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The usage of smart monitoring devices has increased drastically. It has been instrumen-
tal in generating rich data to enable the use of Artificial Intelligence and Data Science
in healthcare. The data generated is sensitive in nature. Federated Learning(FL) has
been gaining considerable attention, since it could train machine learning models without
uploading data onto a cloud, keeping in mind the privacy of users especially the patients
in healthcare. The Federated Averaging algorithm proposed for aggregation in Federated
Learning, could add a significant overhead with the presence of large number of devices
in the network. A novel paradigm, Edge Federated Learning(EdgeFed) was introduced
with Edge Computing as an inspiration to better adapt for the upcoming future of AI and
networking. This work details the usage of Edge Federated Learning, for the training of
two different models, a linear model - Logistic Regression and a Neural Network model,
using the diabetes data. Data was manipulated to simulate a real-world scenario and
distributed to clients for training. The evaluation of the trained models are discussed
in detail which proves that it is feasible to use Edge Federated Learning in healthcare.
The results portray comparable results with conventional Federated Learning and con-
ventional central training of ML models. Finally, it also establishes that Edge Federated
learning can significantly reduce the number of global communication compared to Fed-
erated Learning.
Keywords:Federated Learning, Edge Computing, Edge Federated Learning, Flower Frame-
work, Machine Learning.
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Chapter 1

Introduction

With the information age and technology advancements, the capability to generate, store,

and process data has increased massively. The world has experienced a data generation of

nearly 62 zettabytes in the year 2020. The current situation with pandemic has made the

data generation prediction in the coming years to be more than 180 zettabytes [21]. The

volume of data has been instrumental in further advancements in AI and Data Science,

enabling researchers and engineers to develop systems that could aid human beings in their

day-to-day life. Machine learning solutions have helped in changing everything such as

the user interfaces, weather predictions, healthcare, logistics management, and optimizing

various things in our day-to-day lives. However, this has raised concerns regarding the

privacy of the users. Conventional Machine learning systems collect data from millions

of devices into a central server giving dangerous powers to the data collectors. Incidents

have been identified and widely discussed about how users data have been exploited

especially the biggest technology companies that has motivated to create toughest of the

data privacy such as GDPR.

Federated learning, a decentralized machine learning technique, was introduced to

mitigate such issues. Modern-day devices and smartphones have a high computational

capacity, aiding such an implementation of distributed computational tasks. Additionally,

it has enabled devices to work collaboratively to train models without sharing the data

with the central cloud, thereby giving the user, control over the data. Federated learning

gained attention for its ability to share global models as well as its capability to personalize

models over rich but sensitive data.

Edge computing is one of the novel architectures that could bring a huge impact with

the introduction of ultra fast fifth generation of networks.The number of devices getting

connected to the internet are increasing day by day especially with the introduction of

Internet of Things (IoT). Some of the client devices on the edge are capable of doing

1
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better computational tasks and some incapable of doing any computational tasks but can

only be used for data collection. In such cases if all the data is send over the internet

to a central cloud the load on the internet would drastically increase. Edge computing

paradigm has been introduced to mitigate the such issues by bringing in provision to

offload tasks on to the edge of the network, there by reducing the load.

1.1 Motivation

Inspired by the novel architecture of edge computing, the future in distributed computing,

and federated learning, a novel technique in machine learning for model training in a

collaborative decentralized approach, edge federated learning was proposed by the paper

[26].

The motivation for study comes with gaining popularity of federated learning in a

medical community as discussed in various papers and conferences, with notable ones

discussed are [22] ,[12]. There has been a huge scope discussed for federated learning

overall, especially in the healthcare, due to the sensitive nature of the data. Although it

is understood that the data is sensitive it is still required for the training machine learning

model in conventional techniques, since there is a huge value added by data science and AI

in the field of healthcare. Hence the solution, federated learning in healthcare.With the

introduction of the Internet of things (IoT) for monitoring health of individuals different

forms of devices such smart monitors, smart watches, smart bands, smart phones have

been introduced.This can immensely increase the number of devices connected to the

internet. Rather than a simple federated learning setup, edge federated learning could

aid immensely in the working of devices over the internet, if necessary, with lower latency,

better accuracy of machine learning models and better privacy. This could change the

future of health care by bringing in better AI to the edge.

The paper [26] discuss about MNIST data which is the dataset for handwritten num-

bers and also the implementation of a Convolutional Neural Network on the Edge Fed-

erated Learning. However, these results cannot be compared to a healthcare data and

the nature of models that will be used frequently in health care. The motivation of the

dissertation comes from the idea of edge federated learning and to assess it’s capability

in training a machine learning model using a healthcare data.
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1.2 Research Problem

The objective of the dissertation is to design, implement and closely evaluate the model us-

ing edge federated learning and compare the results with federated learning and centrally

trained models. Following the research objectives set as the scope for this dissertation .

• Obtaining a dataset in healthcare and to do necessary manipulation to the data so

that it better simulates the real world scenario for the study.

• Designing and implementing an edge federated learning setup that could be used

for simulation, to better study the architecture, and at the same time should be

capable of extending the same to a real world scenario.

• Training variety of machine learning models using the proposed architecture and to

compare and study the results with the existing federated learning and central ma-

chine learning techniques of training, especially using the metrics that are relevant

in machine learning when used in healthcare. The primary aim is to understand

if the metrics of model generated using edge federated learning are comparable to

that of the models generated using existing techniques.

1.3 Dissertation Outline

Following are brief description for upcoming chapter in the dissertation.

• Chapter 2: Background and Literature review - This chapter discusses about the

Literature review of papers and theory for concept like federated learning, edge com-

puting, Edge federated Learning, Various Frameworks and it’s theory and machine

learning models, required for the understanding of design and implementation of

the dissertation.

• Chapter 3: Design and Implementation - This chapter put out the details about

data simulation, especially for a data not designed for training on edge federated

learning ,the design of the proposed architecture, it’s implementation using flower

framework, it’s working and the challenges faced during the implementation.

• Chapter 4: Evaluation and Result - This chapter discusses about the evaluation

methodology and the results of the model trained using the healthcare dataset and

its critical analysis. It also establishes that the edge federated learning is a feasible

paradigm in healthcare.
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• Chapter 5: Conclusion and Future works - This chapter concludes the dissertation

with the reflections and lays out the scope for future work, the notable one - study

of scaled system using large number of clients and large dataset.



Chapter 2

Background and Literature Review

This chapter explains in detail the theory that is necessary for the design of a system to

assess the feasibility of a edge federated learning as a paradigm in healthcare. Initially the

aim is to discuss federated learning, a novel machine learning technique that serves as the

underlying technique for the whole study. Further the chapter discusses about the edge

computing that is gaining attention with the latest generation of networks and a necessity

to manage the data driven age. Combining federated learning and edge computing, it

further discusses about an architecture of edge federated learning that has the combined

benefits of both the technology. Consequently it discusses about different frameworks

that aids in the implementation and simulation of the entire architecture and the possible

challenges related to it. Then it goes on about discussing the different machine learning

models that are required for inferencing tasks to study the feasibility of machine learning

models trained over edge federated learning network in the field of healthcare. Most

importantly it discusses in combination with the about the underlying literature that has

significantly contributed for the evolution of such a study in the dissertation.

2.1 Federated Learning

Federated learning (FL)[17] is a decentralized machine learning approach where the de-

vices participating, learns collaboratively from the data distributed over the edge devices.

In this paradigm, these devices learns a shared global model by training the model locally

from the rich sensitive data and then aggregating without having to upload any data to a

central cloud. The process is orchestrated by a central server which initially shares a cen-

tral model to the participating clients, and this model is locally trained using the data on

the device after which only the resultant model is sent to the central server for collective

aggregation there by updating the global model and is illustrated in the figure( Figure

5
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2.1). This architecture thereby limits the issues related to data privacy and attacks on the

user data, since no real data is sent over to the cloud. Additionally, the costs associated

with the data storage and data transfers can now be drastically reduced.

Figure 2.1: The figure gives an overview about the federated learning in devices A. The
devices are locally updating the model that was initialized and shared globally using the
locally generated data. B. The locally trained models are aggregated to form a shared
model. C the shared model is then again send to client. The process is repeated further
again [17]

As an effort to comply with data privacy laws, such as GDPR, researchers Brendan

McMahan et al [18]. from Google introduced this technique in the year 2016 which has led

to introducing federated learning into varieties of applications, a notable advancement -

Gboard from google[17], where all android devices rely on a federated learning technique

to train next word prediction model. All the sensitive text data generated from the

keyboard is used to train the model locally and the resultant model alone are shared

for aggregation. This comes with advantages such as, not having to share sensitive data

,allowing a new user to have an intelligent keyboard, and the current users to have a

personalised trained model from large dataset.

One of the main technical contributions in federated learning obtained from the paper

from the researchers at Google was introduction of FederatedAveraging algorithm ([18]),

which is a combination of stochastic gradient descent on client for the training of the
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model locally and then performs model averaging on the server. The basic assumption

in machine learning is that the dataset should be independent and identically distributed

(iid data) however the data generated on various edge devices would not follow the same

distribution of independent and identically distributed data (non iid data). FederatedAv-

eraging algorithm however, works robustly even with the unbalanced and non-iid data

and has been proved to work efficiently with 10x-100x times less rounds of communica-

tion compared naive federated approach. In effect the algorithm has contributed to a

robust approach with better data privacy for the user in an efficiently.

