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University of Dublin, Trinity College, 2022

Supervisor: Dr. Inmaculada Arnedillo-Sanchez

This project seeks to perform Human Action Recognition on video datasets of children
for a given set of actions, namely - Hop Left, Hop Right, Gallop and Skip. The objective
is to automatically recognise if a certain defined set of fixed criteria match the actions
performed by the children in the videos. For this purpose, individual joint locations were
detected and used to create a heuristic based approach to label the videos frame-by-frame.
The labelled joint coordinates data was used to train different models to predict the labels
of frames as a supervised classification problem; and observe what heuristic performs the
best for a particular action by evaluating their performance in terms of frame-by-frame
classification accuracy and pre-collected human based analysis of the data. It was observed
that the models trained based on this approach perform the best for the Hop Left/Right
action, followed by Skip. The project also discusses the challenges of working with raw
video data and what approaches can be used to solve some of them - based on existing
literature in the area of Human Action Recognition and new approaches to fit the dataset.
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Chapter 1

Introduction

1.0.1 Human Action Recognition

Human action recognition is used in a variety of applications, from rehabilitation (often

athletic), preventing repeated injuries, analyzing progress or mastery in certain move-

ments related to a sport, monitoring of human activities, energy conservation in build-

ings, anomaly detection, surveillance, security etc. It removes the need for labor intensive

manual monitoring by automating the process entirely, hence greatly cutting these costs.

A lot of the state-of-the-art human activity recognition algorithms and models are trained

to perform classification based on datasets of adult human beings, for privacy reasons,

legal and ethical complications. There is also a general lack of such publicly available

data – both facially obfuscated (i.e. anonymised) and not. This project aims to perform

human action recognition on a collected dataset of children. It also seeks to identify

improper actions that are performed by the children. This can be used to analyse and

screen the development of gross motor skills in children, leading to the early detection

and intervention in case of identified issues.

The proposed approach in this project involves extracting the location of the bodily

joints frame-by-frame in the videos. Google AI’s BlazePose based pose detection frame-

work MediaPipe was used for this. Since the dataset consists of blurred faces, the project

will also investigate how well such frameworks can handle anonymised data. Much of the

existing research surrounding human action recognition involves the usage of wearable

sensors, smartphone sensors or depth based sensors like the MS Kinect for skeletal detec-

tion. This may not necessarily be the most accessible solution for an action recognition

model that identifies issues in motor skill development, and hence this project focuses on

an image/video based model for action recognition.

1
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1.0.2 Research Objectives

The research objectives of the project involve the following:

• Finding methods to extract joint/landmark data from video data.

• Investigating methods to best deal with video data that is not labelled/ annotated.

• Creating models and heuristics to analyse and automatically predict different as-

pects of the data such as the number of times an action is performed.

• Evaluate model performance based on real-time results.

1.0.3 Report Structure

The rest of the report is organised by the following overall structure. The Background

section will go through different types of actions, types of Human Action Recognition

(HAR), the advantages and disadvantages of these, the working of MediaPipe and exist-

ing research in the fields of HAR and HAR for gross-motor skill analysis in children. The

Methods section will go through the description of the dataset and the overall flow of the

project discussing aspects like joint extraction, heuristics, normalisation, model training

etc. The Experiments and Results section evaluates model performance on different ac-

tions and discusses the results to understand their significance. Finally, the Conclusion

and Future Work section summarises the project and discusses future work and possible

improvements.



Chapter 2

Background

2.1 Types of Actions

Das Antar et al. (2019) divides ambulation activities into 3 categories - static, dynamic

and postural transitions. We add a further subdivision of dynamic based on whether the

activity is translational in nature or not, as illustrated in Figure 2.1. The takeaway is

that it is difficult to distinguish between actions that are have the same bodily movements

with only slight differences in intricacies, for instance the difference between run, walk

and jog is only based on pace and minor differences in stance.

Figure 2.1: Types of Ambulation Activities

The paper also mentions that postural transitions like standing up or sitting down

are easier to recognise than repetitive activities like running, walking. As an extension

to that, some of the 2-Dimensional activities like Sit Up are also easier to recognise than

3-Dimensional repetitive activities like Skip/Run.

3
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2.2 Types of HAR

Human Activity or Action Recognition (HAR) is traditionally tackled using a time series

based approach that is used to either classify different actions or different sub parts of an

action. A lot of the existing work in the area is based on sensor data from wearable sensors

as part of Ubiquitous Sensing, which is the idea of extracting useful information from data

gathered by pervasive sensors (Perez et al., 2010). HAR is used for a variety of purposes

- from monitoring how well patients with diabetes or heart diseases perform the exercises

prescribed to them as part of recovery and treatment (Jia, 2009), (Samir et al., 2021),

monitoring sleep quality and finding its correlation to physical activity (Sathyanarayana

et al., 2016) etc. Broadly, HAR is performed by sensors that either present on the bodies

of participants, or present externally - which either prompt the participants to interact

with them or are simply present in the environment like cameras.

Yin et al. (2008) explore an Support Vector Machine (SVM) and kernel Non Linear

Regression (KNLR) method to detect abnormalities in human activity based on data

from wearable sensors. They talk about how existing methods have a high false positive

rate because most of the available and collected data is not abnormal, making models

biased towards the normal data. Data from smartphone mobile embedded sensors like

accelerometers and gyroscopes have also been used for the purpose of HAR in combination

with Deep Neural Networks (Ronao and Cho, 2016), (Zeng et al., 2014), (Jiang and

Yin, 2015). The MS Kinect is a depth and camera based high accuracy motion sensor

developed by Microsoft. It works by means of a high resolution RGB Camera and an

infrared depth sensor in combination with multiple microphones. The Kinect can identify

and track 48 key points or landmarks on the body, based on Machine Learning models

trained to represent different age groups, genders and build of body. Developed for the

purpose of motion sensing gaming consoles, the Kinect has since been explored in multiple

other use cases such as posture and movement recognition in workplaces (Dutta, 2012),

movement measurement for patients with Parkinson’s disease (Galna et al., 2014) etc.

