
School of Computer Science and Statistics

A DRL-based Adaptive Cruise
Control model for safe and efficient

car following

MSc Computer Science - Data Science

August 19, 2022

A dissertation submitted in partial fulfilment
of the requirements for the degree of

MSc Computer Science - Data Science

http://www.scss.tcd.ie

Declaration

I hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

Health and Safety is the main concern for car companies in the modern world as they ensure

to keep the passengers comfortable and safe while driving or during a collision by maintaining

standards and requirements. A study conducted in 2012 reveals that fatal road traffic occurs

every 50 seconds on average and there are 1.35 million deaths caused every year due to road

accidents according to the WHO. The inability of drivers to control a vehicle at its friction

limits is the main cause of accidents. As a result, this study aims to maintain a safe distance

between two vehicles contributing to traffic safety, traffic capacity, and efficiency.

The main objective of this research is to design, implement and evaluate Machine Learning

based Adaptive Cruise Control (ACC) for collision avoidance of autonomous vehicles. The

research aims to develop a scalable solution for Adaptive Cruise Control using Deep Reinforce-

ment Learning in Traffic simulation. With the recent development of Autonomous vehicles,

extensive research are made in Adaptive Cruise Control (ACC) technology. Autonomous Vehi-

cles (AV) is an interesting topic that plays a lead role in future transportation and has potential

benefits to society by reducing traffic congestion and reducing the number of fatalities. With

Reinforcement Learning techniques traffic optimizations are done by learning optimal policy

in order to solve decision-making problems without any human interactions. Deep Reinforce-

ment learning has been used to optimize vehicle speed control and avoid collisions. Therefore,

this thesis is focused on using the Deep Reinforcement Learning method with Double Deep Q

Learning (DDQN) by training two agents with different scenarios. The CARLA traffic simu-

lator is used for these simulations where key metrics such as environment, number of agents,

number of collisions, etc are initialized and detected. Throughout the simulation, three sets of

actions are analyzed and tested. Double Deep Q Learning (DDQN) Method is implemented to

ii

model the ACC which takes input from RADAR and LiDAR sensors in order to calculate the

accurate position and distance between two vehicles. A single-agent is trained with respect to

a leading vehicle and after training, agents are able to avoid collision by controlling the speed

and maintaining the minimum distance set by the user.

iii

Acknowledgements
First and Foremost I would like to thank my project supervisor Melanie Bouroche for her

constant guidance and encouragement, expertise, and willingness to answer all my questions

without which this thesis work would not be possible. Thank you

Secondly, I would like to thank my family, my mum, dad, and uncle for their continued

support. Lastly to all my professors and student friends who helped and supported me

throughout this course. Thank you.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and Research Question . 3

1.3 Thesis Contribution . 4

1.4 Thesis Structure . 5

2 Background 6

2.1 Cruise Control . 6

2.1.1 Adaptive Cruise Control . 7

2.1.2 Longitudinal Control Algorithm . 7

2.2 Autonomous Vehicles . 9

2.2.1 Connected Autonomous Vehicles 9

2.3 Artificial Intelligence . 11

2.3.1 Machine Learning . 12

2.3.2 Q-Learning . 15

2.3.3 Double Q Learning . 16

2.4 Deep Learning . 17

2.4.1 Backpropagation . 18

2.4.2 Optimization Algorithms . 18

2.5 Double Deep Q Learning . 20

2.6 Sensors . 21

2.6.1 RADAR . 22

v

2.6.2 LIDAR . 22

2.6.3 CAMERA . 24

2.7 Summary . 24

3 State of Art 25

3.1 Recent Advancements in Self Driving Vehicles 26

3.1.1 Advantages of Autonomous Cars 26

3.1.2 Drawbacks of Self Driving Cars . 27

3.2 Vehicle Control Schemes for Automation 28

3.2.1 Classical Control Approach without Machine Learning 28

3.2.2 Classical Control Approach using Reinforcement Learning 29

3.2.3 Controllers using DDQN in Autonomous Vehicles 33

3.3 Simulation and Training of DQN . 35

3.4 Summary . 37

4 Design and Implementation 39

4.1 Proposed Method for Adaptive Cruise Controller 39

4.1.1 Implementation of RADAR and LiDAR Based System 40

4.1.2 LIDAR Structure . 41

4.1.3 RADAR Structure . 42

4.2 MDP Formulation for Adaptive Cruise Control 42

4.2.1 State Representation . 43

4.2.2 Action Space Representation . 44

4.2.3 Reward Function . 44

4.3 CARLA Simulation . 45

4.3.1 CARLA Simulator for Autonomous Vehicles 46

4.3.2 Configuration of Actors . 48

4.3.3 Retrieving Simulation . 49

4.3.4 Simulation Recording and Replaying 51

4.4 Hardware Requirements . 51

vi

4.5 Adaptive Cruise Control Problem using CARLA 52

4.5.1 Agent Training using DDQN . 52

4.5.2 Neural Network Architecture . 53

4.6 Training and Results of the Model . 54

4.7 Difficulties . 56

4.8 Summary . 57

5 Evaluation 59

5.1 Objective . 59

5.2 Metrics . 60

5.3 Evaluation Scenarios . 60

5.4 Setup . 61

5.4.1 Weather Parameters . 61

5.4.2 Spawning more vehicles - High traffic 62

5.4.3 Evaluation of Action sets . 63

5.5 Comparison with DQN Model . 64

5.6 Evaluation Summary . 65

6 Conclusion 66

6.1 Thesis Contribution . 66

6.2 Future Work . 67

vii

List of Figures

1.1 CARLA Simulation using Reinforcement Learning 2

2.1 Level of Automation in Present Vehicles 10

2.2 Reinforcement Learning . 13

3.1 Model Predictive Controller [9] . 29

3.2 Architecture of Double DQN system [34] 34

4.1 Ego and Leading Vehicle in CARLA Simulation in Town 1 40

4.2 CARLA Simulation using Reinforcement Learning 47

4.3 CARLA Simulation Loop - Autonomous Vehicles 48

4.4 Q Learning Method . 54

4.5 Deep Neural Network Architecture . 54

4.6 Model Output . 58

5.1 Dynamic weather patterns in CARLA . 62

5.2 Average Reward vs Episode . 63

5.3 Number of Collisions vs Episode bn 63

5.4 Number of Collisions - DQN vs DDQN 64

5.5 Average Reward - DQN vs DDQN . 65

viii

List of Tables

2.1 Different specifications of RADAR technology 22

3.1 Existing Research in Deep Reinforcement Learning for Adaptive cruise

control . 35

3.2 Previous work on Autonomous Vehicles using Reinforcement Learn-

ing and the respective Simulation Environment used 38

4.1 Hardware Specification . 52

4.2 Training Parameters . 55

5.1 CARLA Weather conditions . 62

ix

Nomenclature

A Area of the wing m2

B

C Roman letters first, with capitals. . .

a then lower case.

b

c

Γ Followed by Greek capitals. . .

α then lower case greek symbols.

β

ϵ

TLA Finally, three letter acronyms and other abbreviations

arranged alphabetically

If a parameter has a typical unit that is used throughout your report, then it should be

included here on the right hand side.

If you have a very mathematical report, then you may wish to divide the nomenclature list

into functions and variables, and then sub- and super-scripts.

Note that Roman mathematical symbols are typically in a serif font in italics.

x

1 Introduction

The dissertation explains the traffic safety issue in Self Driving cars and studies the Adaptive

Cruise Control (ACC) using Deep Reinforcement Learning (DRL) method so that to maintain

a set distance as a safety parameter between vehicles to avoid collisions. In order to obtain

an efficient self-driving techniques even in complex situations, Deep Neural Networks are

introduced to train the Adaptive Cruise Control. Therefore, this thesis will use the Double

Deep Q Learning method (DDQN) which allows the agent to learn independently based on

inputs from LiDAR and RADAR. For evaluation we use already developed vision-based DQN

model and analyze how the learning of an agent is affected in terms of collision avoidance

and maintaining a safe distance. This chapter explains about the motivation, goals, research

question, project contribution and its structure.

1.1 Motivation

A self-driving car is a vehicle that can drive itself without any human intervention. The

possibility to drive a car autonomously using software has been contemplated for years, but

the technology to develop such a complex system has never been powerful enough. Artificial

Intelligence is becoming really targeted and is now being used in automotive industries which

would contribute to making the public roads safer and avoid accidents due to human error.

Artificial Intelligence is contributing to big improvements in autonomous vehicle navigation

(including lane changing, control methodologies, etc) and is accelerating more and more over

years. In this project, we study widely a branch of AI using the reinforcement learning approach

(Q Learning) applied to ACC in autonomous driving which is an end-to-end model based on

1

sensor data. Simulation has become a key technology for virtual testing in a highly realistic

environment that can mimic weather conditions, lighting, road conditions, etc and is safer and

potentially faster than real world testing. Cruise Control is a well established Driver Assistance

System where the velocity is set by the driver and this velocity is maintained by controlling the

throttle even during the influence of bad weather, road slope and changing vehicle parameters.

Adaptive Cruise Control is the further development of cruise control where the traffic is also

considered and supports driving by increasing the comfort of driving as well as traffic safety.

Environmental sensors are used in Advanced Driver Assistance Systems (ADAS) to control

the vehicles during traffic in order to increase the safety and comfort by reacting to potentially

dangerous traffic situations.

ACC system is shown in Figure 1.1 where the vehicle on left is the host vehicle equipped with

ACC and the vehicle on right is the target vehicle. The relative distance between both the

vehicles is given by

xr = xt − xh (1)

where xt is the target vehicle position and xh is the host vehicle position. The velocity dif-

ference between host vehicle (vh) and the target vehicle (vt) which is the relative velocity is

given by

vr = vt − vh (2)

Figure 1.1: CARLA Simulation using Reinforcement Learning

In recent years, Deep Reinforcement learning (DRL) has shown exciting results in various

other fields. AlphaGO, a computer program is trained with DRL during the year 2016 and it

2

became the first computer program to win the professional player at Go which is a challenging

game for computers to learn and play as it has a high number of possible moves and the diffi-

culty lies in finding the best position. Using Supervised learning the program was trained with

the help of expert games initially and is then improved to next stage with the use of RL method

where the games are played against itself. AlphaZero outperformed AlphaGo in the following

year, which was developed by the same team from DeepMind which was fully trained from the

beginning without any human skills but only using DRL method. The only information given

to the program was the rules of the game. AlphaZero is a common reinforcement learning

algorithm which is trained to play chess and shogi. End-to-end autonomous driving model

using Deep Reinforcement Learning is an advantage as it consumes less manpower, human

knowledge, and skills when compared to other approaches that are used in driving methods

today. With the use of simulation environment, the models can be trained and tested easily in

a cost-effective manner and are also closing the reality gap between software simulation and

a real road environment in order to deploy the trained model on a road infrastructure.

1.2 Goals and Research Question

Human error causes the majority of collisions due to several reasons such as bad road con-

ditions, lack of driving skills, drunk and drive and so on. Even if the speed is reduced by

the driver there may be accidents because of the failure of surrounding vehicles which has

a considerable amount of effect on humans, the economy, traffic flow and capacity, and so

on. There are number of studies based on Autonomous driving navigation, Adaptive Cruise

Control, and Cooperative Adaptive Cruise Control which mainly concentrate on increasing the

safety by avoiding collisions and maintaining traffic flow. Classical Controllers like PI and PID

controllers have disadvantages in terms of accuracy and usability, which is overcome by the

use of Machine Learning concepts with increased traffic safety, comfort, minimum fuel con-

sumption and many more advantages. A controller-based model for autonomous vehicles may

destabilize the vehicle system which is dangerous to the safety of autonomous vehicles and

the surrounded traffic. Robust control stabilizes the vehicle system in case of uncertainties

3

or errors but still the transient response of the system is delayed. In recent advancements of

self-driving cars with reinforcement learning, vision-based technology is used which also has its

disadvantages during bad weather, poor lighting conditions, etc. and neural networks should

be powerful enough to process multiple camera images at the same time. Luminar at CES

2022 tested the low lighting conditions in the presence of a pedestrian and compared it with

the Tesla vehicle which was unable to detect and avoid the pedestrian. In order to overcome

these technical obstacles, a Deep Neural Network based optimal control model is developed

for connected autonomous vehicles based on RADAR and LiDAR. Both these sensors map

out the surroundings where LiDAR scans the object using infrared light and a 3D object of

the environment is created in order to track movement and direction with more accuracy and

precision. It can be used in ACC to find where the leading vehicle is moving towards. But

LiDAR is not more accurate when it comes to poor weather conditions. In order to overcome

this flaw, Radar is also incorporated which has many advantages like avoiding collisions, in-

troducing parking assistance, and powering cruise control systems. Radio waves are used in

RADAR to measure the distance between objects and also detect the velocity and angle of

obstacles. RADAR sensor technology is used in many automotive companies, including BMW,

Volkswagen, and Mercedes-Benz for autonomous driving. Since both the sensors have some

flaws, a combination of the sensors is used in order to achieve true autonomy which can predict

the environment, control autonomously with emergency braking at times of collision, make

the right decisions, as well as share information with other vehicles and road infrastructure

with an AI based algorithm.