2.1.1 Stages of Federated Learning

Federated learning could follow slight changes in step depending on the architecture, but

in a generalizing FL technique as such following are the steps in Federated Learning: [16]

• Based on different conditions, with the goal that the device’s primary tasks are not

affected the devices are selected randomly by the central server who is responsible

for orchestrating the whole training process. Conditions could be,for example a

smartphone when not in use or put on charge, are the times when the user experience

is least impacted. In terms of IoT devices, devices might be offline most of the time,

especially the ones deployed in remote areas, and when these devices comes online,

these could be considered as clients that could participate in the training.

• A global model is initialized and the global parameters are shared with the selected

clients which would act as the starting point for the local training of the model on

the devices. Instead of assigning random parameters in the central training( weights

and biases) these values are initialised from the common global model

• Based on the conditions specified by the central server, using the data that is gen-

erated on the local devices, it is used execute the training process. Parameters such

as the number of rounds, strategy for training etc are mentioned and orchestrated

by the central server to the clients and clients makes use of models designed to be

light for edge devices to train lower number of epochs.

• The locally trained model from the client devices is send to the central server for

aggregation. There are different attacks associated with model transfer that could

have a impact on the aggregation, and hence different transfer protocols are enabled

between the client and server for transfer. Additionally, different compression tech-

niques are employed for reducing the bandwidth required on the network to transfer

the model.
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• The shared model from all the clients are aggregated on the central server to update

the global shared model, and for the next set of training the aggregated model is

shared with the devices locally for inferencing and training.

2.1.2 Federated Averaging Algorithm

To train a machine learning model the underlying idea is to use gradient descent.It then

calculates the gradient in each step by evaluating gradient using all the available data

from the dataset. However, with the increase in the size of the training data gradient

descent can prove to be a computationally expensive and time consuming task. Stochastic

Gradient Descent (SGD) was introduced as an optimization to the normal gradient descent

where a single data point in randomly chosen to calculate the gradient leading to a less

computationally expensive convergence. Apart from the batch gradient descent that takes

all the training data into consideration, and true SGD which takes in consideration a

random data point, another common form of approximation is mini-batch Stochastic

gradient descent where instead of a single random data point chosen to compute gradient,

a small batch of data points are randomly selected to calculate the gradient in each step

of the training [24].

SGD being common choice of approximation for a training of a model these days,

due to the faster convergence, it has been selected as the starting point for the federated

optimizations. [18]. Here in a federated setting, SGD is applied in terms selection of a set

of clients, whereas with the data inside the client, a batch gradient descent takes place.

Then randomly selected set of clients collectively calculates the gradient over specified

number of rounds. This a synchronous training activity where the parameter C controls

the number of clients to be selected.i.e. when C=1 all the clients are selected and this

is said to have a promising result in data centers.[14]. This approach is considered the

base-line and is termed as the federatedSGD or FedSGD [18]

A typical case of federated SGD assuming that a client k is selected, gradient is

calculated by the client k is gk = ∇Fk(wt) where wt is the current weight of the model.

The local model is then updated as wt+1 = wt − η.gk( η is the learning rate) which is

the model that is send to central server for aggregation. The central server aggregates

the received updated model based on weighted average to create a resultant shared global

model.

wt+1 = wt − η
K∑
k=1

nk

n
.gk

where k is selected client η is the learning rate, and the gradient calculated by the client

gk and W k
t+1 is the updated weight from the client. This could be termed as the federated
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averaging which has significantly optimized naive federated learning as mentioned in the

paper [18].

2.2 Edge Computing

With the improvement in the technology especially in the field of electronics, newer do-

mains such as Internet of Things (IoT) has come into existence where there are multitude

of edge devices such as smartphones, intelligent and autonomous devices, monitoring de-

vices,etc. These devices are now connected to the internet that has lead to the increase

in data generation, more consumption of bandwidth of network, increased response time,

especially poor privacy for the data generated when uploaded to the cloud . Edge comput-

ing was introduced to mitigate such issues that was faced on a typical cloud computing

setup. In this paradigm, data processing happens to the edge of the network, rather

than a central cloud there by making the entire architecture light. When distributed the

architecture becomes a lighter since it only requires less storage especially since most of

the devices today are far superior and has surplus computational capacity,and of all that

can be utilized to optimize rather than overloading central entities to rely on storage and

computation.[13].

Edge computing comes with variety of advantages such as real-time processing of

data,especially in situations where immediate results are required edge computing could

be really useful, rather than sending data to a cloud for inference, when considered on a

scale could put an immense load on the whole network that could even delay the results.

Consequently, the privacy and security involved in the cloud computing is really weak

since the real data transfers occur it is more prone to attack. On edge computing these

data since it resides within the devices or the edge network the plane for attack is now

limited. Finally one of the most relevant topic would be energy efficiency between edge

computing and cloud computing. When more devices are connected in a cloud computing

setup more energy is required when compared to edge computing.

2.2.1 Components of Edge Computing

Edge computing layer consists of three layers, terminal layer, boundary layer and cloud

layer and its functions are as follows [13] It is illustrated in the figure2.2

• Terminal Layer - Terminal layer is predominantly terminal devices such as Internet

of Things(IoT) devices that are responsible for data gathering. These devices them-

selves aren’t computationally very capable but are the main sources for collecting
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the data. These devices are capable of doing smaller computation or data process-

ing before sending on to the boundary layer. The data collected are uploaded and

processed on the upper layer.

• Boundary Layer - This layer has better computational capacity and the added ad-

vantage of being closer to the user, the data source. Otherwise called the edge layer

it could consist of components in the network such as servers, switches, routers,

gateways, access points or base stations and it acts as the core layer in the whole

paradigm. It is capable of conducting intelligent tasks and real time analysis on the

data. Consequently it comes with the added advantage of being connected to the

multitude of edge devices as well as it has higher bandwidth capacity to communi-

cate with the cloud layer of the network which is an added advantage since most of

edge devices might not be capable of better connection with the cloud layer. It is

also responsible for storing sensitive data.

• Cloud Layer - Since trivial task do not require cloud could it could be easily offloaded

to the boundary layer there by reducing the overload on the network, however cloud

layer still is the most powerful layer where there are more capable servers and data

centers capable of high intensity tasks and much needed information can still be

stored. It can also act as the layer where all the data could be permanently stored

if deemed necessary and for wider analysis cloud layer serves as a key layer.

2.3 Edge Federated Learning

Edge federated learning a combination of edge computing and federated learning is the

novel paradigm that is aimed to study in this dissertation. With concerns in data privacy

at it’s peak researchers working on newer architectures keeping privacy is mind, federated

learning is gaining massive attention since the data is never transferred but only results

are passed. Although it doesn’t completely comply with the GDPR laws for privacy it still

helps increasing the privacy of the users. Additionally, another architecture that is gaining

attention is edge computing. With the introduction of 5G, researchers and engineers are

seeing immense opportunities with the combination of both the technologies [4]. 5G,

an extremely fast network aims on achieving 1ms latency to any ping request made in

the network. [5]. Edge computing will turn out to be an essential factor when it comes

to fifth generation networks. With the amount of devices, especially in the era of IoT,

connected to the internet can slow down the internet. Edge Computing could the key

solution when introduced since it can drastically reduce latency since it is capable of
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Figure 2.2: This figure illustrates the function of different layers in edge computing

offloading majority of the tasks over internet to edge devices. It was discussed in section

2.2. Hence any novel paradigm in the present day approach would require edge computing

to be necessary component in designing the architecture. Inspired by it, edge federated

learning has been proposed in [26]. Edge federated Learning (EdgeFed) comes with variety

of advantages such as offloading training tasks from the mobile or client devices that has

comparatively lesser computational power to a more capable edge layer. Moreover, the

cost of global communication will be drastically reduced in this paradigm.

2.3.1 Components in Edge Federated Learning

[26]

EdgeFed which is a combination of both edge computing and federated learning. It

has 3 layers similar to that of a edge computing architecture. Cloud layer consists of

global server. Edge layer consists of a series of edge servers at each edge network. The

edge servers play a major role in managing edge clients and communicate more with the

global server since it has a higher bandwidth communication. Terminal layer consists of

edge clients that participate in the EdgeFed architecture. Following are the steps followed

in the edge federated paradigm.

• Central server - A cluster of high capability servers provided by the internet service

providers that are capable of doing much intense tasks that cannot be handled by an
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edge network. These servers are located at the top of data link layer which witnesses

instability in data transmission from the edge devices. Additionally huge amount

of data transmission to the central server can lead congestion in the network.

• Edge Server - Edge servers are next in line that are deployed in the edge of the

network. It has better computational capability compared to that of the edge client.

It is considered to have stable power sources and the connectivity is sufficient. These

are devices like routers, gateways, servers on edge, switches or any base stations

• Edge clients - Edge clients are devices like IoT devices, smartphones, etc that has

limited computational power but are the closest to the user and hence is responsible

for data gathering. These devices has limited access to the power and connectivity

and hence only preliminary tasks are carried out on the edge client networks. Heavier

tasks are sent over to the edge servers, in addition data is passed over so that better

training results can be achieved due to larger collection of data reducing the non-iid

behaviour.

2.3.2 Steps in Edge Federated Learning

For training of a model in this paradigm it involves two steps to it. The initial step is

a training between the edge client and the edge server. The next step is aggregation of

updated models in the edge server to the global server. The underlying working of both

the stages are that of the federated learning, using the federated averaging algorithm.

Following are the generic steps [26] followed in EdgeFed architecture.

• Step 1 - Initial step is to randomly initialize the model in the global server and

these model are shared with the edge server.

