
Colour Correction for Projection-Based Augmented

Reality

Xinyun Fang, BSc

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Augmented and

Virtual Reality)

Supervisor: John Dingliana

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Xinyun Fang

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Xinyun Fang

August 19, 2022

Colour Correction for Projection-Based Augmented

Reality

Xinyun Fang, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: John Dingliana

Projection-based Augmented Reality (AR) is a type of AR implementation. Instead
of using wearable devices, it uses the projector to display the virtual object in the real
world. It is the best solution for some specific scenarios like showing AR to a group of
people. When using projection-based AR in real life, the environment illumination is not
controllable, and the projected background is not always white. Therefore, it is necessary
to find some way to make the darker part clear and correct the colour from the colour
deviation on a non-white background. This dissertation provides a reasonable solution
to analyse the darker part and correct the colour. For the darker part, we lighter its
surrounding areas to make it clear. For the colour correction, we involved the colour
transfer method to modify the display image based on the background. We tested several
different background analyses and colour transfer ways, and find the best solution for
different backgrounds and display images. Then create a map to record the best solution
for different occasions. our colour correction solution is based on this map. We first
recognize the background colour and the style of the display image, and then use the
map to find the best algorithm. Use this algorithm to manage the display image, and the
result is the solution we will give. This solution can works better on a solid non-white
background, but still can reduce the colour deviation on texture background.

Acknowledgments

Thanks to my supervisor John, who is nice and helps me a lot.

Xinyun Fang

University of Dublin, Trinity College

August 2022

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Problem Overview . 1

1.2 Objectives and Contributions . 2

1.3 Methodology . 2

1.4 Overview of this Report . 3

Chapter 2 Background 4

2.1 Projection-Based AR . 4

2.2 Color Correction . 5

2.3 Colour Spaces . 5

2.3.1 RGB . 6

2.3.2 HSV . 6

2.3.3 CIE LAB . 6

2.4 Color Transfer . 7

2.5 Perception of Colour . 8

2.5.1 Lightness Constancy . 8

2.5.2 Brightness Induction . 9

2.5.3 Colour Consistency . 10

2.6 Edge Detection . 10

Chapter 3 Design 12

3.1 Dark Analysis . 12

3.1.1 Edge Extraction . 13

3.1.2 Light the Edge . 13

3.2 Background Extraction . 14

3.3 Colour Analysis . 15

v

3.3.1 Inverse Background . 15

3.3.2 Pixel by Pixel Analysis . 15

3.3.3 Colour Transfer . 15

3.3.4 Result Mapping . 17

3.4 Automatically Selection . 18

Chapter 4 Implementation 19

4.1 Overview of the Solution . 19

4.2 Dark Analysis . 19

4.2.1 Mask Generation . 19

4.2.2 Edge Detection . 20

4.2.3 Modify Lightness . 20

4.3 Camera Invocation . 21

4.4 Background Extraction . 22

4.5 Image Modification . 23

4.6 Result Mapping . 24

4.6.1 Mean square Error . 24

4.6.2 Colour Distribution . 25

4.6.3 Automatically Selection . 26

Chapter 5 Evaluation 28

5.1 Experiments Overview . 28

5.2 Dark Analysis . 28

5.3 Colour Analysis . 30

5.3.1 Background Extraction . 30

5.3.2 Image Processing . 31

5.3.3 Result Analysis . 32

5.4 Automatically Selection & Result . 38

5.5 Performance Analysis . 39

Chapter 6 Conclusions & Future Work 40

6.1 Conclusion . 40

6.2 Future Work . 40

Bibliography 42

Appendices 45

vi

List of Tables

3.1 Designation . 17

5.1 Result mapping . 38

5.2 Performance . 39

vii

List of Figures

2.1 Projection-based AR . 5

2.2 Colour Space . 7

2.3 Colour Transfer . 7

2.4 Checker-shadow illusion . 9

2.5 Brightness Induction . 9

2.6 Colour Consistency . 10

3.1 Ease-In and Out . 14

3.2 Colour transfer with inverse background 16

3.3 ColourChecker . 18

5.1 Shadow Test . 28

5.2 Mask and Edge for Shadow . 29

5.3 Result Shadow . 29

5.4 Projected Shadow Result . 29

5.5 Flow of Background Extraction . 30

5.6 Inverse Background . 31

5.7 Results with RGB Colour Space . 31

5.8 Results with HSV Colour Space . 31

5.9 Extract the real space before analysis . 32

5.11 Backgrounds . 32

5.10 Result extraction . 33

5.12 Purple Bar Chart . 34

5.13 Green Bar Chart . 34

5.14 Yellow Bar Chart . 35

5.15 Texture Bar Chart . 35

5.16 Colour distribution for purple background 36

5.17 Colour distribution for green background 36

5.18 Colour distribution for yellow background 37

5.19 Colour distribution for chromatic background 37

viii

5.20 Cake image . 38

5.21 Projected cake image . 38

ix

Chapter 1

Introduction

1.1 Problem Overview

Projection-based Augmented Reality(AR) is a type of AR implementation which uses a

projector to display the virtual object in the real world. This kind of AR implementation

can eliminate many drawbacks of other AR implementations such as head-mounted dis-

plays (HMD) and has its specific usage scenario. For instance, in an industrial assembly

line, AR could be used to provide guidance and assistance to reduce the cost of training

temporary workers. Wearable devices like HMDs would limit the views of the users and

makes people uncomfortable for long-time wearing due to their weight. Based on the

research by Sand et al. (2016), projector-based AR can provide a better experience in

this situation. In addition, the traditional AR with wearable devices has limited by the

devices. We have to provide additional devices if we want to add users. In some place that

needs to provide a simultaneous view to multiple people like theme parks, the projector-

based AR is more convenient and have fewer latency issues, and be able to provide a more

immersive environment to the audiences. So the theme parks always use the projector

instead of mobile devices to create a dynamic interactive virtual environment to immerse

the guests (Mine et al. (2012)). Moreover, the projector-based AR has also been used in

surgery(Edgcumbe et al. (2018)), construction (Yeh et al. (2012)), and many other areas.

Several interesting areas can help to improve the performance of the projector-based

AR. For instance, the shadow is one of the important spatial cues for the virtual object.

HMDs and projection-based displays are classified as ‘additive’ displays which work by

adding light to the scene and they cannot reduce illumination from the environment. So

how to represent shadow properly is an important question in this area (Chun Wei Ooi

(2022)). Besides, the relative position of the projector, the surface, and the spectator is

also a problem. How to display the 3D object on a deformable surface and make it looks

real (Fujimoto et al. (2014)), how to make the position of the object proper for a given

1

Draft of 10:34 pm, Friday, August 19, 2022 2

spectator’s position (Ro et al. (2019)), and many other problems remain to be solved.

Moreover, since the background is not always white or black, a colour mixing problem

needs to be solved to display the colour we want.(Gabbard et al. (2010))

In this dissertation, we will focus on the colour problems for projection-based AR.

Colour blending is the key problem that affects the result of the projected colour. A non-

white background cannot reflect every colour, and different colours will reflect and absorb

different colours. Thus if we project the same colour on different backgrounds, the result

colour is different both numerically and visually (Sridharan et al. (2013)). Besides, the

visual illusion is another important factor when measuring colour problems. In the very

early years, scientists have proved that the surrounding colours will affect the visual effect

of the colour inside it, which is a kind of visual illusion (Rossotti (1985)). Therefore, it is a

critical problem to figure out the proper compensation colour projected on the chromatic

background to attach the visual effect we want.

1.2 Objectives and Contributions

The objective of the project is to find a proper algorithm to make the display image

look right on a non-white background. The data we have is the image that needed to be

displayed, and the target result is the effect that the colour is like displaying this image

on a white background, and all the objects in the image are displayed clearly. To achieve

this goal, we will first capture and analysis the background, and then modify the display

image by different algorithms based on the different background colours. In addition, we

will discuss solutions for dealing with darker parts of images including shadows, which

are problematic for projection-based AR.

This project has provided a colour correction algorithm for the projection-based AR

with an achromatic background. It involved the colour transfer method when doing the

colour correction. Besides, it also handles the darker part. This project will provide an

API with the background image and display the image as the input parameter, and return

the corrected image that can be displayed. based on the test, we can find that it works

better on a solid non-white background with a colourful image. But it also provides a

general solution for the textured background that is able to reduce colour diversion.