1.3 Thesis Contribution

In this Dissertation, we are planning to build a DNN Based Adaptive Cruise Control for

autonomous vehicles for efficient car following. We use Deep Reinforcement Learning (DRL)

obtain autonomous braking control with the right decision-making strategy in emergency

scenarios. In order to reduce the complexity of learning in very difficult environments, Double

4

Q Learning algorithm based on autonomous control architecture is used allowing the agent to

find optimal policies in order to take an appropriate action. Multi objective reward is introduced

to make the vehicles come out of danger quickly by avoiding collisions by maintaining a safe

distance and also passenger comfort is considered with the idea of satisfied reward function.

The idea developed is validated with the help of extensive simulations. Results from simulation

test the performance and efficiency of the developed algorithm in terms of optimal learning,

accuracy in decision making and safety of driving by avoiding collisions. Since the obstacle’s

state can change at any time, the collision risk varies accordingly, we implement our model

for different traffic scenarios using a CARLA Simulation which models vehicle dynamics in

real-time. A realistic-looking simulation environment also offers advantages of simulating

virtual sensors like LiDAR, RADAR and cameras and also apply machine learning algorithms

into the simulator. In our case, the CARLA simulator is utilized to prepare, train and assess

models which gives an adaptable and safe climate for rapidly creating independent driving

frameworks.Finally, validation is done on the basis of collision history and average rewards of

training episodes. Average rewards and collision history is compared with the DQN model

from the previously implemented studies.

1.4 Thesis Structure

The structure of the thesis is as follows. The background of this project is discussed in Chap-

ter 2, where the basic concepts of Adaptive Cruise Control, Autonomous Vehicles, Artificial

Intelligence, Reinforcement Learning Algorithms, Sensors used in self driving cars are discussed

in detail. Chapter 3 discusses the related work in the areas of Autonomous vehicles, Adaptive

Cruise controller without machine learning and with machine learning, and the simulation

platforms used in various projects. The Design and Implementation are discussed in Chapter

4 where the key approach such as state space, action space and reward functions for the

project and the implementation of the stated design using CARLA platform is discussed in

detail.Chapter 5 concludes the overall thesis concepts and explains about the future work that

can be done to improve the performance of ACC in Autonomous vehicles.

5

2 Background

This section covers the concepts of this dissertation project. Section 2.1 describes the concept

of Cruise Control, Adaptive Cruise Control and Longitudinal Control Algorithm. Section 2.2

describes about Autonomous Vehicles and the theory relevant to Connected autonomous

vehicles. Artificial Intelligence and its subdomains are described in next section 2.3. Deep

Learning and its applications in autonomous vehicles are discussed in Section 2.4. Double

DQN method and its architecture are explained in Section 2.5 The sensors used in most of

the autonomous vehicles at present is explained in the section 2.6.

2.1 Cruise Control

Cruise Control (Speed Control) allows the driver to set the target speed and mostly used

in long journeys where the control is mounted on steering wheels for most of the vehicles.

Modern vehicles includes computer control systems, position sensor, input signals and vacuum

actuator. Input from steering and speed signals are taken as input to computers and the

computer again sends these to vacuum actuators through vacuum valve. Throttle valve is

connected to actuator using a cable which has a position sensor mounted on it. The position

sensor again sends signals back to the computer so that forming a loop so that the computer

ensures of maintaining correct position for the target speed set by the driver. Most of the

cruise control systems uses PID (Proportional Integral Derivative)control to set the throttle

position. One of the main disadvantage of the CC is that it can be used only in very light

traffic situations.

6

2.1.1 Adaptive Cruise Control

Adaptive Cruise Control is an enhancement of Cruise Control which reduces driver workload

and fatigue . ACC uses the radar technology and is installed behind the grill of a vehicle

to measure the headway and velocity in order to monitor other vehicles on road. Here, the

target speed is set by the driver and also ACC adjusts is speed automatically to maintain an

appropriate distance between vehicles on the same path. Using a digital signal processor, ACC

system runs its radar signal to find the distance of the nearest moving vehicles and longitudinal

controller is used to maintain safe following distance from the vehicle by applying brakes using

brake control module. Engine control module is used to regulate the engine throttle using

the data received from ACC module sensor. Cruise control systems and ACC will get disabled

when brakes are applied manually. ACC can be used in heavy traffic conditions and ACC

comes with pre crashed warning systems which notifies the driver to apply brakes if there is a

sudden change in speed of the nearby vehicle.

2.1.2 Longitudinal Control Algorithm

Longitudinal control is the basic function of ACC system which is used to achieve consistent

speed of the vehicle and avoiding the lead vehicle by maintaining a safe distance between them.

It is also used for tracking and identifying the curve of the leading vehicle with automatic

braking and other functions in order to increase the safety and comfort of the ACC systems.

Longitudinal controller is used to control the longitudinal motion of the vehicle i.e., lon-

gitudinal velocity, longitudinal acceleration and longitudinal distance from the leading vehicle

travelling in the same lane. Actuators like throttles and brakes are mainly used to implement

longitudinal control. The efficiency of the longitudinal control impacts the safety and comfort

of the ACC system. Since ACC systems has a longer safe distance due to its speed range

where radar technology is used as the sensors in present ACC systems. The idea of creating

automated vehicles has been studied for decades and many control hypothetical arrangements

were presented, planning to determine this issue. As an initial step, longitudinal speed and

distance control issue was read up particularly for ACC frameworks according to the host

7

vehicle perspective. Then, at that point, the execution of such frameworks was researched

during a non-uniform road condition, for example, cornering lane change maneuvering . In

such exploration studies, the vehicle behaviour is changed all together not to cause distress for

the driver and passengers. The planning of such frameworks is to impersonate the reactions

of a normal driver at the point when it operates.

A longitudinal direction driver assistance system use sensor modules measures the relative

speed and distance between host vehicle on which ACC is installed and the leading vehicle in

order to operate brakes and accelerators. The main disadvantage of ACC is its string stability

problem of a platoon vehicle which is studied since late 1970s. The term “String stability”

is referred as stable upstream propagation of a vehicle speed perturbation through a string

of vehicles. The ACC control scheme consists of two hierarchial structures – Firstly, ACC

control is used to compute the required acceleration or deceleration of the vehicle according

to the control algorithm and it is required to provide control input for the brakes or throttle

actuators for the purpose of safety and comfort. The sensor inputs (relative speed and relative

distance) are directly given to the control blocks of the controller. These control inputs are

then transferred to the actuators and the control issues are acknowledged by the low-level

regulators guaranteeing the activation of the right results in view of the desired output. When

observing the effect of ACC systems in a traffic flow different control approaches are considered

as below:

Constant Space Headway Control - The distance between the leading and the host vehicle

is assumed to be constant

Constant Time Headway Control – Here the control input is a function of a time gap and

when it is multiplied by vehicle speed it gives controllers desired distance. The string stability

of a system is guaranteed when there is a smooth acceleration/deceleration.

Variable Time Headway Control – Desired distance is controlled by the relative velocity of

the vehicle where the “Time gap” value is changing continuously.

By forcing the relative distance and speed towards the plane origin the control problem can

be summarized. This problem is solved in Hatipoglu et al [14] by introducing a “decision region”

8

where different control actions are solved in different regions of the phase plane called decision

region in order to predict the driver behaviour and the aim is to design a hybrid control system

for the vehicle’s longitudinal control in highways which switches between different control

actions and the hybrid control switches between smooth-constant acceleration/deceleration

and linear control region. The most researched areas of ACC is about the control methodology

where longitudinal and lateral control algorithms are developed for the radar based convoying

problem by Haskara et al [13] assuming that the convoy consists of only two trucks.

2.2 Autonomous Vehicles

Most of the vehicles now are currently operated by humans. However, advancements in

technology like sensors, computing power, data processing and connectivity paved the way for

autonomous vehicles where the vehicle is able to perform a transportation task without any

human control. In recent years, autonomous driving helps to reduce the number of crashes

on our roads and there are many research projects taking place based on AV’s. According

to World Health Organization (WHO), the death caused by accidents each year are around

1.35 million. Autonomous vehicle driving in a safe manner will help reduce the number of

deaths due to accidents. Saving time is another benefit where people with long commutes can

start their work while travelling which increases the spare time as well as productivity. Self

Driving vehicles are more productive for traffic stream and furthermore there is a possibility of

independent cabs and ride sharing which would reduce the requirement for people to purchase

their own vehicles.

2.2.1 Connected Autonomous Vehicles

CAV’s are vehicles that replace drivers for the driving tasks and brakes, accelerators an steering

control are all automatic under the supervision of the driver. CAV’s collects and transmits

sensor data with different vehicles and roadside infrastructure where enormous number of

information is made built upon a digital ecosystem. CAV’s can drastically reduce accidents,

enhance quality of lives, improving efficiency of transportation systems and creates demand

9

services, new business models and a shared economy. CAV’s uses sensors and wireless networks

to obtain traffic and other important information whereas the driving control is regulated by

any one of the six automation levels. There are six levels of automation used by industry

which ranges from zero (complete human driving) to five (full automated navigation without

human interaction) as shown in Figure 2.1:

Figure 2.1: Level of Automation in Present Vehicles

The levels are described in detail:

• Level 0: Autonomous driving features can provide warnings or limited assistance to

driver. When features are engaged, the human driver is responsible for driving actions.

Example: lane departure warning

• Level 1: Autonomous driving features control steering or acceleration/brake actions

to support the driver. When the features are engaged, human driver is responsible for

driving actions.

10

• Level 2: autonomous driving features control steering and brake/acceleration actions

to support the driver. The driving actions are the responsibility of human driver when

the features are engaged. Examples: lane centering and adaptive cruise control.

• Level 3: Driving features of autonomous vehicle works only under limited condition

and human drivers should take control when required. When the features are engaged,

the driving actions are taken by the autonomous system. Example: traffic jam chauffeur

• Level 4: autonomous driving features can control the vehicle under limited condition.

When the features are engaged, the driving actions are taken by the autonomous system.

Example:local driver-less taxi.

• Level 5: autonomous driving features can control the vehicle in all conditions. When

the features are engaged, the driving actions are taken totally by the autonomous system.

Example: drive without a human driver or occupants

The current level of automation found in present vehicles is Level 2 which is Partial au-

tomation consisting of adaptive braking and acceleration which adjusts speed without driver’s

assistance. Road Safety and Traffic management are important aspects of CAVs which reduces

congestion. However, CAVs also poses challenges in relation to technology, compatibility, data

protection and cyber-security.

2.3 Artificial Intelligence

Artificial Intelligence(AI), which is otherwise called as Machine Intelligence is the insights and

knowledge shown by machines. In contrast to natural intelligence, shown by humans and

animals, AI is the capability of machines like PCs, robots and other advanced machines which

mimics the mental capabilities like learning and solving complex problems. The branch of

software engineering, connected with AI, intends to concentrate on rational agents, which

is used to analyze and perceive the environment using predefined rules, search algorithms or

pattern recognition. Based on the analysis, the agents makes moves and takes decisions which

maximize the chances of effectively accomplishing the objectives.

11

2.3.1 Machine Learning

Machine Learning (ML) is a method of analyzing data that computes and automates analytical

model building. ML is a subset of AI which gives the frameworks the capacity to advance

naturally and further develop through the experience acquired with less human assistance.

Machine Learning algorithms which is constructed numerically based on sample information

which are utilized as training data and the algorithms is used for calculation to identify the

patterns and make future predictions, based on the information given. Generally, Machine

Learning techniques are classified as:

• Supervised Learning learns the task from the labelled data and its main objective is to

generalize.

• Unsupervised Learning learns from the unlabeled data and the main goal is to compress.

• Reinforcement Learning, which learns through trial and error method and the main goal

is to take an action.

Reinforcement Learning There are variety of scenarios needed to be considered for au-

tonomous vehicle driving and also it is important to ensure that the agent has learned all

possible scenarios and safety measures in every situation. Reinforcement learning is used

in this kind of situation where the agent collects environmental information in order switch

between states based on the defined policy in order to maximize rewards. RL is a type of

machine learning where the environment is stated in the form of Markov Decision Process

(MDPs) and is applied in many disciplines with its main purpose is to make the agent learn

the optimal policy that maximizes the reward function. Mathematical representation of RL

using MDP is given in [31] where current state is sk ∈ S where k is the discrete time step

and S is the set of valid states in an environment and action is defined as uk ∈ A where A

is the set of all available actions. Reward Rk+1 ∈ R is assigned according to the action and

state taken by the agent.

Optimal actions are learnt using Reinforcement learning from specific situations where the

agent discovers the action with maximum reward signal by the trial and error method and

12

these actions may affect future situations and the reward signals. RL is formulated on the

basis of Markov Decision Process(MDP) as given below:

• Time step t

• States set s ∈ S

• Actions set a ∈ A

• Transition function T (st , at , st+1) which is the probability of an action that leads to

state st+1 from st , i.e., P(st+1|st , at)

• Reward function R(st , at , st+1)

The transitions and reward functions are unknown and are learnt during the training process

and the decisions are made when agent interacts with the environment in order to achieve

goals regardless of uncertainty. Beyond the agent and the environment there are other sub

components in RL - Policy, Reward signal, value function, and the environment model. At

a given time, the policy explains the behaviour of an agent and maps the observed state of

environment to actions. Agents tries to learn the optimal policy (π) in RL which corresponds

to the best action for every possible state π∗ : S −→ A. In each time step, reward is sent to

an agent by an environment during the transition from one state to another. The working of

an Reinforcement Learning model is shown in Figure 2.2

Figure 2.2: Reinforcement Learning

RL is a framework communicating with environment where on every time step t, the agent

13

will be on state st in state space S from where action at is selected from action space A with

the help of policy π. When there is a transition from state st to st+1 a reward rt is received by

an agent and the reward function according to the environment is represented as R(st , at , st+1)

and transition function as T (st , at , st+1) and a discount factor of γ ∈ [0,1] is applied to the

total reward function which is represented in equation 1

Rt =
∞∑
t=0

γtR(st) (1)

In order to find the policy, value function is used which is given below in equation 2

V π(S) = R(s, π(s)) + E

[∞∑
t=1

γtR(st , π(st))

]
(2)

Policy π is obtained by deriving the value function in equation 2 and represented below in

equation 3

π(s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s|s, a)V (s
′)

]
(3)

The Bellman equation is given in equation 4 as follows:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s|s, a)V ∗(s
′)

]
(4)

Solving the above non-linear equation for every state s gives an optimized value function

from which optimized policy π∗ can be calculated

Model-based (vs. Model-free) On/Off Policy methods

Due to safety and cost, interacting with real environment is difficult and learning a model for

environment dynamics reduces the amount of interactions with the environment in real time.