• Step 2 - The shared models from the global servers are then shared to the edge

clients from the edge servers. Edge clients are randomly selected based on different

conditions such as the availability of the edge client, its power capacity, user expe-

rience etc. These randomly initialized model from global server is then passed on

the clients.

• Step 3 - The clients does a preliminary training of the model using the locally

generated data. Once the model is trained locally the data generated from the

edge device and the updated model itself is shared to the edge server. Since the

edge server has access to more computational resource, tasks that are comparatively

heavy such as further training of models are carried out on larger base of data.
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• Step 4 - The updated models alone are then send to the global server for aggrega-

tion. In both the cases where the updated models are shared federated averaging

algorithm 2.1.2

• Step 5 - The updated model is then shared with the edge server

• continue to Step 2 until a desirable results are achieved

Figure 2.3: This figure illustrates the function of different layers in edge computing[26]

All the processes have been illustrated in the image 2.3

2.4 Federated Learning Frameworks

With the introduction of federated learning different frameworks have been introduced to

aid abstraction of the complex computation and orchestration involved in the background,

and are available as open-source projects for researchers to build on top of it. The notable

ones are TensorFlow Federated and Flower Framework.

2.4.1 TensorFlow Federated Framework

TensorFlow federated framework[1][6]is an abstraction for the federated learning tasks

for the models that are built using TensorFlow. It aids in evaluating federated learning
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especially on existing model and data. TensorFlow Federated (TFF) consists 3 key parts.

Models - helps in wrapping up existing models into a federated learning setup. Federated

Computation Builders - that are responsible for training, evaluating the existing models

and Data-sets - a collection of data-set that could be loaded in python that simulates

the federated learning scenarios. All of these functionalities except for the simulation

capabilities have been grouped into a module tff.learning and simulation as tff.simulation.

There are few architectural assumptions made by the framework, when implemented.

Initial assumption is that due to the variety of devices taking part in the process such

as high end servers or computationally restricted edge devices, the only safe requirement

would be, the device should be capable of supporting TensorFlow on the run time and

the existing graph build using TensorFlow should be serializable as a graph such that

could be run on even lower end devices. The second one being, there are two aggrega-

tions that are taking place internally. A local aggregation and Federated Aggregation.

Local Aggregation starts first starts with initialization of variables. It then invokes for-

ward pass function to update the initialized variables and report local unfinalized metrics

are invoked to report the results in each stages. The Federated aggregation consists of dis-

tributing the initial model, which is then independently or parallel run on client devices.

Then the aggregation from multiple clients are invoked.

There are basically two components to TFF. A higher layer of an API could be em-

ployed to conduct researchers and simulation of the federated learning setup and the

second lower layer is a federated core which is responsible for internal computation and

evaluations. To customize the whole flow changes has to made to the Federated Core.As

a framework TFF provides different modules and are mentioned in the table 2.1

Simulation using the TFF framework is the most important function that is aimed

to be utilized in this dissertation. To better under TFF simulation module consists of

mainly three parts:

• tf.function - is used to encapsulate the function without referencing tff but could

be reused inside a client. These are normal tf functions that runs of client to train

the model and could be used outside the framework.

• tff.tf computations - is used to encapsulate the tf.functions and forms a fed-

erated wrapper for training and evaluations.it is also responsible orchestrating of

functions inside tff.tf computations using functions tff.federated broadcasting and

tff.federated mean inside the given module

• Outer Driver - An outer script that is responsible for determining the control flow,

such as selecting the clients etc determines the whole flow of the system.
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aggregators that are responsible for the aggregation tasks in the federated
learning in a setup

analytics for analysis of the FL using TFF
async utils a python utils file for enabling the asynchronous orchestration

of the training
backends This used to for all the backend activities such as compil-

ing,constructing and triggering computations
frameworks It is a module that could be used to extend the existing frame-

work to a new one
learning there are various FL algorithms and to choose between different

algorithms this module is used
profiler This module is used to as a utility function to time and data

tracing
program It is a set of libraries used to create different federated program
simulation this used to create simulation with the intended setup
structure instrument to create name or unamed fields
template these are used to create templates for commonly used calcula-

tions
test used to create tests in TFF setup
types library types used to interface different functions and compu-

tations within the framework

Table 2.1: Different modules in TFF framework

TFF framework however could not be considered as an apt choice for this disser-

tation since it is restricted to limited use cases and are really inconvenient to create a

custom architecture such a edge federated learning which require multiple layers of feder-

ated learning incorporating edge computing.TFF provides means to work on researching

different federated learning algorithms and simulating its effect. Additionally TFF only

provide simulations to TensorFlow models alone whereas the dissertation aims on explor-

ing effects on variety of models using EdgeFed. Again although simulation satisfies the

feasibility study it never gives a provision for deployment of real architecture, and would

then require a need to search for another framework for the same.

2.4.2 Flower Framework

Flower framework [7] is an open-source end-to-end framework that enables deployment

of federated learning in real edge devices rather than just simulations using experimental

setup. Flower Framework is considered a stable setup that can easily integrate existing

machine learning models and frameworks, and flower framework can be easily extended.

Novel and emerging algorithms that are need to be implemented could be easily incorpo-
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rated, as well as flexibility to choose between different training strategies is a plus. Finally

different communication protocols could be employed to secure communication between

clients and servers. Flower framework could be used for both research and simulations as

well as production ready setup in real edge devices.

Flower framework helps in closing gap in various use case that are not supported by

current FL frameworks. Following are the use cases that could be enabled by Flower

framework

• Scaling - Flower framework is capable of scaling the experiment with large number

of client, especially in a federated learning setup algorithms have to be tested out on

large pool of clients concurrently to test out it’s performance on generalizing using

an algorithm.It can also be used to test out a federated learning design based on

different set of compute.

• Heterogeneous Devices - Flower framework is supported on variety of devices

and the same can be used to test out heterogeneity. Researchers make can make

use of flower framework to simulate federated learning on heterogeneous devices as

well as on real edge devices. Measurements could be easily evaluated using the

framework especially the performance of the design.

• Transition - Flower framework can be used to initially study the design and algo-

rithms. Once the design can be studied and established, it can be easily transitioned

to real world devices.

• Support of multi frameworks - The framework naturally motivates usage various

ML frameworks. Various edge devices might have models using various machine

learning frameworks. For example, some of the edge devices might have models

usage implemented in PyTorch and some of them might have models implemented

on TensorFlow. Flower framework can be easily used in situations like enabling

aggregation of models from different client centrally.

The frameworks that exist in federated learning has ecosystem gaps and mainly doesn’t

reflect the real world scenarios and hence when developing flower framework has indepen-

dent goals that addresses these issues. Following are the goals

• scalability - Federated learning when deployed in real world would mean that there

would be large number of edge client devices. The flower framework has been

developed keeping scalability in mind.

• Heterogeneity - Different edge client devices work on various OS and flower frame-

work has to support heterogeneity.
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• Communication heterogeneity - Different devices in real world has to communicate

through different protocols and the framework has to support the same.

• Privacy friendly - Different privacy and updated privacy schemes has incorporated

on the framework to support real world scenarios

• Flexible - the framework has to be flexible incorporate different designs of federated

learning.

The core architecture of flower framework consists of mainly two components - the

server side and the client side. The server orchestrates the whole process in the flower

framework. The server consists of mainly three components. Client Manager, Federated

learning loop and a user customizable strategy. The server selects the clients and samples

using the ClientManager. It manages the clients as objects as ClientProxy and it repre-

sents a client connected to the server. The FL loop is the key element in the whole FL

process. Strategy is a user customizable layer where it can used to determine the whole

process. The client side consists of two main components Virtual Client Engine(VCE)

and Edge client engine. The virtual client engine enables virtualization that has utilized

hardware that is available. VCE initializes the clients in a hardware aware scenario. Edge

client manages various Configurations of the devices that participate in the FL and it

manages the connection with the server. This is illustrated in the figure 2.4

Figure 2.4: This image illustrates the core architecture of the flower framework.[7]
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2.5 Machine Learning models

Machine learning is a field in computer science that learn from the given data to be able

to predict outcome of an event without being told it’s outcome. There are 3 types of ma-

chine learning. Supervised, unsupervised, and reinforcement learning. In this dissertation

considering the medical data that has been selected the primary focus is on supervised

learning where the label are mentioned unlike unsupervised and reinforcement learning.

Classification is sub division of the supervised learning where the models are trained with

categorical values as the label or the entities that needs to be predicted. In this study

the aim to train different classification model using different methods(centrally trained

model, federated learning and edge federated learning). The models under consideration

are logistic regression which is a linear model, neural network capable of learning complex

non-linear behaviour of the data as well as a tree based model that has better accuracy

in classification problems. This sections discussed in detail about these models.

2.5.1 Logistic Regression

Logistic regression[2] is a simple yet powerful tool used most in for binary classification

problems (the output expected is a categorical value). The logistic regression model is a

modification of linear regression model that predicts continuous values ,whereas logistic

regression predicts either 0 or 1. The output is mapped to range between 0 and 1 using

using a non linear function called sigmoid function. Since the predicting function is

sigmoid the basic assumption in the case of linear regression where the features have be

distributed linear doesn’t hold anymore. Logistic regression model can be represented as

f(z) =
1

1 + e−z

where z can be represented as the linear function in linear regression z = β0 + β1x where

is the feature. The function visualization is represented in the figure 2.5 .