Because of the Kinect sensor’s highly accurate landmark detection, it can be used for more

than just the traditional posture and gesture recognition, like by Liu et al. (2013) where

HAR is performed with by means of a 2 step process of action learning and recognition

accomplished with K-Means Clustering and Hidden Markov Modeling.

2.2.1 Sensor Based Challenges

Some of the disadvantages that sensor-based HAR systems pose are human discomfort

(Lara and Labrador, 2012), and although smartphones are an alternative solution to this,

it requires users to constantly carry them around and contributes to a quicker loss of energy



Draft of 10:44 pm, Friday, August 19, 2022 5

in the phone’s battery. They are also highly dependent on the location of the sensor, as

readings can differ at different parts of the body for the same action (Das Antar et al.,

2019). Unlike traditional cameras, depth based sensors like the MS Kinect are expensive

and not readily available in all environments, often requiring a separate installation and

set up that not everyone can opt for.

2.3 Vision Based Approaches

As an alternative to sensor-based approaches, sole reliance on cameras or video feed

is also used for HAR, although there is lesser literature in the area as mentioned in a

survey by Gupta et al. (2020), owing to it being a relatively newer field. Vision based

approaches of HAR generally consists of the following steps (Banjarey et al., 2021) -

(1) Pre-processing - Removal of background or noise around the person. (2) Creation

of bounding boxes around the person. (3) Normalisation/ calibration of cameras. (4)

Training Deep Learning/Machine Learning algorithms on extracted joints. (5) Analysing

classification/ prediction results.

2.3.1 Using Body Landmarks

In specific, pose estimation can take place by means of two approaches as mentioned by

Banjarey et al. (2021). The first is a bottom-up approach where each of the landmarks

are detected and then put together as groups of different skeletons in the frame. The

second approach is top-down, where an object detector is used first to identify different

targets to draw bounding boxes around, followed by identifying the landmarks in each of

the boxes.

The usage of pose estimation and body landmarks from normal camera feed as an

alternative to wearable sensors for HAR has been explored in Gatt et al. (2019) for the use

case of anomalous fall detection using PoseNet (Papandreou et al., 2017) and OpenPose

(Cao et al., 2017), two publicly available pre-trained pose estimation models. Only skeletal

data and no further feature engineering is used for their approach. Additionally, they also

discard frames of the videos where the human detection confidence is low, as these frames

do not provide any useful information for the models to learn. The pose estimation data

was converted to 1-D time series data and fed into deep LSTM and CNN models to

perform anomalous activity detection with the aid of the Tensorflow and Keras Python

libraries and GPU support. Zhang et al. (2019) discuss a CNN and LSTM based method

for HAR that is adaptive in nature. It has the ability to re-position or transform the

skeletal joints based on a module that was trained to identify the best observational
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viewpoints to perform the HAR task.

Yang et al. (2022) discuss a method to perform HAR with time-based path signatures

extracted from skeletal joint data. For pre-processing, they perform augmentation by the

adding of Gaussian noise over the skeletal joint coordinates. They also normalise the

data by converting world centric joint coordinates to their relative coordinates wrt to the

center of the person’s body. Biometric differences from person to person are compensated

by normalising the joint coordinates between [-1,1].

2.3.2 Challenges

There are multiple issues that come with vision based approaches to HAR (Lara and

Labrador, 2012). One of them is privacy - which hugely limits the amount of data that

is publicly available for ongoing research. Not everyone is willing to be monitored on

a constant basis and most of the publicly available datasets explored and collected in

this domain are that of adults (Banjarey et al., 2021). Some examples are the UCF-

101, UCF Sports Dataset, UCF-50 etc. The issue of privacy is trickier and more crucial

in the case of children, further restricting the availability and accessibility of datasets.

Hence, a lot of the vision-based models that are trained to perform HAR are biased

towards older individuals. The second issue deals with pervasiveness as a lot of the

data also depends on the picture quality of the camera and its positioning relative to

the body of the subject that is to be monitored. The third issue is scalability. A lot

of the approaches that handle video data are based on Convolutional Neural Networks

(CNN) and other Deep Learning architectures that learn important features by pixel-

wise matrix based mathematical calculations that are computationally intensive, hence

increasing the reliance on appropriate infrastructure that is not necessarily always scalable.

These reasons contribute to why there is lesser research in the area, and why sensor based

HAR systems are still a more popular option, despite their drawbacks and in some cases,

their lesser accuracy.

2.4 MediaPipe

MediaPipe (GOOGLE, 2020) is a ML based real-time pose detection library developed by

Google AI. It is similar to state-of-the-art approaches like OpenPose and PoseNet in out-

put, but unlike them is lightweight enough to be suitable for mobile phones, laptops and

the web, and not just powerful desktop environments with GPU support. MediaPipe’s

Machine Learning pipeline works based on the top-down approach mentioned in 2.3.1 -

a two step process that first locates the ROI (Region of Interest) and then identifies 33
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skeletal joint landmarks in the ROI. This is a superset of the COCO topology standard

of 17 landmarks (COCO, 2020). The first step of locating the ROI or pose estimation is

performed with the lightweight BlazePose detector (Bazarevsky et al., 2020), (Ivan Gr-

ishchenko, 2020). This is accomplished by predicting the mid-point of the hip and the

radius of the circle that encloses the person, along with the angle between the shoulder

and the mid point of the hip. Multiple applications such as fitness trackers can be devel-

oped with MediaPipe with use cases such as counting the number of push ups etc. More

details about MediaPipe’s functionality is explored in 2.4.

