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Human Action Recognition
A Novel Approach to Count Repetitive

Actions

Arun Jayaprakash, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Dr. Inmaculada Arnedillo-Sanchez

Gross Motor Action Recognition in children is a nuanced field of research with many
complexities. While general human action recognition has been well researched with a
plethora of off-the-shelf solutions for pose and activity detection, there has been compar-
atively much less research aimed towards child action recognition. Such a system aimed
towards children has a large number of applications in assessing growth of children. Iden-
tifying and measuring such activities can be used as an indicator of gross motor skills
development in children. Gross motor skills are closely related to cognitive development
and thus such a system can be used to determine the onset of growth issues in children.
By detecting and identifying such issues at an early stage, it becomes possible to take
corrective actions accordingly. This project aims to create a system to identify and count
4 repetitive actions of squatting, jogging on a spot, walking on a line and running and
coming to a stop on an in-house dataset of children. The project proposes a single-frame
classification approach for action recognition in children. By breaking down videos into
frames and assigning individual labels for each frame specifying an intermediate state for
each action, a new and more interpretable approach to action recognition is proposed
that does not rely on complex black-box neural networks. The efficiency of the proposed
model was evaluated and possible improvements and drawbacks are identified. This dis-
sertation also highlights the key issues that were faced while working with data pertaining
to children.
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1 Introduction

1.1 Motivation

Every child matures through different stages as part of their growth. Existing studies
such as Jean Piaget’s 4 stages of cognitive development state that each child acquires a
particular set of skills during a particular stage. These skills encompass both motor skills
as well as the cognitive skills necessary to process and understand information.

As every child is expected to acquire a similar set of skills around the same stage
of their growth cycle, a child that does not possess a particular skill or is struggling to
learn a skill may be facing growth issues. Thus there exists a strong link between motor
skill activities and the cognitive development of children [1]. Determining the onset of
such cognitive or motor-skill related growth issues at an early stage itself is imperative in
treating such developmental problems. Thus, leveraging technology to monitor and assess
the growth and development of children may prove to be highly beneficial in detecting
onset of growth issues or difficulties in learning. However such technologies aimed towards
children, remain a largely unexplored avenue.

1.2 Problem Definition

This paper is aimed towards studying 4 actions that are repetitive in nature from an in-
house dataset - squatting, jogging on a spot, walking on a line and running and coming
to a stop. The primary objective is to identify the action performed by a child from a
video input. And secondarily, to count the number of actions performed. Such a system
would have a large number of applications in monitoring growth of children. Extensive
research has already been carried out in regards to pose estimation and action recognition.
A majority of such systems rely on neural network models such as Long Short-Term
Memory and other Convolutional Neural Network or Recurrent Neural Network models
and approach human action recognition as a time-series problem to identify activities.
The dataset provided contains labels for the activities performed, but does not include
any annotations regarding the number of actions performed nor the timestamps at which
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certain actions are done. Since this information is not available, pre-existing solutions are
inadequate to solve the problem to be tackled. As a result, a new approach that breaks
down human action recognition into a classification problem at individual frame level is
proposed. The system identifies intermediate states for each action using heuristics and
assigns these as labels for each frame. Simple machine learning algorithms are then used
to solve the classification problem. And finally by monitoring the predictions of the ML
models, the counts of actions is obtained.

The pinnacle of this work would be to create a monitoring system that can be deployed
in today’s world which is capable of identifying developmental issues in children. However,
this paper aims to identify the feasibility and challenges when working towards creating
such a system, by focusing on the 4 aforementioned actions.

Figure 1.1: Actions - Squat, Jog on a Spot, Walk on a Line, Run and Stop

1.3 Dissertation structure

The next chapter of the dissertation covers the related research carried out in the field of
human action recognition. The chapter outlines general human action recognition meth-
ods from recent times and also covers research done regarding child action recognition in
particular. The best performing State-Of-The-Art models for human action recognition
are also discussed in Chapter 2. The chapter also covers some of the common challenges
faced during action recognition in general. Chapter 3 goes in-depth into the details of the
proposed pipeline and all the steps taken to create the system such as feature extraction,
normalization, intermediate heuristic based labelling, machine learning algorithms and
the final buffer approach to obtain individual action counts. Chapter 4 details the exper-
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imental setup used to test the system created and also analyzes the results to understand
shortcomings and strengths. The final chapter, Chapter 5 concludes the dissertation and
also states possible directions to continue the research forward by recognizing drawbacks
and potential improvements.

3



2 Related Works

Extensive amounts of research have already been carried out with regards to Human
Action Recognition (HAR) due to the very wide range of applications of HAR. Due to
numerous factors such as background variations, lighting, behavioural variations, varia-
tions in clothing and occlusion issues, HAR is often considered to be a challenging and
difficult problem to solve with accuracy in real-world use cases. This section outlines var-
ious approaches towards HAR that have been explored in the past and tries to identify
approaches that align with the goals of the project. The section also delves into recent
research regarding child action recognition and outlines general challenges in HAR. The
best State-Of-The-Art models are also explored to choose a suitable fit for the disserta-
tion.

2.1 General HAR Approaches

HAR is generally considered to be a time-series problem, due to the temporal relation
between different frames and the vast majority of the currently existing state-of-the art
models consider input features as time-series data. The time-series approach towards
HAR problems may be attributed to the influential work by Bobock Et Al. [2]. The pa-
per proposed concepts of Motion History Image (MHI) and Motion Energy Image (MEI),
where the MEI template defines a binary image to identify where motion occurs in the
video and the MHI template contains historical temporal information at individual pixel
level. Such approaches based on a global representation of the human body and its at-
tributes are termed Holistic approaches. However, holistic based approaches became less
relevant over time as these approaches were less robust to common HAR constraints such
the camera view point and occlusion. As a result focus shifted towards Local Representa-
tion Methods which aim to extract local features such as edges and key points of interest
such as joints. These features are then aggregated and tracked over time. A large amount
of research has been carried out to properly identify points of interest and to define local
descriptors for the detected points [3].

Multiple different taxonomies are applicable to HAR methods since various new ap-
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proaches are constantly being explored in the field. Existing approaches that utilize
time-series data may be broadly grouped into 4 categories - Statistical, Shallow Machine
Learning, Ensemble and Deep Learning methods. Out of these approaches, Deep Learn-
ing solutions are most commonly used since they are efficient in dealing with time-series
data. A majority of these approaches use Recurrent Neural Networks and Long Short-
Term Memory Networks to identify human activities [4]. An alternate, more broader
subdivision of action recognition groups approaches into 2 categories - the aforementioned
deep learning methods and handcrafted feature methods such as the holistic approaches
mentioned earlier [3]. More recent deep learning methods are further subdivided into
different groups based on the networks used and the type of data stream uses, whether
its spatial or temporal. Deep learning approaches may be generally grouped into 2D CNN
methods, RNN methods, 3D single-stream or multi-stream approaches and convolution-
free methods [5]. The above taxonomies are vision-based HAR approaches which use
video data for action recognition. However the development of motion sensors such as
Kinect and improved sensors in wearable devices and smartphones have also paved the
way for high quality sensor motion data which are used as input in sensor-based HAR
techniques. However, these approaches are not explored further in section since this body
of work is a vision-based HAR approach.