When the value of f(z)¿0.5 the classification output is considered 1 and when it’s is

less than or equal to zero the classification output is considered 0. The training of the

logistic regression is started with random initialization of the β that are the coefficients

of the linear functions as discussed above. This is then given to the sigmoid function and

a prediction is made. The loss function of the problem is a cross-entropy loss function

which is represented as −ylog(ŷ)− (1− y)log(1− ŷ) where y is actual value and ŷ is the

predicted value. i.e when the value of the actual label is 1 log()̂ becomes zero and loss

is 0 and when the actual label is 0 log(1 − ŷ) becomes 0. hence the loss is at minima.

Otherwise the loss tends to go a large value. The cost function is a convex function and
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Figure 2.5: This image illustrates the sigmoid function graph

has a single global minima and it could be converged based on a gradient descent problem.

Apart from batch gradient descent, advanced optimized could be used for converging the

loss to the global minima.

For a multinomial classification[23], logistic regression cannot be directly used since

it is only used for binary classification. For a multi class classification, logistic regression

has to be built in a one vs rest methodology . For example if there are 3 classes to be

predicted A,B,C there classifiers has to be made in such a way that one model has to

classify class A and classes B and C and the next class and so on. Each class probability

is calculated separately in the same like that in a binary classification. The class with the

highest probability is selected as the classified class.

2.5.2 Neural Network

The idea of neural networks [19] were established previously, but only gained attention

lately with the increase in computational capability and the availability of the data with

the advancement in electronics and technologies associated with it. Neural networks were

formed as an imitation of human brain cells and are attempted to design and function the

same way. Just like brain cells neural networks are made up of nodes which has weights

and biases and the activation functions.Neural network essentially consists of three major

layers, input layer, hidden layer and output layer. Each layer is made up of nodes. Each

node calculates the or weighs in the feature importance in a given set of inputs using

the weights and biases are selected based on the activation functions. There are different

type of activation functions used in neural network. Sigmoid activation function returns 0

or 1, are usually used in the final layer to predict binary classification problems.However

sigmoid functions are not optimized activation functions since the range doesn’t give
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space for wider range of values including negative values and hence tanh was adopted.

tanh values varies from -1 to +1 and has been considered as better activation function

in the hidden layers, but still the range of values converted are limited and hence the

ReLu(Rectified linear unit) activation functions were adopted that covers wider range

of values and as an optimization leaky-ReLu values were introduced to cover negative

values.The input layer varies based on the use case, depending on the neural network

design, such as CNN ( Conventional Neural Network) however in a general case the input

layer only passes the input attributes to the hidden layer. The hidden layer and the

output layers are responsible for computations.

Figure 2.6: This image illustrates the architecture feed forward network

Initially the weights are assigned randomly and the information are passed over from

layer to layer in a forward fashion and it is termed as feed forward network 2.6. Here

no changes are weights or biases are made or no learning is made. The weights and bias

are learned or changed based using the backpropogation where errors are calculated and

this is propagated to make minor changes in the weights and bias until the error from the

label and the predicted values are made the least. The training process is a minimization

function and it is minimized using gradient descent optimization. Neural networks are

known for it’s ability to learn complex non linearity in the data creating better decision

boundary however requires large amount of data to converge into global minima. Neural

Network is best suited architecture and is integratable in flower framework and hence it

is one of the models that is considered for the feasibility study in this dissertation.

2.5.3 Random Forest

Random Forest [11] is normally used as a supervised classification model and it is made

up of ensemble of decision trees. However it could be also used for regression problem. In

random forest the results from multiple trees to arrive at a single result. It is known for
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its easiness with which it can implemented and the accuracy that could be achieved in a

classification. A illustration of randomforest can be seen in the figure 2.7.

Figure 2.7: This image illustrates the random forest classifier

Decision trees are made out of a series of ’yes’ or ’no’ question that could be used to

separate and classify the dataset. it training process of a decision tree is formulating the

right split when a data comes in, based on its label. Each classification is represented

by a leaf node in a decision tree. One of the common measure that is used to calculate

the split is Gini index. Other measures like information gain and mean squared error

(MSE) can be used to determine the split. The main of these measures in to minimize

the impurity in the data based on the split. Regression mainly uses MSE to determine

the impurity. Gini impurity mentions the probability of a misclassification of the data.

When the gini impurity value is less the split is better. Although decision trees can be

used for classification problem it can lead to problems such as bias towards the prediction

as well as over-fitting based on the training data. However, when the a cluster of decision

trees are used it can create better decision boundaries on a condition that separate set of

decisions trees should has less correlation or no correlation.

Ensemble method is a learning technique where a set of classifiers are involved and

the most popular result is selected based on certain conditions which is an aggregate. A

popular method of ensemble is called bagging method[9]. In bagging method the data

points are sampled multiple time. Each data point could be sampled more than once so

that it appears in multiple sample. The samples are used to train, in this case multiple

number of decision trees. The results are averaged and this method is known for reducing

the variance in the split of the data.

The random forest classifier makes use bagging method and decision tree. Decision

trees uses all attributes to train a single model. However in random forest bagging is

used as well as feature randomisation [10] method is used where the features with least

correlation is used to select random set of attributes. There by the random forest uses a

bunch of decision trees that are least correlated on subsets of attributes or features rather
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than all the data features like in decision tree.

However this model implementation and training using edge federated network is be-

yond the scope of this dissertation. Federated learning implemented random forest [25]

has higher level of the trees in central servers whereas the lower depth layers reside in

the clients. Implementing the same using flower framework is not directly supported and

hence would require additional efforts.

2.6 Summary

Federated learning and edge computing as two separate technologies have been adapted

by researches and engineers in various solutions. One of the notable and introductory

solution for federated learning is Gboard from google. In Gboard the next word prediction

model trained is trained using the federated learning technique. Federated learning as a

technology has been adopted by various cloud solution providers especially Amazon Web

Services. federated learning gained it’s popularity especially with the IoT devices. The

idea of federated learning is mostly promoted by Google. Edge computing is promising

novel technique which would gain significant attention in the coming days especially with

the introduction of fifth generation of networks. IBM is aiming to develop technology

immensely in the field of edge computing. Most of the studies were conducted separately

and very few studies especially [26] have only combined federated learning and edge

computing where the multiple layer of federated learning is discussed.

This chapter discusses the federated learning and edge computation is detail with

the aim of helping the reader to better understand the novel paradigm of edge feder-

ated learning. Combing the ideas edge federated learning have been closely correlated

and elaborated. Popular frameworks such as TensorFlow federated learning and Flower

Frameworks are discussed thoroughly. Its components are discussed closely so that it

gives a better idea about the most aligned choice for the design and implementations.

The chapter further explains the overview of machine learning models Logistic Regres-

sion, Neural Networks and Random Forest that needs be trained using the paradigm

which is 3 different category of models available to better understand the performance of

the technique in its diversity. The chapter enables the reader better familiarize with the

necessary background required for the design and implementation of, proof of concept,

that is to be discussed in the following chapter.



Chapter 3

Design and Implementation

Design and Implementation chapter of the dissertation explains in detail the development

of a system responsible for training of machine learning models using data in health-

care domain using Edge Federated Learning (EdgeFed) with references to the ideas set

and discussed in the previous chapter, Literature Review 2. This chapter begins with

detailed explanation of Edge Federated Learning (EdgeFed) architecture independently

on a implementation perspective. Consequently the chapter discusses about a general-

ized components, in Flower Framework development. Moving ahead in the mainstream

direction of a machine learning problem, the dissertation explains about the data, the

architecture and how it is implemented using the selected framework. Finally the chapter

concludes with the challenges encountered during the implementation in consideration

with proposed design.

3.1 Design Overview

The core idea of the whole implementation is the ability to preserve the data privacy of

the users by never having to share the data with a central entity but at the same time

still being able to make use this data to create better machine learning models in the edge

computing paradigm. Following are the components in the system proposed.

• Edge Federated learning simulation - The above discussed core idea about data

privacy in machine learning training in edge computing paradigm, as discussed and

chosen is Edge federated leaning. The crucial idea in design is the flow of machine

learning models and data between the clients and servers and has to be discussed

in detail to better understand the design of the architecture. Here to simulate data

generated in real edge client devices, diabetes dataset has been chosen and imputed

accordingly.

23



3.2. EDGE FEDERATED LEARNING 24

• Flower Framework - Flower Framework has modules that support the development

of federated learning where only a central server and clients are considered. The

implementation for edge federated learning is not directly available and hence with

the available set of modules in the framework it has to be tweaked to create the

proposed architecture. It has to be further used to obtain the evaluations of the

model.

• Machine Learning models - Each model is implemented in a different methodology

using the flower framework. The models used in the study are Multinomial Logestic

Regression and Neural Networks. These models has to be trained and evaluated

using three setups, conventional machine learning, Federeated learning and Edge

Federated learning for comparison.

3.2 Edge Federated Learning

The basic idea of Edge Federated learning has been discussed in the previous chapter

in the section 2.3. It discusses that the edge federated learning consists of basically 3

layers, Global server, Edge server and Edge client. It also explains the steps involved

in the architecture where the global model selects a random weights and biases from a

commonly agreed ML architecture. This model is then shared to edge server which then

sends the same to edge clients. Edge clients updates the model weights and shares the

updated model and the generated data with the edge server. Edge server then updates

the aggregated model with the collected data from the clients. These resultant updated

models are then shared with global server for aggregation.This could be mathematically

designed and modelled as:

• The randomly initialized model shared with the edge server and the edge server in

shares the same model with edge client. Random initialization happens initialized

by the flower framework in the background.

wt < −random initialized (global server) (1)

• The edge client trains the model using the data that is generated on the edge client.