2.5 Gross Motor Skills

Gross Motor Skills that are acquired during childhood represent normal physical develop-

ment in children. An early detection of issues related to them can lead to proper timely

rectification. There are several standards and tests to evaluate gross motor skills that

assess full body movements, and these vary from country to country. TMGD-3 (Test

of Gross Motor Development) (Prieto et al., 2019) is one such example for the United

States and consists of 13 skills for evaluation. These require manual observation, check-

ing and scoring by formally conducting the proposed tests on a cohort of participants.

This kind of manual approach is subject to a deficit of skilled professionals and time

(Suzuki et al., 2020). Is it hence of interest to develop an automated approach that can

evaluate gross motor skill development. Bossavit and Arnedillo-Sánchez (2019) developed

5 activities for children between the ages 2-7 years and designed MotorSense (Bossavit

and Arnedillo-Sánchez, 2020) , an automated approach that can use depth based sensors

like the MS Kinect to evaluate gross locomotor skills by a series of interactive activities in

a virtual environment. This involved recreating or mirroring the movement of the children

in the environment and providing audio and visual inputs and feedback that guided them

through the testing process.

2.5.1 Research in HAR

Suzuki et al. (2021) discuss a an approach to identify anomalous or improper body move-

ments in children based on the TGMD-3 standard that was discussed above. This TGMD-

3 manual assessment was carried out by skilled professionals. The paper uses the Open-

Pose library for skeletal detection as a base and built a person tracking module of top of it.

The skeletal data from this module was used to build time series input for Deep Learning

models. Videos of the children were shot from different angles to increase amount of the

video data. These videos were also cut or segmented into shorter clips of 2-4 seconds to
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create a uniform input to feed into the Deep Learning models that created motional time

series images, which were divided into normal and abnormal images based on the pre-

viously mentioned assessment. The normal images were used to train an Auto-Encoder

and hence when an abnormal image is fed into this network, its pseudo correct image

is the output of the decoder. A comparison of this pseudo-correct image and the faulty

image can identify the region/limbs of the fault or anomaly. The reported accuracy of this

method was 99.3%. The series of papers by Suzuki et al are between the years 2020-2021

and there has been not much other research in the area of HAR for gross-motor skill

evaluation in children.



Chapter 3

Methods

The end-to-end pipeline followed in this project is described in this section.

3.1 Data Description

The dataset was collected as part of a separate study by Bossavit and Arnedillo-Sánchez

(2019) that aimed to devise a set of actions and criteria that checks for possible issues of

motor-skill development in young children. The data is in the form of video feed captured

for different age groups of children performing the set of actions that were devised.

The set of actions that were assigned to me were Hop Left, Hop Right, Skip and Gallop.

Each of the actions are defined by a set of criteria that need to be checked, and these are

given in Table 3.1. Each of the 4 actions is divided into two sets of age - younger and older

kids, making 8 sets of data in total. The filenames are constructed in a format that is in-

dicative of important metadata as follows - action number gender level trial anonymised.

Action Requirement Criteria
Hop Left Count Number of Successive Hops Jump starts on left leg and ends on left leg.
Hop Right Count Number of Successive Hops Jump starts on right leg and ends on right leg.
Skip Count Number of Skips Step forward, Hop on same foot, alternate feet.
Gallop Count Number of Gallops Jump starts and ends with same foot in front.

Table 3.1: Criteria for Different Actions

Where ”level” and ”trial” refers to the number of attempts to perform a certain action.

This is so children can get accustomed to and understand the action they are performing

and do it to their best ability. Each child is given 3 opportunities to perform an action -

Level 0,1,2. Sometimes the child is asked to perform the action a second time - Trial 1,2.

For example, in the action Skip, the Level 2 and Trial 2 videos would be a child’s best

attempt at performing the Skip action with the desired criteria.

9
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The children stand on a mat with a marked black center at the start of every action.

Ideally this mat should also be at the center of the frame in the video, but this is not the

case because the camera is not placed at the same position in every video. The children are

also dressed in their school uniforms, which are often monochrome and of the same color

from head to toe. Both of these and other issues with the data that can pose problems

for image-based action recognition. These are discussed in more detail in the subsequent

sections.

3.2 Ethics Approval and Privacy

The dataset involves videos of children across different ages and hence requires an ethics

approval, which has been obtained by my supervisor Dr. Sanchez. In addition to this,

the data is anonymised by blurring the faces of the children. In cases where the children’s

faces are not blurred, they are wearing a face mask. There is no other data available that

is related to the identity of the children, other than their gender. The methods used in

this dissertation are based on only the skeletal data of the participants.

3.3 Overall Flow

3.3.1 Noise in Data

• Inconsistency in data length: Traditional approaches in image and video-based

human action recognition methods often use LSTM and CNN models. LSTMs are a

type of RNNs used to learn temporal relationships within data and could potentially

be useful in learning the sequence of steps in a particular action. However, all of

these models would expect input data of the same size and in this case that translates

to videos of the same length/ number of frames. The data however is not of this

nature, as the videos are of varying length depending on a number of factors - how

much time a child takes to do an action, the point at which the child starts the

action and the number of times the action is repeated. Another issue associated

with the usage of time-based deep learning models is that the timestamps where

different sequences or phases of the action occur different from video to video based

on the physical ability and build of the child. For e.g. some children may hop

higher, or alternatively make shorter and more frequent hops. There are no uniform

or consistent timestamps where different phases of an action occur at the same time

from video to video.