The advent of deep neural networks have introduced a number of efficient deep learn-
ing based solutions for HAR - The efficacy of 3D convolutional networks (CNN) which
use features from temporal domain in addition to the standard spatial features used in
traditional 2D CNNs, have been proven by Ji Et Al. [6] in HAR tasks. But such net-
works require fixed input-size and defining a fixed input size along the temporal domain
proved to be a challenge and many techniques involving fusion and pooling were explored.
Further research of combining 3D CNNs and Recurrent Neural Networks was shown to
provide good results for HAR on public datasets such as the KTH dataset and this ap-
proach for HAR gained widespread popularity [6]. A different deep learning approach for
HAR involved creating 2 separate networks where one network learns spatial information
from frame data while a second network learns temporal information from optical flow
data [7], where ptical flow refers to the motion of individual pixels from one frame to the
next, and can be used to understand the motion of a body in a video

Recurrent Neural Networks and Long Short-Term Memory Networks have a proven
track record for identifying short-term actions while Convolutional Neural Networks gen-
erally perform better when dealing with long-term actions that are repetitive in nature [8].
However, both RNNs and LSTMs, as well as other time-series based methods require fixed
input size where the input is a fixed number of frames from the video. This sliding win-
dow of features which correspond to a few seconds or less from the video is thus a key
factor in creating an accurate time-series model. If the length of the window is chosen
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to be too low, activities may inadvertently get terminated before completion and sim-
ilarly too small values may terminate the window before completion [9]. Banos et al.
extensively study the effects of window size in HAR and find that a window size of 1-2
seconds is ideal for most activities, including longer ones [10]. However, the dataset used
in the study is that of adults [11], and does not contain the large amounts of variance
that are seen in child behaviour. The dataset considered for the project contains videos
of varying lengths, and within each video different children start performing actions at
different points of time. In addition to this, different children perform different actions
with varying duration - for example a younger child would hold a squat position for a
much smaller duration than an older child. Because of this difference in lengths, LSTMs
and RNNs were difficult to apply on the data. Also, it is not a straightforward to obtain
the count of actions performed using a time-series approach without having annotations
for the exact timestamp at which an action is performed in the video.

2.2 Child Action Recognition Approaches

Many of the challenges associated with the dissertation are due to the innate nature of
variation in child behaviour. Unlike adults, children have not developed the cognitive
skills necessary to perform certain activities accurately and as a result there is a large
amount of variability in the dataset. To understand, how such variability can be tackled,
existing research regarding child activity recognition was explored.

Pandey et al. propose a new method for detecting different actions on children with
autism. To tackle the problem of insufficient amounts of annotated training data, the
paper proposes a method that re-trains a classifier trained on the in-house autism dataset
with samples from a larger, publicly available dataset that are semantically similar in
optical flow. However, most of the actions that are considered are limited to primitive
actions which involve basic motion of one or two body parts [12].

A majority of existing research regarding child action recognition are sensor-based
methods, which utilize multiple sensor data to identify precise motion and subsequently
identify/label actions [13,14]. Such non-visual approaches have very high accuracy owing
to the quality and precision of the input data obtained from the sensors. However,
such approaches are inapplicable in the scenario since the dataset consists of videos only
without any additional sensor information.

The most similar body of work on Gross Motor Action Recognition (GMAR) in chil-
dren was done by Suzuki Et Al. in 2020 [15]. In this paper, the authors propose a fully
automated AI system for GMAR in children to identify growth disabilities. The authors
use OpenPose pose estimation algorithm to obtain the keypoints for the children from
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the video. However the keypoint detection were prone to errors such as missing keypoints
and detecting the wrong person from the video. The authors use a particle filtering ap-
proach using the the neck as a representative landmark of the detected body to correct
the aforemtnioned errors. The authors then use a CNN which was fed 8 frames mapped
to a single activity such as running, horizontal jump etc. [16]. In the previous work by
the authors on GMAR, an LSTM based approach was tested, but a CNN was opted in
place of LSTMs in the new approach as it was found to be difficult to tune the hyper-
parameters from the LSTM and improve performance. Zhang Et Al. explore a similar
approach of extracting keypoints from OpenPose and using LSTM models to create an
action recognition for children with autism [17].

Olalere Et Al. [18] investigate the efficacy of existing SOTA deep learning models
with respect to child action recognition. By comparing the performance of modern SOTA
algorithms on adult and child datasets pertaining to sports activity, it was observed that
modern day algorithms are capable of handling HAR for children. Since most SOTA
models are trained on predominantly adult data, it was expected that the performance
would be skewed towards adults, however this was not observed to be the case. However,
the investigation finds that child action recognition, especially for complicated activities
such as sports, is a much more complicated task due to high intra-class variance exhibited
by children.

2.3 State-Of-The-Art Frameworks

2.3.1 OpenPose

OpenPose is one of the most widely used libraries for 2D and 3D keypoint detection.
The open-source library works on real-time data and is capable of detecting multiple
skeletons from a video input. The library gained traction for its high accuracy on videos
with large number of people. In addition to the multi-person pose estimation, it also
provides solutions for detecting keypoints from face, foot and hands as well.

OpenPose utilizes a bottom-up approach to build a non-parametric approach termed
Parametric Affinity Fields to add information regarding individual limbs over the image.
The model uses CNNs to create features from individual frames. Pre-existing CNN model
VGG-19 is used to extract feature maps on which simultaneous body part detection and
association is performed. Part Affinity Fields are then used to assemble individual parts
to form the skeletal structure where the PAF is a 2D vector associated to individual limbs
and encodes information pertaining to the direction of one limb to another. OpenPose
has a proven accuracy and inference time on most public HAR datasets [19].
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2.3.2 HRNet

High-Resolution Net is a Convolutional Neural Network that was popular for using high
resolution representations of features throughout the learning process. While most ex-
isting algorithms learn using low resolution representations and then recover output res-
olution using low to high conversions, the HRNet model maintains the high-level image
representations and is able to produce highly precise spatial predictions. This also re-
sults in higher accuracy for pose estimation. The neural network consists of a number
of sequential as well as parallel networks of varying resolutions. The network also has
higher test scores when compared to networks such as OpenPose on public datasets such
as COCO and MPII [20].

2.3.3 MediaPipe

MediaPipe is an open-source machine learning framework that provides a plethora of
machine learning solutions such as pose estimation, face detection, object detection, box
detection, iris detection and selfie segmentation to name a few. It is a cross-platform
and lightweight framework which makes it ideal for a wide range of applications. Various
machine learning models under MediaPipe are currently integrated into various Google
products such as Google Lens, Google Photos and NestCam [21]. The library is written
in C++ and uses graph pipelines to ensure high inference speeds. However, MediaPipe
does not attain truly real-time inference speeds and the performance is dependent on
underlying hardware and quality of video input. MediaPipe’s pose landmark solution
utilizes BlazePose GHUM 3D model and this solution was used for keypoint detection in
the project owing to its efficacy on fitness related activities. This model is discussed in
detail in Methodology Section 3.2.

2.4 Challenges in HAR

Even SOTA models in HAR are prone to misclassifications on real-world data due to a
number of reasons [22]:

• Background clutter - In real-world scenarios, the background of the subject of in-
terest can have highly varying levels of noise. Outdoor scenarios with multiple
background elements adversely affect many SOTA models. For the in-house dataset
considered for this research, all videos are indoor with only a few constant back-
grounds, which makes object detection easier. However, several videos were iden-
tified which had adults in motion in the background which could cause issues for
SOTA models.

• Variation - HAR variations are generally classified as Intra-Class and Inter-Class
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Variations. The former refers to variations within a single class/action owing to
the fact that different people perform actions differently. Considering the example
of Jog on a spot action, the pace of the jog is open to interpretation and hence
different subjects will jog at varying speeds. This issue of intra-class variation is
even more severe when dealing with dataset of children as children tend to have
much higher variance with respect to activities when compared to adults. Inter-class
variations refer to similarities between different actions such as jogging and running
which could lead to misclassifications. Since the four actions considered for this
research are different form each other, inter-class similarity is of less importance in
the context of this project. However, when additional similar actions may need to
be considered in the future, intra-class variability could become more of a challenge.