Here g is the gradient, ∇F is the loss function, wt is the weight shared by the global

server through edge clients and η is the learning rate.

g =∇F (ωt) (2)

ωi
t+1 ←ωi

t + ηg (3)



3.2. EDGE FEDERATED LEARNING 25

• The updated weights of the model from the edge client is aggregated in the edge

server

ωi
t+1 ←

K∑
k=1

nk

n
ωi
t (4)

• Now the randomly initialized model weights from the global server is replaced with

the aggregated weight from the client using federated averaging. i.e from equation

4 and 1 now we have

ωt = ωi
t+1 (5)

wm
pool ←

[
w1

t+1, w2
t+1, . . . , w

k
t+1, . . . , w

K
t+1

]
.

• From the edge server using the collection of data received from the edge clients and

the new model weight ωt the server trains the model.

g =∇F (ωt) (6)

ωi
t+1 ←ωi

t + ηg (7)

.

• This model is then again shared with the global model and it is aggregated in the

global server using federated averaging algorithm.

ωi
t+1 ←

M∑
m=1

nm

n
ωi
t (8)

• The new weights are obtained ωt ← ωt+1 and these weights are again reshared with

edge server and edge clients through edge server until desired results are obtained.

This mathematical representation can represented as an algorithm for the implemen-

tation of the same programmatically. There are two sets of processes identified from the

previous mathematical representation. There is a edge update and and there is an up-

date between the edge network and the cloud layer. Hence separate algorithms has to be

defined between the edge server-edge client communication and edge server-global server

communication.

The local update in the edge network can be referred to as Algorithm 1. Assuming

that there are m edge servers and each edge server has k clients. E is the number of

rounds, the edge server will receive the aggregate from the edge devices and train the

model within itself. B is the batch size used in the training.1
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Algorithm 1 Local Update on Edge - Algorithm 1

Require: data from k edge clients and updated model from the client
Ensure: The model is updated
1: run the code on edge server
2: procedure Edgeupdate(:)
3: for e in Epochs E from 1 to E do:
4: for b in batch B do:
5: for each client k in parallel do:
6: Xclient, Yclient,Wt ← ClientUpdate()
7: end for// aggregate the model updated from the edge client based on the

parameters.
8:

ωi
t+1 ←

K∑
k=1

nk

n
ωi
t (4)

9: Wt+1 ← Wt - η∇loss(Xclient, Yclient,Wt)
10: end for
11: end for
12: return Wt+1

13: send W to cloud servers
14: end procedure
15: //training of models in clients
16: procedure ClientUpdate(:)
17: for e in Epochs E from 1 to E do:
18: for b in batch B do:
19: Wt+1 ← Wt - η∇loss(Xclienti , Yclienti ,Wt)
20: end for
21: end for
22: return Wt+1

23: send W to edge servers
24: end procedure

The second algorithm is the global aggregation of the model from the edge server to

the global server. The updated model from the edge client which is then trained again in

the edge server will be sent to the global server and the aggregation of the models in cloud

based global server is aggregated as the weighted average of model ( Federated Averaging

algorithm). Number of edge clients are indicated as m, E is the number of rounds run by

the server, b is the local number of epochs. η is the learning rate. 2

Both of these algorithms work with the basic assumptions that all the models men-

tioned throughout has the same architecture. Hence the weights are denoted directly in

the algorithm. Following the same model architecture is required since the parameters

has to be the same in all the servers and clients. If there is a miss match, the whole
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Algorithm 2 Global Update on the cloud - Algorithm 2

Require: updated model from the edge servers
Ensure: an updated global model in the cloud server // the code is run on the cloud (

global server)
1: procedure GlobalUpdate(:)
2: for ( doeach i in epochs E):
3: for each m in M edge servers do:
4: Wt+1 ← EdgeUpdate(k, wt)
5: end for
6: Global aggregation happens based on the parameters selected
7:

ωi
t+1 ←

M∑
m=1

nm

n
ωi
t (8)

8: end for
9: end procedure

communication and aggregation will fail. One of the major difference in the algorithm

proposed in this dissertation is aggregation of models based on the number of weighted

average of edge servers rather than communicating the number of clients involved in the

training in comparison to taking weighted average of all the clients like mentioned [26].

This paradigm design of edge federated learning aims on aggregating the models as a step

by step by approach.Models trained on the clients when aggregated on the edge server

now acts as a starting point for the edge server and global server aggregation. This whole

process is illustrated in the previous chapter 2.3

3.3 Flower Framework Development

As Previously discussed there are various frameworks available in the arena of feder-

ated learning that helps in either simulation or both simulation and deploying in various

real edge devices. Tensorflow Federated Learning, LEAF, Flower Framework, Clara from

NVIDIA all supports the implementation. However most notable ones are TFF (Tensor-

flow federated learning and Flower Framework. Flower Framework has been chosen for

design and implementation due to factors discussed in 2. Flower Framework is basically

developed for the implementation of the conventional federated learning. This section

aims in putting forth different development modules so that it explains how the design of

an edge federated learning is possible with this framework.

A Basic Flower framework structure is divided into two components. The client and

the server. Each component is responsible for its own computation.Infact a simple setup
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Figure 3.1: Architecture of multiple nature client of Flower Framework[7]

of a client and a server using this framework can be implemented using less than 20 lines

of code. In essence there should be at least two different modules that has to be spun for

the basic framework structure. Following are the implementation details of the client and

the server.

• Client Code: The client script in the flower framework in designed in such a way

that training of the model using the available data on the client and evaluation of

the trained model can be set according to the use case or in other words is cus-

tomizable. Flower Framework comes with a great abstraction and these modules

in the framework is responsible for managing the search for the server, establishing

a connection, serializing the model parameters and sending over to the server by

trying to avoid communication failure. The client module that is generally used is a

class named NumpyClient and is communicated with the server using numpy array

or either dictionaries. This class can be used to as the base class in case a custom

client module has to be created enabling to inherit the same properties on top of

the custom properties. However the structure for implementation remains the same.

The NumpyClient consists to basically four member functions and those are

get parameters - The function returns the model parameters such as weights and

other necessary parameters

set parameters - The function is used to obtain the parameters from the server

and initialize the model.

fit - This function is used to train the model specified in the architecture.set parameter
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is called inside this function before a model is fit is carried out. This function re-

turns serialized model parameters, the number of training points that took part in

the training. The return gives an additional provision to return any custom data,but

are mainly intended for metrics, however any data in a dictionary format could be

sent over the server and has been used a tweak to enable data sending to implement

EdgeFed

evaluate - This function when called return with the evaluation metrics that is

specified within the function.

The whole process is initiated with by calling the core function start client to start

the client which searches for a server at the specified IP address. With the client

flower class mentioned the core modules orchestrate the process.

• Server Code: Server plays a crucial role in the whole framework. This is the mod-

ule that orchestrates the learning between client and then aggregates the updated

parameter. The code involved in the implementation of a server is very abstract. It

sets up a server on the mentioned port and selects the clients based on the strategy

mentioned. Flower Framework module strategy can be used while spinning up the

module to built custom strategies of training by inheriting the properties on the base

classes implemented for standard strategies. Flower framework in the background

sets up remote procedural call (RPC) server that is a standard network interface

used to establish connection between remote servers and client there by inherently

aligning with the most of the properties of the federated learning required. The

notable strategy that is used commonly and is adopted is fl.server.strategy.FedAvg

which is the library implementation of the selected aggregation, Federated Averag-

ing that is in interest of this dissertation. Flower Frameworks gives the flexibility

to choose different aggregation algorithm as well. The core implementation is this

section is the flower server, since it sends and receives aggregates, and most im-

portant it enables the saving the model on a local file system in the event of the

server going offline, as well as managing the whole training,communication and

orchestration. Additional logic used to implemented is specified as the following.

start server is the function that is used to spin up the gRPC server where the

parameters mentioned are the number of rounds a server to aggregate the updated

models from. It can specify the address on which the server has to be setup. Both

client and server on flower framework support certificate authentication and could

be enabled if necessary. fl.server.strategy.FedAvg like mentioned above orches-

trates the aggregation from the client. Additional parameters such as the minimum

available of clients which is the minimum number of clients that are required to start
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a training, minimum fit client which indicates the number of clients in minimum

has to participate in the training and fraction of the available clients that need to

be considered can be mentioned while setting up the strategy. There are additional

parameters that could be used to create a custom design based on the use case such

as on fit config fn which can be used to modify the strategy when the training oc-

curs and on evaluate config fn to determine what should happen on the server side

when evaluate function of the client takes place and resultant aggregation happens.

3.4 Data Collection and Simulation

The objective of this dissertation is to study the feasibility of edge federated learning in

the healthcare domain. The ideal scenario for data collection would be to obtain data for

certain use case from a edge client. i.e. the data from IoT devices or monitoring devices

that are used for either research or are deployed in real world. However, such a segregation

of data due to its sensitive behavior is not directly available and would require extensive

effort to obtain those data. Moreover, the data available usually comes with the similar

behavior, mostly on the basis of patients with a single data points representation are

mostly obtained rather than a continuous stream of monitoring system data that reports

the attributes over the time with a label with each instance of edge client. Another

possibility for the data collection would be in the scenarios where monitoring devices

collecting the data on a edge client with labels from experts that could be trained on the

device and then updated to an edge server that is responsible for aggregation in a area,

for example in a county as an edge network, where the models are trained and from there

updated models can be aggregated on to a country level which would be the global server.

However none of the data provides an identifier to enable such a split in data to be able

to simulate such a real world example. Hence a data that is directly available has to be

processed to form a real world simulation for this study.