• Unwanted Background: Many of the videos have more people than just the
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children performing the action. There is often people walking in the background,

and sometimes a second adult positioned towards the side of the frame, who is

showing the child how to perform the action by doing so themselves. This poses a

problem to the action recognition process and requires a method to single out on the

data that is useful from a single frame of the video. The sheer size of the dataset

makes it cumbersome to manually crop out unwanted actors in the background.

Figure 3.1 shows an example of this where there are multiple other actors in the

frame of the video and someone else’s landmarks are recognised instead of the child’s.

Figure 3.1: Multiple people in the background of the frames.

Manually annotated, standardized data.

• Random Outliers: There are also multiple videos that are not useful - either

because of bad format, or the children not performing any action at all for the

entire length of the video, or performing the wrong action/ being very inconsistent.

A few of the videos are also unusually sped up. While the aim of the project is

to identify if children are performing actions as per requirements, training a model

requires data that exhibits patterns that are learnable and such outliers throw off

the models and affect their accuracy and ability to effectively learn from the data

that is usable.

3.3.2 Proposed System

In order to solve the issue of inconsistent number of frames for input to the model, a new

method is devised to extract the joint locations from each frame of a video, and label the

frames based on a pre-defined heuristic. Models are then trained on this labelled data

with the goal of being able to classify each frame in the video as a specific phase of an

action. This is better described with the flow chart in Figure 3.2.
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Figure 3.2: Overall end-to-end process

As an example, the flowchart describes the process taking the Hop Left data. Bodily

joint locations are extracted from every single frame of the video and are analysed to

define a heuristic. For instance if the location of the hip and leg are above a certain value,

the label for that specific frame is defined as ”Hop”. This collection of labelled data is

then used to train Machine Learning and Deep Learning models to classify individuals

frames. The models are evaluated against test data and hold out data based on both how

well they can classify individual frames, and by how accurately they can overall recognise

different actions and criteria. For example how well a model can classify a frame as a

”Hop” and how well it can count the number of valid Hops in a number of videos. A

similar process is followed for the other actions Gallop and Skip as well.

3.4 Data Preparation

3.4.1 Joint Extraction - Media Pipe

The second step in Figure 3.2 is performed with Google AI’s pose detection library Media

Pipe which is based on the BlazePose Model as described in Section 2.4. The library

provides multiple solution API that help solve some of the issues related to noise in

data, mentioned in Section 3.3.1. Media Pipe identifies 33 joint landmarks as shown in

Figure 3.3 and also a segmentation mask of the Region of Interest (ROI). The output

coordinates POSE LANDMARKS contain the following:

• x: the x coordinate of the landmark.
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Figure 3.3: 33 Landmarks of Media Pipe

• y: the y coordinate of the landmark.

• z: the depth or the landmark as taken from the mid-point of the hips. This value

gets smaller as the person/ landmarks move closer to the camera.

• visibility: indicates how visible the landmark is in the image, whether it is occluded

or jut absent overall.

The blurring of the faces or existence of face masks does not seem to affect MediaPipe’s

ability to recognise a person in the frame and identify the desired joint landmarks. There

are also the following solution APIs that were tuned as per the requirements of this

project:

• STATIC IMAGE MODE: This is used to set the input stream to a video over a

single image. If set to a video stream, MediaPipe attempts to detect/track the most

prominent person in the first frame of the video and then subsequently tracks those

landmarks for the rest of the video. This helps reduce the latency and computational

power of the system.

• MODEL COMPLEXITY: [0-2] The accuracy of ROI and landmark detection

goes up as this is increased.

• MIN DETECTION CONFIDENCE: [0-1] The threshold of probability for a

person or Region of Interest to be detected. This can be varied and changed to a

higher value to put more emphasis on the main actor in the video i.e. the child

performing the action and not the people in the background. It is currently set to

0.5 and can be modified.
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• MIN TRACKING CONFIDENCE: [0-1] The threshold of probability for the

landmarks to be tracked. A higher value of this would mean that the model would

more often try to re-invoke the detection of a ROI in subsequent frames. This would

improve robustness but affect the latency and performance of the system.

3.4.2 Joint Extraction - Limitations

There are some limitations to MediaPipe’s accuracy and robustness of landmark detec-

tion wrt this dataset. These are based on the 2 stages of MediaPipe’s ML pipeline (1)

Identifying the ROI in the frame (2) Identifying the 33 landmarks in the ROI.

Validity of data:

There are videos where MediaPipe fails to recognise any landmarks for a majority/ all

of the frames. These frames are not usable for training models as no joint data can

be extracted from them. On observing different videos with similar issues, it can be

concluded that there are two major reasons for this. Figure 3.4 shows some examples

of such invalid frames. The first reason is uniform or clothing that the child is wearing,

which is often monochrome, and seems to make it difficult for MediaPipe to recognise

landmarks. In some cases as in (A) of Figure 3.4, the background matches the color of

clothing and hence MediaPipe cannot discern a ROI in the frame. In (B) we see that the

child is standing oriented sideways to the camera i.e. the front of the body is not fully

visible, which also makes it difficult for landmarks to be identified.

