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Making a secure framework for Federated Learning

Vaibhav Gusain, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Aljosa Smolic

Federated learning approach was built so that we can use data which is distributed
at different user devices to train a machine learning algorithm, without the data being
actually transferred outside the user device. Thus facilitating the learning of the model
and also not hampering the user privacy-the user data never leaves the local device.
However recent approaches have shown that private user data can be exploited by
using the gradients or the weights that the edge model share with the main server.
In this dissertation, we would like to introduce an agent which would allow the user
devices to share the weights in an encrypted way, the server would do its update on
such encrypted weights and then return the updated weights to the user



Summary

Neural networks are data driven model i.e they require a lots of data to train and work

properly. However with the rising use of neural network there are a lot of concern about

the security regarding the private information present in those data. To mitigate such

problems federated learning were introduced, but research still shows that user data

can still be exploited in that approach.

In this research we will first show how the traditional way of training the neural network

poses a threat to user private information. Then we will briefly talk about federated

learning and how we can still exploit the information in such a setting. We will also

demonstrate how we can exploit the data from a federated learning setting. Then we

will introduce our secure federated learning framework where we will first show that it

not only gives almost equal accuracy as that of the federated learning framework but

also provide an added layer of security so that its really hard to exploit user data in

such a setting.
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Chapter 1

Introduction

1.1 Overview

Security and privacy both go hand in hand. If our system is secure then we can make

sure that the user privacy is preserved in our system. On the other hand if our system

is not secure the user privacy might be at risk and can easily be compromised by a

malicious attacker. Machine learning models are data driven models. These models

are trained on raw data and more data we have more accurate model we can build.

Most of the times such data often contain user private information which if fallen into

the hands of attacker can be misused in anyway the attacker sees fit.

Traditionally we would collect all of the data at one place to train our machine learning

model, this approach was very risky as we were putting all of the user data at one

place thus making it easier for an attacker to steal the information. To overcome this

authors at [1] developed a new algorithm called Federated learning where instead of

collecting the user data to a single storage device on the cloud we would only collect

the model updates. Thus user data never leaves there device and thus making it harder

to steal such data.But authors of [2] [3] quickly demonstrated that we can still steal

user information in such a setting if no encryption is used.

By looking at the severity of the problem we decided to research and develop a secure

framework for the federated learning algorithm. In this work we will try to describe our

secure framework for the federated learning setup. We will start by talking about our

motivation and the literature review done. Then we will discuss about the framework
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we have built followed by the results and conclusion.

1.2 Motivation

With the advances in the field of deep learning, we are at a stage where we can train

neural networks to automate certain tasks. In some areas the accuracy of a neural

network surpasses the accuracy of an average human, for example: Facial recognition

systems. To get such an accuracy neural networks are required to be trained on huge

amounts of user data. Traditionally, to train such networks, the data is collected over

a single storage unit and then the neural network is trained on a server using the col-

lected data.

Figure 1.1: Figure shows traditional way of training neural network

Figure (1.1) shows how traditionally neural networks were trained. As evident from

the image the data is first stored into a single storage device, that device is connected

to a high processing CPU which trains the neural network and saves back the results

in the storage device. Such an approach however efficient and was easy to scale but

possessed a crucial security threat for user data.
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Figure 1.2: Figure shows how easy it is to attack traditional setup

Recent researches [1] [4], have pointed out that such an approach of training poses

a crucial security threat. Since we are collecting all of the user information at a single

location on a server, if the security of the training machine is compromised, then the

hacker will not only have the AI model we have created but might also get access to

user sensitive information that was being used to train our neural network. This is

evident from figure (1.2) we can see that if an attacker got the access to our storage

device, then they will not only have our trained neural network but it will also have

the access to the training data which might contain user private information. Thus

putting user private information at a risk.

Figure 1.3: Figure shows in federated learning only the model updates are shared and

the user data never leaves the edge device.

To mitigate the issue, federated learning was introduced by [1] in which a user was

able to train neural network models without having to collect all of the user data at a
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single location. In such a setting each device receives the copy of the global neural net-

work and fine tune it on its own training data. Once the training is done it shares the

trained weights/gradients with the server, then the server aggregates all the collected

weights thus updating the global model, it then shares back the new global model to all

the devices. Hence even if there is a security breach, the hacker will only have access to

the neural network and not the user data thus preserving the privacy of the user. Fig-

ure (1.3) shows a traditional federated learning setup. From the figure we can see how

the local data of the user never leaves the edge device but only the model updates are

shared with the server thus making it harder for an attacker to steal the raw user data. .

Figure 1.4: Figure demonstrating that it is still possible to extract user information

from the shared weights

But research done by [3][2] suggests that, it is possible to get the user information

in the federated training approach using the weights/gradient shared by the devices to

the server, i.e., if the security of the server is compromised or if it is a malicious server

then it might extract the user information using the shared weights. Thus if the shared

weights are not encrypted then the attacker might still get the private information of

the user. From figure(1.4) we can see how the attacker was able to reconstruct the user

images which they used to train their neural networks just from the shared weights.

Which thus again goes on to prove that if the shared weights of the networks are not

encrypted then the user private information can still be reconstructed from the shared

weights thus putting user privacy at a risk.

However there is a handful of research that is being done on how we can encrypt the

data before we feed it into the models. In such a technique usually the input to a model

is distorted by using some predefined distortion algorithm which encrypts the input
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in such a way so that image is not recognizable by the naked human eye and is sent

to the neural network. In such cases even if the security of the model is compromised

the hacker won’t be able to access the user information as the images it will get will

only be distorted images. However in most of such cases we need to retrain our neural

network using the new distorted images, so that it can learn what features to learn

from such new images. Which again requires a lot of time and effort. Recent research

done by the authors at [5] mitigate this issue, as they present an encryption algorithm

where we can use our existing convolutional models and encrypt both the images and

the neural network in such a way so that we still get the desired result without having

to retrain our model and still ensuring that the privacy of the user data is preserved.