The initial data selected is the diabetes[3] are directly available from Kaggle. This

dataset is directly available in a structured format and hence only minor preprocessing

are required for the data. However simulation of the data to fit into the study is the

real challenge. The data consists of 101,766 data points that consists of diabetes data

from different patients that is obtained over a time period of 10 years. With preliminary

Explanatory data analysis (EDA) it was found that the data consists of information

regarding 71,518 patients. The dataset consists of 51 features out of which, a feature can

denoted as the label for the data. The attributes are found in the figure 3.2

From the initial EDA it can be observed that there are no missing data present in the

obtained data by visualizing as a matrix as observed from the figure 3.3.
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Figure 3.2: The attributes in the diabetes dataset

However this is not a real world representation of the data and hence some of the data

has to be deliberately deleted to simulate the real world scenario. A few of the attributes

are deleted from the dataset such as id,encounter id,admission type id,discharge disposition id,

admission source id,payer code. Since these are unique identifiers and does not contribute

the prediction labels it has been adopted as a initial cleaning step for the data. Conse-

quently the age of a patient is represented as a range in the dataset and hence it changed

to the mean value of the range of data and is replaced as an integer type data. Then using

the label encoder from sklearn[20] categorical values in the given attributes are converted

into integer format between the range of 0 and the total number of classes num classes−1
so that the it can be used as a numerical measure in training the classifier.

Before deleting the value to simulate for the study initial the data is split into train

and test sets of the data. Since the data has to be spread across with the nature of the

study, the conventional 80-20 split of the data wouldn’t make sense since if we happen

to split the data in that fashion the number of testing data-points in a client or an edge

server would exceed the number of training data-points which is not ideal. Hence the split

done on the data in this dissertation is a 95-5 split. Once the split is done the test data

is saved separately.The training data is then further processed to add missing values to

imitate the real world data. This is done so, by first determining the number of iterations

which is calculated as length of total number of columns multiplied by a random float

value between the range 0 and 0.5 which is then typecasted to the nearest integer value.
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Figure 3.3: Missing value representation of the initial data obtained

The function selects a random column name and deletes 10% of the data from the selected

column and this process is repeated until the total number of iterations. The result can

be visualized as matrix in the figure 3.5. The code for the same can be found in the figure

3.4

Figure 3.4: Python function to randomly add missing values to a pandas dataframe

In addition the data that has missing values are now randomly sliced into a multiple

chunks of data.i.e. train dataset the training set has to be divided between multiple

number of clients that participate in the training. In this dissertation the aim to study

is to use 4 edge clients in total, 2 edge servers and 1 global server where, 2 edge servers

will have 2 edge clients each. Edge Federated Learning/ Federated learning studies are

to be conducted with a non-iid data feed as discussed in the chapter 2.Hence unequal

number of data points have to be split between different clients. As an initial step the

train dataset is then split to larger number of chunks which are combined into unequal

number of datasets which are then used by each clients. This process is repeated whenever

a round of clients are to be chosen by the edge servers to replicate the random nature,
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Figure 3.5: Data Visualization after randomly deleting from the dataframe

different client will receive different sized with different set of data. The missing values

introduced with client is a closer representation of generation of real world behaviour of

the data.

3.4.1 Multivariate Imputation by chained equations

There are three types of missing data[8], Missing completely at Random ( MCAR) when

the data is missing , Missing at random (MAR), Missing not at random (MNAR). The

data has missing data completely at random when the probability of the occurrence of

missing data has no influence on the observed data.When the data is missing at random

when the data is missing, based on the systematic nature of the data collection. The data

is labelled missing not completely at random when the missing data can influence the

observed results especially when the study is a targeted for a specific purpose and when

the target value as such is found to be missing it called MNAR .

Multivariate Imputation by chained equation is a method to fill in the missing data.

There are basic assumptions considered in the MICE imputer. The basic assumption is

that the missing data should be either MCAR or MAR. Here in the dataset since the data

is deleted completed at random it is safe to assume that the dataset for each client has

data missing completely at random. This data imputation has to be implemented in the

client. The number of data points used for training are very small and hence the data

points with missing values cannot be deleted. Filling the missing values with mean values

or so could not be beneficial either. Since MICE learns from the trend of the whole data
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taking in consideration rest of the attributes, and since the data generated has almost the

same behaviour when collected from the same source, MICE works well in this scenario.

MICE works in steps where initially the points where data is missing it replaces it with a

place holder, such as mean, median or mode of the data depending on the nature of the

data. Then considering one attribute of interest, assuming that other features does not

have any missing data, it considered as label to predict. A regression model, usually linear

regression model is used learn from the data present that doesn’t have missing values and

then predict the missing value. The missing value and the place holder is subtracted

and the absolute value is calculated as the loss.Now in the subsequent step the missing

value is replaced with imputed value and the same process is repeated. This is then again

repeated for all the attributes until the loss calculated is at a desirable level. Then in

the final round the imputed value is placed instead of the initial placeholder to fill in the

missing data. MICE imputer is introduced into all client while loading the data.

From the dataset,out of 43 features that is left in the dataframe, the label can be

chosen as the column insulin which indicates level of insulin that has to be injected to a

patient. There are four classes in the column- up,down, steady or no if the drug was not

prescribed. There are 24 features mentions about the drugs prescribed and other features

talks about the patient characteristics and tests conducted on the patient Missing values

are not introduced on the labels and if rest of the attributes has miising values MICE

imputer is used in client to fill in values.

3.5 Machine Learning Models Development

There are two models used in this dissertation for the feasibility study, Logistic Regression

and Neural Network.

Logistic Regression is implemented using the sklearn[20] library in python. In the imple-

mentation the parameter warm start has to be set to value True so that in each round

of the training it is not set to its initial parameters but will start from the point where

model was last updated.

Neural Network model is implemented using the library keras[15] implemented inside the

open source library TensorFlow[6]. Keras can be used for easy implementation of the neu-

ral network models are widely adopted. The neural network model selected for the study

in this dissertation has 4 layers with input layer of shape 42 followed by a dense layer of

84 units with activation function Relu 2, followed by another dense layer of same config-

uration, followed by a dense layer of units 32 units with same activation function , finally
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a 4 output dense layer with softmax as the activation function. softnax is represented as

σ(Z⃗i) =
eZi∑K
j=1 e

Zi

where in the function Zi represents the input for the multiclass classifier and Zj represents

the output which returns the probability of each class. The loss calculated is a categorical

crossentrophy discussed in the section 2 and the optimizer used is an adam optimizer.

Adam optimizer is an updated version of SGD discussed in the 2. Adam optimizer is

a combination of RMSProp optimizer as well as heavyball optimizer. Heavyball opti-

mizer uses momentum or weighted average for convergence. When there are like higher

oscillation in the optimizer due to the random behaviour in the SGD adding momentum

reduces the oscillation. RMSProp which is a different version of Adagrad updates the

learning rate. Adagrad updates by adding a denominator to the learning rate by adding

the gradient. Hence as the epochs progresses the convergence speed reduces. RMSProp

introduces a factor β and is added along with the summation of gradients as 1 - β that

results in reduced summation of gradient at each step increasing the speed of convergence

when compared to Adagrad optimizer. When combined Adam has 3 paramters β1 for the

RMSProp β2 for the heavyball and α as the intial learning rate. Keras has set the default

values and is not tweaked in this dissertation.

3.6 Implementation with Flower Framework

Experiments of the proposed study was conducted on a cloud instance with a hardware

access to 30 cores on Intel(R) Xeon(R) Platinum 8170 CPU with 200 GB of RAM. Pro-

gramming language used was Python 3.9. The environment used to do the experiment was

a Jupyter Lab hosted on the above said instance. With the discussion of the development

modules in flower framework and the algorithm explained in the edge federated learning

section in this chapter the architecture can be designed as two separate federated learning

setup. In the first layer global server acting as a flower server is the server side and the

edge server requires a flower client to finish the top layer of federated learning using flower

framework. The bottom layer federated learning is implemented using flower framework

that consists of a server component which is basically another flower server instance in

the edge server and the edge client as the flower client. The following architecture is

illustrated in the figure 3.1

The models implemented in the server and clients for neural network is :
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Figure 3.6: Basic Architecture Design

model = Sequent i a l ( )

model . add (Dense (84 , input shape =(42 ,) , a c t i v a t i o n=’ r e l u ’ ) )

model . add (Dense (84 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (Dense (4 , a c t i v a t i o n=’ softmax ’ ) )

model . compile ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , \
opt imize r=’adam ’ , met r i c s =[ ’ accuracy ’ ] )

The implementation using flower framework has been added into the appendix section.

For edge client A.1, edge server 3.7 and global server A.2

The cloud infrastructure in the background is a Linux based system and hence the

orchestration is managed using a bash script. Initially the bash script spins up the global

server and pushes the process into the background. To avoid any issues such the client side

of the edge server unable to establish a connection with global server, the global server is

given around additional 10s to spin up. The after the said time the edge server scripts are

initiated and are separately and are again initiated as a set of background processes. The

process ID of the edge servers are saved in an array and in a while loop the client servers

are spun up. Each client are spun up and are sent to the background, in the meanwhile

the the process ID of the client is saved in a separate array. The client scripts wait till
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the whole round for clients are complete. The clients are attempted to spun till the edge

servers are online and are available for training. This is the case until the global servers

are connected to the edge servers. The global server keep the edge server up until all the

rounds are completed. Hence the only the check has to be done on to the client side.

3.7 Challenges

Various challenges faced during the designing and implementation are the following

• The selection of the dataset was one of the main challenges. Bigger and better

datasets such as MIMIC-III dataset are not directly available. The approval process

of the dataset is time consuming. Large number of data points can bring in better

results in case more number of clients needs to be included in the study.