1.3 Methodology

The key method in this project is the colour transfer method. This method has been

involved to modify the display image based on the background. Besides, the darker part

has also been considered by lighting the surrounding areas. Visual illusions like colour

Draft of 10:34 pm, Friday, August 19, 2022 3

consistency and brightness induction will also be wildly researched and considered in this

project. The image processing methods like convolution methods have been used, and

we also use the interpolation function to smooth the change. Considering the colour

space, The CIE LAB colour space has been used in the colour transfer method. Besides,

the RGB colour space and the HSV colour space have also been involved to handle the

background, the dark part, and doing other relevant management.

As for the implementation, the Python and OpenCV library has been used to process

the image. Python is a commonly used scripting language that has many supporting

libraries and is easy to start. The OpenCV is one of these libraries that is widely used in

computer version and image processing. It is the most string library in image processing

that contains many useful APIs like mask generation.

The devices we needed to do the experiments were only a camera, a projector, and a

light meter on a mobile phone. The camera is used to read the background and the result,

and the projector is used to display the result.In addition, we employed a digital version of

the ColorChecker (McCamy et al. (1976)), which is a standard colour calibration device

in photography and has wildly used in computer graphic areas. It is a rectangle that

contains 4*6 50mm squires, with different colours. Since it has a variety of colours and

the digital information of these colours is defined ahead, it has been used as the device to

test the result.

1.4 Overview of this Report

In the rest of the dissertation, we will introduce our solution to this problem in detail.

Chapter 2 provides the background of this problem, including a general overview of the

projection-based AR and the colour correction problem. All the theories and methods we

used will also be introduced in this part. Chapter 3 presents our design of the solution.

It describes how we analyse the darker part, how we modify the colour, and how the final

result works. The fourth section shows the implementation of the solution, and how we

analyse the result digitally. Chapter 5 is the evaluation part. In this part, we use the real

camera and projector to do the experiment, generate the result and analysis them. In the

last part, several ideas have been listed that may improve this result in the future.

Chapter 2

Background

2.1 Projection-Based AR

The projection-based AR (also called spatial augmented reality) has been presented by

Bimber and Raskar (2005a). They are inspired by the CAVE VR (Cruz-Neira et al.

(1993)), which uses the projector to create an immersive virtual environment without any

wearable devices. This idea provides a new AR type that many things and calculations can

be prepared in a prepossessing stage. So it is convenient for the well-prepared multi-people

scenario like classrooms, surgery rooms, or exhibition rooms. Furthermore, projection-

based AR does not suffer from many of the occlusion problems faced in other forms of

AR Kern et al. (2017).

In the beginning, the projection-based AR has been implemented on a standard white

background with a fixed position of the projector and the user. The light condition has

also been limited due to the limitation of the light intensity from the projector. After that,

much research has been done to extend the use scenario of this technology. For instance,

the background may not always be a flat surface. Fujimoto et al. (2014) have used an

embedded pattern marker and computer vision methods to match the display image with

a deformable material. They are able to project a geometrically correct texture on a

deformable surface with a simple camera and projector. So it can be used to handle a

more complex background.

Currently, most projectors are using the DLP (Digital Light Processing) or LCD tech-

nology. It has a narrow depth of field. So the defocus problem always happens if we do not

place the project in an appropriate place, which is not a large area. Oyamada and Saito

(2008) have presented a method that is able to reduce the defocus blur of the projector,

so it is more flexible to place the projector and move it while it is in use. Besides, a Laser

projector can also solve this problem. To implement the projection-based AR in a large

space, the idea of the multi-projector system has been presented by Bimber and Raskar

4

Draft of 10:34 pm, Friday, August 19, 2022 5

(2005b). The key problem of this system is the complexity of the geometric calibration

and light measurement, especially in the overlapping area.(Hainich and Bimber (2011))

Figure 2.1: Projection-based AR example from Hololamp

2.2 Color Correction

How to display virtual things on a chromatic background has always been a complex

problem. Nayar et al. (2003) has presented the problem that projects the complex image

on an arbitrary surface. They create the projector-camera system to measure the process

from the source image to the output. They also presented the radiometric compensation

model to calculate the compensation image based on the background surface. Bimber

et al. (2005) has introduced a smart projector which is able to project the image on

some indoor arbitrary surfaces like papered walls or curtained windows. The texture

neutralization has also involved in this scenario. To solve this problem, They use multi-

cameras to measure the background colour. Then calculate the reluctance and absorption

of the digital colour, and use shader to modify the display image based on it.

As for the colour correction problem in AR, Weiland et al. (2009) has introduced the

colour correction problem into optical-see through AR. To solve this problem specifically

for the outdoor environment, Gabbard et al. (2010) has created a testbed to simulate

the outdoor background. In this implementation, the CIE LAB colour space (see section

2.3.3) has been used to calculate the colour deviation and modify the image. Based on

this, Sridharan et al. (2013) has involved the colour profile method to solve this problem.

2.3 Colour Spaces

A colour space is a means of describing colours digitally. It maps the wavelength of the

light to the digital values so that the computer will be able to recognise and simulate

Draft of 10:34 pm, Friday, August 19, 2022 6

them. Different colour spaces achieve this mapping in different ways. In this project,

three colour spaces, RGB, HSV, and CIE LAB, are used in image analysis can colour

transfer.

2.3.1 RGB

In RGB colour space, the colour has been separated into three channels: red, green, and

blue. The value of these channels is 0 to 255. All the other colours have been represented

by the mixing of these three colours and can be shown as a triangle like the left image in

the figure 2.2. The way it represents colour is the closest one to the biological structure of

human eyes. The human eye has three types of photoreceptors, which are approximately

sensitive to red, green, and blue. In RGB colour space, the three channels are calculated

by the sum of the respective sensitivity functions and the incoming light. (Tkalcic and

Tasic (2003)) This colour space is a device-dependent colour space, any given RGB colour

may vary across different devices. Besides, the colour change in this colour space does not

follow the instinct. It is difficult to know the light and hue of the colour directly through

these three channels.

2.3.2 HSV

HSV colour space also describes the colour in three channels: Hue, Saturation, and Value.

Hue (H) represents the main characteristic of a colour, corresponding to different wave-

lengths of visible light. Saturation (S) represents the colour mixing with brightness. Value

(V), also called brightness, represents the colour mixing with the darkness. This colour

space is the one closest to the way the human brain recognizes colours. It means that

humans tend to describe colour in hue, saturation, and brightness when they talk to each

other. (Tkalcic and Tasic (2003)) This colour space can be described as the second image

in figure 2.2. The circle outside is the hue channel, and the inside triangle represents

the other two channels. It is also a device-dependent colour space but is convenient for

measuring measure the brightness or the hue of the colour independently.

2.3.3 CIE LAB

The CIE LAB colour space (also called Lαβ colour space) is a device-independent colour

space. Currently, the CIE LAB colour space is the most ’ideal’ uniform colour space that

has been used in recent research. (Kuehni (2001)) What is meant by ’uniform’ is that,

the perceptual colour change has a good match with the value change in the colour space.

With CIE LAB colour space, it is convenient to measure the distance between colours.

Draft of 10:34 pm, Friday, August 19, 2022 7

Therefore, it is helpful to do the colour transfer or any other modification based on this

colour space.

The last image in figure 2.2 describes how the CIE LAB colour space represents the

colour. In this colour space, the L channel is the light of the colour. The α and β are

the hues of the colour. The alpha represents the degree between red and green. The beta

represents the degree of colour between yellow and blue. The brightness of the colour

becomes darker from top to bottom, and the cross surface represents the hue.

Figure 2.2: (1): RGB colour space, (2): HSV colour space, (3): CIE LAB colour space.

2.4 Color Transfer

Colour Transfer is a is an image processing technique that transfers the colour characters

of a source image to a target image. This idea been presented by Reinhard et al. (2001),

with the example shown as 2.3. Currently, there is four main technology that has been

used to implement colour transfer: statistical information, user interaction, hybrid, and

deep learning methods.(Liu (2022))

Figure 2.3: (a): source image, (b): target image, (c): result image. This is the colour
transfer example from Reinhard et al. (2001). It transfer the colour style of the image (a)
to image (b) and get the result (c).

The statistical information method uses statistical indexes like the mean value and

the standard deviation of the image to do the calculation for three channels in the colour

space. For instance, Reinhard et al. (2001) calculate the mean and the standard deviation

Draft of 10:34 pm, Friday, August 19, 2022 8

value of the three channels in the source image. Then apply the transform of the colour

value in the target image based on it. This transform is based on the CIE LAB colour

space, and Xiao and Ma (2006) have also applied it in RGB colour space. In general, this

transfer does the same process for each pixel in the target image based on the statistical

information from the source image and changes the overall colour gamut of the image.