• Lack of labelled data - Modern day deep networks typically require large amounts
of labelled data. Such well accurately annotated data is difficult to create with
regards to HAR. Many of the larger public datasets such as YouTube-8M provide
large amounts of data, but the annotations cannot be guaranteed to be accurate.
The issue of annotations is present in the dataset considered for the research as
well - although individual videos have been labelled as belonging to a particular
class/action, the counts of the action performed are not provided. Manually anno-
tating over 2000 videos to find activity count was also not feasible over the duration
of the study.

• Predicting discriminative frames - For any video pertaining to an activity, not all
frames from the video will be relevant or required for HAR. Identifying such key
frames and removing redundant frames is difficult due to differences in video dura-
tions and differences in when key activities begin in videos.

• Occlusions - Occlusions in tracking occur when the spatial state of an object to
be tracked is present in a video, while the key features used to detect the object
are not available. Self-occlusion occurs when one part of the tracked object’s body
occludes another, while inter-object occlusion refers to the case when two objects
occlude one another. Occlusions may also be partial or full based on whether only a
segment of the tracked object or the entire object itself is occluded respectively [23].
For any proper human action recognition model, it is necessary to include occluded
images in the training set. Angelini Et. Al [24] account for occlusion in images
by deleting key points using a random distribution to simulate occlusions while
developing a HAR model. However most research regarding occlusion handling is
aimed towards inter-object occlusion and not self-occlusion. Methods of handling
self-occlusion such as those used by Huang et al. utilzie multiple cameras to correct
occluded landmark points [25].
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3 Methodology

3.1 Overview

A six-stage approach is proposed to identify an activity and enumerate the number of
actions successfully completed in the video. The proposed pipeline involves extracting
key points from the video using existing SOTA framework MediaPipe. The extracted
key points are normalized to improve stability and then the problem is converted to
a classification problem at individual frame level by assigning intermediate state labels
using different heuristics for each action. Finally various machine learning models are
utilized to solve the classification problem and finally a buffer to count transitions between
predicted frame labels is used to obtain the total count of actions from the video. The
overall pipeline is pictured in Figure 3.1.

3.2 Data

The data provided consists of approximately 500 videos of children performing each of
the 4 actions jog spot, squat, walk on a line and run and stop. Since the data consists of
video footage of minors, the data is highly sensitive. As a result, protecting the identities
of the children and ensuring that the system is designed in a secure and ethical manner
that is foolproof was of the utmost importance. Prior to data handover, the videos were
completely anonymized by blurring faces of all the children. In addition, the children
also wore masks in the video which further removed distinguishable facial features.

Each subject was given 3 attempts for each action, where Level 0, 1 and 2 videos
correspond to the first, second and third attempts respectively. Thus, in general Level 2
videos are the videos in which the children performed the actions more accurately as they
learned from practice and grew more accustomed to the nuances of each activity. Level
0 and some Level 1 videos were cases where more mistakes were made in performing the
action and these videos would thus form the trunk of the incorrect activities that are
crucial in creating a proper machine learning model that can efficiently identify wrongly
performed activities.
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Figure 3.1: Pipeline

The dataset provided was a challenging and complicated dataset due to a number
of reasons. The primary reason was the very large variations in how different children
performed each activity - especially younger children performed different activities in
vastly different manners resulting in large intra-class variability. Since many videos were
unusable because of this issue, such videos had to be removed from the training dataset.
There were also videos particularly associated with younger children in which no action
was performed. However, identifying such problematic videos and manually filtering these
out was an unattainable task on a dataset of almost 2000 videos in total considering the
duration of the project. Another challenge with the data is the variations in the length
of videos - in each video the start and end timestamps of the action performed varied
significantly. As a result, identifying the exact start and end state of actions proved to
be difficult. Hence the videos were not trimmed and the full videos were used for further
processing.
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3.3 Key Point Extraction

The key features required to identify different actions are the x and y co-ordinates of
the various joints of the children from the video feed. MediaPipe’s Pose solution was
used to extract the required joint co-ordinates. The Pose estimation solution provided
by MediaPipe uses the BlazePose GHUM model to find key points.

3.3.1 BlazePose - MediaPipe

BlazePose is a lightweight Convolutional Neural Network model packaged under Medi-
aPipe that is geared towards fitness applications [26]. The model returns 33 keypoints of
a human body such as the endpoints of the eyes, nose, and various different joints. Such
a large number of key points ensures that a high degree of fidelity is obtained during
inference. The model is trained on 2 datasets, out of which the first dataset consists of
everyday poses, while the second dataset consists of various fitness and yoga poses. Thus
the model is ideal for fitness related activities. The BlazePose model utilizes a two-step
pipeline in which region of interest containing the primary person is identified, and the
region-of-interest cropped input is fed to a model which identifies 33 key points. The
model uses 2 networks - a body pose detector which first detects the presence of a human
in a frame and a pose tracker network which detects the 33 key points and also identifies
region-of-interest. If the tracker network does not find a human in the current frame,
the body pose detector is again invoked on the next frame. The person detector model
used relies on a face detection as it was found that detecting the face is the best method
for a neural network to learn the presence of a human [26]. To account for occlusion,
the dataset used for training the model was modified with simulations for occlusion by
adding coloured rectangles to cover different parts of the body. By adding such occluded
data to the training set, the model is capable of detecting keypoints that lie outside the
frame of view of the camera as long as the person detection model works.

The Python API for Pose Estimation was used to identify the key points for the
dataset. The Pose API returns x and y-ordinates with unit normalization on image
dimensions, the z co-ordinates indicating the depth of each detected point, as well as
visibility which provides the probability of the detected key point being actually visible
in the frame without occlusion. Out of the 33 key points returned by the API, only
points relevant to each action were stored. The model complexity used for inference can
be modified, and the maximum model complexity was used to ensure best accuracy with
the drawback of slower inference speeds. Minimum tracking confidence, which represents
the baseline for confidence value for successful person detection was increased from default
0.5 to 0.65. This implies that if the confidence of detection of tracked key points is below
this threshold value, person detection would be invoked again, otherwise person detection
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Figure 3.2: Pose Landmarks BlazePose GHUM 3D [26]

is not invoked in the new frame and the previously calculated keypoints are tracked for
future frames.

3.4 Normalization

Data Normalization is a key process in any machine learning pipeline to ensure numerical
stability of ML models. Standardization of training data is particularly important in
simpler ML approaches such as regression and can improve training times as well as
accuracy for most ML models. Min-max normalization or rescaling, Z-score normalization
and mean normalization are some of the more commonly used normalization techniques.

By default MediaPipe’s Pose Landmark model returns x,y co-ordinates in unit scale
[0,1] where the keypoint co-ordinates x and y are normalized by the image width and
height respectively. However, to future-proof the pipeline developed, additional hip-
based normalization was used. In general, the centre of mass defines the central point
for any object and in the case of the human body, this point lies slightly above the hips.
Also, in all the actions considered, as well as in any scenario in which the subject would
face the camera, the hips are most likely to be detected correctly by SOTA algorithms
since these are less likely to be occluded when compared to limbs or other extremities.
As per the guidelines governing the construction of the dataset, all actions start with the
subject facing the camera at the center of the screen at a fixed distance from the camera.
Hence, the x and y co-ordinates of the left hip were measured from the first successfully
recognized frame from the video. A new frame size for projection of the keypoints was
chosen as 640x360, however this may be changed based on requirements in the future.
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All keypoints tracked were then projected onto this new frame such that the co-ordinates
of the left hip always lie at (0.5, 0.5) and the other points are offset accordingly in the
new projected frame using the equations :

xnew = (x ∗ widthimage + (widthframe/2− xhip ∗ widthimage))/widthframe

ynew = (y ∗ heightimage + (heightframe/2− yhip ∗ heightimage))/heightframe

3.5 Training Dataset

The normalized keypoints returned from MediaPipe are used to construct a dataframe
for the ML model. A dataframe is constructed such that each row in the dataframe
corresponds to a single frame from the input video using Pandas data analysis library in
Python. The columns of the dataframe are the normalized x and y co-ordinates of key
points. All 33 key points returned by MediaPipe are not used for creation of the training
dataset, only the discriminative key points for each action are considered. The keypoints
tracked for each action are tabular in the below table.