• Implementation of the whole setup in a local system was not feasible since the entire

architecture can be computationally expensive especially when the model sizes and

the trainable parameter size are large. 16 GB RAM in a typical local system might

not be enough for the study during the given timeline for the dissertation.

• The base paradigm of federated learning was introduced in 2016 and the edge com-

puting paradigm are all comparatively new. The framework that supports the im-

plementation of federated learning and edge computing are available the documen-

tation and support is not extensive, and there are multiple bugs within the libraries.

A framework to implement edge federated learning is not directly available. The

library versions are still improving along with issues raised. The flower framework

doesn’t support the saving of models directly.

• Since most the frameworks are not evolved properly it was time consuming to choose

from the available frameworks. Edge federated learning needs additional tweaking

of the framework and choosing the framework trying out different modules was time

consuming.

• The chosen flower framework does not support the implementation of all the models.

Randomforset was one of the models that was intended for the study. However it

remained as a challenge due to the inability to implement using the framework.

• Implementing the TensorFlow on Apple devices using M1 or 32 bit chip set is a real

challenge. This could be a real problem when these could be implemented in real

world devices.
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3.8 Summary

This chapter discussed about design and implementation of the edge federated learning

using the flower framework. Initially the chapter discussed in detail the algorithm design of

edge federated learning. Consequently , it discusses about the flower framework modules

that is required for the implementation of the architecture. It further discussed about

the models used to train in edge federated learning. Finally the chapter lays out in detail

the implementation using flower framework and the bash script to orchestrate the entire

architecture. The following chapter will discuss more of the evaluation methods and the

results obtained and its comparison with the existing paradigms.
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Figure 3.7: Python Implementation of edge server on flower framework]



Chapter 4

Evaluation and Result

This chapter discusses about the evaluation methodology and the results of the edge

federated learning architecture implemented in the previous design and implementation

chapter. Initially the chapter discusses about the experimental setup used in the disser-

tation, consequently the evaluation the results obtained and the critical analysis.

4.1 Experimental setup

The data manipulation and the imputation discussed in the previous design and imple-

mentation chapter remains the same for all the servers and clients. The neural network

architecture and the logistic regression parameter has to be the same for the federated

learning and its corresponding communication and aggregation to work. The changes

however are brought in with the unequal partition and the data deletion with the aim to

retain the random behaviour of the data nature that could be observed in a real world sce-

nario. To explain things in the perspective of the control sequence of a machine learning

project, the data obtained are partitioned as train and test data. In total the data points

are 101,766 data points out of which 96677 data points are considered as the training set

and the rest are considered as the test dataset . There are no data manipulation and

imputation introduced to the test data.

The experimental setup consists of three parts.The same test data has been used with

the edge clients, edge servers and central server for evaluation.There are 7 components

in the experiment setup. 4 edge clients, 2 edge servers and one central server script that

is implemented. The central server is initialised first, and then the edge server are ini-

tialized establishing the connection between the central server and the edge server. Now

the central server expects the edge server to return a updated model as that is the top

layer of the edge federated layer.The edge server searches for the edge clients which is the

40
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next layer of edge federated learning. The edge server passes the same model send by the

global server on to the edge client now expecting the edge client to update the model.

The edge client updates the model as a serialized numpy array and the data as a separate

numpy array. The model numpy array is aggregated using the federated average in the

edge server,and the data numpy array is concatenated and the aggregated model is again

trained using the collected data and the same is aggregated to the central server.The

flower framework evaluates using the test set that was separate from the initial dataset.

The central server and edge servers saves the model which is implemented using a custom

strategy for further evaluation.

The second part of experiment setup is a federated learning setup where there a

central server and it waits for four clients to connect for the training. The central server

is a normal flower server and the clients are normal flower servers. By default flower

server looks for at least 2 clients to connect for the training to take place in a federated

setup. Like discussed in the previous chapter fed.server.strategy.FedAvg strategy has to

be modified to obtain connection and to wait till 4 clients are connected for the training

to start. The model is further saved by the global server for further studies.Even here the

data is split is unequally and the missing data are introduced in the same as that in the

case of edge federated learning as discussed above.

The final approach would be to use a normal machine learning setup where models are

trained centrally. All the data are directly available and there are no unequal partition

required however missing data are being introduced and the missing data is filled using

the same data imputer as that in edge federated learning and federated learning setup,

MICE.

4.2 Evaluation of the Architecture

Two models were studied as a part of evaluation of performance of the training using a

edge federated learning, Logistic Regression and Neural Network Model. Edge Federated

learning was simulated using bash scripts in a Linux based cloud instance. The data like

mentioned in the above section are partitioned unequally to portray the non-iid behaviour

behaviour the data in real world scenario. The neural network model consists of 4 layer

with input layer size of 42,and the rest as dense layers with size 84,84,32 and 4. The last

layer is the output layer and has activation functions Relu for the first three and softmax

for the output layer to output the probability of the multiple classes in this case 4 classes.

Logistic regression implemented using sklearn has parameters mentioned warm start =

True to avoid re-initialization of the model with each round of train. The maximum

iteration count of the logistic regression compared to the default has been increased to
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1000 in all the simulated device due to incomplete training warning received from the

library.

Although the number of data points changes with each run in a client, a for a typical

run in the current setup, an unequal set for partition can be found in the table 4.1

Client Number of data points
Edge Client 1 1520
Edge Client 2 6444
Edge Client 3 4871
Edge Client 4 5815

Table 4.1: Number of data points distributed among clients

4.3 Performance of the evaluation

The study in total consists of 3 techniques with two models of studying and the time

taken for the execution hugely varies. The time in seconds can be found in the table 4.2.

The time recorded was for 10 epochs in each architecture in each model. It can be seen

that from the simulation the edge federated learning is time consuming compared to other

two architecture. Centrally trained model in both cases takes the least amount of time as

expected. With federated learning time drastically increased since there is overhead for

the communication between two entities now and the aggregation turns out to be an extra

step. Further it also depends on the data transfer latency which in this case could be

eligible since it was essentially trained on the same system. The edge federated learning

although is good at offloading task it takes considerable amount of time to train the model

in the same setting due to the presence of large number of clients and servers involved and

it will be interesting to study the performance of edge federated learning as a separate

topic given right resources. As expected the neural network training takes significantly

more time compared to that of the linear model. In the edge federated learning this

increased by a very large proportion. One of the work around would be to reduce the

number of training rounds in each step. i.e. training on the edge client device can avoided

but it will miss out of the further advantages such as personalising of the model in the

device.

Another factor to discuss in relation with the performance of the architecture is global

communication of the model. The point to note is the number of global communications

are very less compared to other architectures.In a centrally trained model the global

communication happens between the client and the server directly for the transfer of

data. In federated learning the clients directly upload the model to the central server. In



4.4. EVALUATION OF THE MODELS TRAINED 43

Model Training Method Time taken for training
Logistic Regression Centrally trained 128 s

Federated Learning 1268.3s
Edge Fed 3600.3s

Neural Network Centrally trained 993 s
Federated Learning 4492.11s
Edge Fed 58683.7s

Table 4.2: Execution time taken to train models in different frameworks

edge federated learning, only the edge server communicates with the global server. It can

derived that centrally trained architecture will have large number of global communication

happening compared to federated learning since it uploads the data itself on to the cloud

whereas FL only uploads the updated weights. Additionally the edge federated learning

has less number of global communication since only updated weights from edge servers are

sent, which will drastically reduce the global communication overhead. The evaluation of

data transfer however,is beyond the scope of this dissertation.

4.4 Evaluation of the Models trained

The model trained are for a classification problem based on a health care dataset. The

initial parameters to check would be to quality of the training process from the accuracy

gained over multiple epochs and the reduction in loss. The centrally trained logistic

regression gets trained in a single step and the implementation library does not extend

direct results regarding the training of the model in each step. Hence the loss and accuracy

cannot be accounted for over the epochs like in other cases of the training strategy. The

loss and the accuracy of the models trained are plotted in the figure 4.1

On critically analysing the loss and accuracy of the models trained the linear model

did not observe higher fluctuations , it was comparatively smoother when compared to

the loss function. this could be because of the less number of trainable parameters when

compared to neural network. Neural Network with large number of parameters when

trained using mini batch SGD there tends to be a large oscillations in the learning of the

model. This could be reduced by the usage of Adam optimizer. The reason for increase in

oscillation could be with the aggregation using federated averaging, where an optimizer

with momentum is missing to reduce oscillation, as a result could be the probable cause

for oscillation when large of training parameters are involved . This behaviour requires

further studying with variable number of epochs to understand the behaviour especially

if the oscillation would die out with further number of epochs.
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(a) Accuracy of Logistic Regression (b) Loss of Logistic Regression

(c) Accuracy of Neural Network (d) Loss of Neural Network

Figure 4.1: Loss and Accuracy of the models trained over multiple architectures

The model accuracy for both cases are around the value 75% with logistic regression

less than 75% and neural network accuracy with more than 75% which is an expected

behaviour. Neural Network is expected to have better accuracy with further number of

epochs and it was observed with the basic experiments during the dissertation. Logistic

Regression on the other hand with further progress would not have better accuracy with

larger number of rounds.