The user interaction method uses strokes to mark the corresponding range between

images manually. Then separate the image based on the mark, its colour, and its location.

Then apply the transfer function for each corresponding range.(An and Pellacini (2010))

This method can switch parts of the image independently (like making the face whiter

and making the hair darker).

Except for these two main methods, there are also many other colour transfer methods.

For instance, the texture transfer is able to generate the given texture on the given surface

feature. (Wei et al. (2009)), and the image tone transfers the approach style of the image.

(HaCohen et al. (2011)) In recent years, deep learning methods becomes wildly used

in many areas. He et al. (2017) uses Very Deep Convolutional Network (VGG), which

is able to manage the distortion in edges, to do the transfer between images. Besides,

convolutional Neural Networks(CNN) also perform very well in modifying the illumination

of the image.(Lee and Lee (2016))

2.5 Perception of Colour

Optical illusion is one of the common phenomena that can be utilized when we think

about colour problems. The perception of colour depends on more than the wavelength,

intensity, and purity of the light. Most of the time, changing the surrounding colours,

changing the overall scenario, and adding different occluded grids, will also affect the

perceived colour.(Kitaoka (2010))

2.5.1 Lightness Constancy

When viewing objects under different lighting conditions, the human eye does not objec-

tively perceive the absolute illumination of objects. Instead, it will automatically discount

the illuminations or some other viewing conditions based on our ”atmospheric transfer

function”. This phenomenon is called ”lightness constancy”. Based on this, we can easily

recognize the difference between the grey surface and the white surface in a dark envi-

ronment (Adelson (2000)). For instance, in figure 2.4, A and B have the same value if

we represent it in colour space. However, due to our understanding of the surrounding

colours and the overall scene, our eyes tells us that A is a dark block and B is a white

Draft of 10:34 pm, Friday, August 19, 2022 9

block. In some specific case, we can create this illusion manually, to abject the result and

make the colour looks real.

Figure 2.4: Adelson’s Checker-shadow illusion(Adelson (1995))

2.5.2 Brightness Induction

Lightness constancy can be extended to the brightness induction phenomena, which de-

scribes the illusion that the perception of a grey part will be darker when the surrounding

area is brighter. This phenomenon can be shown in the figure 2.5. In this image, the

inner bar has a consistent colour and the surrounding areas become darker from left to

right. However, the inner bar looks brighter on the left and darker on the right. This is

due to the illusion of brightness induction by local contrast. (Reid Jr and Shapley (1988))

It is innately filling and does not need any inferential learning.Sinha et al. (2020)

Figure 2.5: Brightness induction effect. The inner bar is a consistent colour and the visual
efficient change with the surrounding areas.

Draft of 10:34 pm, Friday, August 19, 2022 10

2.5.3 Colour Consistency

Colour consistency is one of these colour illusions that our eyes and brain are trying to

find the ”true” colour under the ”filter”. Figure 2.6 is one example of this phenomenon.

If we measure the digital value of the pixels, The eyes colour of the three girls is the same,

which is grey colour. However, due to the filter colour, the colour of these eyes looks

different. The left one is light blue, the middle one is yellow, and the right one is red.

This is because the human eyes and brain are trying to recover the colour under the filter.

Kitaoka (2010)

Figure 2.6: Colour consistency example form Kitaoka (2010)

2.6 Edge Detection

Edge detection is one of the most common operations in image processing and computer

vision. The purpose of this opearation is to detect the huge change between the adjacent

pixels. During the evolution of image process technologies, a variety of edge detection

functions has been presented. (Ziou et al. (1998)) Correctly, several relevant functions

are already being well prepared in some mature image process libraries like OpenCV.

The edge detection can be achieved by convolution, which combines two functions to

generate another one. Normally, in the image process, one part is the matrix from the

image and the other is the kernel.(Keys (1981)) The kernel will be applied to every pixel

in some way, and the result will be expressed as another matrix.

The LoG (Laplacian of Gaussian) is one of the 2D kernels that can be used in edge

detection. (BURT and ADELSON (1987)) The value in this kernel is approximate to the

second derivative in the definition of Laplacian, which is

LoG(x, y) = −1/(π ∗ σ4) ∗ (1− (x2 + y2)/(2 ∗ σ2)) ∗ e−((x2+y2)/(2∗σ2))

Draft of 10:34 pm, Friday, August 19, 2022 11

IF we generate a kernel with size 3 ∗ 3, and consider 4 neighbors, the kernel is 0 −1 0

−1 4 −1

0 −1 0

 (2.1)

And if we consider 8 neighbors, it will becomes −1 −1 −1

−1 8 −1

−1 −1 −1

 (2.2)

Chapter 3

Design

The non-white background only reflect part of the light so they have different colours.

Since the coloured background will absorb part of the light, projection on coloured or

texture backgrounds leads to colour and brightness distortion and loss of perceived infor-

mation. (Bimber et al. (2005)) The objective of this project is to take any input image,

and apply some operations to get a result image. When project the optimal result image

on the non-white background, the efficient will looks perceptually more similar to the

original image. Note that although we deal with static images in this dissertation, the

optimal solution, once determined could be applied to video, animations or interactive

augmented reality applications

In general, our proposed image processing pipeline consists of three steps. First,

process the dark part like shadows. Then, analyse the background conditions. Finally,

modify the image that will be projected in the background. The reason why we choose

these algorithms and how they solve the colour distortion problem will be explain in the

following parts.

3.1 Dark Analysis

The dark analysis is inspired by the brightness induction rule. (Reid Jr and Shapley

(1988)) In this rule, the dark part will look darker when the surroundings are lighter.

Therefore, we light the surrounding areas to aggrandise the dark part. On this occasion,

the shape of the displayed object and its shadow are not stable, and the darker part may

locate on the border of the image. Therefore, if bright the whole image, the edge of the

projected area will be obvious and affect the experience of immersion. Thus this project

only lighter the edge of the darker part. The basic idea to implement this is to find the

edges of the darker part and brighten them.

12

Draft of 10:34 pm, Friday, August 19, 2022 13

3.1.1 Edge Extraction

The first step to finding the edge of the darker part is to mark the area of this part. In

this step, a white and black mask has been generated to mark the area. In this mask,

the white part, which has the value 255, represents the darker area. The black part with

the value 0 represents other areas. This mask can be generate automatically bu the given

thresholds. If it cannot satisfy the user requirement, they can also generate it manually

by PhotoShop and designate its pass in the computer.

Then apply the convolution function to do the edge detection of this mask. The kernel

of this convolution is  −1 −1 −1

−1 8 −1

−1 −1 −1

 (3.1)

For this kernel, if all the surrounding pixels are equal to the middle one, the result will

be (−1 ∗ x) ∗ 8 + 8 ∗ x = 0, and otherwise, it will be another value. If apply this function

to the mask image, the resulting image will mark the edge as white and others are black.

3.1.2 Light the Edge

The previous result is a white and black image which marks the edge of the darker part,

and the goal of this step is to apply a smooth lighter part around the edges.

The idea of doing this is to modify the brightness(value) channel in HSV colour space

based on the distance between the pixel and the edge. The pixels that are close to the

edge will be lighter, and the pixels far away from the edge will be darker.

The ease-in and out function is an interpolation function that can be used to smooth

this change. With this function, the value will change slower at the beginning and the

end and change quicker in the middle. The equation of the ease-in and out function is

like this:

Lightness =

l ∗ (1− 2 ∗ d2), d < 0.5

l ∗ (−2 ∗ d+ 2)2/2, d ≥ 0.5

In this equation, l is the maximum brightness when brighter the edge. d is the pro-

portion between the distance and the maximum distance that will be considered. The

curve 3.1 shows how the value changes with d when l = 1.

Draft of 10:34 pm, Friday, August 19, 2022 14

Figure 3.1: Ease-In and Out

3.2 Background Extraction

In order to adapt the projected imagery correctly, we need to have a precise understanding

of how and where it will be projected. In other words, for every pixel of the input image,

we essentially need to know where it will be projected in the real world. So we can know

the underlying colour of the projection surface at that point, which can support pixel-to-

pixel management. In the real experiment, even small changes in distance or angle of the

projector can lead to a significant distortion in the projected image.Therefore we need a

computational means of mapping the points in the real world environment to each pixel

in the real world image.