This opens a lot of possibilities as in this encryption technique the pre-processing time

is negligible and we don’t need to retrain our neural network for the new encrypted

images.

1.3 Reader’s Guide

In this research we are trying to propose a federated learning approach, which combines

an already existing federated learning algorithm and an encryption algorithm, which

would let researchers train the models in an already federated learning environment,

but with the added features of model encryption. So that even if the security of the

server is compromised or if there is a malicious machine in the federated learning

environment the sensitive user information will not be revealed. The format of this

paper is as follows, we will first talk about the related research in the field, then we will

describe the methodology used by us and how the data was processed. Then we will

end the thesis showing our results and giving a conclusion and scope for future work.

5



Chapter 2

Background Related Work

2.1 Federated Learning

Traditionally neural networks are trained using big GPU clusters, all the data is first

transferred to a single storage location and then used for training. However, while this

approach has worked over the past years, this has some issues:

1. If the security of the server device is compromised then the privacy of the data

is also compromised.

2. Such approach can not be used to train models that require more human in-

teractions i.e training a model for the word prediction for a virtual keyboard

software.

To tackle the problems stated above authors of [1], came up with the idea of federated

learning while working for Google in 2017. In federated learning, instead of using a big

GPU cluster to train the machine learning model, all the devices that are participating

in the training first downloads the current model from the cloud, do a small focused

update on the current model using the data present on the device then share the

updated model again with the cloud. The cloud will then aggregate the results received

by different devices and will update a new model which devices can download and use.

By having such an approach the devices don’t need to share there private information

but rather can share the model updates with the server, thus ensuring the user privacy.
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Figure 2.1: Figure shows how federated learning is done. Here the model is first trained

on the local device A. Then updates from all such devices are collected at B. Then an

update on the server side is done and the new weights are shared again at C to all the

other devices

As shown in the Algorithm 1 every client first receives the global copy w0 from the

server and then it runs n number of local epochs on its own data. Then the server picks

a random set of clients, these will be the clients that will participating in the current

learning cycle. Then those selected clients do a local update on there device using

there own private data for E number of epochs. Once they have completed there local

updates, they share their weights/ gradients with the server. Once the server receives

updates from all the selected clients, it takes a weighted average of all the weights and

update the current weight w0 with the new updated weights and share the new weights

with the clients.

Note here C is the fraction of clients of clients involved in current federated learning

cycle. i.e if C = 0.5 then only 50% of the client will be involved in the current learning

cycle. However for the experiments the authors used C=1.0 i.e all of the clients were

involved in the learning cycle.
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Algorithm 1 FederatedAveraging - The K clients are indexed by k; B is the local
minibatch size, E is the number of local epochs, and is η is the learning rate
Server executes :
initialize w0

for each round t=1,2,... do
m← max(C.K, 1)
St ← (random set of m clients)
for each client ∈ St in parallel do

wt+1
k ← ClientUpdate(k,wt)

end for
wt+1 ←

∑K
k=1

nk
n
wt+1

k

end for

ClientUpdate(k,w) : // Run on client k
β ← (splitP k into batches of size β)
for each local epoch i from 1 to E do

for batch b ∈ β do
w ← w − η5 l(w; b)
return w to server

2.1.1 FedPaq:

After the idea of federated learning was introduced many research has also been done

how we can efficiently share weights between the server and the clients, thus decreasing

the latency during the weight sharing and increasing the efficiency of the overall system.

One such approach is proposed by the authors of [4].

In their proposed system they proposed three basic things which would help to improve

the efficiency of such a system

1. Periodic Averaging : They proposed that rather than each client sharing its

weights with the server just after one epoch, it should run τ number of local

epochs on the local data before and then share the updated weights with the

server. They also found out that if τ (number of local epochs on local data) is

increased the number of total federated iterations (K) required could be reduced.

2. Partial node participation: In the classic federated learning algorithm the server

could still choose all of the clients, however in this research authors claims that

we don’t need to pick all of the nodes. Choosing nodes randomly also gets us to

the desired accuracy.
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3. Message Quantization : Uplink bandwidth on the mobile devices could become

a bottle neck for the device to efficiently share weights/updates with the server.

The author proposed that if we could quantize the weights before sending it to

the server we could save alot of bandwidth and still get similar results. They

proposed a quantizer which was similar to the [6]

Algorithm 2 shows the FedPaq algorithm proposed by the authors. Here K is the K

number of iterations given to federated learning, τ is the number of epochs for the

local updates, Sk denotes the selected subset of k edge devices chosen by server for one

iteration and Q is the quantization function.

Algorithm 2 FedPaq

for k = 0,1, .., K-1 do
server picks r nodes Sk uniformly at random
server sends xk to nodes in Sk

for node i ∈ Sk do x(i)k,0 ← xk
for t = 0, 1, ...., τ − 1 do

compute stochastic gradient
∇ fi(x) = ∇l(x, e)for a e∈ P
set xk,t+1← xk,t − nk,t∇ fi(xk,t)

end for
Send Q(xk,τ - xk) to the server

end for
Server finds the weights and completes the update.

end for=0

From Algorithm2 we can see that, the server first selects r number of random

nodes which will participate in the current learning cycle. Then those r nodes run

τ number of local iteration on the data. Once the local training is completed, they

then Quantize the weights/gradients based on the quantizer Q chosen. They can use a

simple quantizer suggested by the authors in [6]. Once the weights are quantized they

are shared with the server and server performs the FedAvg algorithm on the received

weights and update the model.