Agents attempt to learn the reward and transition functions in model based learning which can

be used during selection of actions and keeping model approximation of the environment and

14

storing the knowledge dynamics may result in less interactions and with costly environment.

Whereas in model free approaches there is no requirement for such knowledge and the learners

sample the MDP directly and gains knowledge about the model that is unknown and this can

be done in the form of value function estimates as well.

For hyper parameter optimization, comparing the reinforcement models is often infeasible in a

practical way. Using on-policy interactions with the target environment will help to get insights

of the policy that the agent is implementing from which the performance of these models are

evaluated. In Q learning the optimal policy is learnt by the agent using the greedy policy and

is called off policy as the updated policy and the behaviour policy is different. Here the future

rewards are estimated and the value is added to the new state without following greedy policy.

On policy reinforcement learning estimates the policy value that is being followed using SARSA

(State-action-reward-state-action). In this algorithm, the agent finds the optimal policy and

uses the same for making actions.

2.3.2 Q-Learning

Since there is no prior knowledge of the model in RL, the transitions and reward functions are

unknown and the RL agents learn Q values and the policy can be represented using Q values

as shown below:

π(s) = argmax
a∈A

Q(s, a) (5)

Q Learning is a model free calculation used to learn the value of an action when it is in

a specific state. For any MDP, Q value is used to find the optimal policy by maximizing the

total rewards in the successive steps from the current state. Q values are computed for the

state action using the below formula:

Q(s ′, a)← (1− α) · Q(s, a) + α · (r + γ ·max
a′

Q(s ′, a′)) (6)

Where ’r’ is the reward received when moving from state s to s’ and reward is given at any

15

particular time step or only at the end of the time step. Learning rate is defined by ’α’ for

which the values lies between 0 to 1. ’γ’ is the discount factor which is used to balance the

immediate and future reward. Max function is used to take the maximum of future rewards

and is applied to current state reward. Temporal difference method is used in Q Learning

where the agent learns from environment through episodes without any prior knowledge on

environment.

2.3.3 Double Q Learning

In some stochastic environments Q learning performs very poorly because of overestimation

of action values. Since Q learning uses maximum action value as an approximation factor

for the future rewards, a positive bias is introduced which results in this overestimation. An-

other alternative approach is introduced to approximate the highest expected value for a set

of random variables and the double estimator method obtained is used to underestimate the

maximum expected value than overestimate. To build Double Q learning method, a double

estimator to Q learning is used which is a new off policy reinforcement learning algorithm and

thus performs well when compared to Q learning where it performs poorly due to overestima-

tion. Two separate Q value estimators are used to update each other and unbiased estimator

is obtained where one Q value estimator is used to find the maximizing action and update the

other Q estimator and vice versa.

The formula for Double Q learning is shown as below:

Qa(s, a)← (1− α) · Qa(s, a) + α · (r + γ · Qb(s
′, a∗)− Qa(s, a)) (7)

Qb(s, a)← (1− α) · Qb(s, a) + α · (r + γ · Qa(s
′, b∗)− Qb(s, a)) (8)

Pseudocode of Double Q learning is shown below:

Algorithm: Double DQN Learning

1:Initialize Q values QA,QB , s

16

2:repeat

3: Choose an action a, from QA(s, .) and QB(s, .), observe r, s ′

4: Choose an update randomly either UPDATE(A) or UPDATE(B)

5: if chosen UPDATE(A) then

6: Define a∗ = argmaxa Q
A(s

′,a)

7: QA(s, a)← QA(s, a) + α(s, a)(r + γQB(s
′
, a∗)− QA(s, a))

8: else if chosen UPDATE(B) then

9: Define b∗ = argmaxa Q
B(s

′,a)

10: QB(s, a)← QB(s, a) + α(s, a)(r + γQA(s
′
, b∗)− QB(s, a))

11: end if

12: s ← s′

13:until end

2.4 Deep Learning

Deep Learning is implemented using Machine Learning and is based on artificial neural net-

works, applied math, statistics and mimics human brain in the biological neural networks. In

the last few years, there is a huge growth on the applications of Deep Learning which helped in

the development of more powerful computers, used for large number of datasets and training

deep neural networks. In order to introduce systems that learn and act in a same way as

human brains "Deep Learning" is introduced. Neurons are the fundamental building blocks of

the human brain whereas deep learning architecture contains a computation unit "perceptron"

which allows modelling of non linear function and it aims to understand the represented data.

Multiple processing layers are used in the computation unit in order to understand the patterns

of data by using multiple levels of abstraction. These artificial neural networks (layers) are

utilized in Deep Learning method which is obtained by non linear modules and these layers

are not built by human but learnt directly from the data using learning mechanism.A DL

architecture consists of simple modules in a multilayer stack which is subject to learning and

computation of non linear input-output mappings. DL is used in large datasets in order to find

17

complex structures by using backpropogation algorithm where internal parameters of layers

are changed based on the previous layers. Image, video, audio and speech recognition are

done using Deep Convolutional Networks in order to find patterns of the data by processing

the structured array of data (audio, video, etc).

2.4.1 Backpropagation

Backpropagation is used to calculate derivatives in the feedforward deep neural networks and

calculates the gradient of the error function. It can be used as a function of neural networks

for training the artificial neural network using gradient descent algorithms. Main features

of Backpropogation are iterative, recursive, and efficient method to calculate the weight of

the neural networks to improve to improve the training task. As long as the modules are

smooth functions of the inputs and thir internal weights are computed using backpropagation

procedures which is a practical application of the chain rule of derivatives. The function

derivative with respect to input can be computed using the output gradient in a backward

manner with respect to the module output or subsequent module’s input. In order to spread

the gradients to all modules, backpropagation method is applied continuously. Feedforward

neural networks can learn to map a fixed size to fixed output. Weighted sum of inputs from

the previous layer is computed by a set of units from the previous layer and the result is

passed through the non linear function to the next layer. The most commonly used non-linear

activation function in neural networks are Rectified Linear Unit (ReLU). Hidden units are

referred to those which are not in both input and output units and the hidden layer deceives

the input in a non linear manner so that the categories become linearly separable by the last

layer.

2.4.2 Optimization Algorithms

The most commonly used algorithms for neural networks is the gradient descent approach

which is used to minimize the cost function J(θ) where the parameters are updated in the

opposite direction of the cost function ∇θJ(θ). The commonly used optimization algorithms

in Deep Learning are Momentum, Adagrad, ADAM, Adadelta and RMSPRop.

18

Adagrad

In [11] Adagrad is proposed as a method which adaptively updates parameters based on

squared sum of gradients per parameter. Learning rate is normalized before the update of

each parameter i using the below formula:

G t
i = G t−1

i +
(δJ(θ)

δσj t−1

)2

(9)

σj t = σj t−1 − α

G t
i + ϵ

+
δJ(θ)σ

δσj t−1
(10)

where epsilon ϵ is used to avoid division by zero. Based on the past updates the learning

rate for each parameter is assigned. Adagrad is used to tune the lear remove the extensive

learning rate tuning by dividing the learning rate by the sum of past square gradients.

RMSProp

RMSProp and Adadelta has been developed in an independent manner to solve the diminishing

learning rates of Adagrad. RMSProp is developed to solve the problem by using an exponential

decaying average of squared gradients.

G t
i = γG t−1

i + (1− γ)
(δJ(θ)

δσj t−1

)2

(11)

where the recommended value of γ is 0.9.

ADAM

In [17] Adam algorithm was developed by combining RMSProp and Adagrad with a new

Momentum implementation. Adam uses a decaying average of squared gradients and past

gradients as shown below:

mt = β1.m
(t − 1) + (1− β1).∇J(θ) (12)

19

v t = β2.v
(t − 1) + (1− β2).∇J(θ)2 (13)

where mt and v t are the mean and variance of the gradients and β1 and β2 are the

hyperparameters. mt and v t are initialized to zeroes so this causes a biased towards zero

during the initial time steps and when the hyperparameters are close to 1 causing lower decay

rates and this issue is solved by updating the value of θt

2.5 Double Deep Q Learning

As seen in chapter , the main goal of the Double Q method is to eliminate or reduce overesti-

mation by deteriorating the max operation in the target for action selection and evaluation. A

double Q learning method implemented with Deep Learning is known as Double DQN. Double

DQN has two neural networks one with target network and another with Deep Q Network.

Deep Q Network is used to obtain the best action which has the highest Q value of the future

state and target network is used to calculate the Q value estimated with the action selected

above.

Step 1 : Action ’a’ selected by Deep Q Network is given as

a = max
a

Qqnet(st+1, a) (14)

Step 2: Target network used to calculate the Q value estimated with action ’a’ selected

from the Deep Q Network is given as

qestimated = Qtnet(st+1, a) (15)

Step 3: Based on the estimated Q value from the above target network the Deep Q

Network’s Q value is updated as given below:

20

Qqnet(st , at)← Rt+1 + γQtnet(st+1, a) (16)

Step 4: The target network’s parameters are updated based on Deep Q Network param-

eters per several iterations.

Qtnet(s, a) = Qqnet(s, a) (17)

Step 5: The Deep Q Network parameters are updated using Adam optimizer

2.6 Sensors

As discussed in previous section, autonomous driving system depends mainly on three practical

blocks:

• Perception: Surrouding environment is sensed and the representation of the environment

is defined.

• Decision Making: The environment is analyzed and an appropriate action is chosen.

• Actuation: Setup the action in place

Perception involves discussing about sensors which is mainly of two forms:

• Proprioceptive Sensors which is responsible for sensing the vehicle’s state like wheel

encoders, inertial measurement unit etc.)

• Exteroceptive Sensors which is reponsible for sensing ambient surrounding like cameras,

LiDAR, RADARs, ultrasonic, etc.)

Extroceptive sensors are the main in independent driving since it is utilized to explain an

environment in a detailed manner sufficient permit right choice in the following stages. The

principal sensors associated with our independent driving is described in the following sections.

21

2.6.1 RADAR

The principal of operation for both RADAR and LiDAR are almost same where LiDAR uses

light waves and RADAR uses radio waves. Distance, velocity, and angle of the obstacle in the

surrounding of the agent is calculated using the time taken by the radio waves returning from

the obstacle to the device. RADAR is of low cost, small size and less power consumption.

Measurements from RADAR are produced even in bad weather conditions like fog, rain, poor

light conditions and even at night. The disadvantage of RADAR is it cannot provide the shape

of the object and its classification due to less resolution and clutter.

RADAR in Autonomous vehicles

In autonomous vehicles RADAR technology operates with millimeter waves and offers millime-

ter precision. RADAR ensures high resolution in detecting obstacle and movement with the

help of millimeter waves in autonomous vehicles. When compared to other sensors, RADAR

work in low visibility conditions as well such as cloudy weather, snow, rain and fog in a reliable

manner. The use of RADAR is common in the field of automotive sector mainly for adaptive

cruise control, highway assist and other automation levels in driving. Table 2.1 shows range

of sensors used in autonomous vehicles with its applications.

Range Frequency(GHz) Bandwidth(GHz) Application
Short 24 5 Blind-spot detection

79 4 Stop and Go Assist
Mid 24 0.2 Collision avoidance

77 1 Adaptive Cruise control
79 4 Stop and Go Assist

Long 77 1 Adaptive Cruise Control

Table 2.1: Different specifications of RADAR technology

2.6.2 LIDAR

To gain information on surrounding environment it is necessary to detect the presence of

obstacles like vehicles, pedestrians, buildings, vegetation, etc. Sensors are used to capture

the data and acts as a perception system in autonomous vehicles and is of two types namely

22

active and passive sensors. LiDAR’s emit lasers and illuminate the surroundings and are active

sensors. By processing the received laser from the reflecting surfaces, ranges are measured.

LIDAR in Autonomous vehicles

Since there is good progression with camera based sensors from which image processing are

done to calculate distances and much more, it encountered difficulties when distances are

calculated for cross traffic entities. So, LiDAR’s overcome this issue and currently it is used in

many high level autonomous vehicles despite its moving parts and high costs. In Autonomous

vehicles, LiDAR’s are mainly used for localization and perception. A perception system pro-

vides representation of the environment around the vehicle which is can be interpreted by

machine. Three levels of information can be obtained from the output of the perception

system which is given below:

• Physical description

• Semantic description

• Intention Prediction

Thus LiDAR outputs are mainly used in object detection, tracking, classification,etc and

the ranging accuracy provides physical information which is highly reliable. LiDAR requires

mapping of the environment which contains the visualization of all the objects near the vehicle

and the density computed by 2D and 3D point cloud histograms are used to represent the

map.It provides many advantages over camera sensor in areas of AV safety and mapping the

environment. When scanning using LiDAR, there are two ways of viewing the collected data

(1) Bird’s eyes view which is an elevated view from certain height and can be encoded using

height, intensity and density.

