of the projected texture. As an

example, the following model has been upsampled by subdividing the mesh, this

way the model is defined by more vertices and the stored texture will have better

quality; see figure 5.1.

As it can be seen in figure 5.1, the projected quality has greatly improved and is now

limited only by the resolution of the image taken. Finer details can be seen, up to the

point where the texture of the jeans worn by the model can be distinguished.

5.3 Long-term Improvements

There are also many ideas that can be used to further improve the quality of the generated

models on the long term:

• The way PIFu chooses to generate the model’s texture is by predicting the color of its

vertices at every point in the full 3D space. I think that the texture could be better

39

generated by using a technique similar to what PIFuHD uses, that is generating the

back side view by using an image to image translation neural network, but instead

of predicting the normal mapping, it should predict the color texture. This could

be achieved by using, as stated, an image to image translation network, but this

problem could also be a candidate for a Generative Adversarial Network to solve.

I believe that with this method a higher resolution view of the back of the model

could be generated and then projected, similarly to what is currently done with the

front view, yielding higher quality results.

• Also, the geometry generation could be improved, as there still exist some issues

with the mesh generation. The only way to solve this is by using a bigger dataset

on the training phase or by designing an architecture that is able to obtain better

results.

• Lastly, an algorithmic approach has been used to rig and animate the models. An

alternative could be explored that uses a neural approach, which may be able to

achieve more flexible results than the current ones. It would be especially interesting

to design a neural approach capable of rigging and animating models with a skeleton

following the structure used by the OpenPose tool, as it is widely used and also it

would be fairly easy to obtain a large enough dataset for it to be trained on.

40

Figure 5.1: Example of amodel with higher resolution texture

41

Bibliography

Amato, A. (2017). Procedural Content Generation in the Game Industry, pages 15–25.

Springer International Publishing, Cham.

Baran, I. and Popović, J. (2007). Automatic rigging and animation of 3d characters. In

ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, page 72–es, New York, NY, USA.

Association for Computing Machinery.

Campbell, D. and Petersson, L. (2015). An adaptive data representation for robust point-

set registration and merging. 2015 IEEE International Conference on Computer Vision

(ICCV).

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.

(2008). MeshLab: an Open-Source Mesh Processing Tool. In Scarano, V., Chiara,

R. D., and Erra, U., editors, Eurographics Italian Chapter Conference. The Eurograph-

ics Association.

Fadaeddini, A., Majidi, B., and Eshghi, M. (2018). A case study of generative adversarial

networks for procedural synthesis of original textures in video games. In 2018 2nd Na-

tional and 1st International Digital Games Research Conference: Trends, Technologies,

and Applications (DGRC), pages 118–122.

Kenta-Tanaka et al. (2019). probreg.

Li, Z., Yu, T., Pan, C., Zheng, Z., and Liu, Y. (2020). Robust 3d self-portraits in seconds.

CoRR, abs/2004.02460.

Liu, S., Li, T., Chen, W., and Li, H. (2019a). Soft rasterizer: A differentiable renderer

for image-based 3d reasoning.

Liu, S., Saito, S., Chen, W., and Li, H. (2019b). Learning to infer implicit surfaces without

3d supervision.

Muntoni, A. and Cignoni, P. (2021). PyMeshLab.

42

Natsume, R., Saito, S., Huang, Z., Chen, W., Ma, C., Li, H., and Morishima, S. (2019).

Siclope: Silhouette-based clothed people. CoRR, abs/1901.00049.

Osokin, D. (2018). Real-time 2d multi-person pose estimation on cpu: Lightweight open-

pose.

Park, T., Liu, M., Wang, T., and Zhu, J. (2019). Semantic image synthesis with spatially-

adaptive normalization. CoRR, abs/1903.07291.

Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., and Li, H. (2019). Pifu:

Pixel-aligned implicit function for high-resolution clothed human digitization.

Saito, S., Simon, T., Saragih, J., and Joo, H. (2020). Pifuhd: Multi-level pixel-aligned

implicit function for high-resolution 3d human digitization.

Starke, S., Zhang, H., Komura, T., and Saito, J. (2019). Neural state machine for

character-scene interactions. ACM Trans. Graph., 38(6).

Starke, S., Zhao, Y., Komura, T., and Zaman, K. (2020). Local motion phases for learning

multi-contact character movements. ACM Trans. Graph., 39(4).

Starke, S., Zhao, Y., Zinno, F., and Komura, T. (2021). Neural animation layering for

synthesizing martial arts movements. ACM Transactions on Graphics, 40:1–16.

Summerville, A., Snodgrass, S., Guzdial, M., Holmg̊ard, C., Hoover, A., Isaksen, A.,

Nealen, A., and Togelius, J. (2018). Procedural content generation via machine learn-

ing (pcgml). IEEE Transactions on Games, 10(3):257–270. Publisher Copyright: ©
2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

permission. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-

Brualla, R., Simon, T., Saragih, J. M., Nießner, M., Pandey, R., Fanello, S. R., Wet-

zstein, G., Zhu, J., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., and

Zollhöfer, M. (2020). State of the art on neural rendering. CoRR, abs/2004.03805.

Varol, G., Ceylan, D., Russell, B. C., Yang, J., Yumer, E., Laptev, I., and Schmid,

C. (2018). Bodynet: Volumetric inference of 3d human body shapes. CoRR,

abs/1804.04875.

Wareham, R. and Lasenby, J. (2008). Bone glow: An improved method for the assign-

ment of weights for mesh deformation. In Perales, F. J. and Fisher, R. B., editors,

Articulated Motion and Deformable Objects, pages 63–71, Berlin, Heidelberg. Springer

Berlin Heidelberg.

43

Xu, Z., Zhou, Y., Kalogerakis, E., Landreth, C., and Singh, K. (2020). Rignet: Neural

rigging for articulated characters.

Zhang, H., Starke, S., Komura, T., and Saito, J. (2018). Mode-adaptive neural networks

for quadruped motion control. ACM Trans. Graph., 37(4).

44

	Abstract
	Acknowledgments
	Chapter Introduction
	Main Goal

	Chapter Related Work
	Image to 3D model
	Image to 3D model with humans
	State of the Art
	Pixel-Aligned Implicit Function
	PIFu
	PIFuHD

	Model Rigging and Animation

	Chapter Developed Project
	Model Generation
	Texture Projection
	Model Rigging

	Chapter Results
	Chapter Conclusions & Further Work
	Example Applications
	Short-term Improvements
	Long-term Improvements

	Bibliography