In their experiments, authors claimed that by increasing τ the number of iterations

required overall K decreases. Which implies if we give ample time for the neural
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networks to train before averaging the weights, we can efficiently converge our overall

model by running less number of iterations.

2.2 Adversarial Attacks on neural network:

Ever since the development of AI technology, a continuous and parallel research has

also been going on about the adversarial attacks on such technology. The focus of such

research is to show how anyone can steal the data from a trained AI model i.e to show

the vulnerability of the current AI models so that they can be improved. Such attacks

which try to spoof the trained AI or are aimed to extract information from such models

are termed as adversarial attacks. This area of research is useful as it allows us to find

the loopholes in our current architecture and build better models over them.

Soon after federated learning was introduced, researchers like [7][3][2] found some loop-

holes in the approach and claimed if the weights/gradient shared by the device in

federated learning approach are not secured and if the security of the connection is

compromised then the hacker can steal all of the data related to the machine using the

shared weights. Such attacks aims to ”find images that lead to a similar change in the

model prediction as the ground truth”. When the models share weights with the cloud

server they can steal the data with 99% correctness if that device is malicious from the

shared weights.

Figure 2.2: Flow showing how an adverserial attack can be trained to fool a neural

network

The figure (2.2) illustrates what the general proposed attacking algorithm looks

like. The basic idea is to use a similarity based cost function i.e cosine similarity along

with some optimizer (eg: adam) to reconstruct the images using the shared gradients.
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The attacking device start off with a random image, and then pass it through the

untrained network and store the gradients for that forward pass. Since, the device

has the gradient from a trained network, it can calculate the similarity loss such as

cosine-distance between each of the gradients of each layer w.r.t the trained gradient.

Once done it then updates the input image using a simple back propagation. Once the

gradients of layer are similar enough the reconstructed image also become similar to the

image user used to train its neural network and thus revealing the private information

of the user. Using this approach authors have proved that they were able to extract

information from different networks such as Res-Net and Le-net.

costFunction = a
x
rgmin | ∇Lθ(x, y)−∇Lθ(x∗, y) | (2.1)

Equation (2.1) shows the general cost function that the malicious server maximizes

once it receives the gradients from the device. Here ∇Lθ(x,y) represent the gradient

send to the server by the edge device which it has calculated using its own data x,y

and ∇Lθ(x*,y) represent the gradient of the server using the random set of data (x*

and y).

From the equation we can see that the server receives the update ∇Lθ(x,y) from the

edge device and it tries to close the difference between its own gradient ∇Lθ(x*,y)

and the gradient received by the device by maximizing the cost function. and when it

converges it can simply backpropogate those gradient to the images to find the images

related to that gradient, thus breaching the privacy of the user.

2.2.1 How easy is it to break privacy in federated learning?

In [2] authors showed how easy its to break the privacy in federated learning if no data

encryption is provided. Their experiments were able to reconstruct the source images

from the gradients shared by the devices to the server.
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Figure 2.3: Reconstruction of input image x from the gradient shared to the server.

Left: Image from the validation dataset. Middle: Reconstructed image from a ResNet-

18 Architecture. Right: reconstruction from a trained ResNet-152

Authors proposes that if we have a data x ∈ R then it can be recovered from its

gradient G ∈ R.

Lets consider that our neural network has a ReLU non linear activation function then

the output of the layer would be xl+1 = max (Alxl, 0), where Al can be considered as

the weight matrix of the layer l and xl is the input of the layer l. Also assuming that

derivative of loss w.r.t the layer’s output contains at least one non zero element then we

have: ∂L
∂xl+1i

! = 0, here L is the loss of the network, then by chain rule we can extract

xl as

xl = (
∂L

∂x(l+1)i

) ∗ ((
∂L

∂Ali,:

)T) (2.2)

If we use (2.2) for each layer we can also use it for the very first layer whose input is

the user data. Which would give us the input our user used to train the network before

sharing its gradient, thus exposing its private information. Further more authors talks

about that only the gradient magnitude captures the information about the state of

training such as measuring local optimality of the data-point w.r.t current model. But

the high dimensional direction of the gradient can carry significant information, as the

angle between the two data-points quantifies the change in position at one data-point

when taking a step towards other. Hence due to which authors of the paper suggested

to use a cosine similarity function as it would capture the angle between two data

points x and x*.
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2.3 How about encrypting the input images:

Now that we know that it is easy to break the privacy of the neural network and we

can extract information about the input data that was used to train the network from

the network itself. Recent researches like [2] also suggests that we can extract such

information even in a federated learning setting.

Since in a federated learning setting only gradients/weights are shared the attacker is

able to extract the information from the shared gradients. However, if we train our

neural network on encrypted data only, then an attack on such a setting will only reveal

the encrypted information as that is the information that our network would have seen

and the user private information will be preserved.

Figure 2.4: Images showing how image encryption can save user private information.

a) shows the orignal image and b),c),d) shows the encrypted image of the same orignal

image

The authors of [8] suggested an image processing technique to encrypt the image.

Figure (2.4) shows the example of such technique. They suggested to use a negative

positive transformation technique that we could apply at each pixel of the input image

and which would change the input image (2.4) a) into the encrypted image (2.4) d).
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Figure 2.5: Images showing how GANs can be used to hide the sensitive information

from the images.