In order to understand how much of the data needs to be potentially discarded because

of the existence of these ”invalid” frames, a script was written to go through the data

and collect information about the percentage of invalid frames in every video, for different

batches of data. A threshold of 50% was chosen to differentiate the videos i.e. if more

than 50% of the frames in a video are ”invalid”, the video is classified as not useful and

discarded. Figure 3.5 shows the number of discarded videos vs total number of videos for

different sets of data. It can be seen that the invalid videos are negligibly small and not

a sizable amount to be concerned about if removed. Hence these videos were removed.

This is similar to the approach by Gatt et al. (2019) mentioned in 2.3.1

Improper Landmarks:

There are also videos where MediaPipe does recognise landmarks, but not accurately.

There are a variety of reasons why this can happen - most often just as discussed earlier,

because of orientation of the body towards the camera or because of monochrome clothing.

These kind of outliers can mislead models that are trained on the data and affect the
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Figure 3.4: Frames where MediaPipe cannot recognise a ROI or land-
marks.

Figure 3.5: % of Invalid Data vs Total Data

performance of action recognition. Figure 3.6 shows an example of MediaPipe giving an

output of completely wrong landmarks for an example of the Gallop action.

It can be seen that the child is standing to the side, with the front body not facing the

camera. Unlike before, it is harder to determine how much of the data is affected in this

way by means of a script or an automated method. It is also cumbersome to manually

go through the data and remove such videos.

Normalization:

The normalisation of joint landmarks is necessary to ensure that the model properly learns

from the data and is not mislead by numerical differences that do not represent any useful

information about the nature of the actions. This is especially relevant because of the



Draft of 10:44 pm, Friday, August 19, 2022 16

Figure 3.6: Improper Landmarks - Gallop Example

nature of the video data, where we are dealing with joint locations of videos that are not

all in the same frame of reference.

MediaPipe provides an existing normalisation of the x and y coordinates of the iden-

tified joint locations such that they lie between [0,1]. This was further improved by a

hip-based normalisation technique, where the original coordinates of the landmarks were

transformed into a plane/frame with a fixed size, such that the new coordinates are the

relative offsets from the location of the left hip which is fixed. These offsets are calculated

from the distance between the landmarks and the starting position of the hip (i.e. the

position of the hip in the first frame where MediaPipe can correctly identify the ROI and

landmarks) and then mapped to the newly constructed plane.

Note: The above mentioned normalisation technique was developed by me and other

peers working under Prof. Sanchez as a collaborative effort.

3.5 Heuristics

3.5.1 Heuristic - Hop Left

The Hop Left action is defined by the criteria of hopping on the left leg throughout the

video, while the right leg stays above the ground for the entire duration. The requirement

is to count the number of such valid hops. The key objectives here are (1) Checking if the

left leg is rising above the ground level during a hop (2) Checking if the right leg stays

above the ground. So the aim is to develop a heuristic that can accommodate both of

these objectives to the best of its ability. In order to do this the videos were examined

to understand if there are any learnable patterns in the movement of the joints from

frame to frame. Out of the 33 landmarks that MediaPipe can recognise, the hip and legs

were examined as the Hop action involves mainly their movement. Figure 3.7 shows the

y coordinates of the hip + leg landmarks over a video. Note that MediaPipe’s axis is
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oriented such that a decrease in the y coordinate means upward movement.

Figure 3.7: Analysing Left Leg + Hip Movement - Hop Left

We can see that the hip shows the most prominent oscillations about a a central mean

as the child hops up and down on the ground. As we go further down the body to the

knee, ankles and feet, the oscillations get lesser and lesser distinct. This is because the

children do not hop by very large heights, and the leg often gets displaced i.e. the leg do

not go up and down in a constant straight line. The hip exhibits a more stable kind of

movement that can be learnt from and can be used to develop the heuristic. We also want

to check if the right leg ever touches the ground once the child begins to hop. MediaPipe’s

POSE LANDMARKS are very sensitive to the smallest of change, so if we were to

track the starting position of the right foot on the ground and check if the subsequent

movement was above that, it would not work as expected because of the perspective and

distance from which the camera is situated. Instead we pick a range as shown in the

Figure 3.8 and define the heuristic such that the right leg is considered to be above the

ground when it is within the range of between the max height of the foot and the 75%

quartile height of the foot. All of this is collectively used to define the heuristic with the

labels in 1.

Algorithm 1 - HOP LEFT HEURISTIC

if Right Foot between Max Height and 75% quartile height then
if Left Hip > Mean and Left Foot above ground then

action← JUMP
else

action← DOWN
end if

end if
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Figure 3.8: Analysing Right Leg Movement - Hop Left

3.5.2 Heuristic - Hop Right

TheHop Right action is defined by the criteria of hopping on the right leg throughout the

video, while the left leg stays above the ground for the entire duration. The requirement

once again is to count the number of such valid hops. The approach to be followed is

similar to the Hop Left action in Section 3.5.1.

Algorithm 2 - HOP RIGHT HEURISTIC

if Left Foot between Max Height and 75% quartile height then
if Right Hip > Mean and Right Foot above ground then

action← JUMP
else

action← DOWN
end if

end if

3.5.3 Heuristic - Skip

The Skip action is defined by the criteria of stepping forward and hopping on the same

foot, and alternating this movement between feet. The objective is to count the number

of skips performed by the child.

Unlike Hop discussed in 3.5.1, the Skip action is not 2-Dimensional i.e. it also involves

a depth based movement forward towards the camera. MediaPipe’s z coordinate for the

joints were investigated for this, but did not show any definite decrease as illustrated in

Figure 3.9. In comparison, the distance between the hip and the foot increases as the

child moves closer to the camera, because of perspective. The videos were analysed to
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Figure 3.9: Comparing MediaPipe’s depth z-coordinate with perspective

identify any learnable information from the joint data and the hip and leg landmarks were

analysed for this purpose, as the movement of these contribute the most to the activity.