Action Keypoints
Squat Left & Right Hip, Left & Right Knee
Jog Spot Left & Right Hip, Left & Right Ankle, Left &

Right Foot Index
Walk on Line Left & Right Hip, Left & Right Foot Index, Left

& Right Heel
Run Stop Left & Right Hip, Left & Right Foot Index, Left

& Right Shoulder

Table 3.1: Keypoints tracked

3.5.1 Outliers and Bad Data

During inference of MediaPipe it was observed that the framework was not detecting
complete keypoints in all frames and in some frames no keypoints were being successfully
detected. The number of frames in each video on which keypoint detection failed com-
pletely were counted. A skip frame % was calculated for each video by taking the ratio
of skipped frames to the total number of frames in the video. Videos with the percentage
of skipped frames greater than 40% were dropped from the study.

In addition to this it was also observed that there were videos in which no activity was
being performed and the child stayed still throughout the duration of the video. Such
videos would have a negative effect on the heuristic labelling approach defined in the next
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section and has to be removed from the training set. In order discern such bad videos,
the minimum and maximum values for the main key points from Table 3.1 were noted
for each video. Videos in which the observed maximum and minimum values were close,
were dropped from the dataset.

3.6 Intermediate Labelling

For each row in the in the dataframe pertaining to a single frame of the video, an in-
termediate label was assigned. The label represents the current state of the subject in
the frame. The labels represent various intermediate phases/states, which performed in
the correct sequence, collectively comprise the complete action which is to be recognized.
The labels were created based on heuristics created based on various factors such as
co-ordinate of discriminative keypoints, as well as distances between keypoints. Various
different heuristics were tested to identify an ideal fit. The best performing heuristics
created for each actions are discussed below.

3.6.1 Squat

The criteria for a proper squat activity was defined as when the child faces the camera
and bends the knees keeping the trunk (almost) straight. Thus the objective in this case
is to identify a proper squat satisfying the given criteria, and to count the number of
such proper squats performed during the duration of the video. Bending the knees such
that the ankles almost come to the same height as the hips is a key discriminative factor
to recognize a proper squat. This trait was used to create the heuristic for squat action.
In addition to the keypoints detected from MediaPipe, 2 new additional features were
calculated and added to the dataframe - the distance between the left knee and the left
hip and the distance between the right knee and the right hip. For a proper squat this
distance would reduce significantly since the subject is facing the camera.

Figure 3.3: Squat Posture
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Figure 3.4: Hip-Knee distance vs Frame

Thus 2 intermediate labels were assigned based on the hip-knee distances of the legs
as follows: if left knee-hip distance and right knee-hip distance < threshold, then the
intermediate label was assigned as Squat. If the distances were greater than the threshold
then an intermediate label of standing was assigned.

• Determining Threshold The value of the threshold is key in obtaining a proper
classifier, especially since there are only 2 class labels assigned. From plots of hip-
knee distance vs frame for Level 2 videos as shown in Figure 3.4 it was observed
that in a large majority of the videos an absolute cut-off value could be defined as
clear valleys and peaks can be observed in the graph. However defining one single
value for the entire set of videos would be difficult. Since possible outliers in hip-
knee distance, such as cases where the child is standing still were removed as part
of outlier removal 3.5.1, a drop in the hip-knee distance could be guaranteed for all
videos. The mean of the hip-knee distance for each videos was used to obtain an
approximate value for the threshold. Subsequently various different values around
the mean were tested using trial and error by visualizing the quality of the heuristics
on a set of random videos and the value was fine-tuned to 0.05.

3.6.2 Jog Spot

Jogging on a spot action was defined as taking individual steps on each leg, while staying
at a single stationary spot at a fixed distance from the camera. A step in this context
was defined as the action of lifting and landing a single foot on the ground. Thus the
final objective is to obtain the number of such steps taken on each individual leg.

Various different heuristics were tested for the action to find the heuristic that returned
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Figure 3.5: Jog on a spot

Figure 3.6: Ankle-Knee distance vs Frame

the best results. The best performing heuristic was obtained using distances between the
ankle and the knee of the subject in the video. Alternate heuristics using the y-coordinate
of the foot was explored, but yielded poorer results and is not discussed further.

The heuristic was created based on the bend in the lower half of each leg during jog
activity. This approach is similar to the heuristic used for squat action and is dependent
on the fact that the subject is facing the camera and is always at a constant distance from
the camera. From plots of Ankle-Knee distance vs frame number for the set of Level 2
videos, clear peaks and valleys was be observed in the graph. The plot for a single video
is pictured in Figure 3.6. However, unlike the case of squat action, the peaks and valleys
of both legs do not coincide and instead have a temporal shift. However, from the bend
in the knee it is still possible to ascertain which leg is currently lifted off the ground
and hence the single-frame labelling is still applicable in this scenario. Therefore, two
intermediate frame labels were assigned based on the condition: if left ankle-knee distance
< threshold and right ankle-knee distance > threshold, then the label was assigned as

17



’Left Leg Up’ and for the alternate case of left ankle-knee distance > threshold and right
ankle-knee distance < threshold label was assigned as ’Right Leg Up’. Frames that did
not satisfy any of the aforementioned conditions was assigned the label ’Unrecognized’.

Similar to the case of squat action, obtaining a good value for the threshold is a key
factor in model efficacy. The same approach of finding the mean and further fine-tuning
was used to obtain a threshold value of 0.065 for the threshold value.

3.6.3 Walk on a Line

The walk on a line activity consists of a number of heel-toe steps on a fixed line on the
ground. Thus the objective is to identify a proper activity of walking on a line and to
count the number of true heel-toe steps. A heel-toe step is defined as when one foot goes
in front of the other along a line where the heel of the front foot touches the toe of the
foot in the back.

Figure 3.7: Walk on a line

Walk on a line activity is a more complicated activity because of a number of reasons -
firstly, unlike previous actions which were always done at a stationary position at a fixed
distance from the camera, this activity involves forward motion towards the camera.
Secondly, occlusion issues which were absent in the previous two actions are a major
concern in this action since each foot constantly eclipses the other during each heel-toe
step. In addition to this, in order to distinguish between walking on a line and a simple
walk activity towards the camera, it is imperative that the feet are placed on the line
provided to the subjects. Thus, this line has to be detected and any step outside the line
is not a proper step.

3.6.3.1 Line Detection

Owing to background clutter as well as other noises in the video input, there are a large
number of lines in each frame of the video. However, only the thick line on the mat
on which the subjects stand is of interest to identifying walking on a line activity. In
all videos, the position of the camera and the mat on which the subjects perform the
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actions on are constant, which means that the co-ordinates of the thick line are constant.
However, minor variations to both these parameters were observed across different videos.
This meant that a robust pipeline to detect the thick line that the subjects walk on is
required. To detect the co-ordinates of this line, a pipeline was developed using OpenCV
package in Python. OpenCV is an open source Python library that offers a large number
of real-time image and video processing functions.

• Dilation: Dilation is one of the most commonly used morphological operators in
image processing. A morphological process is simply an image processing method
which applies a structuring element on an image to produce a new modified output
image. Based on the structuring element applied, different features can be obtained
from a raw input image.

Dilation involves convolving an input image with a kernel B. Dilation process works
only on grayscale images. In this process, the kernel is moved over the entire input
image such that the center of the kernel B, called the anchor point, coincides with
each pixel in the input image. Then the maximal pixel value of the values in A
overlapped by the kernel B is taken and the pixel value at the anchor points is set
to this new maximal value. Since each pixel value is changed to the maximal value
in its surroundings, this implies that generally brighter objects in an image grow
in size when dilation is applied, since white pixels have higher values than darker
pixels in grayscale images.