Also there were other techniques put forwarded by the authors [9] where the authors

would deliberately hide the private information of the user from the data using GANs

and then we could use these new images to train and test our neural network. As

shown in figure (2.5) the image from the left shows the orignal image with the user

face in it which can be considered as the private user information, but in the image on

the right we can see how the face is morphed with the face of a doll so that the user

private information is still preserved.

A positive side of using such techniques is that since we are using encrypted images

to train our neural network, if the attacker has the access of our network weights

then the weights will only reveal the encrypted information i.e information which is

unrecognizable by humans. However in all of these approaches we needed to retrain

our neural network with the new augmented data. But in federated learning setting

we have a global model which we train on a standard dataset for hundreds of hours to

get State of the art accuracy which is then shared among all the edge devices. Training

the network again would be a huge waste of the computing power. So we need an

encryption technique which we could use without retraining our neural network again.

2.4 Keynet- A secure way of encrypting weights:

While AI models were beating humans in terms of accuracy in most of the domains

such as face recognition there was also a rising concern about the security of such

models. As the accuracy of such models have increased over the years, so has the num-

ber of adversarial attacks one can do on such models to extract private information.

Although Federated learning was introduced to save user private user information al-

14



gorithms studies such as [3][2] suggests that there are ways in which a hacker can still

get the user private information by using the shared weights with the server.

To tackle such attacks researchers have developed numerous algorithms [10][8][9] where

they can preserve privacy of the user by having an additional encryption step. Either

researchers would train an autoencoder which would hide the user sensitive information

from the data before using it to any other task [9], or they would simply change the

values in the data based on a predetermined algorithm. By doing so the data would be

uninterpable by humans but we can still train a neural network and get good results

out of it. However in most of the research we either need to retrain the model to use

the new input as we can not use our current SOTA model which we trained for hours

and in some cases as using an autoenconder to hide user information the preprocessing

step would consume a lot of time and resources thus increasing the inference time of

our neural network.

These challenges were solved by the authors of [5]. They built an efficient Homomor-

phic encryption system for convolutional neural networks which do not require any

retraining of our SOTA neural network or an additional preprocessing step.

Convolution is a linear operation and a convolution neural network N(x) can be thought

of as the Network consisting of Nk such linear-layer-wise function.

N(x) = Nk(Nk-1(...N1(x))) (2.3)

We also know that since it is a linear operation we can represent it as a sparse-to-

eplitz matrix where the kernel is replicated row wise. The dense multi-channel input

vector can also be represented as a flattened array and then the output of the layer

can be calculated using the matrix multiplication of the weight and the flattened array.

Keynet builds on this idea of linearizability of the convolution neural network. They

use private layer keys Ai to transform the network weights W to Ŵ using

Ŵ = AWA−1 (2.4)

such that the source weights cannot be factored to recover either A or W. Here W are

the layer weights and A are the respective layer keys.

They also define certain conditions which for a function to be a optical tranformation
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function.

1. Linear: The function f to be linear (f==A).

2. Invertible: The matrix A must be positive definite.

3. Non-negative: A ≥ 0 for all matrix elements.

4. Commutative: There exists a non-linear activation function g that is commutative

with A, such that

A(g(A1x)) = g(AA1x) = g(x)

5. Sparse : The private keys A should be sparse.

According to the authors since optical image formation can be modeled as a linear

transformation, condition 1 is used to make sure that transformation functions are also

linear. Condition 2 is used to make sure that the original image can be recovered by

A−1Ax. Condition 3 limits a matrix to be physically realizable. Condition 4 enables

inference with networks having non linear activation. Condition 5 ensures that end-

to-end inference in the optically encrypted convolutional network is efficient and does

not require an infeasible dense matrix.

Now if we have a secret layer keys Ai and a secret image key A0 then our network can

become:

N(x;W ) = AkW k...(A2W 2A
−1

1)(A1W 1A
−1

0)A0x (2.5)

where x is the input image and W are the weights of the convolutional layer.

But by condition 4 we can only use a non linear activation function g such that g and

A are commutative:

Ag(A−1x̂) = g(AA−1x̂) = g(x̂) (2.6)

For the paper they showcased the transformation using a Generalised doubly stochas-

tic matrices as it fulfilled all of the conditions for their transformation function and

the choice of activation function was chosen to be g=ReLU.

A doubly stochastic matrix is a non negative matrix such that each row and column

sums to one and it is well known that every doubly stochastic matrix can be decom-

posed into a convex combination of permutation matrices. A permutation matrix
∏
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is a square matrix that has exactly one entry of one in each row and each column

and zero else where. A Generalized doubly stochastic matrix has arbitrary non-zero

entries without requiring the rows and columns to sum to one. Such matrices can also

be defined as the product of a diagonal matrix D and as a convex combination of α

permutation matrices
∏

(i). Equation (2.4) shows how we can create a generalized

doubly stochastic matrices using permutation matrices and a diagonal matrix.

P = D
∑
i<=α

θ(i)
∏

(i) (2.7)

Here
∏

=
∑
θ(i)

∏
(i), such that

∑
i<=α θ(i) = and θ >= 0. θ is a hyper parameter

that is used to ensure that our permutation matrix
∏

is positive and definite. The

parameter α is used to ensure the softness of the matrix, i.e if α = 1 then our stochastic

matrix becomes a permutation matrix.

First they use a private image key A0 to encrypt the image and then they send the

encrypted image to the encrypted neural network and get the output. Now using such

an approach we would not have to re-train our neural network on the new transformed

image as this approach can be used to encrypt the network and the image and give the

correct output.