(2) Front view which resembles the perspective of human eye.

23

2.6.3 CAMERA

The cameras just like human being’s eyes will help the robot to see the world. It provides

images and have various size and resolutions for different purposes. In autonomous vehicles, it

is mostly used to train neural networks to find obstacles.The main limitation of cameras are it

does not provide useful information when the weather condition is snow or rain and also when

the lighting is poor during bright and dark lighting. Some self driving vehicles use camera only

for navigation and obstacle detection because camera’s does not provide accurate distance

information as LiDAR’s and RADARS do.

2.7 Summary

Considering the Autonomous vehicle architecture, the vehicle control and navigation function-

ality is implemented by the control layer. CARLA simulator is chosen as it provides the user

the actual odometry of the vehicle and the ground truth of the vehicle which makes easier

to evaluate the proposal performance. As a fundamental autonomous driving requirement,

LiDAR is used for 3D object detection and depth estimation with more accuracy.

Cruise control is a driver assistance system which takes over the vehicle’s throttle to

maintain the speed set by the driver in an automated way but an ACC technique automatically

adjusts the longitudinal vehicle speed in order to maintain the safe distance from the preceding

vehicle. Three major components of an ACC system are: Perception, Planning and Actuation.

Here RADAR and LiDAR will be used in the ACC system to find the depth of the environment.

The longitudinal control algorithm is defined in the planning phase and it calculates the

reference acceleration profile in accordance with the perception data. By converting this

acceleration into throttle and brake, the low level controller actuates the actions for driving

24

3 State of Art

Engineers, computer scientists, and applied mathematicians believe that the last two decades

belonged to the world of internet and communication and current decade would belong to

artificial intelligence (AI) [35]. Machine Learning (ML) and Deep Learning (DL) which is a

subset of AI has also opened large areas of unprecedented research. In order to understand

the rationale behind developments made on “Adaptive Cruise Control using Deep Learning”, it

is vital to have an initial foundation of the empowering influences that have moved around the

technological improvements tracked down today in current vehicles and progressed models.

The primary motivation which moved the realisation of this thesis is the need of assessing

the potential of sensor technology approaches applied to the adaptive cruise control of the

autonomous vehicle.

From previous works it can be seen that Deep Reinforcement learning with Q learning

approach is used for modelling Adaptive Cruise Control for safety, comfort and energy con-

sumption purposes. In the first section we discuss the concept of Reinforcement learning with

its essential for complex problems and the most important techniques, such as Q Learning

and Double Q learning used in previous work. In the second section, the Simulation tech-

niques used for training and the advantages and disadvantages of using CARLA simulator

is discussed. The next section describes the proposed method Double DQN using CARLA

simulator with RADAR and LiDAR sensors.

25

3.1 Recent Advancements in Self Driving Vehicles

In order to develop an autonomous vehicle, the analysis of the behaviour and strategies which

is frequently employed by human drivers in a safe manner is very essential [5]. There are

number of researches taking place to extract the strategies of a human driver and to model

those strategies and behaviour without any human intervention in different situations [5]. In

order to model the driving behaviour most of the ML algorithms used in the previous decade

are predictive control, fuzzy logic, adaptive control and hybrid dynamic models and Markov

chain models. The Model Predictive Control successfully predicted the driving behaviours of

human and also reproduced it under constrained environments [21]. This method mostly relied

on data collection and representation with prior knowledge of rule base. The Markov Chain

model accuracy mainly relies upon the earlier information about the state change likelihood

between each state pairs [8]. With the emergence of Deep Learning which tries to learn

human driving behaviour from the driving data has gained importance even without any prior

knowledge of the conditions of driving [36].

3.1.1 Advantages of Autonomous Cars

Information and Communication Technology (ICT) keeps on tracking applications in trans-

portation to avoid collisions, decrease pollution and increase public transportation with new

developments with resource sharing [32]. Due to drunk and drive, distracted and drowsy driv-

ing there are around 1.3 million deaths due to accidents every year [24]. In order to avoid the

human driving accidents, AI systems can be used to save lives with the following advantages

which motivates the self driving research:

• The autonomous cars can be programmed to drive safely with less fuel consumption,

less carbon dioxide emissions, enhanced user productivity. It is also used to find blind

spots, and to follow speed limits [32]

• Enhanced capacity of roadways, less road casualties, and less on-road driving accidents

with the use of self driving cars

26

• Less accidents are benefits for student and elder community people by making them

feel more comfortable towards autonomous vehicles. It also supports greener mode of

transport with less noise pollution and increased mobility [24]

• In the current driving environment, cars are parked for longer time but with self driving

cars parking lots can also be transformed to parks [30]

• Autonomous cars can be equipped with improved way of scheduling, routing, and to

provide best routes to improve travel times with lower cost of travelling from one point

to other [3]

• Shared access can be wide spread with the use of self driving cars even if the ownership

of the car is eliminated. Transportation can be personalized, efficient and reliable [35]

3.1.2 Drawbacks of Self Driving Cars

One of the widespread and readily available mode of transportation are Cars. Driving is a safer

undertaking even if technology has developed safer cars [5]. There are some disadvantages of

self driving cars which is mentioned below:

• Due to self driving cars, job loss to many people who are employed in transportation

sector may increase [32]

• Acceptance of self driving cars is a fundamental research problem in psychological and

cognitive science and is also argued that the person will not die or suffer injuries even

if there is a failure in AI systems [24]

• In unmapped areas, self driving cars cannot be used because it uses Global Positioning

Systems (GPS) for localization [23]

• Self driving cars are susceptible to hacking as the car is online all the times and the

safety and privacy is not guaranteed as their moves can be tracked [12]

• Driving at convergences without traffic signals, breaking down traffic signals, uncon-

trolled convergences, occupied crossing points, places with humans in proximity are a

challenge for self-driving vehicles [3]

27

3.2 Vehicle Control Schemes for Automation

The most researched area in autonomous driving is the control methodology. Once if the

required information is gathered to understand the vehicle’s state with respect to the road

and other vehicles, a control scheme is required to assist the driver to control the vehicle or to

autonomously control the vehicle by itself. In order to determine the required kinematics of

the vehicle, a higher level controller is required where in driver assist vehicles, the kinematics

required would be compared with the performance of the driver and a warning is given if

necessary. When it comes to more "autonomous" systems, the desired motion of vehicle

to control the engine, brakes and steering are determined by higher level controllers. So,

the higher level controller needs a good understanding about the vehicle environment and a

suitable model of the vehicle is required by lower-level controllers. Lots of studies are focused

on longitudinal vehicle control which is the base for ACC, car platooning, forward collision,

etc. Raza and Ioannou [28] developed a well organized control plan for vehicle longitudinal

control in various various operation modes. This supervisory controller gathers inputs from the

driver, road infrastructure, vehicles, and the locally available sensors and processes them, and

sends the control signals to the brake and choke. ACC and platooning are both similar vehicle

following modes where in car platoons the main goal is to maintain close space between the

vehicles whereas the main objective in ACC is to maintain a safe distance to get the driver out

from spacing adjustments. The vehicle’s acceleration in a platoon is determined to ensure the

string stability of the vehicle that closely follow each other so that the spacing error between

vehicles do not grow towards the end of platoon [29].

Developing an effective reinforcement learning techniques for the longitudinal control has

become the major goal in many recent researches.

3.2.1 Classical Control Approach without Machine Learning

Proportional Derivative(PD)and Proportianal Integral Derivative(PID) controllers are the most

commonly used approach in Adaptive Cruise Control systems in earlier. [16] discusses the

use of PID controllers in engine or brake to obtain the speed and acceleration reference of

28

the follower vehicle with a reference distance to the leading vehicle. The two non-model

based approaches in this paper are compared in simulation for stop and go application where

efficiency is high when using PID controller in terms of performance and computation cost.

Single PID controller for accelerator/brake is used in [2] to control the car that is following

another vehicle and a better performance is seen with extensive simulations. It takes input as

position error which is the difference between the safety distance and the distance of the car

ahead. Model Predictive Controller (MPC) is developed for an autonomous vehicle steering

and ACC control and is compared to classical feedback controller with PID in [9]. The MPC

framework is given below in Figure 3.1. It is seen that PID controller operates well when there

is a single input and single output but MPC is capable of handling high level models with

multi input and outputs. The overall performance of MPC controller is better than that of

PID in terms of accuracy, and comfort by avoiding jerks.

Figure 3.1: Model Predictive Controller [9]

3.2.2 Classical Control Approach using Reinforcement Learning

Interest in Machine learning has grown up in recent years with the growth of parallel computing

technology and enormous amount of data. Researchers investigate the applications of machine

learning and deep neural networks in autonomous vehicles by applying deep learning methods

to autonomous driving from vision based models and an end-to-end approach is studied of

how the vehicles learns the mapping and applying control actions by sensing the environment.

29

As DNN is adopted, Reinforcement learning has also been improved significantly and the

technique is called as Deep Reinforcement Learning which is known to perform well in robotics

and control problems. Deep Q network was proposed where Q value is approximated using

neural networks. It is demonstrated that DQN performs better compared to human experts

in different Atari games and this technique is recently used in Autonomous vehicles [15], [10].

In [10] the author concentrates on implementing vehicle to vehicle communication to improve

ACC system so that the current speed and acceleration can be transmitted to the following

vehicle by inter vehicle communication. Machine learning techniques are used to design the

autonomous vehicle controllers for the secured longitudinal following of a front vehicle and

gradient descent method is used to optimise the performance by directly modifying the control

policy. For an autonomous system, information is provided to the vehicle control system by

sensors of the vehicle and for cooperative systems require communications with other vehicles

or with transportation infrastructure is required.

Most of the projects in CACC used classical control theory to develop autonomous con-

trollers and one of the first research to use machine learning to control autonomous vehicles

was Pomerleau’s autonomous land vehicle in a neural network (ALVINN) [26] which consists

of computer vision system based on neural network.

DRL approach is used in [10] controls CACC using Reinforcement Learning (RL), in RL the

agent (vehicle) is a learner which observes the state S (S = finite set of states) and it takes

action a depending on the state assuming the action set of an agent to be finite. In these

conditions after taking an action the agent receives reinforcement signal under a real value

form depending on the action taken and the successor state. Import aspects of the policy

gradient method is discussed and this approach is shown to be efficient for the resolution of

autonomous longitudinal vehicle control problem.

Autonomous Braking system using Deep Reinforcement learning is introduced in [7] where

the system decides automatically decides to apply brake or not when a collision event is noticed

with the help of sensors. The designing of a brake control problem is defined as finding out

an optimal policy in Markov decision process (MDP) where the obstacle’s position, speed

30

of the vehicle is used to obtain the state and action space is obtained by a set of braking

actions. Here, the policy used for control actions is learnt through simulations with Deep Q

learning approach and reward function is proposed to overcome the obstacle and the another

reward is given when the agent runs out of risk in order to obtain efficient braking policy.

The DRL braking system model is evaluated for different positive and negative scenarios by

controlling the vehicle velocity when there is a pedestrian crossing the road, and no action

taken when there is an event of collision. In [22], Learning Based Cooperative Adaptive Cruise

control is implemented to avoid traffic congestion and accidents. When compared to classical

controllers, it may be difficult to guarantee model free DRL’s robustness but the advantages

include: - As DRL agent can directly learn from a real system or using simulation there is no

need to create a mathematical model of a system

- All the relevant information is fed into the agent’s state vector and the systems constraints

are learned by agent’s neural network

- Deployment of trained neural network of an agent is computationally efficient

In [6], authors investigated and compared DRL to that of MPC for Cruise Control for

predictive velocity tracking and was shown to achieve similar performance but with less (70-

fold lower) computational effort and in [18] authors compared DRL to MPC for ACC model

and found DRL model is performing better than MPC model. Also, DRL provided lower costs

with combined penalized error, control signal amplitude, and vehicle jerk when compared to

MPC due to its generalization capabilities. A new ACC concept which always guarantee safety

and comfort is implemented in [20] assuming autonomous vehicles take over the driving duties

from humans completely when the leading vehicle suddenly decelerates. The main contribution

is to design a nominal controller which is supervised by emergency controller which is used to

guarantee safety and comfort.

Designing a Reward Function

The reward function is used to describe how the agent (vehicle) is “ought” to behave and is

basically a feedback from the environment which measures the success or failure of an agent’s

31

action. Choosing the reward function is an important task in reinforcement learning where

the good reward function maximizes the desired behaviour intended. Reward function is a

mapping from state and action to a scalar value which is called “reward”. Higher the value is

the better. The agent learns the “policy” which is mapping from state to action. For every

given state, the policy learns what is the best action to take in the given state in order to

maximize the reward. Episode is a sequence of (SARS - State, Action, Reward, new State)

transitions and the episode ends if it reaches any terminal condition. The agent learns to

alter its behaviour according to the reward received due to its actions. In [7] desirable reward

function is found to obtain the balance between the punishment given to the agent when

there is an accident and the reward gained when the agent overcomes the collision as soon

as possible. Here the agent gets the value of states from the environment and the reward

value is obtained for the action took where the main purpose of the proposed system is to

increase the future reward values. Early braking of an agent is prevented by reward function

using a penalty value that is directly proportional to square of distance between the vehicles

and obstacle so that it helps the agent to avoid deceleration if the pedestrian is far from

the agent and there is a penalty the agent receives when there is a collision event. In [22]

where string stability constraint is considered, and the main control purpose is of maintaining

a safe distance while reducing air drag is fed into ACC environment through the use of reward

function and is defined in such a way that it was always negative. Reward function consists

of weighted and normalized error, power consumption and change of action when reward is

created and these terms contribute to the reward achieved when the episode is not aborted.