Figure 3.8: Dilated Image

OpenCV library in Python provides a direct function for dilating an image, and
multiple passes/iterations of dilation can be applied. After 2 iterations of dilating
the input image, it was observed that the extraneous thinner horizontal lines on
the mat surrounding the thick line were removed as observed in Fig 3.8. Thus due
to the fact that white regions grow after dilation, all thin black lines on the mat
were removed, except for the thick line which reduced in thickness. However, there
were still a large number of lines in the background of the image which have to be
removed. In addition to this, due to vanishing point effect the thickness of the line
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to be considered reduces farther away from the camera. Thus, after dilation the
full length of the thick line may not exist in the dilated image. This means the the
actual end points of the thick line are not available for further processing.

• Region-Of-Interest Mask: Applying a line segment detection algorithm to the com-
plete image would return a a large number of lines as shown in Figure 3.11 . In
order to create a pipeline which is less prone to noise and capable of extracting the
correct line accurately, a region of interest mask was applied to the image. Since
the mat is generally fixed near the center across all videos, a fixed set of 3 endpoints
defining a triangular region such that the bottom end of the thick line would always
fall within the triangle was defined. The endpoints of the triangle were defined in
terms of image height and width so that the approach would be suitable for any
such scenarios with a central thick line. The endpoints were chosen from trial and
error by running the line segment detection pipeline on different background from
the training data.

To create a Region-Of-Interest mask, a black image with the same dimensions as
the input image was created and using fillPoly function in OpenCV the triangular
region within the black mask was filled with white color. The bitwise AND operation
between the input image and the mask was then computed. Since the bitwise AND
operation between white (hex 255, binary 11111111) and any other colour returns
the colour itself, the final output image of the operation contains the triangular
section from the original image surrounded by black as shown in Fig. 3.9.

Figure 3.9: Region-Of-Interest Mask

• Line Segment Detector: OpenCV provides a Line Segment Detector class which
returns the end-point co-ordinates of all lines detected in an image passed to it.
The algorithm used for detection requires little to no parameter tuning and detects
locally straight contours within an image where a contour is defined as a fast tran-
sition from bright to dark pixels or vice versa [27].

The Line Segment Detector returns all the lines detected in the image. Even after
dilation and applying a ROI mask on the input image, there were still small artefacts

20



in the image near the thick line within the ROI which were wrongly detected as
true lines. Also the 2 edges of the thick line were detected as separate lines. Thus
only one line of all the returned values need to be considered.

From the returned line endpoints, a function was created to find the line segment
that had x co-ordinate of lower endpoint closest to half the width of the image,
since this would correspond to the right edge of the central thick line. The line
segment found using this approach would always be the right edge of the central
line to be detected.

Figure 3.10: Detected Lines

• Extrapolation: As mentioned earlier, due to dilation process the entire length of the
detected line is not available. In addition to this, the ROI mask applied does not
contain the entire length of the thick line. As a result, the line segment returned
from the line segment detector contains only a part of the complete line and the
endpoint of the line farther from the camera is not accurate. To account for this
shortening, the detected line was extrapolated to 0.4 times the height of the image.
The value of 0.4 was chosen based on the assumption that that the start of the
actual line would be approximately be near the half the height of the image, which
was the case for most videos in the dataset provided and from further fine tuning
from trial error it was observed 0.4 times the height returned the best approximation
of the actual line.

The endpoints of the central line obtained using the aforementioned steps were nor-
malized using the same normalization applied to the features obtained from MediaPipe.
These co-ordinates were then added as 4 new features to the training dataset to represent
the maximum and minimum x and y values within which each step has to be taken. To
identify whether a step falls within this bounding box, the x and y co-ordinates of the
left and right foot indices were taken. If at any frame the foot indices were outside the
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allowed minimum and maximum values, a label of ’Stepped Out’ was assigned to signify
incorrect steps.

3.6.3.2 Forward movement heuristic

In order to obtain the count of heel-toe steps taken during the activity of walking on
a line, it is necessary to create labels to specify which foot is closer to the camera at
each frame. MediaPipe’s Pose Estimation model returns z-axis co-ordinates for depth,
however these values were found to be highly inaccurate. Hence the y co-ordinates of left
and right foot indices were used to ascertain the foot closer to the camera. When the
subject moves closer to the camera, the y-coordinate of the index of the foot increases
in the positive direction. This factor was used to assign two new labels to the dataset
- if the y co-ordinate of the left foot was greater than that of the right foot, the label
was assigned as ’left foot front’ and ’right foot front’ otherwise. An alternate heuristic
using the probability of occlusion returned by MediaPipe was also tested such that if the
visibility of the left foot index was less than a certain threshold value, then this would
mean that the right leg was completely eclipsing the left and vice versa. But this heuristic
approach yielded very poor results and was not explored further.

3.6.4 Run and Stop

The run and stop action involves the child running towards the camera and coming to
a complete stop at a fixed distance from the camera. The number of steps taken by the
child once the child crosses the black horizontal lines on the floor mat are to be counted
as well.

Figure 3.11: Run and Stop

In order to identify the point at which the black horizontal line on the ground is
crossed, a line segment detection pipeline similar to the previous case was used. Only 3
key changes were made to line segment detection - Firstly, dilation was not used since
the line to be detected is not a thick line and applying dilation would remove the thinner
line. Secondly, a rectangular Region-Of-Interest mask was used to capture a large portion
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of the mat on which the children were standing. And finally, out of the line segments
returned by the Line Segment Detector, the line with 0 slope and lowest y co-ordinate was
used to find the first horizontal black line. The normalized y co-ordinate of the horizontal
line thus detected was then added as an additional new feature to the dataset.

Similar to the previous case of walking on a line, the z-axis co-ordinates could not be
used to identify forward motion. Hence the y co-ordinate of foot indices were used to
determine the foot closer to the camera. 3 intermediate labels were assigned as follow :
if the y-coordinate of the foot index is less than the y co-ordinate of the black horizontal
line, then a label ’Behind Line’ was assigned. Once the y co-ordinate of the foot exceeded
the detected line, then 2 labels were assigned as ’Left Step’ or ’Right Step’ depending on
which had the larger y co-ordinate value.

3.7 Machine Learning Models

After assigning labels to each frame in the dataset, the problem has been simplified down
to a classification problem. Different supervised machine learning models were tested
to check which model returned the best results for this classification problem. Prior to
training models on the dataset, the newly created features to assign intermediate class
labels, such as ankle-knee distance were removed from the dataset since the model would
assign highest weight to these features and in the worst case, the model would not learn
the relationship between the class and other key point features. Thus the additional
step of machine learning algorithms in the pipeline will improve scalability and add
generalization to the system developed as the system learns to identify intermediate
labels from data on the joints alone (and co-ordinates of the line for walking on a line
action).

3.7.1 Random Forest Classifier

Random Forest Classifier is a supervised machine learning algorithm which utilizes a
collection of decision trees that are fitted on different subsets of the training dataset.
Random Forests are known to produce good outputs for a large number of problems with
very little parameter tuning. The different training data subsets used for each tree are
decided based on different metrics such as Mean Squared Error(MSE), Information Gain
or Gini impurity. Random Forests are an ensemble machine learning method which use
majority voting among all different decision trees to predict the final class label for clas-
sification problems. The ensemble method used in Random Forests is called bagging, or
bootstrap aggregation which uses sampling with replacement to create individual sample
sets. Since the sampling is done with replacement, certain datapoints may be sampled
more than once. To reduce correlation between different individual trees, each tree consid-
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ers only a subset of the total feature space through an approach called random subspace
method or feature bagging [28].