Figure 2.6: Image showing how the encryption in the keynet works

From (2.6) (left) we can see that the image on which inference is performed on

keynet is not interperible by the humans, and also if the original image is fed into the

keynet or vice versa then the output produced by the network will be wrong and the
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attacker wont get any information out of it. From the image on the right we can see

how a keynet encrypt the image/network pair. First using a stochastic matrix the input

image is encrypted, and then that encrypted image is fed into the key net network and

produce the desire output.

2.5 MobileNet

Convolution neural networks[11] are widely used for image recognition tasks. These

networks consist of a convolution layer followed by an optional fully connected layer.

Each of the convolution layers takes the image as an input and produces an output

which represent some information it has learned from the image.

Figure 2.7: Image showing how convolution operation works

From the figure above we can see how a convolution layer computes its output when

a 2d image input is provided to it. In a typical convolution layer input is first convo-

luted with the kernels of the layer size kh(kernel height) and kw (kernel width). Each

kernel has channel equal to the channel of its input, in the figure we can see that each

kernel has the channel size of 3 which is equal to the channel of its input. The number

of kernels are determined by the number of output channel the convolution layer has,

in the figure number of output channels are two thus we are having two kernels. Each

of the kernels are individually convoluted with the image and there output are stacked

together and then is passed to a Non-linear activation function (ReLU)[12] in the image

and then the output is passed to the next layer in the network.
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Lets calculate the number of multiplications required by our convolution layer to pro-

vide the output. Let’s say that our kernel size is kh * kw * kn where Kh is the height

of the kernel, Kw is the width of the kernel and kn is the number of kernels. Let’s say

we are producing an output of having channel size Do then the number of operations

becomes

Numberofoperations = Do ∗ kh ∗ kw ∗ kn (2.8)

and if we have n such kernels our number of multiplications becomes

Numberofoperations = Do ∗ kh ∗ kw ∗ kn ∗ n (2.9)

There are multiple such convolutions in our network and each having its different di-

mensions, hence it might get difficult to run our traditional network on the mobile

devices. To mitigate this, authors from [13] came up with the idea of mobile net. Here

the traditional convolution layer was replaced by a depthwise separable convolution. A

depthwise separable convolution consists of a depthwise convolution and a point wise

convolutions. By doing so the number of operations required in a single convolutiona

layer decreased and the network also became fast by decreasing the number of oper-

ations but with an accuracy drop of just ¬2%. Such networks which use depthwise

separable convolutions are called mobile networks[13].
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Figure 2.8: Depthwise separable convolution

Each Depthwise Separable Convolution layer consists of two operations namely

Depthwise convolution and point wise convolution. The idea behind such layers is to

have n (number of input channels) kernals of kh * kw with channel one and then having

an another convolution layer of kernal size 1*1*M, where M is the number of output

channels, instead of having M kernals a size of kh * kw * kn. This helps in decreasing

the number of calculations required per layer, and thus makes our network smaller and

faster.

2.5.1 Depthwise Convolution:

Lets say we have an input with M number of channels then our depthwise convolution

will have M kernals with a size of Dk * Dk as shown in the figure. So the number

of operations required to perform the depthwise convolution on an image would be
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Df 2 ∗M ∗DK2

Figure 2.9: Depthwise convolution

2.5.2 Pointwise Convolution:

In a point wise convolutions we have a kernal of size 1*1 each having M chanels and

we have N such kernals, where N is the number of output channels. So the total cost

of point wise computation becomes Df 2 ∗M ∗N

Figure 2.10: Depthwise convolution

So the total computation of a depthwise separable convolutioal layer becomes C =

Cost of depthwise convolution + cost of point wise convolution which becomes :

C = Df 2 ∗M ∗DK2 +Df 2 ∗M ∗N (2.10)

From (2.9) (2.10) it is clear that the number of operations in a depthwise separable

convolution is less than a normal convolution layer. Thus this makes mobile net much

faster and an optimal choice to be used for edge devices. Hence for this dissertation

we will be using the mobile net to demonstrate the results we acquired by running

multiple experiments.
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Chapter 3

Design and Implementation

3.1 Overview

By our experiments we are aiming to provide results that using the [5] and federated

learning we can improve the security of the federated learning setup without a drop in

accuracy. In this chapter we will take an in depth look about the over all architecture of

our system and how we implemented different things that were needed for the project.

Figure 3.1: Proposed Architecture

The figure (3.1) shows the image of our approach. We have a secured key agent

which each of our client will communicate with to get the the secure key. Once the key

is received the clients will encrypt these weights using the key provided and will share

the weights to the cloud. The cloud will do the updates on the encrypted weights and
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then share the updated weights with the clients. Clients will then again communicate

with the secure key agent to get access to the decryption key and use it to decrypt

the received weights and update their model. Having such a approach is beneficial as

even if the security of the cloud server is compromised it can not tell what the values

of weights are as they will be encrypted.

Algorithm 3 provides a more in depth look at the process of how our framework is

Algorithm 3 Secure Federated Framework - Client Devices are the local edge devices
with there private information. Secure key agent is the agent which the client commu-
nicate with to get the encryption and decryption keys. Cloud is the cloud server which
performs the Federated averaging algorithm

Client downloads the global model from the cloud.
Each client trains the global model on their local data.
Each client chosen to communicate with the server, asks the secure key agent for the
encryption key.
Secure keyagent provide the encryption key to all of the clients.
Each client encrypt the weights using the secure key.
Clients sends the encrypted weight to the server
Server performs the Federated averaging algorithm on the encrypted weights and
shares back the updated global model to the clients.
Each client asks the Secure key agent for the decryption key.
Secure key agent provides the decryption key.
Each client decrypt the weights and start using the updated model.

used. Also keep in mind which clients are used in the current communication cycle and

what federated averaging algorithm to use is entirely up to the user of the framework.