Due to error and safety constraints several conditions led to the end of an episode. When

reward function is maximized the desired behaviour is obtained with minimum error and power

consumption and enhancing the riding comfort by providing smooth acceleration signal. Here

two sets of reward function is defined for error minimizing and absolute power consumption

aimed at reducing the energy consumed by performing less acceleration and deceleration at

the end of an episode. A non-quadratic reward function is used in [6] instead of a quadratic

function in order to reduce the steady state error of the resulting policy where the main

concept of the paper is to introduce model free learning approach using Deep Reinforcement

32

learning in automatic vehicles replacing Model Predictive approaches.

In [31], reward function appropriately designed by system engineer in ACC in order to

ensure its reliability. Here the reward function is developed in such a way that balances two

conflicting objectives – collision should be always avoided and the vehicle should maintain a

high speed on highways. The reward function consists of terms including incremental travel

distance along the path of the ego vehicle and the reward of the action taken at time t which

encourages the vehicle to drive as fast as possible within the speed limit to achieve higher

reward and to penalize frequent speed changes. Weight parameters are used to control the

trade off between two objectives. The reward function defines in which way the agent should

proceed. For example, bigger reward is defined if the car is in the middle of the road than the

in the side of the road.

3.2.3 Controllers using DDQN in Autonomous Vehicles

Double Deep Q learning method is used in [4] for autonomous vehicle navigation and obstacle

avoidance based on RNN in an unknown dynamic environment. The preparation strategies of

Double Deep Q training, a reinforcement learning approach empowers the specialist to gain

proficiency with the route choices successfully and the model is tested in gaming environment

which mimics the real world environment. A few dynamic techniques have been performed

utilizing Deep Q learning approach but to stay away from overestimations Double Q learning is

presented here. The framework for DDQN doesn’t reduce the overoptimistic assessment, but

gives favored execution when contrasted with DQN strategy on a virtual accustom. DDQN

shown in Figure 3.2 also gives accurate results even in the case of randomness. Here, four

decisions or actions are considered for different scenarios. Hence, the reaction and choice

of an agent are classified into accelerate, decelerate, lane change, and stop modes. If the

agent does not predict any obstacle at some distance, then it will be in acceleration mode.

If there is no hindrance on near the agent on the left or right side, then lane change option

will be available. If obstacles are found on both sides of the agent, then deceleration mode is

initiated. Finally, exploration is promptly halted in the event of any collisions. In [34], vehicle’s

speed is controlled using Double Deep Q learning method. Data is obtained from naturalistic

33

driving where high dimensional video data are processed into meaningful data and the Double

DQN calculates Q value estimates for speed control actions. One major characteristic of

naturalistic driving data is that it is collected in natural state of normal driving condition

without interference and experimenters.

Figure 3.2: Architecture of Double DQN system [34]

Under environment constructed by naturalistic driving data, reinforcement learning algo-

rithm could learn human’s decision-making and judging ability. Human-like behavior appears

more promising when dealing with changeable real environment.The data is trained by letting

the vehicle agent drive on the data recorded in real environment using three different opti-

mization algorithms - gradient descent, Adam and RMSProp. Double DQN method appeared

to be more robust to this more challenging evaluation and had improvements both in terms

of value, accuracy and policy quality. In [33] DDQN method is used where reward function

considering the motion characteristics of the preceding car is implemented as the adaptive

cruise control system fails to follow the preceding car with extreme motion in most of the

cases. In [25] two methods are compared for end to end autonomous driving - DQN and

Duelling Deep Double DQN method. The main contributions of this thesis is as follows:

1. An end-to-end autonomous driving method through Dueling Double Deep Q-Network

on TORCS. The state space, action space and reward function and implement RL algorithm

is designed to realize end-to-end autonomous driving.

2. A mixed state input that comprises both camera image and a vector of ego vehicle

speed. The corresponding dueling network architecture is designed, which includes both CNN

and fully connected layers.

34

3. Visualization of neural network for end-to-end autonomous driving. The visualization

map of the learned neural network shows that the vehicle drives by observing the lane lines.

Table 3.1 explains the existing research methods for Adaptive Cruise Control using Rein-

forcement Learning. Algorithm used, the neural network architecture, and the type of state,

action and reward function used in various research projects.

Research Algorithm Architecture State Action Reward
[10] Policy Gra-

dient
Backpropogation
neural network

Headway,
headway
deriva-
tive, front
vehicle ac-
celeration

Braking,
Gas action,
no-op ac-
tion

Safe inter-vehicle
distance

[7] DRL Fully connected
feed forward
network

Relative
position of
obstacle,
vehicle
speed

Braking ac-
tions - null,
mid, strong

Balancing the
damage imposed
to obstacle when
accident occurs

[6] DDPG DNN Vehicle
speed

taking ac-
tions from
different
policy

Non quadratic
reward function
to reduce steady
state error of
policy

[31] DQN DNN Relative
position
velocity of
the vehicle

Heavy,
slight ac-
celeration,
keep speed
and slight,
heavy de-
celeration

Avoiding Colli-
sion, Maintain
high speed on
highways

[34] DQN DNN Vehicle
Speed

Acceleration,
Decelera-
tion

Reward network
to map each state
to scalar

Table 3.1: Existing Research in Deep Reinforcement Learning for Adaptive cruise
control

3.3 Simulation and Training of DQN

To validate a proposed controller, real data from a driving scenario is taken as a reference to

feed a simulation. In [7], PreScan software is used for simulation to model vehicle dynamics

35

in real time which is used to train the DQN agent by randomly simulating the pedestrian

behaviour. Noise is added to the system to make it more practical. During the training either

of the two scenarios (cross the road or stay at initial position) is selected with equal probability.

Here the neural network used for DQN comprises of fully connected layers with five hidden

layers and a learning rate of 0.0005 is used to minimize the loss with the use of RMSProp

algorithm. In [22], each CACC environment was initialized with processed NGSIM (Next

Generation Simulation) velocity and acceleration trajectory and the trajectories were sampled

from NGSIM training dataset. In NGSIM dataset, position of vehicles were measured using

cameras at two to three specific times in a day which helped to portray different amount of

traffic and different vehicle trajectories during the build-up congestion and transition between

congested and uncongested traffic. The DRL environment here is created based on python

based DRL framework using Open AI Gym and the Modelica model of the vehicle was exported

as Functional Mockup Unit (FMU). PySimulator was used to connect to FMU and to create a

python based interface. In [31], OpenAI-Gym and ROS/Gazebo is used in order to model the

highway environment in real time which helps to train the DQN by simulating the behaviour

of vehicles on highway. RMSProp algorithm is used here as well to minimize the loss with

learning rate = 0.0005 and replay memory size to 10,000 and replay batch size to 32. After

training the agents performed good enough and is able to stay in the lane adjusting its speed

and choosing a good time to lane changes. The most difficult part in [31] is mentioned that it

was extremely hard to stabilize reinforcement learning with non linear function approximators

and tuning of hyper parameters required plenty of work. In order to validate the proposed

controller in [6], real data from driving scenario was taken as a reference to feed simulation and

the longitudinal vehicle dynamics model is implemented using OpenAI gym environment in

Python. The learning performance was evaluated after training a DDPG agent with reference

and advance knowledge information from the real world dataset. Learning performance is

evaluated by training a DDPG agent and performed training runs on APRBS sequences and

finally they were able to demonstrate that Deep Reinforcement learning has a potential to be

used for predictive tracking control which incorporates advance knowledge of disturbances.

Also, once DRL based controller is trained it has low computing time when compared to

36

NMPC (Non Linear Model Predictive Controller) achieving close to optimal performance.

Main challenges faced are high variance between different training runs, performing time

consuming evaluation runs, choosing best policy. In [10], microscopic vehicle simulator is

built in order to design an autonomous longitudinal vehicle controller using RL. The three

primary necessities to construct a testing simulator system are behaviour of vehicles ought

to be essentially as close as real vehicles, adaptability to insert RL motor, run quicker than

real time in order to execute enormous number of episodes in simulation. In [33] longitudinal

control of vehicle using Double Deep Q learning is implemented. The training is done with

the images taken by the rear car camera, rear car speed acceleration, distance between rear

car and front car and the simulation is done using unity environment.In [25] TORCS(The

Open Racing Car Simulator) is used for autonomous driving research where it provides users

with vehicle dynamic model, various tracks and graphics which allows them to train and

test the autonomous driving network on an end to end basis. TORCS also has an inbuilt

engine with inputs such as steering angle, velocity and acceleration along with outputs such

as camera image, vehicle position and velocity. Table 3.2 summarizes the different applications

of Deep Reinforcement learning used in previous research and the corresponding simulation

environment used.

3.4 Summary

This chapter explains the main techniques used in previous studies related to Autonomous

vehicles and Adaptive Cruise Controllers. State of art methods using classical controllers and

Deep Reinforcement Learning and its comparison with respect to performance, comfort and

efficiency are stated. From the above research papers, we can see the implementation of ACC

most commonly using vision based sensors and combination of all sensors (camera, RADAR

and LiDAR) using DQN or DDPG methods. Thus, we formulate the proposal with the use of

RADAR and LiDAR based Adaptive Cruise Control using Double DQN algorithm. The chapter

4 explains the design and implementation of the proposed idea and its key components.

37

Research Applications Simulated Environment
[31] Autonomous Driving system for adjusting the

speed and changing the lane
OpenAI-Gym and ROS /
Gazebo

[7] Designing Brake Control using DRL – Deceler-
ation as the vehicle gets close to the obstacle

PreScan – Modelling vehicle
dynamics in real time

[22] Application of DRL to CACC with continuous
action and state space - maintaining safe dis-
tance, close enough to preceding vehicle and re-
ducing air drag -Reducing vehicle jerk and Drive
in string stable way

Python-based DRL frame-
work OpenAI Gym

[20] DRL for low level longitudinal vehicle control
and Predictive RL controller to incorporate in-
formation about reference trajectories and fu-
ture disturbances

Data is collected using
Next Generation SIMulation
(NGSIM)

[20] ACC with different time gap policies – CTG and
VTG

SUMO

[25] Double Q learning used to control the speed
of the vehicle based on the naturalistic driving
data environment

TORCS is used for training
Convnets and recurrent neu-
ral networks

[19] Double Q learning used to improve the perfor-
mance of autonomous driving

CARLA

[27] DRL using DQN and DDPG to train control
layer of autonomous vechicles

CARLA

Table 3.2: Previous work on Autonomous Vehicles using Reinforcement Learning
and the respective Simulation Environment used

38

4 Design and Implementation

In this paper, we use DDQN as our working DRL algorithm to obtain the Adaptive Cruise

Control technique. This section explains the DDQN algorithm applied to Adaptive Cruise

Control and includes the design of DDQN and the techniques applied to train the agents in

order to achieve the collaborative environment. It also includes state representation, action

space and reward functions and besides that, it presents and justifies the design decisions

taken when selecting DDQN techniques and RL components.

4.1 Proposed Method for Adaptive Cruise Controller

Deep Q learning method is extensively used in training adaptive cruise control and in ap-

plications of autonomous vehicles. DQN network introduces two separate networks - one

parameter is used to make decision while interacting which is the Q network and another

network is used to form the target when training and is called the target network. The two

networks working together are proved to make learning more stable. In order to neglect the

overestimation created by max argument in reinforcement learning as discussed above, Double

Deep Q learning method is used to train the adaptive cruise control.

So far, in the previous studies, Double DQN method is used to train autonomous vehicles

with the use of camera images and mixed state space with vehicle speed vectors and camera

images. To evaluate the performance of the Double DQN method for Adaptive cruise control

using RADAR and LiDAR based sensors when compared to vision-based sensors the first step

is to do model design which are explained in below sections. Figure 4.1 represents the leading

and ego vehicles in CARLA simulation which will be used for training ACC.

39

Figure 4.1: Ego and Leading Vehicle in CARLA Simulation in Town 1

4.1.1 Implementation of RADAR and LiDAR Based System

However, in order to deploy a fully autonomous vehicle in recent trends, it requires a large

amount of information from the sensor modules attached to the vehicles. Once the target is

detected, the host vehicle needs to address the following queries with respect to the target

object:

How far is the object? How quick is the object approaching or departing? Is the objective

article is in left, right or straight ahead? Is the object in right or left pr straight ahead? What

is this target object? Is it a person or vehicle.

RADAR and LiDAR innovation helps the vehicle and the installed perception algorithms

to respond these questions with the help of “five-dimensional” datasets defined as Range,

Azimuthal direction of arrival (DoA), Elevation direction of arrival (DoA), Doppler, and Micro-

Doppler

As vehicles move from level 1 with full manual control to level 5 with full freedom, auto

40

radar advancement will be used for emergency breaking and versatile journey control with

continuously extending reliability and accuracy demands. Hardware simulation is important

during the stage of sensor design and software simulation becomes more important when

testing and validating radar and LiDAR sensor execution in the reality. In particular, RADAR

specialists ought to develop RADAR sensors that precisely sense the environment and gives

nonstop data to vehicle’s perception model. Failure in the sensor configuration can seriously

influence the security of completely independent vehicles. Moreover, engineers ought to test

the sensor execution with all the corner cases that might demonstrate exceptionally hazardous

or of significant expense for actual testing. It is additionally assessed that 8.8 billion traveling

miles should be finished before the independent vehicles arrive at clients. It is also estimated

that 8.8 billion driving miles must be completed before the autonomous vehicles reach cus-

tomers. In order to drive this much miles, simulation is the only practical way for testing and

reaching the goal by driving a billion miles virtually along with safety testing and evaluating

the performance in corner cases.