With the current devices, the camera and the projector are independent. It means

that the range that the photo contains cannot exactly match the range that the projector

can project. Thus the received photo includes the needed background and some useless

surrounding environment. Therefore, extracting the real background is important to do

the correct analysis. The range that the projector need is defined by the projector and

the size of the display image. After displaying the projector and camera in the target

place, the first step is taking a photo. Then project a white image and take the photo

again. The white image is the same size as the image that needed to be projected. So the

part that the projector needed will be lighter than the others.

The background we need is the match the lighter part in the first image. At this

time we assume that the projected image is a rectangle, so the lighter part must be a

quadrilateral. The quadrilateral has been orientated by four corners. The position of

these four points can be used to fund the target background in the first photo. After

Draft of 10:34 pm, Friday, August 19, 2022 15

that, in the case of the pixel-to-pixel analysis, we warp the background to the size of the

image.

3.3 Colour Analysis

The way to analyse the colour is depend on both the background and the image itself. The

first step is analysis the background that we extracted. Then there are several different

algorithms to modify the display image. Based on the experiments, we can find the best

match functions for different colours and analyse different parts independently.

3.3.1 Inverse Background

The inverse background is the image that has the offset colour of the background. In

theory, if the background mixes with the inverse image, the result should be close to

white. Then it is able to add the colour it as a white background. This step will be done

in both RGB and HSV colour space and determine which one is better.

This inverse is a pixel-by-pixel operation. In RGB colour space, the value of the pixels

in the inverse background is 255 minus the value in each channel. In HSV colour space,

we only roll over the hue channel. The value of hue channel is (h+ (255/2))%255, where

255 is the maximum value in this channel. The h + (255/2) is used to find the opposite

hue in the circle, and then mod 255 to validate the data.

3.3.2 Pixel by Pixel Analysis

The first approach we attempted to try is simply adding the inverse background and the

display image. Each pixel in the resulting image is equal to half of each pixel in the

inverse background plus each pixel in the display image. The idea is combine the inverse

background and the display object together. However, if we add them directly, the will

be easy to above the maximum display value, which is 255 in RGB colour space. Thus

we half the result to keep the value inside the range.

3.3.3 Colour Transfer

For testing purposes, we assume that the projector is always used in a stable space,

so the general background texture will not change ate run time. The micro change of

illumination happens at any time and anywhere. This change will still affect the result if

we analyse the image pixel-by-pixel. Therefore, we invoke the statistical colour transfer

methods (Reinhard et al. (2001)) to analyse the image in a general way.

Draft of 10:34 pm, Friday, August 19, 2022 16

There are two majority images in the colour transfer functions: source image and

target image. In the statistical colour transfer algorithms, the source image provides the

scene, while the target image provides the target colour distribution. The overall goal is

to transfer the source image into the style of the target image. In addition, to avoid the

influence of the devices, the colour transfer method is implemented by CIE LAB colour

space.

The main colour transfer function we used can be shown as the equation:

I = (s−mean(s)) ∗ (std(t)/std(s)) +mean(t)

This equation will be applied for each channel independently. In this equation, s means

the value of the pixel in the source image, and t means the value in the target image.

For each pixel, the value of the result is calculated by the value of the pixel in the source

image and the mean and standard value in both the source image and target image. The

result is equal to the source image minus its mean value, and then zoomed the deviation,

map the standard deviation of the source image to the target image, and finally, add the

mean of the target image.

The first and basic idea of the colour transfer is using the display image as the source

image, and the inverse background as the target image. This operation transfers the over-

all style into the inverse background. It will cancel part of the influence of the background

colour. However, based on our experiment, the inversed background image may not be a

good target image. It is a solid image and its standard diversion is very small. Thus it

will compress the difference between colours in the source image. The result can be shown

as figure 3.2 So if the display image is colourful, it is necessary to find a better solution

that can keep the colour distribution when transferring the image into the inverse colour

of the background.

Figure 3.2: The colour transfer result with inverses background as the source image.
image from left to right are: (1)target image, (2)source image, (3)result

There are two ways to implement this goal: change the equation and change the

source image. The standard diversion is the key index that controls the colour difference.

Therefore, ff changes the equation, instead of converting both the mean value and the

Draft of 10:34 pm, Friday, August 19, 2022 17

standard deviation value, we only convert the mean value. Otherwise, we can use the

pixel-by-pixel analysis result, which is not as solid as the inverse background, as the

source image to keep the colour distribution.

3.3.4 Result Mapping

In the previous steps, we already have four different algorithms to modify the display

image: simple adding, basic colour transfer, modified colour transfer, and basic colour

transfer with the simple adding result as the source image. Each algorithm will be im-

plemented in both RGB and HSV colour space. To describes them easily in the following

parts, we assign a simple name and an identifier number for each algorithm. They have

been shown in the table 3.1

ID Algorithm Short Name

1 Adding the inverse background and the image in RGB inverse RGB

2 Adding the inverse background and the image in HSV inverse HSV

3 Basic colour transfer with inverse background in RGB transfer RGB

4 Basic colour transfer with inverse background in HSV transfer HSV

5 Modified colour transfer with inverse background in RGB transfer RGB Fix

6 Modified colour transfer with inverse background in HSV transfer HSV Fix

7 Basic colour transfer with inverse RGB as target transfer RGB Inv

8 Basic colour transfer with inverse HSV as target transfer HSV Inv

Table 3.1: The ID and the short mane for each algorithm.

These functions will have different performances in different backgrounds and different

colour styles of the display image. With the result analysis, we can find the different best

solutions for different occasions. Then, create a map to record the result. Since the

illumination in the environment is uncertain, we use the hue channel in HSV colour space

to categorize the background. We define the maximum and minimum hue value for each

tested background colour. Then classify the background based on this range. For the

display image, we will categorize it by red, green, or blue in the RGB colour space. We

assume that a pixel is red if its red channel has the largest value. Count the number of

pixels in each colour, and the image type is equal to the colour that the maximum pixel

has.

To create this map, we need a standard colourful image to measure different colours.

For this purpose we use the ColorChecker (shown in figure 3.3), a standard calibration

tool used in photography, to test the algorithms. It contains abundant different colours

Draft of 10:34 pm, Friday, August 19, 2022 18

so it can be used to measure all three channels. Then create the baseline. To reduce

the project diversion, the baseline should also be the projected result. Therefore, the

baseline of these measurements is the result that projects the ColourChecker on the white

background and projects the ColourChecker on the chromatic background directly.

Figure 3.3: The colourChecker that is designed by McCamy et al. (1976)

The characteristics that we used to evaluate the quality of the result are the Mean

Square Error (Wikipedial (2020)) and the colour distribution. The MSE is used to evaluate

the difference between the two images. Currently, there are several different methods

to compare two colours such as the Peak signal-to-noise ratio (Wikipedial (2021)) or

the confusion matrix (School (2014)). However, some of them like psnr also considered

the position of the pixels, and others like confusion matrix only counted the number of

matched pixels. Therefore, the MES is the most appropriate way to evaluate the difference

in the three channels independently. To compare the performance among algorithms,

we create a bar chart to visualize the result. Besides, the colour distribution is also a

characteristic to evaluate the degree of reduction of the image. Therefore, the distribution

histogram will also be created for each result image.

3.4 Automatically Selection

In the previous step, we create a map that records the best algorithm for different occa-

sions. With this map, we can create a new method to process the image. The first step

is to recognize the background colour. Then categorize it with the existing background

type in the map. Do the same operation to the display image. Access the map to find

the algorithm they use, and return the process result of this algorithm.

Chapter 4

Implementation

4.1 Overview of the Solution

The main technologies we use to implement this project are Python and OpenCV. Python

is a programming language that has been commonly used in many cutting-edge technolo-

gies like machine learning and computer version. It has a simple algorithm and large

supporting libraries to simplify the complex code. Python is responsible for the overall

process, and the image processing part relies on OpenCV. OpenCV (Open Source Com-

puter Vision Library) is the most commonly used computer version library. It provides

many useful functions that are necessary for the background analysis in AR. For instance,

it can invoke the camera to read the background, converse the colour space for more

complex calculations, or generate the mask with given thresholds.

The implementation has been well encapsulated, and all we need are only the code

and the devices. The code is able to take the photo, do the colour transfer, calculate the

relevant information to analyse the result, and automatically process the image after we

define the map.

4.2 Dark Analysis

In general, the dark analysis includes generating the mask, detecting the edge, and chang-

ing the lightness.