Each individual decision tree is trained on the data using algorithms such as Classifi-
cation and Regression Tree (CART) algorithm. Generally decision trees can easily overfit
on the dataset and are known to be biased, but because of the majority voting method
employed in Random Forests, the algorithm is more robust and less prone to overfitting.
This approach also reduces variance especially when working with noisy datasets such
as the dataset considered for this work. The Random Forest Classifier class in sklearn’s
ensemble library in Python was used to train a random forest model on the dataset. The
model has a number of hyperparameters such as the number of estimators which repre-
sents the number of individual decision trees in the forest, the maximum possible depth
for each individual tree, the minimum number of samples required to split intermediate
nodes and the minimum number of samples required to be leaf node.

3.7.2 Neural Network

Neural Networks are deep learning algorithms that adopt biomimicry of neurons in the
human brain to create machine learning models. Neural Networks consist of a number of
layers formed by nodes. The input layer and the final output layer of nodes of a neural
network sandwich an n number of hidden layers. A neural network with a large number
hidden layers are deep networks, while those with few hidden layers are shallow networks.

Each node in the network has a weight, bias and a particular threshold value associated
with it. Each node also has a connection to all the nodes in the next layer. When data
is received at a node, the output for the node is calculated using an activation function
applied on the received input as well as the weight and bias of the node. If the output
value thus calculated exceeds the threshold, the neuron ’fires’ and sends output to its
subsequent connections. A shallow neural network was implementeed in Python using
the MLPClassifier class from sklearn’s neural network library. Multi-Layer Perceptron
(MLP) is a basic feed-forward neural network in which each node in the hidden layer is
fully connected to the next layer. Since it is a feed-forward network, information flows
only in one direction from the input layer to the output layer and the outputs from the
output layer are not fed back to the model for weight updates as in the case of more
complicated networks such as RNNs. Unlike decision trees which use a greedy search on
metrics such as information gain or gini index, neural Networks learn by optimizing a
loss function and for the MLPClassifier, the loss function used is log-loss or categorical
cross-entropy. The MLPClassifier takes a number of key hyperparameters that decide its
performance - the activation function used on each node, the learning rate parameter,
the batch_size as well as regularization parameters alpha.
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3.8 Buffer Count

The predictions from the machine learning algorithms return only the intermediate class
label. The intermediate labels are sufficient to identify a proper or improper intermediate
state for each frame, however, in order to identify the number of proper actions, the
intermediate labels are appended to a buffer during inference from a video. During
inference itself, transitions from one intermediate label to another are monitored. When
the right transition for a properly executed action is encountered, a counter variable is
incremented. The value of the counter variable at the end of inference will return the
number of correctly performed actions. The transitions for different actions and the
associated heuristics are summarized below:

• Squat: For squat action, a transition from ’Standing’ to ’Squat’ was considered to
be one squat. Thus if label predicted for the current frame is Squat and that of the
previous frame from the buffer was Standing, then this implies a proper transition
from standing to squatting posture. This approach was considered based on the
assumption that the child would start the video in a standing position.

• Jog Spot: For jogging on a spot action, 3 intermediate labels were assigned in the
previous stages - ’Left Leg Up, ’Right Leg Up’ and ’Unrecognized’. Two separate
counters were maintained to monitor the transitions for each leg. Thus if the label
prediction for the current frame is Left Leg Up and the prediction stored for the
previous frame from the buffer is not Left Leg Up, then the counter for the left leg
was incremented, and for the mirror case with the conditions for the right leg, the
counter for the right leg was incremented. The above conditions ensure that actions
with label Unrecognized do not increment any counter.

• Walk on Line: For walking on a line activity, 3 labels were assigned - Left Foot
Front, Right Foot Front and Stepped Out. If the current label prediction is Left
Foot Front and the previous prediction from the buffer is not Left Foot Front, then
a counter for the left leg was incremented and similarly for the right leg, another
counter variable was maintained. The above counter conditions ensure that no
counter variable is incremented for Stepped Out action.

• Run and Stop: For run and stop activity 2 counters for each leg were maintained.
The counter for the left leg was incremented when a transition from ’Right Step’
to ’Left Step’ is encountered and vice versa for right leg. Thus the counters are
only incremented when both legs have crossed the horizontal black line and ’Behind
Line’ label is not observed in the previous frame.
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4 Experiments and Results

4.1 Introduction

This chapter covers the experimental setup used to evaluate the action recognition pipeline
detailed in the previous chapter. The chapter explains the results achieved by each model
tested for the 4 actions. This section also analyzes the heuristics used in each action and
outlines the advantages and shortcomings of each heuristic used. Finally the chapter
summarizes the key challenges faced during experimentation with the pipeline developed
and addresses general drawbacks in the proposed approach.

4.2 Experimental Setup

For all 4 activities, the entire set of videos were considered. However, videos with a
high number of frames for which MediaPipe failed to perform key point extraction on,
were dropped from the training dataset. A threshold of 40% was set such that if the
percentage of skipped frames exceeded this value, the video was dropped. The total
number of videos available and the number of videos skipped are summarized in 4.1.
Since there is sufficient data to train a simple 2/3-class model, train-test split was used
to evaluate the generalization capabilities of the models on unseen data. The same splits
of the dataset were used on both models for each action so that a sound comparison could
be done between the two. A standard 70-30 split was used for all experiments. The test
dataset results for the ML models for all actions are summarized in 4.2.

Although the dataset provided contains labels for the actions performed, the count
of each activity performed in each video was available only for a small subset of around
50 videos per action. As a result, there was no straightforward method to test the
efficacy of the buffer count approach without manually checking each video. Since manual
verification is tedious for over 2000 videos, the performance of the pipeline was manually
tested on 10 videos each for each action. The 10 videos considered for manual verification
were chosen completely at random to avoid any bias. Thus any mention of counts within
subsequent sections of this chapter refer to the total counts observed from the 10 videos
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checked manually and the final count results are summarized in Table 4.3.

Activity Total Videos Skipped Videos
Squat 516 502
Jog Spot 504 483
Walk Line 497 461
Run Stop 511 445

Table 4.1: Training Data

Action Model Label-Test Accuracy

Squat RF 92
NN 98

Jog Spot RF 85
NN 93

Walk Line RF 72
NN 66

Run Stop RF N/A
NN N/A

Table 4.2: Model Results

4.3 Squat

From the model results in 4.2 it is observed that both the Random Forest Classifier and
the Shallow Neural Network both achieve very high accuracies on the test dataset with
scores of 92% and 98% respectively. The exceptional performance of both algorithms is
expected since the problem is a 2-class classification problem with sufficient amounts of
data.

However accuracy values alone are not a good indicator of model performance. From
the confusion matrix for the random forest classifier on the test split shown in Fig. 4.1,
it is observed that the number of false negatives, i.e the actual squat cases which are
wrongly detected as standing are higher than false positives. Since the ultimate goal of
the pipeline is to create a system to monitor motor skills development in children, false
positives could allow children with growth issues to inadvertently pass the system if it
falsely labels incorrect postures actions as squat. Hence more priority should be given to
false positives and the less number of false positives from the confusion matrices is a good
indication of model performance. The neural network exhibits more stable predictions
with an almost equal number of false negatives and false positives. However, the accuracy
values stated are completely dependent on the quality of the heuristics. As a result the
model metrics such as the accuracy values and the confusion matrices are insufficient to
analyze overall system performance.
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Figure 4.1: Confusion Matrix - Test Set

To determine the overall accuracy of the pipeline in determining counts, the results
returned by the system are cross-checked with the values obtained through manual verifi-
cation. The results from the better performing model for each action, which is the Neural
Network in this case, are summarized in Table 4.3. From Table 4.3 it is observed that
the count prediction accuracy is fairly high at 93%. This shows that the system is well
capable of obtaining the count of squat actions from a video, with only a small margin of
error. However, the accuracy stated is obtained from manual analysis of a small subset
of the complete training set. Without analyzing the performance over a much larger set,
it is difficult to ascertain the efficacy of the system and the obtained value of 93% is most
likely to drop when tested on the full data.