As we later show that our framework is an abstract framework and can be used easily

with any of the recent federated learning approaches.

3.2 Training Environment

The training for different models in a federated learning setting were performed on cloud

with Google Colab Pro [14]. Google Colab is a free jupyter notebook based environment

on frontend and linux on the backend. It is a product of Google to encourage Machine

Learning projects and research on its platform. However, being free, there are lot of
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constraints on the product, such as ‘idle timeouts’ of the notebooks, ‘12 hours run-time

limit’, with GPUs of Nvidia K80 and lower RAM.

Free version of google colab was working fine until the very later stages of our project.

So we decided to use the local machine to do run the experiments. Our machine had a

6Gb Nvidia 1660TI Gpu which we used to train the adverserial attack for our algorithm.

Along with the gpu our machine had 16Gb of ram and an 6cores i7 processor.

Our federated learning setup was entirely built on pytorch [15] and the ideas were taken

from [16]. Our secure keyagent was based on the open source code provided by [5] and

[17]. For our research purposes we emulated the federated learning environment with

only two users and tried two federated learning approaches namely [1][4].

3.3 Dataset

We trained our model for a classification task as the models in such a setting are easy

to train and there are many preprocessed dataset for the same.

For our experiments we used the CIFAR 10 dataset. We setup a google colab repo

to conduct the experiments. To train the networks in a federated learning approach

we used a non IID sampling of data i.e : both of the federated machine have different

classes locally, and they get to see the data from other class once they received the

updated weights from the server.

3.4 Network

Once our dataset and environment was decided. We needed to find what neural network

architecture we can use to conduct our experiments. Upon further investigation we

found out that mobilenet [13] is still a prevalent architecture which is used in the edge

devices for the classification task. However such a network is still a big network and

we would have to wait for hours to get results if we were just using it. So we decided

to use Le-net as well. Le-net is a small convolutional neural network as compared to

mobilenet and can provide the results in a matter of minutes unlike mobilenet which

provided results in hours.

Moving forward we decided to first train and try to get the results on Le-net thus
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guaranteeing the feasibility of our approach and then running the same experiments

on our mobile net architecture as well.

3.4.1 Federated Learning Environment

For our experiments first we used the federated learning environment [16] which was

based on the [1]. To run the basic tests. Once we got good accuracies on our base

and encrypted model we updated the algorithm to incorporate the [4] and using some

of the modules from [18]. After updating the environment we again ran the tests and

tested how our algorithm performed under latest federated learning and the results are

shown in the evaluation section.

3.4.2 Encryption and decryption of weights

We used the repository [5] provided by the authors of [5] to perform basic encryption of

the weights. However they didn’t provide any algorithm to decrypt the weights. So we

updated the repository to incorporate the decryption mechanism for our framework.

We know that keynet perform the encryption of weights by multiplying the weights of

layer li (Wi) of a network with doubly stochastic matrices Ai and Ai-1
−1. Where Ai-1

−1

is the inverse of doubly stochastic matrix Ai which is used to encrypt the previous layer.

Since, all the network will have the same architecture and we will be providing the same

private key to all of our networks which are participating in the current iteration, we

can be sure that all the networks will have the same keys Ai for their layers.

So before sending the weights each of network encrypts their weights with the keys

provided by the agent, and when they received their weights back from the server, they

again asks the secure agent server for the decryption keys. Once these are provided

we can simply perform a matrix multiplication as shown in equation (3.1) to get back

the original updated weights.

W = Ai-1
−1ŴAi (3.1)

Equation (3.1) shows how the original weights can be received from an encrypted

weights if the current matrices are provided. Here Ŵ is the encrypted weights received

from the server and Ai and Ai-1
−1 are the keys received by the secure agent server.
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3.5 Checking for attacks

There are many papers such as [2] [3] which provide out of the box solution on how

we can steal data from a federated learning setup. Once our model was giving good

accuracy we decided to test our framework against a non encrypted federated learning

setup using the attacks described by [2]. The purpose of these experiments was to

show that our network not only provides the same accuracy as that of an unecrypted

environment but also provides an extra layer of security of the user data.

3.6 Approach

For our experiments we trained the mobile net and Le-net in a federated learning envi-

ronment. There were two federated users, each of the user had their separated classes

which were present in the dataset. They would train locally and then would send their

weights to a cloud server. The cloud would perform the averaging algorithm and would

return the updated weights to the user along with updating the global model of the

system.

We had two experiments running for each of the architecture i.e: mobilenet and lenet.

In one they would perform the classic federated learning algorithm i.e approach with-

out the encryption and in the other they would first encrypt the weights using the

customized key-net library and then would send the weights, server would perform

the averaging algorithm on the encrypted data and then send back the weights to the

devices. The devices would get the updated weights from the server. They would then

decrypt the weights and then start using the updated weights.

Once our models were trained we first compared the validation accuracy of both the

models i.e one using keynet and without keynet. Once that was done we tried running

the adversarial attack suggested by [2] on both types of model trained and checked

whether we were able to extract information from the respective shared weights. Ide-

ally the hacker should get an image closer to the original image if no encryption is used

and should get just noise when our approach is applied to it.

After conducting the aforementioned experiments we tried testing different Federated

algorithm like [4] to our approach and checked whether our architecture was easily ap-

plicable to new SOTA federated learning algorithms. Also applying [4] helps us see how
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our framework would behave if we introduce some form of quanitzation while sharing

the weights.

27



Chapter 4

Results and discussion

4.1 Evaluation

In this section we will showcase and discuss various experiments we performed during

the course of the dissertation.