4.2.1 Mask Generation

The mask generation can be implemented as shown in the code listing 4.1. If using HSV

colour space to detect the dark space, the only channel that needed to be considered is

the lightness, which is more convenient than the RGB colour space. Therefore, the first

19

Draft of 10:34 pm, Friday, August 19, 2022 20

step is using the cvtColor() function to convert it from RGB to HSV colour space. Then

define the maximum and minimum threshold in three channels. This threshold should

be defined manually since the colour of the darker range is different for different display

images. Then use the inRange() function to generate the mask. The white part (with

the value 255) is the darker range we want, and the others are the black part (with the

value 0).

imageHSV = cv . cvtColor (image , cv .COLOR BGR2HSV)

lower = np . array ([0 , 0 , 1 0])

upper = np . array ([2 55 , 255 , 120])

shadowMask = cv . inRange (imageHSV , lower , upper)

Listing 4.1: Generate the mask

4.2.2 Edge Detection

The OpenCV library has excellent support for convolution functions (Keys (1981)). See

the code listing in 4.6, after define the kernel, the filter2D() function can process the

convolution function and return the result image directly.

k e rne l = np . array ([[−1 , −1, −1] , [−1 , 8 , −1] , [−1 , −1, −1]])

r e su l t image = cv . f i l t e r 2D (shadowMask , −1, k e rne l)

Listing 4.2: Detect the edge of the image based on convolution.

4.2.3 Modify Lightness

The code 4.3 is the majority part of lighting the edge of the darker part. If we want to

apply the ease-in and out function, the first step is to define the number of pixels that will

be lighter manually. This value is necessary to measure the ratio between the distance and

the maximum distance. Then, traverse all the pixels in the edge detection result. If the

pixel is on the edge, modify the saturation and the brightness channel of its surrounding

pixels. For each pixel, we modify 5 pixels around it, and the value is calculated by the

ease-in and out functions.

numOfPixel = 5

for i in range (0 , he ight) :

for j in range (0 , width) :

i f (r e su l t image [i] [j] > 0) :

for x in range (0 , numOfPixel) :

Draft of 10:34 pm, Friday, August 19, 2022 21

r e s u l t = x / numOfPixel

i f r e s u l t < 0 . 5 :

r e s u l t = 1 − 2 ∗ r e s u l t ∗ r e s u l t

else :

r e s u l t = (−2 ∗ r e s u l t + 2) ∗∗2 / 2

r e s u l t = r e s u l t ∗ 200

i f (r e s u l t > 50) :

i f (imageHSV [i + x] [j] [2] < r e s u l t) :

imageHSV [i + x] [j] [1] = 0

imageHSV [i + x] [j] [2] = r e s u l t

i f (imageHSV [i − x] [j] [2] < r e s u l t) :

.

Listing 4.3: Modify the lightness of the image with ease in and out.

4.3 Camera Invocation

The camera has been invoked by OpenCV. OpenCV provides the video capture function

to invoke the camera, including both the built-in camera and the external camera. In this

implementation, a photo is enough to do the analysis. Therefore, we invoke the camera

by the video capture function and only get one frame. The code segment in 4.4 shows how

the photo has been taken, including defining a function to return this frame and using

the imwrite() function to store the image in the target place.

def readBackground () :

v id = cv . VideoCapture (1)

ret , frame = vid . read ()

vid . r e l e a s e ()

return frame

image = readBackground ()

cv . imwrite (path + ”name . jpg ” , image)

Listing 4.4: Code to invoke the camera

Draft of 10:34 pm, Friday, August 19, 2022 22

4.4 Background Extraction

Two photos are needed to be taken before invoking the background extraction functions.

One is take the photo to the background directly, and the other is the background with

the projector projecting the white image. The goal of this function is to fund the cor-

responding area of the projected place in the pure background photo and generate an

analysable image of the background that has the same size as the projected image.

The background extraction function also needs a mask to mark the lighter part. It has

a similar process to the mask generation in the previous step. The only difference is that

the lower and upper thresholds are generated by the image. Assume that the corner of

the photo is the darker part and the centre of the photo is the lighter part. The threshold

is the middle brightness of these two points.

Since the shape of the lighter part is approximate to a quadrangle, the way to find

the coordinate of the four corners. The main idea of the function can be shown in code

segment 4.5. The first step is finding the center of the minimum bounding rectangle by

findContours() function and minAreaRect() function. These points must be inside the

lighter part. Then, use a loop to find the furthest light points from the centre in four

directions. These four points are the four corners of the quadrangle so we return the list

of these points.

def extractMask (mask) :

contours , h i e ra r chy =

cv . f indContours (

mask , cv .RETR TREE, cv .CHAIN APPROX SIMPLE)

r e c t = cv . minAreaRect (np . vstack (contours) . squeeze ())

top l e f t po in t

topLe f t = [(int) (r e c t [0] [1]) , (int) (r e c t [0] [0])]

while (mask [topLe f t [0] − s tep] [topLe f t [1]] == 255 or

mask [topLe f t [0]] [topLe f t [1] − s tep] == 255) :

i f (mask [topLe f t [0] − s tep] [topLe f t [1]] == 255) :

topLe f t [0] = topLe f t [0] − 1

i f (mask [topLe f t [0]] [topLe f t [1] − s tep] == 255) :

topLe f t [1] = topLe f t [1] − 1

top r i g h t po in t

bottom l e f t po in t

bottom r i g h t po in t

.

po in t s = np . array (

Draft of 10:34 pm, Friday, August 19, 2022 23

[topLeft , topRight , bottomRight , bottomLeft])

return po in t s

Listing 4.5: Find the position of the four corners

Then use the functions in OpenCV to warp the background. First, match the position

of the four corners, and the target place that we want to display in the new image. This

target place is equal to the size of the display image on this occasion. Then use the

getPerspectiveTransform() function to calculate the projection matrix, and use this

matrix to transfer the pixels to their new coordinates. The code has been shown in code

segment 4.6.

def extractRange (image , po ints , width , he ight) :

po in t s = np . f l o a t 3 2 (po in t s)

t a r g e t = np . f l o a t 3 2 ([

[0 , 0] , [width , 0] , [width , he ight] , [0 , he ight]

])

matrix = cv . getPerspect iveTrans form (points , t a r g e t)

imgOutput = cv . warpPerspect ive (

image , matrix , (width , he ight))

return imgOutput

Listing 4.6: Detect the edge of the image based on convolution.

4.5 Image Modification

The essence implementation of all the image processing algorithms is image modification.

All these image modifications have the same process: convert the colour space into the

type we want, traverse each pixel and apply the equation for each channel, check the

boundary, and convert back to the RGB colour space.

The colour transfer function 4.7 is a standard example of this process. First, convert

the image into LAB colour space. Then traverse each pixel and each channel in the image.

Doing the calculation, and if the value is lower than 0 or larger than 255, limit the value

to 0 and 255. Finally, convert it back to RGB colour space and return the image.

def c o l o rTran s f e r (source , t a r g e t) :

source = cv . cvtColor (source , cv .COLOR BGR2LAB)

ta r g e t = cv . cvtColor (target , cv .COLOR BGR2LAB)

s mean , s s t d = get mean and std (source)

t mean , t s t d = get mean and std (t a r g e t)

Draft of 10:34 pm, Friday, August 19, 2022 24

height , width , channel = source . shape

for i in range (0 , he ight) :

for j in range (0 , width) :

for k in range (0 , channel) :

va lue = source [i , j , k]

va lue = ((va lue − s mean [k]) ∗
(t s t d [k] / s s t d [k])) + t mean [k]

va lue = int (x)

va lue = 0 i f value < 0 else value

va lue = 255 i f value > 255 else value

source [i , j , k] = value

return cv . cvtColor (source , cv .COLOR LAB2BGR)

Listing 4.7: Colour transfer function

4.6 Result Mapping

After all these algorithms have been implemented, the last step is to generate the final

map. To do this, we need to analyse the result for different algorithms and different

backgrounds and find the best algorithm for the specific occasion.

To analyse this, we first project our result on the background, take the photo, and

extract the range we need. The result extraction is similar to the background extraction.

Then we calculate the mean squire error and the colour distribution, draw the diagram

based on it, analyse it manually, and create the map to match the situation and the

algorithm. Then, when receiving a new background or a new display image, we can use

this map to find the best algorithm and modify the display image.