LiDAR (Light Detection and Ranging) is the only sensor which gives resolutions at range and

is used to get fine and accurate detection of objects in space. Sonar is used in LiDAR where

pulse laser waves are used to map the distance of the surrounding objects upto 60 metres.

In order to navigate environment, it is used in large number of autonomous vehicles. LiDAR

is used to create 3D cloud of points which is better at judging distances by collecting and

recording the external surfaces of objects and scenes. Thus, the processing of sensor inputs

are the main area we have to focus while designing ACC.

4.1.2 LIDAR Structure

During the operation of LiDAR system, it rotates the laser emitter in horizontal direction and

in some LiDAR’s vertical alignment is also created. The frequency of horizontal resolution is

referred as Refresh rates and the frame rates are referred as FPS (Frames per second) which

is denoted by the following equation.

FPS =
αFoV

∆α
× frot (1)

41

where αFoV is horizontal Field of View, ∆α is horizontal resolution and frot is refresh rate.

From the above equation, points per second is is obtained by:

PPS = Nchannel × FPS (2)

where Nchannel denotes the number of channels which denotes the number of laser emitters

on the device. LiDAR output data obtained in CARLA is the 3D point cloud which has many

formats from various standards and organizations like Polygon or Stanford triangle format

(PLY) and Point Cloud Data (PCD).

4.1.3 RADAR Structure

RADAR plays an important role in autonomous vehicles because of their robustness against

poor weather conditions and CARLA provides a RADAR sensor that gives distance, angular

position, and the relative speed of the obstacle. In RADAR, transmitter is used to emit elec-

tromagnetic waves which is reflected back on the surface of nearby objects. The distance be-

tween the object and the sensor are calculated using the waves reflected by the below formula:

D = c ∗ T/2 (3)

where D is the distance to the obstacle, c is the speed of electromagnetic waves and T is

the time between emission and reflection of waves. Output from the RADAR sensor is a

two-dimensional data format.

4.2 MDP Formulation for Adaptive Cruise Control

In DRL, the agent interacts with the environment consisting of roads, vehicles and sensors.

The agent can control its speed and maintain a safe distance to that of the leading vehicle.

Considering the formulation of MDP in previous sections, autonomous controller task is solved

using MDP which comprises of an agent that notices the state (st) of the ego vehicle and

then action (at) is generated. Now the vehicle will lead to a new state st+1 and a new reward

42

rt = R(st , at) is produced based on the exploration. Markov Decision process is generally

defined as (S ,A,Pa,Ra,) where the primary objective is to find the good "policy" which is

used to decide which action to choose when the agent is in a specific state st

a) State space (S) : In each algorithm step, the data is received from the environment.

In our case, we use RADAR and LiDAR from which the estimated speed, distance to the

leading vehicle and other driving features that are extracted from the sensors.

b) Action Space (A): In order to interact with the vehicle in the simulator, the commands

used for throttle, steering and brake ought to be given constantly. Throttle and brake range is

[0,1] and steering range is [-1,1]. Therefore, at each step an action at = (acct , steert , braket)

is produced by the agent with the commands into their ranges.

c) State Transition Function (Pa) : Likelihood of an action a in state s at time t will

lead to state (st+1) at time t+1. Pa = Pr (st+1|st , at)

d) Reward function R: The immediate reward of transition of an agent from state st

to st+1 is generated by the reward function. The goal of MDP is to find a good policy that

will choose an action at in a given state. This function is used to maximize the expectation

of average future rewards.

Each of these sections are discussed in detail in below steps:

4.2.1 State Representation

The state vector depends on the data input used for the DDQN algorithm. Here for ACC

scenario, we use the distance and speed information of ego vehicle and social vehicles for state

representation. In autonomous vehicles, considering the collision scenario, the system design

is done in such a way that the major challenge of the intersection scenario comes from the

interaction between vehicle. The state vector of ego vehicle is defined as a 3D representation

of the simulation at a given step. The location of the vehicle is in binary form matrix and

velocity matrix of the vehicle is also represented at a given time step. The two matrices are

then combined to form a 3d matrix. Here, LiDAR and RADAR sensor are responsible for

43

getting the state of the agent at each time. The output from the RADAR is a conic view

of 2D point elements in sight and speed regarding the sensor from which the direction and

movement of the leading vehicle is evaluated.

4.2.2 Action Space Representation

Once the agent has observed the given state, st , an action is chosen from the given set of

possible actions, at in A. Each action changes the values of vehicles which are present in state

space. CARLA gives five types of control commands - steer, throttle, brake, hand brake, and

reverse gear.

Control Commands (Actions): In CARLA, control commands for steering is [-1,1] and for

throttle is [0,1].

It is difficult to select an appropriate action space due to number of possible actions, so an

action space is chosen where each action alters the value of vehicles that are present in the

state space. Initially, two sets of action pairs are selected and then compared with each other

in order to measure the performance difference. The action set contains three different actions

A = 0,1,2. Here, Action 0 forces the ego vehicle to decrease their speed, 1 used to maintain,

2 forces two vehicles to increase their speed and acceleration and decrease the minimum

distance between two vehicles and 3, Different scenarios of action space are mentioned below

in detail:

• Action 0: Low Acceleration

• Action 1: Medium Acceleration

• Action 2: High Acceleration

In each time step, the vehicle chooses any of the above actions in order to adjust the

speed according to the leading vehicle.

4.2.3 Reward Function

One of the most challenging parts in Reinforcement learning problems is defining the reward

function in order to find out the policy that is optimal for the given problem. The reward is

44

a scalar value r and is returned when an agent performs a given action in the environment.

Here, the global reward function is added and the aim is to keep the global reward as high as

possible. Here we chose a reward function with values -200 if collision occurs and a value of

-1 reward if the distance between two vehicles are not maintaining the certain distance and

a reward value of +1 if there is no collision and the vehicles are driving with a set distance

between them.

R =


−200, if Collision

−1, if No safety distance

1, if No Collision

(4)

4.3 CARLA Simulation

Car Learning to Act (CARLA) is an open source simulator built for autonomous driving research

and is based on Unreal engine 4. OpenDRIVE standard is used in CARLA in order to define

roads and urban settings. The simulator consists of scalable client-server architecture where

the server is responsible for simulation like sensor rendering, world-state and actor updates,

computation of physics, etc. The client comprises of all the client modules used to control

the actors and setting up the environment conditions which is developed by CARLA API using

python/C++. There are many features that can be used with CARLA some of which are

listed below:

Traffic Manager: A built-in framework which takes the control of the actors and acts as a

guide given by CARLA to reproduce urban environments with realistic conditions.

Sensors: In CARLA, sensors are actors attached to vehicles, and the information received

can be retrieved and stored to reduce the process complexity. Currently, CARLA has different

types of sensors - cameras, RADAR, LiDAR, etc.

ROS bridge and Autoware implementation: CARLA is used to integrate the simulator

with other learning environments as well using ROS bridge and Autoware.

Open Assets: CARLA consists of various maps with metropolitan settings for command

over weather patterns and the components can be modified.

45

Scenario runner: A series of routes are provided by CARLA in order to make the learning

process easy which describes different situations to iterate on.

When compared with other simulators CARLA has the open source options and also provides

existing towns and benchmarks and is easier to use. Creating Autonomous vehicles and test

drive in preexisting towns is made easy using CARLA which can provide feed from specific

sensors which can be selected according to our usecase. There are numerous examples and

tutorials on CARLA on how to use the software and the main disadvantage of using CARLA

is that the simulation is time consuming due to heavy computational software.

4.3.1 CARLA Simulator for Autonomous Vehicles

CARLA (Car Learning to Act) has been created to support advancement, training, and val-

idation of independent driving frameworks. The architecture consists of client and server

where the server is the simulated environment and client is the interface to the simulator by

controlling the weather, velocity of the vehicle, etc. CARLA simulator is used in [19] in order

to achieve autonomous driving and compared the performance using Q learning and Double

Q learning method ending up with Double Q learning method which has faster convergence

method and good performance. In [27] Deep Learning method is used in the control layer

of the autonomous vehicles using Deep Deterministic Policy Gradient (DDPG) and Deep Q-

Network (DQN) algorithms in order to train the vehicle to navigate and follow the determined

route efficiently. CARLA simulator is used in testing the agent with deep learning algorithms

and Figure

CARLA is being used currently and one of the most powerful simulators in developing

and testing Autonomous vehicles which is an open source based on Unreal engine and for the

control layer CARLA provides the actual vehicle odometry to the user which makes easier to

evaluate the performance of the proposed models.

Highlighted Features of CARLA simulation are stated below:

• Scalability: CARLA supports multiple clients in the same or different nodes which is

46

Figure 4.2: CARLA Simulation using Reinforcement Learning

used to control different actors

• Flexible API: CARLA has a powerful API which allows user to control the simulation

aspects including traffic generation, weather,sensor, pedestrian behaviour, etc.

• Autonomous Driving Sensor Suite: Sensors can be configured including LiDAR,

cameras, RADAR’s, depth sensors, GPS, etc.

• Maps: Users are able to create their own maps using OpenDRIVE standard tools like

RoadRunner

• Traffic Scenarios: ScenarioRunner engine allows the users to specify different traffic

scenarios based on modular behaviours

• Autonomous Driving: In CARLA, Autonomous baselines are used as agents which

includes AutoWare agent and conditional Imitation Learning agent.

47

4.3.2 Configuration of Actors

In order to set the client, Client class is used which returns an object that can be used to

access the information of the running simulation. The client configuration is shown below:

client = Carla.Client(’localhost’,2000) client.set_timeout(2.0)

After setting the client, server side is initiated in order to connect to the World instance

which includes methods such as blueprint library, maps, actors and weather conditions. Below

command is used in order to retrieve the World that is running currently

world = client.get_world()

Figure 4.3: CARLA Simulation Loop - Autonomous Vehicles

48

The above Figure 4.3 shows the simulation loop of autonomous vehicles using CARLA. Object

’world’ gives access to the blueprint library which contains a list of ActorBlueprint elements.

ID is used to identify the actors by blueprint.

blueprint_library = world.get_blueprint_library() bp =

random.choice(blueprint_library.filter(’vehicle))

bp.set_attribute(_attr_name_,_attr_value_)

An initial random transform to the vehicle is given from the list of spawn points recommended

in the map

transform = random.choice(world.get_map().get_spawn_points())

Spawning the vehicle in the world

vehicle = world.spawn_actor(bp,transform)

Enabling Autopilot mode

vehicle.set_autopilot(True)

Destroying Actor - In order to exit the actors from the simulation after quitting the python

script

actor.destroy()

4.3.3 Retrieving Simulation

The client is initialized in the first step which gets the pointer to the world object hosted by the

server in order to make an interaction. During Simulation, the client can get the information

on vehicles using Vehicle class at anytime. Here we use Town 1 in our design for training

the agent. An actor is spawned once the client is started and the actors are not destroyed

until the destructors are explicitly called even though the python script of client is terminated.

In order to spawn an actor, we must need a transform object and blueprint. Location and

orientation are obtained using transform object. The other actor’s location and orientation

49

can set to be a reference and by default the reference point is the world coordinate system

origin. In CARLA, the actor’s LiDAR coordinate system consists of three axis x (roll),y(pitch)

and z(yaw) where x points forward, y points right and z points up. Using the LiDAR point

cloud the local camera coordinates can be formed as shown below:

(xcam, ycam, zcam) = [xpc , ypc , zpc]×


0 −1 0

0 0 −1

1 0 0

 (5)

In order to implement the point cloud CARLA uses ray casting emissions which detects mesh

models in Unreal Engine. The output is a 32-bit array format which is fed into the neural

network. The simulation is started with customized traffic settings and an ego vehicle is set

to wander around the city with fundamental sensors. The recorded simulation is used to

query and to find highlights. New sensors can be added to recover predictable information

and the weather patterns can likewise be adjusted. Recording simulation is used to test

specific scenarios with different outputs. CARLA provides a visualization script for LiDAR

using Open3D. In CARLA, LiDAR is developed with ray-casting technology and the 3D points

are calculated by adding a laser for every channel which is developed in a vertical field of

view. Rotation is simulated by utilizing the horizontal angle that the LiDAR rotated in a

frame the point cloud is determined by doing a beam cast for each layer in each step. LiDAR

measurement contains a package with all the points that is created during 1/FPS interval

where the materials are not refreshed during this interval so that all the points in measurement

reflects the similar "constant picture" of the scene. The output LiDAR information is encoded

as 4D points where the first three points are the space coordinates (xyz) and the last point is

the loss of intensity during the movement which is computed by I/Io = e−a.d where a is the

attenuation coefficient which is depends on sensor wavelength and atmospheric conditions

and d is the distance from the hit point to the sensor. RADAR is similar to LiDAR and

creates conic view and is transformed to 2D elements in sight and their speed is calculated

with respect to the the sensor which helps in shaping elements and evaluation of its direction

and movement. Here the points will be concentrated around the center of view due to the use

50

of polar coordinates. The raw information given by RADAR can be changed over completely

to a usable format with the help of numpy.