4.1.1 Training and evaluating the approaches

As discussed before we trained two network architecture LeNet and MobileNet on Mnist

and CIFAR10 dataset respectively. Both of the networks were trained for a classifica-

tion task. For each of the architecture, we first trained and evaluated the results in

the basic federated learning setup proposed by [1] which we considered as our base-

line model. Then we introduced the keynet encryption while sharing the weights and

compare the evaluation performance. Once the model were converging and were giving

almost similar accuracies we tested the both unencrypted and encrypted model against

the adversarial attack suggested by [2].

Once these two experiments were confirmed we then tried running the FedPaq algo-

rithm on our architecture with and without encryption and compared that results as

well. The last experiment was done so as to make sure that our framework fit seamlessly

with the new Federated learning algorithm that are being developed recently.
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Figure 4.1: Chart showing validation accuracy comparison of various training schemes

Model Type Accuracy without Encryption Accuracy with Encryption Federated Algorithm

Le-Net 98 96 FedAvg
Mobile Net 84 82 FedAvg

Le-Ne 98 96 FedPaq
Mobile Net 82 86 FedPaq

Table 4.1: Table showing validation accuracy comparison of various training schemes

From table 4.1 and figure (4.1) we can clearly see that models trained with our

approach clearly converges, however there is an accuracy drop of almost 2%. This

can happen because of how pytorch (framework we used for our mobile network) and

numpy (a general purpose array library in python) handles the large floating point,

due to which some of the floating point digits occurring at the end of the floating point

number might get changed and thus we see an accuracy drop.

Another interesting thing to note here is that, while Le-net almost provide similar

accuracies for both FedAvg and FedPaq (with or without encryption), there are some

accuracy drops while running the experiments for the mobile net. We think this at-
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tributed to the fact that since Le-net is a very shallow model as compared to mobilenet.

Thus quantising the weights didnt have much effect on the network accuracy. But it

can also be the case since mnist is a much simpler dataset as compared to the Cifar-10,

as it only contains grayscale images of digits starting from 0-9, it is very easier for even

a shallower network like Le-net to classify them easily. Thus even after introducing

some quantisation there is no loss in the accuracy.

4.1.2 Testing our trained models against the adversarial at-

tacks

Once our models were trained and we were getting decent accuracy (approx 80%)in our

baseline models and trained encrypted models we first tried to check how the images

fed to our encrypted and unencrypted netowork compared and whether we could infer

anything about the data from those images. .

Figure 4.2: The image fed to our neural network for inference
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Figure 4.3: The image fed to our encrypted neural network for inference

Both the images (4.2)(4.3) represent the image which are fed to a neural network.

Fig(4.2) is fed to an unencrypted network, and the fig (4.3) is fed to the encrypted

network with the same architecture. For both the images the respective networks

produced the same output i.e the class representing the image. However we can clearly

infer what information was present in the unencrypted image (4.2) but it is hard to

infer the information present in the image (4.3). This conforms to our hypothesis as

the images send to our neural network are barely readable to human eyes thus if the

hacker even exploit our neural network to get those images they will only get data that

is close to just noise and wont be able to interpret anything from it.

After this we introduced a malicious server and tried replicating the attack suggested

by the authors [2] as this would replicate the real world scenario where the hacker will

try to steal the data from such network using such attacks. Once the weights were

shared with the server after each epoch, the server would launch an attack similar to

[2] and then try to find the host images. In the following section we will demonstrate

what were the images our server was able to reconstruct after the attack.
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Figure 4.4: Figure Showing the orignal CIfa10 images we used to reconstruct.

Figure 4.5: Figure Showing the Reconstructed images if the security of the server is

compromised and the model is not encrypted.

Figure 4.6: Figure Showing the the encrypted images when keynet module is used.

Figure 4.7: Figure Showing the reconstructed image, if the attacker tries to reconstruct

images but the weights shared are secured.
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Figure (4.4) were the images our network saw before sending the weights to the

malicious server, however from figure (4.5) we can see that our malicious server was

able to reconstruct the images and was able to see the information present in the images

just by using the weights shared by the client. However if we shared the encrypted

weights, i.e: encrypting the network with the keynet and then sharing the weights.

Then figure from (4.6) we can see that the attacker was not able to reconstruct the

original data but was only able to see random pixel. Which in turn confirms our

hypothesis as if we encrypt our weights before sending it to the server it in turns

increases the security of our system.

4.2 Discussion

Our framework tries to decouple the encryption part and the federated learning part.

Thus making it hard for an attacker to steal data from the shared weights/gradients.

To access information from the share weights in our framework, the hacker not only

have to first access the layer keys from the secure key-agent, it then also had to access

the corresponding the network keys. Which makes the tasks really hard and accessing

user information a lot much harder.

From the accuracy comparison of our framework with the baseline model we can safely

see that in our framework the neural network converge and give almost similar accuracy

as that of the baseline models. Also we would like to point out that in our technique

if an attacker tries to steal the data from shared weights, it will only be able to see the

encrypted images and not the real images as evident from the images figure (4.3).

Also the overhead computation of encrypting the network in our system depends on a

lot of factors such as layer dimensions, number of layers etc. At the backend we have

used [17] to write subroutine to encrypt and decrypt each layer faster and efficiently.

However as we try and incorporate more network in the future we might need to write

more sophisticated subroutines to make sure that the over head computation cost for

encrypting the network is negligible.

33



Chapter 5

Conclusion and Future Work

5.1 Conclusion

After performing and conducting multiple experiments we can safely conclude that the

framework provided by us can be used as a way to preserve user privacy in a federated

learning setup.