4.6.1 Mean square Error

The first measure we use to analyse the result is the mean square error. We will calculate

it in R, G, and B channels independently. The standard image is the result that projected

the colour checker on a white background. Compare the results and the standard image,

calculate the sum of the squire of the difference for each pixel, and divide by the number

of the pixel. This process has been encapsulation as 4.8 function, processing it for all

the result images independently, and using the python matplotlib library to draw the bar

chart for them.

def compairImage (image1 , image2) :

Draft of 10:34 pm, Friday, August 19, 2022 25

r1 = image1 [: , : , 2]

r2 = image2 [: , : , 2]

.

d i f fR = 0

.

he ight , width = b1 . shape

for i in range (0 , he ight) :

for j in range (0 , width) :

d i f fR = d i f fR + (int (r1 [i] [j]) − int (r2 [i] [j])) ∗∗ 2

.

MSER = di f fR /(he ight ∗ width)

.

return [MSER, MSEG, MSEB]

Listing 4.8: Mean Squire Error

4.6.2 Colour Distribution

The colour distribution has been represented by a colour histogram. The x-axis of the

histogram is the colour value from 0 to 255, and the y-axis is the number of pixels that

have this value. The way to implement it can be shown as code 4.9. The calcHist()

function is able to count the number of pixels in each value, and the matplotlib library

has been used to draw and store the image.

h i s t b = cv . c a l cH i s t ([image] , [0] , None , [2 5 6] , [0 , 2 56])

h i s t g = cv . c a l cH i s t ([image] , [1] , None , [2 5 6] , [0 , 2 56])

h i s t r = cv . c a l cH i s t ([image] , [2] , None , [2 5 6] , [0 , 2 56])

p l t . p l o t (h i s t b , c o l o r=’b ’)

p l t . p l o t (h i s t g , c o l o r=’ g ’)

p l t . p l o t (h i s t r , c o l o r=’ r ’)

p l t . l egend ([’ b lue ’ , ’ green ’ , ’ red ’])

p l t . s a v e f i g (path + ’ Barchart . jpg ’)

p l t . show ()

Listing 4.9: Colour Distribution Histogram

Draft of 10:34 pm, Friday, August 19, 2022 26

4.6.3 Automatically Selection

The last step, also the main step of this part is the map generation and invoke. With

the analysis of the MSE and the colour distribution, we can find the best solution for a

specific background colour and a specific style of the display image. Thus the only thing

to do before the image process is to recognize the background type and the image style.

The first step is background recognition. This step recognizes the category of the

colour of the background. Since the illumination is floating and unable to control, the

only character that will be considered is the hue. Therefore, the HSV colour space has

been used on this occasion.

The implementation of background recognition has been shown in listing 4.10. First

we define the range of the hue value for different colours. For instance, the hue value

for yellow is 25 to 45. Then, generate the mask to mark the pixels inside this range.

Then count the number of pixels that have this colour. Do the same process for all the

colours of the background we tested. If two-thirds of the pixels are the same colour, we

can confirm that the background is this type. If the background is not followed any type

of colour range, we will define it as a chromatic background.

ye l l ow par t

lower = np . array ([2 5 , 0 , 0])

upper = np . array ([4 5 , 255 , 255])

yellowMask = cv . inRange (background , lower , upper)

l i s t = [i for j in yellowMask for i in j]

yellowCount = l i s t . count (255)

green par t

.

purp l e par t

.

i f (yellowCount > (2 ∗ s i z e / 3)) :

backgroundType = 1

e l i f (greenCount > (2 ∗ s i z e / 3)) :

.

Listing 4.10: Mark the type of the background

Then analyse the display image. Since the previous analysis is in RGB colour space,

this step also uses this colour space and will define the image as red style, green style,

or blue style. The way to define the colour style of the image is based on the number of

pixels in each colour. For each pixel, find which channel has the largest value. Assume

that the style of the pixel belongs to the colour that has the largest value. Then count the

Draft of 10:34 pm, Friday, August 19, 2022 27

number of pixels in each channel. The style of the image has been defined as the colour

which has the maximum pixels. The way to implement this has been shown in listing

4.11.

BGRvalue = [0 , 0 , 0]

for i in range (0 , he ight) :

for j in range (0 , width) :

co l ou r = maxColor (image [i] [j])

BGRvalue [co l ou r] = BGRvalue [co l ou r] + 1

imageType = maxColor (BGRvalue)

Listing 4.11: Analysis the style of the display image.

Finally, we match the occasion and the algorithm. In the previous steps, the type of

the background and the image has already been defined. Thus the only thing left is to

invoke the algorithm. Since the previous code is already well encapsulated, the only thing

left is to invoke the algorithm with the defined parameters. See code 4.12, use if sentence

to invoke the algorithm based on the type of background and the display image.

i f (backgroundType == 0) :

i f (imageType == 0) :

r e s u l t = inverseAndObject (image , RGBinverse)

e l i f (imageType == 1) :

.

e l i f (backgroundType == 1) :

i f (imageType == 0) :

.

Listing 4.12: Map the occasion and the algorithm.

Chapter 5

Evaluation

5.1 Experiments Overview

The experiment included five steps: dark analysis, background extraction, image process,

result analysis, and automatically selection. The dark analysis is an independent part of

the analysis the dark part. The background extraction, image process, and result analysis

are three steps that analyse the colour and define the map. The last part, automatically

selection, using the map the generate ahead and display the result generated from our

solution.

5.2 Dark Analysis

The test image for dark analysis is a text with shadow. The figure 5.1 is the test image

we used. Then we remove the white background of the image. Since the transparent

background is difficult to do the following process, and project black has the same effect

as project transparent, we switch the background to black.

Figure 5.1: The image to test shadow.(1):image with white background,
(2):image with black background

Then do the image processing. With the proper threshold, the shadow range has been

28

Draft of 10:34 pm, Friday, August 19, 2022 29

recognized properly. This mask has been shown in the left image of the figure 5.2. Due

to the occluded, the shadow does not have the same shape as the text itself. The right

image is the edge of this area.

Figure 5.2: (1):the generated mask for the shadow part, (2):the edge of
the shadow that generated from the mask

After all the processes, the result will be like 5.3. Here we

Figure 5.3: The shadow analysis result. The shadow has a lighter sur-
roundings.

The figure 5.4 shows the effect of this process. The left image is the photo that projects

the original image on the white background, and the right one is projecting the analysis

result. The shadow in the left image is weak but it can be found clearly in the right

image.

Figure 5.4: (1):project the original shadow image, (2) project the mod-
ified shadow image

Draft of 10:34 pm, Friday, August 19, 2022 30

5.3 Colour Analysis

In this experiment, four different backgrounds: purple, yellow, green, and chromatic have

been used. In the background extraction and image processing part, the purple one will be

used as an example to explain the process of the whole experiment. However, in the last

part, all the results will be considered, and give a table to map all different background

colours.

5.3.1 Background Extraction

The process of background extraction has been shown in figure 5.9. The first image is

the photo that projects the white image. The second one is the mask that marks the

lighter part. The third image marks the centre of this range, the four corners, and the

quadrangle that will be extracted. Then apply it to the fourth image, which is the photo

of the background. The actuarial range that will be extracted from the background has

been shown in the fifth image. After warping it to the size we want, image six is the final

background we received.

Figure 5.5: The flow of the background extraction. (1):background with
the lighter part, (2):mask for the lighter part, (3):center and corner of
this range, (4):background, (5):the selected range on the background,
(6):the result

Draft of 10:34 pm, Friday, August 19, 2022 31

5.3.2 Image Processing

The first step in the image process is to calculate the inverse image. For the purple

background like the first image in 5.6, the inverse image that is calculated by RGB colour

space is the next green image in the figure 5.6, and the third. one is calculated in HSV

colour space. Due to different computations and colour space, two different but reasonable

inverse image has been received and used in the following process.

Figure 5.6: (1):background, (2):the inverse background in RGB colour
space, (3):the inverse background in HSV colour space, (4):the test im-
age, which is colourChecker now

The last image in 5.6 is the colour checker. This is the test image we use this time, so

it is the based image that needed to be modified.

The figure 5.7 and 5.8 are the modified image. The figure 5.7 are using the colour

checker and the RGB inverse background, and the 5.8 are using the HSV inverse image.

The image from left to right are using: a simple adding algorithm, basic colour transfer

algorithm, fixed colour transfer algorithm, and colour transfer which uses the first image

as the source image.