4.3.4 Simulation Recording and Replaying

All the events that happened during the simulation of autonomous vehicles are recorded and

stored for future purposes, allowing for reproduction while testing the autonomous systems.

The data stored in the binary file is written on the server side and the recorder is managed by

the client using Python API. The data is stored on every tick of simulation where the informa-

tion consists of the vehicle’s position id, steering, throttle, brake, id, and speed. Information

on maps, traffic lights, date and time of the simulation was also saved. Recording is started

using the command below

client.start_recorder("/home/carla/recording01.log")

To stop the recording, at any time from the client script the call is also straight forward:

client.stop_recorder()

CARLA provides an additional feature to trace and study the events happened in simulation

such as collision and blocked actors for a specific amount of time.

4.4 Hardware Requirements

In any machine learning or artificial intelligence problems, hardware requirement is the most

important to focus on. Good result is obtained when there are large number of computational

resources. In our case, the experiment is done based on CPU memory and without any GPU

support. The hardware specification is found in below table 4.1:

51

Hardware Elements Specification

CPU Memory 8 GB
Operating System Windows 10

Table 4.1: Hardware Specification

4.5 Adaptive Cruise Control Problem using CARLA

The functionality of cruise controlled systems is extended in Adaptive Cruise Control systems

which can be used to adjust the velocity of the host vehicle in order to maintain a safe distance

from the leading vehicle by controlling the throttle and brake. Here we use RADAR and LiDAR

sensor to measure the distance from the front vehicle. Actors are defined in CARLA which

plays the role of simulation which includes pedestrian, vehicles, sensors, and traffic signs.

Spawning of actors are done in the simulation using carla.World and carla.ActorBlue

There are various types of objects in CARLA simulator which are mentioned below:

• World: Spawning of actors are done in the simulation using carla.World. World is the

overall environment where we have the actors like cars, sensors, pedestrian, etc.

• Blueprint Library: The Blueprint library is the summary for all actor blueprints and

its attributes available to the user

• Actors: The world object is used to spawn the actors and keep track of it. Spawning

requires blueprint, and a carla.Transform which is used to describe the location and

rotation for the actor.

Here we have two actors where the distance between them are measured using RADAR

and LiDAR sensor and a safety distance of 10metres is set manually between two vehicles.

4.5.1 Agent Training using DDQN

A Markov Decision process is utilized to take care of the control problem by finding the ideal

actions in each time step. The training of the agent is done using DDQN method where the

observation state is taken from simulation and is passed to Deep Neural Network and Q value

52

is calculated for each possible action.

• One Q network is used for predicting the Q function (Online network)

• One network is used for computing the targets (Target network)

• In each step the agent trains the online network

• Methods to update the target network weights

Here, we used step() function to modify the agent and its action where we adjust the

throttle, brake, and steering as required and these are the actions that will be considered by

the agent during training. If a collision occurs, the episode ends and an agent will be destroyed

with a negative reward.

4.5.2 Neural Network Architecture

Here we build a Deep Neural Network to approximate the Q value function and the input is

the current state of the agent and the output is the Q Values of all possible actions gener-

ated. Memory is used to store past experiences in the model and the maximum value of Q

is used to determine the next action. Below are the steps involved in developing DDQN model:

• Gather the RADAR and LiDAR sensor data from CARLA Simulator and then feed it

into DDQN Sequential model which returns the possible set of actions (Steer, Throttle,

Brake)

• An action is selected by taking the highest Q value or in a random manner in order to

implement exploration of the agent

• The Agent performs the transition from the current state to a new state and receives

the reward. The new state is the preprocessed points detected by the Radar and the

LiDAR sensor (current state, action, reward, new state)

• Random sample transition batches are picked up from the memory and calculate the

loss

53

• The loss value is calculated as the squared difference between target Q and predicted Q

• Loss function is minimized using Gradient-Descent algorithm

• After every ’n’ number of steps or episodes, weights and target models are updated

Figure 4.4 shows how the highest Q value is selected from Q table and Figure 4.5 shows

the architecture of the DRL agent used in the work.

Figure 4.4: Q Learning Method

Figure 4.5: Deep Neural Network Architecture

4.6 Training and Results of the Model

The training of the model took 2 days and 3 hours. Training steps and the model results are

explained in below steps:

In order to choose a different set of actions, we use step() function which is passed to

the agent and action. If there is a collision, the agent is stopped and is destroyed with a

54

maximum negative reward. If the minimum distance between two vehicles is not maintained,

then a negative reward is applied. A positive reward is given if the vehicle maintains a safe

distance and there is no collision. The algorithm should find the right action among the three

actions using the highest Q value for the given input. In the first iteration, agent chooses a

random action for a given state. The model takes the sensor data as input and gives three

different outputs (action space) that is used to drive the car. This randomness factor is chosen

by the parameter epsilon which is decayed as the number of episodes increases which means

as the agent train the actions are less random. In order to train the model, the samples are

randomly generated and training is started in a batch. The future q values are picked up

once the batch is created. The transition in DDQN method is defined in the format (current

state, action, reward, new state). Using this transition, the inputs and outputs for the DDQN

model, X and y are created. Before training, random inputs are taken from the and then the

continuous training of the model (inside infinite loop) is done using model.fit which uses the

actual values from the sensor input. During training, the environment and the DDQN agent

is initialized and then the metrics are reported. The training hyper parameters used for the

executions are shown in Table 4.2.

Parameter Value

Episodes 3000
Seconds per Episode 10
Replay Memory Size 5000
Minimum Replay Memory Size 1000
Minibatch Size 16
Training Batch Size 4
Minimum Reward -200
Discount 0.99
Epsilon 1
Epsilon Decay 0.95
Minimum Epsilon 0.001
Safety distance 10 metres

Table 4.2: Training Parameters

Figure 4.6 show the epsilon, average reward value, minimum reward value, maximum

reward, and the loss value over the number of episodes while training the agent. As the

number of episodes increases, the value of epsilon decay decreases to 0.01 gradually which

55

means that the learning rate of the agent increases in a higher rate till 2500 episodes and then

increases slowly after 2500 episodes. The average reward value is very low at the start of the

training and then increases at a higher rate till 500 episodes and then increases slowly. The

average reward curve decreases after some point which points that the agent still explores a

number of situations and then again increases slowly after 2500 episodes. Higher the average

reward means higher agent exploration and higher will be the training accuracy. Minimum

reward graph seems to increase at initial period of training as the agent is first penalized

for wrong control actions and then decreases slowly after 2000 episodes as the weights are

adjusted to prevent the extreme control values. When the agent is penalized for collisions,

then it learns how to drive in order to not hit the other vehicles. It can be seen that the

maximum reward increases as the episode goes on. At times, it decreased slightly but not for

longer time. The number of collisions shown in loss graph decreased at higher rate initially

and then increases slightly. Decrease in the number of collisions directly states that the agent

is learning and performing better during training. From the above graphs, we can see that

overall the model improved during training in complex environmental settings.

4.7 Difficulties

The main difficulty faced during training is the hardware requirement and the storage limits.

The training for 3000 episodes took two days when using Intel core i5 processor and the use

of advanced hardware systems with GPU would have reduced the time of training drastically.

During simulation, the experiences are stored in RAM by the experience replay technique

which increased the memory of the RAM gradually. The RAM storage got full during training

where it removed the older entries and replaced them with recent ones which continuously

gave an error. In order to tackle this issue, the replay memory is reinitialized to empty after

1000 time steps which fixed the previous occurring error.

56

4.8 Summary

In this chapter, we discussed the implementation and training if an agent using CARLA sim-

ulation. The training results from the tensorboard are visualized and interpreted. DDQN

implementation, hardware setup, training hyperparameters and the difficulties while imple-

menting along with the solution is also discussed in this chapter. The tensorboard graph of

the reinforcement model are discussed and the results are interpreted.

57

Figure 4.6: Model Output

58

5 Evaluation

In this section, we implement a DDQN solution for training an agent in different scenarios. We

discuss the objective of the evaluation along with the hyperparameters used in the experiment.

Metrics used for measuring the performance of the model are also detailed. The experiments

used for evaluation are described and the outcomes are analyzed

5.1 Objective

The goal of the project is to develop a DDQN agent for Adaptive cruise control using RADAR

and LiDAR sensors in order to avoid collisions and maintain a safe distance. In previous

chapter 4, we discussed the Design and Implementation which addresses the requirements of

an ACC system and satisfies in maintaining a safe distance and avoiding collisions. The de-

veloped DDQN model is successful in training the agent if it meets the following requirements:

• Number of collisions is decreased over time

• Average reward value is increased over time

• Epsilon Decay is converged over time

The model is compared with DQN model in terms of the above mentioned parameters. Since

DQN model previously developed uses camera sensor for autonomous navigation, we refined

the code for adaptive cruise control with camera sensor. The results of comparison are stated

in section 5.5.

59

5.2 Metrics

The metrics used to validate the performance of the agents are explained below in detail:

• Number of collisions: Loss value defines the number of collisions over time which

helps to determine the performance of the algorithm over time. This is the important

metric that shows the traffic safety where every time step collision is checked in order

to ensure that safety braking has been applied or not during simulation. During the end

of every episode, the sum of total collisions are calculated and reset to 0 at the start of

every episode.

• Average Reward: It is most commonly used metrics in any Deep Reinforcement

Learning experiments which directly gives the performance by identifying how much

reward the agent receives over time. During simulation, the agent collects as much as

rewards as possible and higher the reward higher the performance. The average reward

graph is shown in the results.

• Epsilon: The epsilon-greedy methodology chooses the action with the highest reward.

It is used to maintain a balance between exploration and exploitation. We used decay

epsilon greedy policy method which determines the exploration and exploitation of an

agent throughout the episodes. During the initial period of training, there will be a

higher proportion of exploration samples and the function decreases as the number of

episodes increases. We specify the initial and final values of epsilon which is 0.95 and

0.001 respectively. If the function converges to the specified final value then optimal

learning has been performed by the agent which is shown in the results.

5.3 Evaluation Scenarios

We first train the agent with different two different set of actions and from that best action

is chosen which is used to test the agent for number of training episodes.

• Action Space: As discussed in 4.2.2, we define actions with low, medium and high

60

acceleration. Here we choose two action sets with acceleration magnitude [0.3,0.5,0.8]

and [0.2,0.7,0.9] respectively. As the throttle input value ranges from [0,1] with 0

being the lowest acceleration and 1 being the highest we select three values which is

low, medium and high between 0 and 1 in a random manner according to the CARLA

documentation in the official website. During simulation, we trained the agent with

the two action sets and compare the performance in terms of collisions and average

reward function. It is seen that the action set 1 performs better than action set 2

in different type of weather conditions and when more vehicles are spawned which is

explained further in below section.

• Changing weather parameters: CARLA simulations enables users to change the

weather parameters. The agent was trained in different weather conditions in order to

check if the sensors are able to detect the leading vehicle’s position and speed.

• Spawning of more vehicles: We spawn more vehicles nearby in the same lane as well

as in different lanes in order to increase the traffic in simulation and train the agent for

less collisions.

Each of these points a detailed in the following section.

5.4 Setup

This section explains the environment used in experiments as well as the different parameters

chosen for evaluation.

5.4.1 Weather Parameters

Here we customize the weather parameters as rainy, sunny, day and night in order to develop a

controller that works under all climatic conditions. In CARLA, we define the climate conditions

using combinations of 4 parameters (Sun, Cloud, Rain and Wind).

The changing of different weather parameters in CARLA simulation is shown below in 5.1.

61

Figure 5.1: Dynamic weather patterns in CARLA

The combination of weather parameter values chosen to train the agent are given in table

5.1. These values are changed during the start of every episode randomly and are trained for

180 episodes and is seen that the average reward value is increasing with less collisions.

S.No Sun Cloud Rain Wind
1 0% 32% 0% 0%
2 20% 10% 90% 5%
3 0% 20% 90% 80%
4 50% 13% 0% 5%

Table 5.1: CARLA Weather conditions

5.4.2 Spawning more vehicles - High traffic

An increase in the traffic level results in higher chances of collisions, and trains the agent to

learn to take actions in various states. In order to increase the traffic load, we spawned 1000

vehicles and 100 pedestrians and the collision rate is monitored.

62

5.4.3 Evaluation of Action sets

The two action sets are compared with random weather conditions and with more traffic load.

It is seen that action set one performs better than action set 2 which can be clearly seen in

below reward function graph.

Figure 5.2: Average Reward vs Episode

Figure 5.3: Number of Collisions vs Episode bn

With the above-mentioned scenarios, an agent is trained for 180 episodes and the average

rewards and collision rate are monitored which is shown below in 5.2 and 5.3 respectively. It is

clearly seen from Figure 5.2 that the average reward function increases during the simulation

with action set 1 when compared to action set 2 interpreting that the agent learns in the

right directions by taking correct actions during different climatic conditions and also in high

63

traffic when using action set 1. Number of collisions is high with action set 2 as the number

of episode increases as shown in Figure 5.3. Thus, we choose action set 1 to train our main

model in different weather conditions and in high traffic.

5.5 Comparison with DQN Model

The proposed DDQN model with selected action set is evaluated against DQN model for

which is a baseline model in our case. The DQN method is developed for Adaptive cruise

control with the help of an existing research paper based on CARLA Autonomous vehicles

for Deep Q Learning [1]. The model uses camera as the main sensor and is trained for 150

episodes. The DQN model is compared against the DDQN method for number of collisions

and average reward value as shown below in Tensorboard Figure 5.4 and Figure 5.5.