Also an important aspect of our approach is we decouple the secure agent from the

main server thus it makes the attacker hard to attack our system. As it first needs to

find what key we are using from the secure key agent, then if it correctly found the

key then again it had to intercept the weights during the correct instance, only if it is

successful then it had to first decrypt the correct weights and then run the appropriate

attacking algorithm.

We have tested our approach on latest neural network architecture which is used most

for mobile edge devices named mobilenetv2 [13]. While conducting the convergence

test we used the basic federated learning algorithm as our baseline model and com-

pared our encrypted federated learning algorithm against the accuracies of the baseline

as shown by figure (4.1).Apart from that we have tested our approach on various fed-

erated learning tech such as [4] and [1] thus making sure our approach can be easily

integrated with various federated learning approaches. A negligible accuracy drop can

be found between a baseline and the encrypted model and we assume that happens

when we encrypt our weights and can be attributed to the fact how numpy and pytorch

handles the floating point numeric in the back-end.
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Also we used attacks on the server suggested by [2], thus trying to simulate the envi-

ronment what would happen ”if a hacker have access to our server and tried to steal

the data”, the results shown from (4.6) proves that even if the hacker have access to

our global model they will only be able to see just noise and not the user private infor-

mation from that model as we are sharing the encrypted weights not the usual weights

thus confirming that we can use our framework to protect private information of the

user in a federated learning environment.

The overhead computation for encrypting the weights is depended on the number of

layers and how many parameters each layer had. In our case for both mobile-net and

Lenet overall computation cost to do the encryption was negligible. However for differ-

ent network architectures if the computation costs increases more optimal subroutines

in numba [17] can be written to optimize the cost.

5.2 Future Work

As shown in the evaluation, our approach as of now can be used with most of the

federated learning frameworks available. However there are numerous ways in which

we can improve such a system. Right now we are only using single private key which is

shared to all of the users used to encrypt the weights. Moving forward we can develop

a system where we can use different keys for different users to encrypt their weights,

thus increasing the encryption technique provided by our system. Also in that scenario

a more sophisticated key management algorithm should be built and we should again

test the convergence of such an algorithm.

Apart from this there are many different ways in which we can encrypt a model weights

using the keynet library in this dissertation we have only experimented with a few,

moving forward we can look at other techniques as well and choose the one which suits

best for our need.

Also right now keynet [5] only supports ReLU[12] activation only. This limitation is

due to the fact they couply encrypt the neural network and the image together. Moving

forward we can also look at ways on how we can overcome this situation so that all the

other activation functions can still be included.

Apart from that keynet also have multiple constraints on the parameters of the network

layers, for eg : it only supports the convolution neural networks [11] as of now and it
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has constraint on what pooling layer to use. Moving forward we can look for different

ways in which we can over come these short comings, as doing so it will make our

framework acceptable to other types of neural networks such as LSTMs thus we can

use it for more than just image recognition tasks.
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Appendix A

A.1 Converting Depthwise seperable convolution to

a normal convolution

Depthwise seperable convolutions really makes a network faster, but most of the li-

braries usually do not provide out of the box support for such layers eg: keynet. In

this section we are briefly going to talk about how we can convert such depthwise

seperable convolutions into normal convolution, so that we can use them.

A.1.1 Depthwise seperable convolutions in pytorch

Since we are using pytorch in our implementation, we are going to first talk about

how these layers are implemented in pytorch and then how we can convert them into

a normal convolutions. As discussed before, Depthwise seperable convolutions consist

of depth wise convolution and point wise convlutions. To implement depth wise con-

volutions in pytorch we can use the nn.conv2d module under the torch package. Such

a layer can be intitalised as

layerDepthwise = nn.conv2d(inputChannel = input, outputChannel = input

groups = input, width = kw, height = kh, padding = kp)
(A.1)

(A.1.1) represent how we can intialise a depthwise convolution layer in pytorch.

The trick here is to set groups = number of input channels (input in our case) and

setting the outputchannel = input channel (input in our example). Once we intialised
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the depthwise convlution we can then initialise pointwise convolutions as

layerDepthwise = nn.conv2d(inputChannel = input, outputChannel = output

, width = 1, height = 1, stride = 0)

(A.2)

Equation (A.1.1) shows how we can initalise a point wise convlution layer in pytorch.

The important thing to notice here is that, this layer looks exactly like the normal

convolution layer, but it has a kernel of width and height equal to 1 and stride = 0.

More information about such layer can be found at [15].

A.1.2 Understanding the Groups parameter.

From equation (A.1.1) and (A.1.1) we can see that point wise convolutions have similar

definitions as that of a normal convolutions layer. However depthwise convolution is a

special case of convolution as it had a group parameters and have output channels =

input channel. So to convert a depthwise separable convolution layer we just need to

convert depthwise convolution into a normal convolution and the rest of the network

can just work as it is.
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Figure A.1: The Figure shows how a normal convolution and a convlution with groups

= input works when defined in pytorch.

From (A.1) we can see that in a normal convolution weights also have a depth

attribute which is equal to number of channels in the input. During the convolution

operation each of the weight convolute separately with the whole input and produces

an output. Which is later stacked together to produce the output of the layer as

a whole. Note: the number of weights here corresponds to the number of output

channel. However if we give groups=input channel, then each of weights have depth =

0, i.e the are only square instead of a cuboid, and number of weights = number of input

channels as shown in the figure. Each of the weight convolutes with their respective
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input channels and produces the output. Output then again are stacked and are sent

to the next layer. One quick fix to convert such a layer into a convlution layer can

be to add the depth parameters to the weights in such convolutions by padding them

with zeros. Note the depth added must only be equal to the number of input channels.

However we must ensure to pad zeros in such a way so that the weight in the ith position

will have non zero values at the ith position in the array.
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