Figure 5.7: Colour process with RGB colour space in four algorithms.
(1):inverse RGB result, (2):transfer RGB result, (3):transfer RGB fix
result, (4): transfer RGB Inv result

Figure 5.8: Colour process with HSV colour space in four algorithms.
(1):inverse HSV result, (2):transfer HSV result, (3):transfer HSV fix
result, (4): transfer HSV Inv result

Draft of 10:34 pm, Friday, August 19, 2022 32

5.3.3 Result Analysis

The first step of result analysis is result extraction. Since the photo is not the real

projected space, we need to extract the projected range before doing the analysis. This

process can be done as the same operation as the background extraction. Figure 5.9

shows the photo we that when project the colour checker on white background, extract

the range and wart it into the size we want.

Figure 5.9: Extract the real space before analysis

Then, project all the results on its background, take the photo, and warp the result

part. All the warped results have been shown in figure 5.10. The top two images are

projecting the colour checker on white background, and projecting the colour checker

directly on the purple background. The white one is the target, and the purple one

is the baseline. The following two rows are projecting the result images on the purple

background. The first line are using RGB colour space and the second one are using HSV

colour space.

Then analysis the results we received for all four backgrounds. The backgrounds we

used have been shown in 5.11.

Figure 5.11: The backgrounds that have been used in this experiment.
(1):purple background, (2):green background, (3):yellow background,
(4)texture background

Then we use the mean squire error to evaluate the difference between the target and

the results. The R, G, and B channels are calculated independently. For every diagram,

the most left bars are the baseline. The following bars are: the simple adding function in

Draft of 10:34 pm, Friday, August 19, 2022 33

Figure 5.10: The image that projects the colour checker on the white
background, and the images that project the baseline and all the results
on the purple background. Extract the range we needed, and warp them
into the same size. Images on the first line: target result and baseline.
Image on the second line: (1):inverse RGB, (2):transfer RGB, (3):trans-
fer RGB fix, (4):transfer RGB Inv. Image on the third line: (1):inverse
HSV, (2):transfer HSV, (3):transfer HSV fix, (4):transfer HSV Inv

RGB and HSV colour space, the basic colour transfer function in RGB and HSV colour

space, the colour transfer function which only considers the mean value in RGB and HSV

colour space, and the colour transfer function with the adding result as the source image

in RGB and HSV colour space,

The figure 5.12 shows the mean squire error for the purple background. Based on this

diagram, we can find that the most affected channel is the green channel. The purple

colour is absorbing the green and reflects the red and blue so it is a reasonable result.

The result for red and blue channel are similar as the baseline in all the algorithms except

the basic function for both RGB and HSV colour space. As for the green channel, the

modified transfer function in HSV colour space works the best. Therefore, the modified

transfer function in HSV colour will be used in any display image if the background is

close to purple.

Draft of 10:34 pm, Friday, August 19, 2022 34

Figure 5.12: The bar chart of MSE for purple background

The figure 5.13 shows the mean squire error for the green background. For this colour,

most of the algorithms work well in the green channel because the background reflects

most of the green wave. Besides, the modified transfer function in HSV colour space

works well in both red channel and blue channel.

Figure 5.13: The bar chart of MSE for green background

The result for yellow has been shown in figure 5.14. The blue channel is the worst

channel for yellow background. All the algorithms make the red and green channel worst

than the baseline but greatly improve the blue channel. Among all these algorithms, the

modified colour transfer function in HSV colour space works best on blue channel, and

the RGB colour space for same algorithm is better for red and green channel.

Draft of 10:34 pm, Friday, August 19, 2022 35

Figure 5.14: The bar chart of MSE for yellow background

For the chromatic background as figure 5.15, only adding function works better than

the baseline. This is probably because the mean value has been affected by different

colours, and there does not have the overall colour style of the background. So the colour

transfer function cannot work well.

Figure 5.15: The bar chart of MSE for texture background

Then we consider the colour distribution. The figure 5.16 shows the colour distribution

for the projected result and purple image. The more it is close to the baseline, the better

result is. For the purple background, the RGB colour space is better than the HSV colour

space. Besides, the basic transfer function will reduce the colour difference since it reduces

the floating of the colour distribution.

In figure 5.17, we can find that the RGB and HSV colour space have similar perfor-

mance. The basic transfer function will reduce the colour difference. This conclusion is

Draft of 10:34 pm, Friday, August 19, 2022 36

also shown in the yellow result in figure 5.18. However, for chromatic background 5.19,

the colour distribution is more close to the baseline rather than the target.

Figure 5.16: Colour distribution for purple background

Figure 5.17: Colour distribution for green background

Draft of 10:34 pm, Friday, August 19, 2022 37

Figure 5.18: Colour distribution for yellow background

Figure 5.19: Colour distribution for chromatic background

After all these analyse, the occasion and the corresponding algorithms have been shown

in the table 5.1. The ID of each function has been shown in table 3.1. The modified colour

transfer function is the best solution for most solid backgrounds, and the pixel-by-pixel

analysis works better for the texture background.

Draft of 10:34 pm, Friday, August 19, 2022 38

Purple Green Yellow Texture

Red 6 6 5 1

Green 6 6 5 1

Blue 6 6 6 1

Table 5.1: The algorithms we used on different occasion

5.4 Automatically Selection & Result

Finally, we use the rule we find to process the images. We use the cake image as an

example. The left image in 5.20 is the original image, and the right one is the modified

result on purple background. The 5.21 shows how this result has been displayed on the

purple background.

Figure 5.20: (1):original cake image, (2) result cake image

Figure 5.21: Projected cake image

Draft of 10:34 pm, Friday, August 19, 2022 39

5.5 Performance Analysis

The solution was tested on a Thinkpad X1 laptop with a Intel(R) Core(TM) i7-8750H

2.20GHz CPU, running windows and Python version 3.6 with OpenCV version 2.0. The

table 5.2 shows the running time for the preprocess and each algorithm.

Algorithm Time

preprocess 6.2s

inverse RGB 24.5s

inverse HSV 22.9s

transfer RGB 18.4s

transfer HSV 17.3s

transfer RGB Fix 20.2s

transfer HSV Fix 22.5s

transfer RGB Inv 35.2s

transfer HSV Inv 34.4s

Table 5.2: Time cost for different algorithms.

Chapter 6

Conclusions & Future Work

6.1 Conclusion

In conclusion, this project provides a colour correction solution for projection-based AR.

This solution contains the shadow analysis and colour correction. For the shadow, we

lighter its edge to make the dark part clear. To implement, a mask for the shadow is

needed. Then, use the convolution function to detect the edge, and use the ease in and

out interpolation function to smooth the change of the brightness. This implementation

has been done in HSV colour space.

For the colour correction algorithm, the colour transfer methods have been involved.

The colour transfer methods use the statistic indexes of the image like the mean value to

modify the colour style of the source image to the target image. For the given background,

we first calculate its inverse image pixel by pixel in both RGB and HSV colour space.

Then generate the simple adding between the object and the inverse image. Try different

target image and colour transfer algorithms, and calculate the mean squire error and

colour distribution to measure the result.

In the beginning, the colour checker has been used as the test object. Using the colour

checker to test different backgrounds and different algorithms. Then figure out the best

algorithm for different backgrounds, and create the map to record it. Finally, when doing

it in a new environment, we can recognize the background colour and the condition of the

display image, find the best algorithm on the map and manage the display image.

6.2 Future Work

The environment illumination is one of the important conditions that influence projection-

based AR. In this project, we do not have the condition to control the environment

40

Draft of 10:34 pm, Friday, August 19, 2022 41

illumination. The only thing we can do is use the natural light and test the illumination

before doing the experiment, try to keep it to about 40 lx when doing the experiment.

Besides, this illumination is also not a completely parallel light. However, there are

many relevant problems that are affected by the illumination. For instance, will the best

algorithm change in a lighter or darker environment? Is the algorithm still work in a glare

environment or a gloomy environment? Will the uneven light affect the result? Due to

the limitation of time and devices, these problems remain to be solved.

Due to the visual illusion, especially the colour consistency, the actual visual effects

may be different from the digital analysis result. However, due to the COVID-19 and

time limitations, we cannot execute the in-person test with the interview to detect the

real visual effects.

Bibliography

Adelson, E. H. (1995). Adelson’s checker-shadow illusion. http://persci.mit.edu/

people/adelson/checkershadow_illusion.

Adelson, E. H. (2000). 24 lightness perception and lightness illusions. The new cognitive

neurosciences, page 339.