Figure 3.10 is a plot of the movement of the legs and hip during the skip action. The

Skip action can be thought of as broken up hops, but on alternating feet with forward

movement. The troughs in Figure 3.10 are not as well defined as the oscillations that we

see for the Hop action in Figure 3.7 and this can be attributed to the perspective shift

and changing depth of the child from the camera over time. Notice that the troughs are

deeper at around the 250 frame mark in this example, when the child is closer to the

camera.

Figure 3.10: Analysing Leg + Hip Movement - Skip
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The heuristic was chosen with theses aspects in mind, so as to reflect both the move-

ment of the right and left foot. For the first skip, the starting frame of the video is used to

find the initial positions of the left and right foot. Subsequently, this position is updated

after the completion of every skip. As mentioned in Section 3.5.1, it is useful to take both

the movement of the hip and feet into account as the hips show the most pronounced

movement. Hence the starting position of the hips are tracked and updated as well, for

each skip. If the current position of the feet are above the initial position by a threshold

of 0.1, and if the current position of the hip is above the starting position, the frame is

labelled as a Skip. This threshold was chosen after going through different videos and

making an estimate of a good choice based on perspective and the rough starting distance

of the children from the camera. Note that the change in perspective as the child moves

towards the camera results in skips that are seemingly higher, and so this threshold of

0.1 really represents the first skip that is furthest from the camera. 3 summarizes this.

Algorithm 3 - SKIP HEURISTIC

if Left Foot - Left Foot Start > 0.1 then
if Left Hip > Left Hip Start then

action← SKIP
else

action← NONE
Update Left Hip and Left Foot Start
end if

end if
if Right Foot - Right Foot Start > 0.1 then

if Right Hip > Right Hip Start then
action← SKIP

else
action← NONE

Update Right Hip and Right Hip Start
end if

end if

3.5.4 Heuristic - Gallop

During the process explained in 3.4.2, it was observed that the Gallop action had the

highest % of invalid frames where MediaPipe did not recognise any landmarks i.e. he

videos that were classified as not useful had 70%-80% of invalid frames, which was more

than the other actions. On random checking of multiple videos, the Gallop action also

showed a lot of cases of improper landmark detection. The reason for why this is more

prevalent in the Gallop action as compared to Hop and Skip is majorly because of the
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orientation of the child wrt the camera, where most of them are standing with their bodies

tilted to the side

Figure 3.11: Improper Landmark Detection - Gallop

Figure 3.12: Comparing Depths for Different Videos - Gallop

A few examples are shown in Figure 3.11. The problems vary from displaced land-

marks, entirely wrong ones and also half the landmarks disappearing when the child is

too close to the camera. There are also other factors that add to the problem as discussed

in 3.4.2 like background matching the color of the uniform/ monochrome uniforms etc.

There were also an unusual number of videos where the children were either standing

completely still, or performing a different action entirely - like running forward, or hop-

ping forward. This might have been because Gallop is the most physically complex action

to understand and execute, as compared to Hop and Skip.This can be further illustrated

by plotting the joint coordinates over the frames of a video.

A few examples of this are shown in the figures above. Figure 3.12 shows 4 different
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Figure 3.13: Comparing Leg + Hip Movement for Different Videos -
Gallop

videos of the Gallop action and compares their depth, which is indicated by the distance

between the hip and feet, which should increase as the child moves closer to the camera

because of perspective. Comparing it to same kind of plot we can see that although

there was a clear gradual increase for the Skip action in Figure 3.9, the Gallop action in

Figure 3.12 shows varying behaviour for all 4 examples showing that there is no consistency

in what the children are doing in different videos. Figure 3.13 shows the movement of the

Hip and the Legs during the Gallop action for the same 4 videos, and once again we can

see that there is no consistent behaviour that can be observed and used to train a model.

Comparing this to the Hip and Feet Analysis performed in the previous sections for Hop

in Figure 3.7 and Skip in Figure 3.10, we can see how there are learnable patterns in those

plots unlike the Gallop action.

3.6 Training Models

The labelled frame data generated from the heuristics above were used to train different

models for different actions with the Random Forest algorithm and a Neural Network.

The data and the problem are treated as a supervised classification task, where the aim

is to classify a frame of the video as one of the labels that were assigned to it by the

heuristic. The specifics of the models and the hyperparameters chosen are stated below:
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Random Forest:

The Random Forest algorithm is an ensemble method that uses an uncorrelated set of

decision trees that can be used to perform a supervised classification task. A majority

vote is used to decide the predicted class from the individual decision trees. The algo-

rithm has a reduced chance of overfitting because it averages out or polls the result from

different uncorrelated decision trees. Two of the hyperparameters that were fixed are the

max depth and the number of estimators, which were set as 5 and 100 respectively.

The metrics that were taken into account are the train accuracy, test accuracy, confusion

matrix and F1 score.

Neural Network:

An Artificial Neural Network (ANN) is a system of neurons that aim to mimic the func-

tioning of the brain by means of a network with weights associated with each link. They

are especially suitable for learning relationships in data that cannot be articulated by

means of rules or correlations. The networks learns by adjusting the weights on the links

as it learns, in an attempt to accurately predict different classes. They are also suitable

for noisy data.