Figure 4.2: Squat - Label predictions and counter
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Action Model Predicted Count Actual Count Accuracy
Squat NN 77 72 93%

Jog Spot NN 164 206 80%
Walk Line NN 92 128 61%
Run Stop NN 0 0 0

Table 4.3: Count results

4.4 Jog on a Spot

A key observation from Table 4.1 summarizing the skipped videos is that a larger num-
ber of videos were skipped for this action as MediaPipe was unable to extract features
properly. This finding could be due to the faster nature of jogging activity when com-
pared to squat action. It was observed that generally, MediaPipe had issues maintaining
tracked frames from one frame to the next due to more erratic motion. From Table 4.2
the results for test accuracy of the 2 models for jogging on a spot activity indicate that
the neural network is a better performing model with a test accuracy of 93%. From the
confusion matrices it may be observed that misclassifications between right leg up and
left leg up labels are very scarce - which shows that the machine learning model was able
to learn the underlying heuristics from the training data points. However, most of the
error arises from the Unrecognized label due to class imbalance as entries for this class
were much higher than that of the other two. This label was used as a representation
of standing posture, or any other posture that does not involve a folded leg. In many
videos it was observed that the children were standing stationary during the start and
end of the videos before and after performing the activity. This is most likely the reason
for a large number of entries for this class. In general class imbalance can have adverse
effects on any ML model and should be handled by methods such as sampling. But since
the number of false positives was much lower than that of false negatives, handling class
imbalance was omitted for this action.

Figure 4.3: Confusion Matrix - Test Set
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Figure 4.4: Jog Spot - Label predictions and counter

As mentioned in the previous case, the model test accuracy is not a good indicator of
overall performance. From the count results calculated for 10 videos via manual verifica-
tion in Table 4.3, it is observed that the system is able to achieve an overall accuracy of
80%. From the manual verification test, it was also noted that the system was accurate
in most videos with older children, but count accuracy dropped significantly for younger
children. This drop in count accuracy for younger children was traced back to problems
in the heuristic labelling applied - most younger children did not properly bend the legs
as expected for a proper jog action. Instead they simply lifted each leg from the ground
by a small amount and as a result, the intermediate labelling which depends on the bend
in the knee failed to label such cases properly.

4.5 Walk on a Line

For walk on line action 3 labels were assigned using heuristics - left foot front, right foot
front and stepped out. However, from the training data created it was observed that the
number of inputs with the label stepped out were very low, while right and left foot front
labels were of equal number. This observation was not surprising since in most videos
the children stayed very close to the actual line. But this class imbalance was severe and
if left unhandled, could severely reduce the model’s ability to learn the ’stepped out’ case
which is crucial in identifying wrong steps. Hence the minority class of ’stepped out’
was oversampled using RandomOverSampler function from imblearn module in sklearn
library to create equal number of classes. From the model results from Table 4.2 it may
be observed that the Random Forest Classifier outperforms the Neural Network. From
the confusion matrices shown in 4.5, it can be observed that the Random Forest Classifier
as well as the Neural Network are able to completely classify all ’stepped out’ labels after
oversampling.
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From the count results in Table 4.3, it is observed that the model attains only 61%
overall accuracy and the number of total counts predicted is greater than the actual
count. From manual verification it was observed that when the child is far away from the
camera, the changes in y co-ordinate of the feet are very small and the system struggle
to understand when one foot was in front of the other. Another observation was that the
co-ordinate values returned from MediaPipe were not stable and had minor error between
frames. Since the heuristic directly compares the values from MediaPipe to identify the
closer foot, wrong labels were assigned in random frames in between. Consequently, this
caused the counter to increment for such noisy frames which resulted in the counter
overshooting the actual count.

Figure 4.5: Confusion Matrix - Test Set

Figure 4.6: walk Line - Label predictions and counter

4.5.1 Limitations

A key limitation in the pipeline developed for walk on a line activity is the difficulty
in identifying the closer foot during forward motion. If the z-axis co-ordinates returned
by MediaPipe were accurate, this issue could have been bypassed. Alternate approaches
to estimate depth from 2D images are complicated approaches which use complex net-
works to create depth images from various factors such as textures and perspective. Such
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approaches were beyond the scope of the dissertation. The approach used in the disserta-
tion of utilizing y co-ordinates of the feet to identify the forward foot is highly susceptible
to noise, and since the co-ordinates returned by MediaPipe had minor variations across
frames, this approach has inherent stability issues. Another drawback in this approach
is the inability to measure if heel-toe steps are maintained - if a foot is placed on the
line at a non-zero distance from the foot in the back, the system would still consider this
as a valid step. However such a step does not satisfy the criteria to be classified as a
proper heel-toe step in walking on a line action. Methods to estimate foot length using
known key points were tested, however these approaches were not fruitful primarily due
to occlusion issues.

4.6 Run and Stop

A system that satisfied all the basic conditions to identify run and stop action could not
be developed using the proposed approach. The major issues faced for this activity are
explained below:

• Identifying stop state: In a majority of the videos for this action it was observed
that the subjects came to the stop state very close to the camera. This meant
that a large portion of the skeletal structure was outside the camera’s field of view.
This meant that MediaPipe did not have a complete skeleton to infer key points
from. As a result, in some of the cases wrong co-ordinates were returned which
were completely unusable as shown in 4.7.

Figure 4.7: Run Stop - Stop state too close to camera

In the majority of cases, no points were returned from MediaPipe for such frames
and these frames were skipped. The root cause of the failure of MediaPipe in this
case can be traced back to how the framework detects a person - MediaPipe uses
a face detection algorithm to detect the presence of a human. Since in most of the

32



video the face of the children were outside the viewframe, person detection failed.
As a result, the number of skipped frames for this activity was found to be much
higher than that of the other 3 actions. Since the root cause of this issue can be
traced back to improper placement of the camera, very little could be done within
the scope of the dissertation to correct this.

• Fast motion: When a large amount of motion is present in the input video, Medi-
aPipe had issues extracting key points as the framework had issues tracking detected
skeleton from one frame to the next. In cases where there were stationary adults
in the background, once the child started running, the skeletal detection would
fail and MediaPipe would detect the skeletal structure of the stationary adult in
the background. Even in cases where no other adults were present in the frame,
the framework returned completely false co-ordinates. In both cases, the returned
values were unusable. Although the first scenario could have been corrected by
cropping videos to the subject of interest, no direct approach to handle the second
case was found.

• Constraints: Although forward motion of the subject in the video could be esti-
mated using y co-ordinate increase as used in the previous case, or by using in-
creases in lengths of limbs, determining whether a forward motion was a run action
proved to be a problem that could not properly defined with the proposed system.
A run action towards the camera and a normal walk action towards the camera
can only be differentiated from one another based on the speed and overall motion.
However, the system developed does not account for such variables. Such actions
would require time or/and the previous state of the subject as inputs to determine
an action. As such, the single-frame heuristic approach fails in this case as the
action cannot be classified from single frames alone. Hence a time-series approach
utilizing Recurrent Neural Networks or Long Short-Term Memory Networks could
prove to be more accurate for run and stop actions. However, issues in feature
extraction faced by MediaPipe, as well as issues due to camera placement would
negatively affect these models as well.
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4.7 Challenges

The proposed system has a number of shortcomings, the major challenges faced are
summarized below.

4.7.1 MediaPipe Limitations

Although MediaPipe performed well in most cases where the full body of the child was
visible, the framework failed to give proper feature extraction in a number of cases.
Actions where one part of the body completely occluded another - such as walking on a line
when one leg fully blocks the other, were particularly problematic cases. In many cases
it was observed that the detected limbs would swap with each other, for example if the
left leg eclipsed the right leg in a frame, the detected limbs would swap during complete
occlusion. This caused the returned x and y co-ordinates to adversely affect the heuristics
and consequently wrong intermediate labels were assigned. MediaPipe occlusion handling
primarily considers cases where only part of the body is visible primarily and not scenarios
where one body part completely eclipses another.