An, X. and Pellacini, F. (2010). User-controllable color transfer. In Computer Graphics

Forum, volume 29, pages 263–271. Wiley Online Library.

Bimber, O., Emmerling, A., and Klemmer, T. (2005). Embedded entertainment with

smart projectors. Computer, 38(1):48–55.

Bimber, O. and Raskar, R. (2005a). Spatial augmented reality: merging real and virtual

worlds. CRC press.

Bimber, O. and Raskar, R. (2005b). Spatial augmented reality: merging real and virtual

worlds. CRC press.

BURT, P. J. and ADELSON, E. H. (1987). The laplacian pyramid as a compact image

code. In Fischler, M. A. and Firschein, O., editors, Readings in Computer Vision, pages

671–679. Morgan Kaufmann, San Francisco (CA).

Chun Wei Ooi, J. D. (2022). Perceptually enhanced shadows for ost ar. International

Workshop on Immersive Mixed and Virtual Environment Systems (MMVE’22).

Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. (1993). Surround-screen projection-

based virtual reality: the design and implementation of the cave. In Proceedings of

the 20th annual conference on Computer graphics and interactive techniques, pages

135–142.

Edgcumbe, P., Singla, R., Pratt, P., Schneider, C., Nguan, C., and Rohling, R. (2018).

Follow the light: projector-based augmented reality intracorporeal system for laparo-

scopic surgery. Journal of Medical Imaging, 5(2):021216.

42

http://persci.mit.edu/people/adelson/checkershadow_illusion
http://persci.mit.edu/people/adelson/checkershadow_illusion

Draft of 10:34 pm, Friday, August 19, 2022 43

Fujimoto, Y., Smith, R. T., Taketomi, T., Yamamoto, G., Miyazaki, J., Kato, H., and

Thomas, B. H. (2014). Geometrically-correct projection-based texture mapping onto

a deformable object. IEEE Transactions on Visualization and Computer Graphics,

20(4):540–549.

Gabbard, J. L., Swan, J. E., Zedlitz, J., and Winchester, W. W. (2010). More than meets

the eye: An engineering study to empirically examine the blending of real and virtual

color spaces. In 2010 IEEE Virtual Reality Conference (VR), pages 79–86. IEEE.

HaCohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D. (2011). Non-rigid dense

correspondence with applications for image enhancement. ACM Trans. Graph., 30(4).

Hainich, R. R. and Bimber, O. (2011). Displays: Fundamentals and applications.

He, M., Liao, J., Yuan, L., and Sander, P. V. (2017). Neural color transfer between

images. arXiv preprint arXiv:1710.00756, 2.

Kern, J., Weinmann, M., and Wursthorn, S. (2017). Projector-based augmented reality

for quality inspection of scanned objects. ISPRS Annals of Photogrammetry, Remote

Sensing & Spatial Information Sciences, 4.

Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE

transactions on acoustics, speech, and signal processing, 29(6):1153–1160.

Kitaoka, A. (2010). A brief classification of colour illusions. Colour: Design & Creativity,

5(3):1–9.

Kuehni, R. G. (2001). Color space and its divisions. Color Research & Application:

Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian

Society for Color, Color Science Association of Japan, Dutch Society for the Study of

Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre

Français de la Couleur, 26(3):209–222.

Lee, J. and Lee, S. (2016). Hallucination from noon to night images using cnn. In

SIGGRAPH ASIA 2016 Posters, pages 1–1.

Liu, S. (2022). An overview of color transfer and style transfer for images and videos.

arXiv preprint arXiv:2204.13339.

McCamy, C. S., Marcus, H., Davidson, J. G., et al. (1976). A color-rendition chart. J.

App. Photog. Eng, 2(3):95–99.

Draft of 10:34 pm, Friday, August 19, 2022 44

Mine, M. R., van Baar, J., Grundhofer, A., Rose, D., and Yang, B. (2012). Projection-

based augmented reality in disney theme parks. Computer, 45(7):32–40.

Nayar, S. K., Peri, H., Grossberg, M. D., and Belhumeur, P. N. (2003). A projection

system with radiometric compensation for screen imperfections. In ICCV workshop on

projector-camera systems (PROCAMS), volume 3. Citeseer.

Oyamada, Y. and Saito, H. (2008). Defocus blur correcting projector-camera system. In

International Conference on Advanced Concepts for Intelligent Vision Systems, pages

453–464. Springer.

Reid Jr, R. C. and Shapley, R. (1988). Brightness induction by local contrast and the

spatial dependence of assimilation. Vision research, 28(1):115–132.

Reinhard, E., Adhikhmin, M., Gooch, B., and Shirley, P. (2001). Color transfer between

images. IEEE Computer Graphics and Applications, 21(5):34–41.

Ro, H., Park, Y. J., Byun, J.-H., and Han, T.-D. (2019). Display methods of projection

augmented reality based on deep learning pose estimation. In ACM SIGGRAPH 2019

Posters, pages 1–2.

Rossotti, H. (1985). Colour: Why the world isn’t grey, volume 3. Princeton University

Press.

Sand, O., Büttner, S., Paelke, V., and Röcker, C. (2016). smart. assembly–projection-

based augmented reality for supporting assembly workers. In International Conference

on Virtual, Augmented and Mixed Reality, pages 643–652. Springer.

School, D. (2014). Simple guide to confusion matrix terminology. https://www.

dataschool.io/simple-guide-to-confusion-matrix-terminology/.

Sinha, P., Crucilla, S., Gandhi, T., Rose, D., Singh, A., Ganesh, S., Mathur, U., and Bex,

P. (2020). Mechanisms underlying simultaneous brightness contrast: Early and innate.

Vision Research, 173:41–49.

Sridharan, S. K. a., Hincapi’e-Ramos, J. D., Flatla, D. R., and Irani, P. (2013). Color

correction for optical see-through displays using display color profiles. In Proceedings of

the 19th ACM Symposium on Virtual Reality Software and Technology, pages 231–240.

Tkalcic, M. and Tasic, J. (2003). Colour spaces: perceptual, historical and applicational

background. In The IEEE Region 8 EUROCON 2003. Computer as a Tool., volume 1,

pages 304–308 vol.1.

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

Draft of 10:34 pm, Friday, August 19, 2022 45

Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. (2009). State of the art in example-

based texture synthesis. Eurographics 2009, State of the Art Report, EG-STAR, pages

93–117.

Weiland, C., Braun, A.-K., and Heiden, W. (2009). Colorimetric and photometric com-

pensation for optical see-through displays. In International Conference on Universal

Access in Human-Computer Interaction, pages 603–612. Springer.

Wikipedial (2020). Mean squared error. https://en.c.org/wiki/Mean_squared_error.

Wikipedial (2021). Peak signal-to-noise ratio. https://en.wikipedia.org/wiki/Peak_

signal-to-noise_ratio.

Xiao, X. and Ma, L. (2006). Color transfer in correlated color space. In Proceedings of the

2006 ACM international conference on Virtual reality continuum and its applications,

pages 305–309.

Yeh, K.-C., Tsai, M.-H., and Kang, S.-C. (2012). On-site building information retrieval by

using projection-based augmented reality. Journal of Computing in Civil Engineering,

26(3):342–355.

Ziou, D., Tabbone, S., et al. (1998). Edge detection techniques-an overview. Pattern

Recognition and Image Analysis, 8:537–559.

https://en.c.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

Appendix

...

46

	Abstract
	Acknowledgments
	Chapter Introduction
	Problem Overview
	Objectives and Contributions
	Methodology
	Overview of this Report

	Chapter Background
	Projection-Based AR
	Color Correction
	Colour Spaces
	RGB
	HSV
	CIE LAB

	Color Transfer
	Perception of Colour
	Lightness Constancy
	Brightness Induction
	Colour Consistency

	Edge Detection

	Chapter Design
	Dark Analysis
	Edge Extraction
	Light the Edge

	Background Extraction
	Colour Analysis
	Inverse Background
	Pixel by Pixel Analysis
	Colour Transfer
	Result Mapping

	Automatically Selection

	Chapter Implementation
	Overview of the Solution
	Dark Analysis
	Mask Generation
	Edge Detection
	Modify Lightness

	Camera Invocation
	Background Extraction
	Image Modification
	Result Mapping
	Mean square Error
	Colour Distribution
	Automatically Selection

	Chapter Evaluation
	Experiments Overview
	Dark Analysis
	Colour Analysis
	Background Extraction
	Image Processing
	Result Analysis

	Automatically Selection & Result
	Performance Analysis

	Chapter Conclusions & Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