Figure 3.14: Neural Network Architecture for Classification

For the purpose of the classification task, a basic network was set up with the ar-

chitecture mentioned in Figure 3.14. The optimizer used was Adam (a combination of
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AdaGrad and RMSProp, which are improvements to stochastic gradient descent) with

a Categorical Cross-Entropy loss function The model was trained for 100 epochs ( or

lesser based on the observed convergence of the validation accuracy) and a batch size of

10. The metrics used to evaluate the performance of the model are the training accuracy

and validation accuracy respectively.



Chapter 4

Experiments and Results

4.1 Model Performance

This section presents the results of training the models on the labelled joint data collected

from the frames of the videos as described in Section 3.5.1 and Section 3.5.3. It also

describes the joint features that were chosen and any data preparation steps that were

done before the training process.

4.1.1 Hop Left/Right

Some of the videos were discarded by the approach mentioned in Section 3.4.2. Since

the heuristic that was developed involved an analysis of both legs and the hip, only these

joints/features were chosen to train the models, and different combinations of them were

tested to compare results. A train-test spilt of 90%-10% was taken for the Random Forest

model and a validation split of 0.1 for the Neural Network. As described in 3.1, there are

different Levels of the data, and the children gain a better understanding of the data to

perform it more accurately in Level 2, as compared to Level 0 and Level 1. Hence these

subsets of the data were also used to train the data separately to investigate if there was

a change in the accuracy. 4.1 shows the results for Hop Left for different combinations of

joints, and Levels using the Random Forest Algorithm.

Joints Levels Train Accuracy Test Accuracy F1 Score
Legs + Knees + Hips 0,1,2 0.8079 0.8038 0.8038

Legs + Hips 0,1,2 0.8081 0.8048 0.8048
Legs + Knees + Hips 2 0.8268 0.8256 0.8256

Legs + Hips 2 0.8239 0.8213 0.8213

Table 4.1: Hop Left Results - Random Forest

25
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The classes/labels in the data were categorically encoded as [0,1] which represents the

labels [’DOWN’, ’HOP’] using a Label Encoder and then fed into the Neural Network.

The input dimensions of the network were changed appropriately based on how many

joints/ input features were selected. A validation split of 0.1 was chosen and the results

of the Neural Network are shown in 4.2.

Joints Levels Train Accuracy Validation Accuracy
Legs + Knees + Hips 0,1,2 0.8023 0.7839

Legs + Hips 0,1,2 0.8036 0.7930
Legs + Knees + Hips 2 0.8087 0.7949

Legs + Hips 2 0.8065 0.8104

Table 4.2: Hop Left Results - Neural Network

The best performing model was then tested on different videos to check how well they

performed in real-time. MediaPipe was used once again to extract the joints from the

frames in the video, and the selected features/joints were used to predict the output label

for the frame with the trained models. Figure 4.1 shows these results for the Hop Left

action.

Figure 4.1: Hop Left - Real Time Classification Results

Joints Levels Train Accuracy Test Accuracy F1 Score
Legs + Knees + Hips 0,1,2 0.8088 0.8053 0.8053

Legs + Hips 0,1,2 0.8062 0.8007 0.8007
Legs + Knees + Hips 2 0.8450 0.8347 0.8347

Legs + Hips 2 0.8428 0.8366 0.8366

Table 4.3: Hop Right Results - Random Forest
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Joints Levels Train Accuracy Validation Accuracy
Legs + Knees + Hips 0,1,2 0.8014 0.7663

Legs + Hips 0,1,2 0.7999 0.7731
Legs + Knees + Hips 2 0.8323 0.7651

Legs + Hips 2 0.8382 0.7679

Table 4.4: Hop Right Results - Neural Network

Figure 4.2: Hop Right - Real Time Classification Results

Similar experiments were carried out for the Hop Right action and the results are

given in Table 4.3, Table 4.4 and Figure 4.2, which are the training results for Random

Forest, Neural Network and real-time results respectively.

4.1.2 Skip

Once again, some videos were discarded based on the Section 3.4.2. Since the heuristic for

Skip was developed by analysing the Legs and the Hips, only these features/joints were

included for the training process. Different combinations of joints and levels were used

for the training process to compare the results. A train-test split of 90%-10% was taken

and 4.5 shows the results of the Random Forest algorithm.

Joints Levels Train Accuracy Test Accuracy F1 Score
Legs + Knees + Hips 0,1,2 0.8826 0.8817 0.8817

Legs + Hips 0,1,2 0.8818 0.8812 0.8812
Legs + Knees + Hips 2 0.8838 0.8856 0.8856

Legs + Hips 2 0.8833 0.8843 0.8843

Table 4.5: Skip Results - Random Forest
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The classes/labels in the data were encoded categorically as [0,1] representing the

labels [’NONE’,’SKIP’]. A validation split of 0.1 was taken and the results of the Neural

Network are shown in Table 4.6.

Joints Levels Train Accuracy Validation Accuracy
Legs + Knees + Hips 0,1,2 0.8664 0.9283

Legs + Hips 0,1,2 0.8649 0.9269
Legs + Knees + Hips 2 0.8579 0.9012

Legs + Hips 2 0.8609 0.9091

Table 4.6: Skip Results - Neural Network

The best performing model was tested on the videos to check classification of frames

in real-time. Some snippets of the results are shown in Figure 4.3.