Another scenario that MediaPipe struggled with were long uniforms. Cases where the
upper body clothing extended beyond the waist proved to be difficult for the algorithm.
Figure 4.8 shows such a case where the algorithm successfully detects key points in the
face and arms, but struggled to determine the points from the hip to the feet. Such cases
are generally difficult for many SOTA algorithms because of how clothing can completely
obscure the underlying skeletal structure.

The third case where MediaPipe faced issues is in videos with a large amount of
motion. Activities like run and stop had a large amount of movement in all 4 limbs
and the motion occurred with high speeds as well. In such cases point extraction was
difficult as the framework could not keep track of the key points between frames. The
final case where the framework faced challenges is detecting key points of smaller children.
Younger kids have smaller skeletal structures and the key points detected by MediaPipe
were too close together to be useful. In general, even SOTA algorithms would not have
been trained extensively on data pertaining to very small children and the models are
generally better aimed towards adults. It was also observed that the smaller bodies of
younger children were more prone to be completely occluded by uniforms.

4.7.2 Camera Placement

Although camera placement was at a fixed position from the subjects in all videos, in
some cases the height of the camera was not consistent. This resulted in failure of proper
line detection since the the thick central line to be detected did not always fall within
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Figure 4.8: MediaPipe failure with long uniforms

the Region-Of-Interest defined in the line detection pipeline. While this affected only
a small subset of the videos for walking on a line action, the camera placement issue
had a severe impact on run and stop action as mentioned earlier. In large majority of
videos verified manually, it was observed that the child would come to a stop after the
run action too close to the camera. This meant that a large part of the body of the
subject would fall outside the view of the camera, causing MediaPipe’s pose estimator
to fail completely since no complete skeletal structure could be determined. This issue
meant that even alternate approaches using RNNs or LSTMs would not work since the
initial feature extraction itself would fail.

4.7.3 Variability

The major challenge faced across all actions is the variations in the dataset caused by the
unpredictability of children. While a large majority of older kids performed most actions
somewhat consistently due to improved cognitive abilities, the amount of variation in
younger children was found to very high. All of the younger children approached the
same actions in vastly different ways. As a result, finding a heuristic that was accurate
on a majority of smaller children proved to be a very complicated problem. While squat
action had less variation since there are only a limited number of ways to do a squat,
there was a large amount of variation in child behaviour for the other 3 actions - for
jogging, some of children simply stood in place and raised one leg after the other instead
of jogging. For run and stop the behaviour was highly erratic as not all children were
running in a straight line and instead took curved paths. The speed was also highly
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inconsistent between age groups. Thus in general the intra-class variation when working
with videos of children proved to be a major challenge. Creating separate heuristics for
different age groups will most likely improve the performance of the system for squat and
jog on a spot actions.

4.7.4 Distinguishing Actions

In human action recognition problems, distinguishing similar actions is always a chal-
lenging task. The same problems are applicable for some of the actions considered in
this research. While the heuristic conditions used to identify squat action is strong and
less prone to mislabelling other actions, the same cannot be said for the other actions.
Considering the case of jogging on a spot action, folding each leg one by one at a slow
pace would trick the system into classifying each fold as a jog on one leg. similarly for
walking on a line activity, since the heel-toe distance is not checked, it is possible to
deceive the system by taking large steps on a line.

4.7.5 Validation

The primary challenge with the pipeline developed is obtaining a concrete metric on
overall system performance. Although count of actions for a very small subset of the
videos was provided along with the dataset, this data did not have details regarding the
particular time or frame at which a certain action occurred. And also this data was not
available for the complete dataset which meant that there was no straightforward method
to quantify overall accuracy without manually verifying each video.
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5 Conclusion and Future Works

5.1 Conclusion

The primary motivation for this dissertation was to create a system that is capable
of monitoring gross motor skill development in children belonging to various age groups.
Such a system has numerous applications in understanding development of children. This
body of work was primarily focused at understanding the feasibility of creating such an
action recognition pipeline for children, to recognize and count 4 repetitive actions from
a video input of varying complexity - squatting, jogging on a spot, walking on a line and
running and coming to a stop. The proposed system uses a single-frame approach to
identify intermediate states for each activity. Using key points of the skeletal structure
obtained from SOTA human pose estimation algorithm MediaPipe, different intermediate
labels are assigned to each frame using a heuristic approach based on different discerning
conditions for each action. Thus action recognition is converted into a supervised classifi-
cation problem at individual frame level for which different machine learning algorithms
are utilized. Finally a buffer transition counter approach is used to monitor transitions
between frame-level labels to count the number of properly performed actions.

From the experimental results, the single-frame approach proved to work well on 2 of
the actions - squat and jogging on a spot. Intermediate states can be identified for both
these cases from individual frames as both actions may be considered to be single-frame
activities. Primarily due to issues from key point detection in MediaPipe on videos with
self-occlusion, the system returned only mediocre results for walking on a line action. For
run and stop action an adequate system could not be developed mainly due to issues in
the data collected itself as children stopped too close to the camera for object detection
to work.
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5.2 Future Works

The primary drawback of the properly working models for squatting and jogging on
a spot can be traced back to a finding a single heuristic for all children. Since the
quality of heuristic labelling applied will have a cascading effect down the pipeline in
terms of accuracy, more steps have to be done at to fine-tune the labelling. Creating
different heuristics for different age groups and creating separate models could prove to
be beneficial. But this requires additional data regarding the age of the children.

For walking on a line approach multiple different approaches have to be tested in order
to identify the best fit. The occlusion issues faced by MediaPipe during feature extraction
were a major limiting factor for the performance of the system developed. Using SOTA
algorithms more robust to such occlusions may help circumvent this issue, but the easiest
solution to fix complete self-occlusion of the legs is to use multiple cameras to capture
the video. Having at least one additional camera providing a side view of the action can
easily identify the correct landmarks from each leg. Another key limitation is the lack
of 3D depth data. A large amount of research has been carried pertaining to monocular
depth estimation from 2D images using models such as MiDAS [29]. Using such models
to create depth maps could prove to be useful in identifying the foot closer to the camera,
however depth estimation is a different research field in its own with a large number of
caveats and introducing this to the current pipeline could prove to be complex. Using
sensor data would also be an easy way to overcome the issue.

Recurrent Neural Network models such as Long Short-Term Term Memory Networks
have proven to be highly efficient at identifying actions from video. Such networks would
be very efficient at identifying actions considered in this dissertation. However, feeding
a fixed input size and counting individual actions was found to be difficult. There is a
possibility of using the existing intermediate labels as an input to an LSTM network, and
then labelling each chunk of input as a transition from one action to another. Finally
counting the transition predictions from the LSTM could be used to evaluate count.
Another approach would be to completely annotate the data providing exact timestamps
of when certain intermediate states/actions are performed in the videos. If this annotation
can be performed manually, then RNNs can be applied to the data more easily and counts
of actions can be obtained directly. Both these approaches are likely to provide better
results but require a large amount of effort, especially for the manual annotation and
these approaches need to be explored further. In addition to the complexities with fixed
input size and identifying start and end frames of actions, another issue with LSTMs in
Gross Motor Action Recognition is that these networks operate in a black-box manner
and interpreting the outputs from these models is difficult. As a result although an LSTM
system would have improved accuracy, such a system would be difficult in assessing the
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quality of the motor skills possess by the child [15].

The ultimate goal of the system developed would be to create an Action Quality
Assessment (AQA) system that is capable of assigning scores to the actions performed
and providing interpretable feedback on improvement and identifying where mistakes
were made. A large amount of research is being carried out in the field of AQA [30, 31],
but creating such a system for Gross Motor Action Recognition in Children would have
great outcomes in understanding growth of children.
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