Another parameter in machine learning especially classification are other evaluations

such as Precision, recall and F1 score. There could be large imbalance in the data with

label distributed in a different quantities. These parameters are calculated from the

confusion matrix which is a representation of the actual observed values and the predicted

values from the model. It indicates the the overlap between the actual value and the

predicted value by the parameters such as True Positives, True Negatives, False Negatives

and False Positives. Precision is a fraction of true positives by the total all the predicted

true values. Recall is the fraction of true positives by the total number of actual positive

values. F1 score is the harmonic mean of both precision and recall. The reason why there

parameters are extremely important in the healthcare domain is that, the models should
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be detect the necessary target. For example, a model predicting cancer should be able to

detect all the cases of cancer. This is explained by the parameter, recall. Consequently , in

the same example the model detecting cancer should be able to rightfully say if the patient

has cancer or not, and if it falsely predicted it can lead to wrong/unwanted treatment

for the patients who does not have cancer. Accuracy cannot be considered as real metric

since the number of patients who has cancer will be less and even if the model predicts

one label the model would still have higher accuracy. The above said results of the models

can be found in the table 4.3. In each column and row the values are represented for the

label which in indicates whether the dosage has to be decreased, or no prescription is

required, or if kept steady or increased in its corresponding order. It can be seen that

the reliable predictions are for the classes ’no’ and ’steady’ rest of the prediction using

this model is not useful. However the results are comparable with the centrally trained

model and federated learning trained model , and hence the edge federated learning can be

used as feasible architecture in real world scenario as an architecture instead of centralised

trained machine learning model. The results can be improved with better hyper parameter

optimization of the model for better results. The normalised confusion matrix 4.2 A.3

Model Training Method Precision Recall F1
LR Centrally trained 0.43,0.90,0.73,0.38 0.45,0.92,0.80,0.21 0.44,0.91,0.76,0.27

Federated Learning 0.44,0.90,0.74,0,0.36 0.49,0.91,0.77,0.22 0.46,0.91,0.77.0.25
Edge Fed 0.42,0.90,0.73,0.39 0.43,0.92,0.79,0.27 0.42,0.91,0.72,0.32

NN Centrally trained 0.30,0.92,0.69,0.42 0.06,0.87,0.86,0.63 0.09.0.89,0.77,0.51
Federated Learning 0.45,0.92,0.71,0.46 0.61,0.87,0.85,0.11 0.52,0.89,0.77,0.17
Edge Fed 0.45,0.92,0.72,0.40 0.50,0.90,0.85,0.02 0.53,0.91,0.78,0.03

Table 4.3: Results of Models trained

(a) Confusion Matrix of Logistic Re-
gression EdgeFed

(b) Confusion Matrix of Neural Net-
work EdgeFed

Figure 4.2: Confusion matrix of models
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Another factor that is considered to understand the classification label is a AUC-

ROC curve which indicates the quality of prediction of the class. Larger the area under

the graph better the prediction of the class and again it is an indicator of classification

quality. The plots are illustrated in figures. 4.3 A.4. It can seen that in comparison with

teh confusion matrix matrices ’no’ and ’steady’ are the only reliable prediction from the

current trained model.

(a) AUC ROC curve of Logistic Re-
gression EdgeFed

(b) AUC ROC curve of Neural Net-
work EdgeFed

Figure 4.3: Confusion matrix of models

4.5 Summary

This chapter discusses about the evaluation and results of the models trained using edge

federated learning, federated learning, and centrally trained model and it can be found

that the edge federated learning has comparable results with other two techniques with

an accuracy of nearly 75%. However, the only two classes are the only reliably predicted

classes but that can be improved with better hyper-parameter optimization and better

cleaning of data. This study is an different variation of the paper [26] but cannot be com-

pared directly but the dissertation explains using the edge federated learning in healthcare

domain and it can seen that it is a feasible architecture since it has comparable results

with the existing methods of training.



Chapter 5

Conclusions & Future Work

5.1 Conclusion

The dissertation discussed about the feasibility study of design and implementation of the

edge federated learning. There were mainly three goals set with set with the beginning of

study. Initially the diabetes dataset obtained from Kaggle with no missing points where

introduced with random missing values by selecting random columns and random rows

from the dataframe. The train part of the dataset with missing values were partitioned

into unequal number of chunks of data and then unequally distributed with the client to

portray the real world data distribution just the data distributed on the edge clients(non-

iid behaviour). Using the data, a logistic regression model and neural network classifier

was trained using the designed edge federated learning, federated learning , and the

centrally trained where models are trained on a cloud. The whole setup was implemented

on a Linux based cloud instance with 30 cores of Intel Xeon Platinum CPU with 200 GB

of RAM . The whole process was simulated using a bash script in Linux and was able

to train the model and record its accuracy, loss, performance in each architecture. It

was found that there was considerable time taken in extra for the training of the neural

network models using the edge federated setup. Logistic Regression has an accuracy

over 74% and the neural network models has an accuracy of more than 76%. Finally,

the metrics were compared in three architectures, and it was found that the results where

comparable between the edge federated learning, federated learning and central training of

models. Hence it could be concluded that Edge Federated Learning is a feasible approach

in the healthcare domain and certainly is one of the key elements in the future of digital

healthcare.
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5.2 Future Work

The research in dissertation can be extended to multiple arenas. For the future, a few

suggestions to better cover the shortcomings of this study are to simulate the study using

better dataset with larger number of data points. Datasets such as MIMIC-III requires

approval in prior to access the data. Better understanding and a presence of an identi-

fier in the data should aid in better partitioning of the data to better simulate a non-iid

behaviour. Consequently, one of the interesting study would be to learn the behaviour of

tree based models like RandomForest, decision trees in edge federated learning. Another

essential factor to further progress in the study of edge federated learning is its perfor-

mance. There is a considerable amount of time required for the training of the model

especially with neural network. When large of clients take part and large amount of data

will be involved in the training this could exponentially increase the amount of time taken

for a round of training although number of global communication is really less. There

could be different optimizations that could be introduced to edge federated learning such

as enabling training only in the edge server rather than edge client in addition, in an

edge network. This study makes use of both edge server and edge client to take part in

the training process which could be one of the reasons for increased time. One of the

scopes for future study is evaluating the number of global communication involved in the

architecture.
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https://www. stat. berkeley. edu/˜ breiman/RandomForests/berkeley files/frame.

htm, 2016.

[12] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi. Fed-

erated learning of predictive models from federated electronic health records. Inter-

national journal of medical informatics, 112:59–67, 2018.

[13] K. Cao, Y. Liu, G. Meng, and Q. Sun. An overview on edge computing research.

IEEE Access, 8:85714–85728, 2020. doi: 10.1109/ACCESS.2020.2991734.

[14] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed

synchronous sgd, 2016. URL https://arxiv.org/abs/1604.00981.

[15] F. Chollet et al. Keras. https://keras.io, 2015.

[16] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges,

methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

doi: 10.1109/MSP.2020.2975749.

[17] B. McMahan and D. Ramage. Federated learning: Collaborative machine learning

without centralized training data, 2022. URL https://ai.googleblog.com/2017/

04/federated-learning-collaborative.html.

[18] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas.

Communication-efficient learning of deep networks from decentralized data. 2016.

doi: 10.48550/ARXIV.1602.05629. URL https://arxiv.org/abs/1602.05629.

[19] B. Mehlig. Machine Learning with Neural Networks. Cambridge University

Press, oct 2021. doi: 10.1017/9781108860604. URL https://doi.org/10.1017%

2F9781108860604.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

https://arxiv.org/abs/1604.00981
https://keras.io
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/1602.05629
https://doi.org/10.1017%2F9781108860604
https://doi.org/10.1017%2F9781108860604


BIBLIOGRAPHY 51

[21] S. Published by Statista Research Department and M. 23. Total data volume world-

wide 2010-2025, May 2022. URL https://www.statista.com/statistics/871513/

worldwide-data-created/.

[22] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N.

Galtier, B. A. Landman, K. Maier-Hein, et al. The future of digital health with

federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[23] Wikipedia contributors. Multinomial logistic regression — Wikipedia, the

free encyclopedia, 2022. URL https://en.wikipedia.org/w/index.php?title=

Multinomial_logistic_regression&oldid=1098653133. [Online; accessed 12-

August-2022].

[24] Wikipedia contributors. Stochastic gradient descent — Wikipedia, the free encyclo-

pedia, 2022. URL https://en.wikipedia.org/w/index.php?title=Stochastic_

gradient_descent&oldid=1098148439. [Online; accessed 8-August-2022].

[25] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi. Privacy preserving vertical federated

learning for tree-based models. arXiv preprint arXiv:2008.06170, 2020.

[26] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu. Edgefed: Optimized federated learning

based on edge computing. IEEE Access, 8:209191–209198, 2020. doi: 10.1109/

ACCESS.2020.3038287.

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://en.wikipedia.org/w/index.php?title=Multinomial_logistic_regression&oldid=1098653133
https://en.wikipedia.org/w/index.php?title=Multinomial_logistic_regression&oldid=1098653133
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent&oldid=1098148439
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent&oldid=1098148439


Appendix A

Figures

Figure A.1: Python Implementation of edge client on flower framework]
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Figure A.2: Python Implementation of global server on flower framework]
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(a) Confusion Matrix of Logistic Re-
gression centrally trained

(b) Confusion Matrix of Logistic Re-
gression FL

(c) Confusion Matrix of Neural Net-
work centrally trained

(d) Confusion Matrix of Neural Net-
work FL

Figure A.3: Confusion matrix of models
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(a) AUC ROC Curve of Logistic Re-
gression centrally trained

(b) AUC ROC Curve of Logistic Re-
gression FL

(c) AUC ROC Curve of Neural Net-
work centrally trained (d) AUC ROC of Neural Network FL

Figure A.4: Confusion matrix of models
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