Figure 4.3: Skip - Real Time Classification Results

4.2 Discussion

4.2.1 Hop Left/Right

We can observe from Tables 4.1, 4.2, 4.3, 4.4 that the models that were trained on just

the Level 2 data show a higher accuracy than the models that were trained on Level

0,1,2 data. This could indicate that the models learn better from the videos in Level

2, because the children were more accustomed to the actions at that stage and hence

performed them better. The Random Forest and Neural Network models both showed

comparable performance. The model accuracies reported above are based on frame-by-

frame classification of the labelled data. To test how well the model performs on the full
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video i.e. how well it can count the number of hops, a total of 10 videos were picked

randomly from the Hop Left and Hop Right data, with a mixture of improper and proper

hops. The result derived from the model predictions for these data were then checked

against manually derived results based on human observation. The model was able to

accurately count the hops in 7/10 and 8/10 of the videos in the Hop Left and Hop Right

action respectively. Even for the videos where the model did not count the exact number

of Hops correctly, it was off by only a few numbers i.e. was able to identify some hops.

It was also observed that the model seems to do better at checking the validity based on

whether the leg that is not performing the hop stays above the ground. On the other

hand, the model does well for checking if the leg that is hopping leaves the ground only if

the child jumps by a detectable height. This is because the children are standing at quite

a distance from the camera and because of perspective, even a small movement upward

can seem like a hop, and alternatively, the height of the hop as perceived by the camera

does not fully reflect the actual height that the child hops by. It was also observed that

in general, the model performs better at counting hops for the older children as compared

to the younger. The reason for this could be partly because there is lesser data of the

younger children, and within this data there are a lot of outliers where the children are

not really performing the action well.

4.2.2 Skip

The results for the Skip action were observed to be higher than Hop Left and Right,

as can be seen in Tables 4.5 and 4.6. This was surprising, because based on the data

and existing research mentioned in Section 2.1, actions that involve depth and movement

towards the camera should be harder to perform HAR as compared to activities that move

in 2-Dimensions like Hop Left/Right. To further investigate validity of these results, 10

videos of the Skip action were randomly chosen to check how well the model can count

the number of skips in the videos. It was observed that the model was able to accurately

count the number of Skips only in 4/10 of the videos. This is a direct indication of the fact

that the frame-by-frame accuracy of the models are heavily dependent on the heuristic

that was defined for the actions. The thresholds chosen for the heuristic to identify a skip

were set by trial and error, on observing different videos. But with a dataset this large,

it is difficult to accurately find a threshold that represents the full data. Another reason

could be that the position of the camera is not the same from video-to-video. Hence

even if the children are standing at the same starting location, it is difficult to determine

a threshold that works across all videos. Hence, the frame-by-frame accuracy does not

translate well into individual video based accuracy.



Chapter 5

Conclusion & Future Work

5.1 Summary

This projected investigated a joint-based approach to perform action recognition and

identify improper actions for a dataset of children performing the actions - Hop Left, Hop

Right, Skip and Gallop. The method involved the extraction of body landmarks/joints

from the video data, followed by labelling individual frames by means of different heuris-

tics. The Random Forest algorithm and a Neural Network model were trained for the

supervised classification task of correctly identifying the labels of the frame data. The

performance of the models were investigated by frame-by-frame accuracy with model met-

rics and video accuracy by testing them on randomly selected videos from the dataset.

The Hop Right/Left actions showed the best performance amongst all the actions.

During the course of the project, different observations about the data and its effect

on the model training and results were observed. One of the main issues with the data

is that it was not labelled or annotated, much like a lot of real-world raw data that is

collected from a source/ sensor/ camera. This is especially challenging because a lot of

the SOTA models and research in HAR (observed in the Literature Survey) are trained on

huge annotated datasets of adults and even they seek to perform action recognition, i.e.

distinguishing between different actions and not really anomaly detection or ”improper”

action detection. The data was also not divided into ”valid” and ”invalid” data - in terms

of the criteria that define different actions. Even though the end goal is to analyse the

motor-skill development of the children, the ambiguity of the data results in the question

of whether there is enough data with ”proper” actions to train a model to learn from

them. Even in the paper by Suzuki et al. (2021) as mentioned in Section 2.5.1, the data

was divided as ”normal” and ”abnormal” before the training process. The next section

will discuss how this project could be carried forward, considering these observations and

challenges.

30
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5.2 Future Work - Possible Improvements

A possible next step would be completely dividing and annotating the data into ”valid”

and ”invalid” actions, so that the models can better learn the differences between the two

or better learn the action from the valid data. This would need to be done manually,

which is time consuming but necessary because of the nature of the data. A second step

would be manually annotating the frames of the valid and invalid videos, which would

remove issues that a generalised heuristic can pose. In the process, it would also be useful

to manually clean out the data more, and identify more videos that are not useful for the

model training process.

MediaPipe performed well for the Skip and Hop Left/Right actions, but was at a

disadvantage in the Gallop action because of the orientation of the body wrt the camera.

A future step could be to try out other more powerful libraries like OpenPose, PoseNet

etc with GPU support. This would be computationally more intensive than MediaPipe,

but possibly more accurate. There are also improvements that could be made based on

the development of the heuristic for the approach mentioned in this project. For instance,

one idea would be to choose different thresholds of hop/skip height based on the age/

bodily measurements of the children. Thresholds that are scaled based on distance and

perspective from the camera might also work for actions like Skip and Gallop, where the

child is moving towards the camera.

Since the movement of the landmarks can be treated as time-series data, Binary Seg-

mentation could be explored to find regions of interest within them i.e. regions where

there is movement or an action taking place. This might save the time and effort that

goes into manually cropping the videos. Further, LSTMs and CNNs could be used if

the data was all cropped to be the same input size to feed the models. Auto-encoders

have been explored by Suzuki et al. (2021) to use a encoder-decoder network to learn to

identify faults, and this along with data preparation and augmentation could yield better

results of classification.
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