Figure 5.4: Number of Collisions - DQN vs DDQN

From the above figure, we can see that the number of collision is initially high when using

DQN model and then decreases. When it comes to reward function, DQN model performs

better than that of DDQN model for 150 episodes. Though there is not much difference

between DQN (Camera) and DDQN (RADAR and LiDAR) model performance, DDQN learns

gradually and DQN method first overestimates which tends to high number of collisions and

then learns gradually.

64

Figure 5.5: Average Reward - DQN vs DDQN

5.6 Evaluation Summary

In this chapter, we presented the details of the evaluation of the DQN and DDQN models for

the ACC problem. We also discussed the objective of the evaluation, its metrics, the evaluation

scenarios with the environmental setup and comparison with baseline. We evaluated action

sets 1 and 2 in different weather conditions and high traffic. From the results, we can clearly

see that the action set 1 outperformed action set 2. Action set 1 is therefore used to train

the main agent with the DDQN method. The developed model with RADAR and LiDAR

sensor input is then compared with a baseline DQN model with vision based model. From the

comparison, we concluded that the DDQN model and DQN model performs almost equally by

reducing collisions and increasing average reward, but DDQN method avoids overestimation

when compared to the DQN method.

65

6 Conclusion

In this chapter, we summarize the thesis concept of thesis and highlight the most important

achievements of the work. We further discuss the future work that can be improved from the

current thesis work done.

6.1 Thesis Contribution

In this thesis, we developed a recent work for training an Adaptive Cruise Control based on

RADAR and LiDAR sensors using the Reinforcement learning approach.

Chapter 1 describes the motivation behind Adaptive Cruise Control in Autonomous vehicles.

We discussed the thesis goals and research question, and also outlined the thesis contributions

and its structure.

Chapter 2 gave the background material used to develop the ACC model and it covers the

concept of autonomous vehicles and reinforcement learning. We then cover the concepts of

Deep Learning, Q learning and Double Q learning and then the proposed method for ACC.The

different types of sensor modules used in current autonomous vehicles are discussed.

Chapter 3 describes the state of art which gives the classical approaches and more recent

work related to control methodologies used in Autonomous vehicles. Using previous work,

one can understand about the state, action and reward functions used in different scenarios

with different algorithms. Simulation environment used in different research projects.

Chapter 4 presents the design and implementation details of an autonomous agent trained

with respect to the leading vehicle. This includes a brief overview of the code, simulator used,

and its environment. The hardware requirements for training and the training output are also

66

discussed.

Chapter 5 explains the evaluation method of different action sets in dynamic weather and

heavy traffic conditions using CARLA simulation. The selected action set is then used in

DQN and DDQN model and then the performance of the agent is evaluated and compared.

The comparison results states that both DQN and DDQN perform almost equally with DDQN

having its advantages without any over estimations whereas DQN has some overestimation

errors. This concludes that the algorithm developed is fit for autonomous driving in order to

show better performance of the agent.

6.2 Future Work

The field of RL has been advancing fast in recent years.

• There are a few new and old techniques that I would like to try: asynchronous RL,

prioritized experience replay, and asynchronous Actor-Critic Agents (A3C)

• Comparing the developed models with RNN (recurrent neural network) and LSTM (Long

short-term memory) models

• Test on real Autonomous Cars. It is not necessarily to test the real cars on highways

in the next stage but a model car equipped with autonomous systems would be good

enough to gather data close to reality which would then contribute to the modification

of the simulator setting in both the system and the reward function

• An underlying Safety System. The underlying safety system has been mentioned in the

Chapter 3 but can be detailed in the future, especially how to coordinate with the DQN

planner

• Training for more episodes can help to find insights of the model performance and

accuracy over time

• Coordinate the energy model into DRL reward function for an Eco-ACC framework

67

Bibliography

[1] M. Ahmed, C. P. Lim, and S. Nahavandi. A deep q-network reinforcement learning-based

model for autonomous driving. In 2021 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pp. 739–744, 2021. doi: 10.1109/SMC52423.2021.9658892

[2] L. Alonso, J. Pérez-Oria, B. Al-Hadithi, and A. Jimenez. Self-tuning pid controller for

autonomous car tracking in urban traffic. 10 2013. doi: 10.1109/ICSTCC.2013.6688929

[3] J. Barkenbus. Self-driving cars: How soon is soon enough? Issues in Science and

Technology, 34(4).

[4] R. Bin Issa, M. Das, M. S. Rahman, M. Barua, M. K. Rhaman, K. S. N. Ripon, and

M. G. R. Alam. Double deep q-learning and faster r-cnn-based autonomous vehicle

navigation and obstacle avoidance in dynamic environment. Sensors, 21(4), 2021. doi:

10.3390/s21041468

[5] D. Birnbacher and W. Birnbacher. Fully autonomous driving: Where technology and

ethics meet. IEEE Intelligent Systems, 32(5):3–4, 2017. doi: 10.1109/MIS.2017.3711644

[6] M. Buechel and A. Knoll. Deep reinforcement learning for predictive longitudinal control

of automated vehicles. In 2018 21st International Confe rence on Intelligent Transporta-

tion Systems (ITSC), pp. 2391–2397, 2018. doi: 10.1109/ITSC.2018.8569977

[7] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi. Autonomous braking

system via deep reinforcement learning. In 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC), pp. 1–6, 2017. doi: 10.1109/ITSC.2017.

8317839

68

[8] E. G. Debada and D. Gillet. Virtual vehicle-based cooperative maneuver planning for

connected automated vehicles at single-lane roundabouts. IEEE Intelligent Transportation

Systems Magazine, 10(4):35–46, 2018. doi: 10.1109/MITS.2018.2867529

[9] C. Dekkata and S. Yi. Improved steering and adaptive cruise control for autonomous

vehicles using model predictive control. Journal of Mechatronics and Robotics, 3:378–

388, 01 2019. doi: 10.3844/jmrsp.2019.378.388

[10] C. Desjardins and B. Chaib-draa. Cooperative adaptive cruise control: A reinforcement

learning approach. IEEE Transactions on Intelligent Transportation Systems, 12(4):1248–

1260, 2011. doi: 10.1109/TITS.2011.2157145

[11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 07

2011.

[12] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learning

techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386, apr 2020.

doi: 10.1002/rob.21918

[13] I. Haskara, C. Hatipoglu, and U. Ozguner. Combined decentralized longitudinal and

lateral controller design for truck convoys. In Proceedings of Conference on Intelligent

Transportation Systems, pp. 123–128, 1997. doi: 10.1109/ITSC.1997.660462

[14] C. Hatipoglu, U. Ozguner, and M. Sommerville. Longitudinal headway control of au-

tonomous vehicles. In Proceeding of the 1996 IEEE International Conference on Control

Applications IEEE International Conference on Control Applications held together with

IEEE International Symposium on Intelligent Contro, pp. 721–726, 1996. doi: 10.1109/

CCA.1996.558954

[15] J. S. J. Koutnik and F. Gomez. Evolving deep unsupervised convolutional networks for

vision-based reinforcement learning. Pro ceedings of the 2014 Annual Conference on

Genetic and Evolutionary Computation, ACM, pp. 541–548, 2014.

69

[16] J. P. R. C. G. Jorge Villagra, Vicente Milanés. Model-free control techniques for stop go

systems. 2010 13th International IEEE Annual Conference on Intelligent Transportation

Systems, 2010.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. doi: 10.

48550/ARXIV.1412.6980

[18] Y. Lin, J. McPhee, and N. L. Azad. Comparison of deep reinforcement learning and

model predictive control for adaptive cruise control. IEEE Transactions on Intelligent

Vehicles, 6(2):221–231, 2021. doi: 10.1109/TIV.2020.3012947

[19] Z. Liu, J. Hu, T. Song, and Z. Huang. A methodology based on deep reinforcement

learning to autonomous driving with double q-learning. In 2021 7th International Con-

ference on Computer and Communications (ICCC), pp. 1266–1271, 2021. doi: 10.1109/

ICCC54389.2021.9674600

[20] S. Magdici and M. Althoff. Adaptive cruise control with safety guarantees for autonomous

vehicles. IFAC-PapersOnLine, 50(1):5774–5781, 2017. 20th IFAC World Congress. doi:

10.1016/j.ifacol.2017.08.418

[21] R. L. E. M. J. P. Mauricio Marcano, José A. Matute. Low speed longitudinal control

algorithms for automated vehicles in simulation and real platforms. Complexity, p. 12,

2018. doi: doi.org/10.1155/2018/7615123

[22] J. Mirwald, J. Ultsch, R. de Castro, and J. Brembeck. Learning-based cooperative

adaptive cruise control. Actuators, 10(11), 2021.

[23] G. Nardini, A. Virdis, C. Campolo, A. Molinaro, and G. Stea. Cellular-v2x communications

for platooning: Design and evaluation. Sensors, 18(5), 2018. doi: 10.3390/s18051527

[24] J. F. P. M. O. Garcia, G. Vitor and A. de Miranda Neto. The vilma intelligent vehicle:

an architectural design for cooperative control between driver and automated system.

Journal of Modern Transportation, 61(3):220–229, 2018. doi: 10.1007/s11431-017-9338

-1

70

[25] S. Q. L. S. e. a. Peng, B. End-to-end autonomous driving through dueling double deep

q-network. In Automot. Innov, vol. 4, pp. 273–275, 2021. doi: 10.1007/s42154-021

-00151-3

[26] D. Pomerleau. Neural network vision for robot driving. In M. A. Arbib, ed., Handbook

of Brain Theory and Neural Networks, pp. 161–181. MIT Press, 1995.

[27] B. R. L.-G. E. e. a. Pérez-Gil, Ó. Deep reinforcement learning based control for au-

tonomous vehicles in carla. In Multimed Tools Appl, vol. 81, p. 3553–3576, 2022. doi:

10.1007/s11042-021-11437-3

[28] H. Raza and P. Ioannou. Vehicle following control design for automated highway systems

[25 years ago]. IEEE Control Systems Magazine, 41(6):13–15, 2021. doi: 10.1109/MCS

.2021.3107755

[29] D. Swaroop and R. Huandra. Intelligent Cruise Control System Design Based on a Traf-

fic Flow Specification. Institute of Transportation Studies, Research Reports, Working

Papers, Proceedings qt0941c5gg, Institute of Transportation Studies, UC Berkeley, Feb.

1999.

[30] H. Y. T. Miki, T. Ohya and N. Umeda. The overview of the 4th generation mobile com-

munication system. The Fifth International Conference on Information, Communications

and Signal Processing, pp. 1551–1555, 2005.

[31] P. Xu. A learning based adaptive cruise and lane control system. Master’s thesis, Case

Western Reserve University, 2018, 2018.

[32] J. K. Z. D. e. a. Yang, D. Intelligent and connected vehicles: Current status and future

perspectives. Sci. China Technol. Sci, 61(4):1446–1471, 2018. doi: 10.1007/s11431-017

-9338-1

[33] C. Zhang, X. Zhang, P. Ma, S. Dai, Y. Lu, and L. Jiang. Vehicle driving longitudinal

control based on double deep q network. In 2022 14th International Conference on

Measuring Technology and Mechatronics Automation (ICMTMA), pp. 273–275, 2022.

doi: 10.1109/ICMTMA54903.2022.00059

71

[34] Y. Zhang, P. Sun, Y. Yin, L. Lin, and X. Wang. Human-like autonomous vehicle speed

control by deep reinforcement learning with double q-learning. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pp. 1251–1256, 2018. doi: 10.1109/IVS.2018.8500630

[35] D. Zhao, D. Liu, F. L. Lewis, J. C. Principe, and S. Squartini. Special issue on deep

reinforcement learning and adaptive dynamic programming. IEEE Transactions on Neural

Networks and Learning Systems, 29(6):2038–2041, 2018. doi: 10.1109/TNNLS.2018.

2818878

[36] M. Zhu, X. Wang, and Y. Wang. Human-like autonomous car-following model with deep

reinforcement learning. CoRR, abs/1901.00569, 2019.

72

	Introduction
	Motivation
	Goals and Research Question
	Thesis Contribution
	Thesis Structure

	Background
	Cruise Control
	Adaptive Cruise Control
	Longitudinal Control Algorithm

	Autonomous Vehicles
	Connected Autonomous Vehicles

	Artificial Intelligence
	Machine Learning
	Q-Learning
	Double Q Learning

	Deep Learning
	Backpropagation
	Optimization Algorithms

	Double Deep Q Learning
	Sensors
	RADAR
	LIDAR
	CAMERA

	Summary

	State of Art
	Recent Advancements in Self Driving Vehicles
	Advantages of Autonomous Cars
	Drawbacks of Self Driving Cars

	Vehicle Control Schemes for Automation
	Classical Control Approach without Machine Learning
	Classical Control Approach using Reinforcement Learning
	Controllers using DDQN in Autonomous Vehicles

	Simulation and Training of DQN
	Summary

	Design and Implementation
	Proposed Method for Adaptive Cruise Controller
	Implementation of RADAR and LiDAR Based System
	LIDAR Structure
	RADAR Structure

	MDP Formulation for Adaptive Cruise Control
	State Representation
	Action Space Representation
	Reward Function

	CARLA Simulation
	CARLA Simulator for Autonomous Vehicles
	Configuration of Actors
	Retrieving Simulation
	Simulation Recording and Replaying

	Hardware Requirements
	Adaptive Cruise Control Problem using CARLA
	Agent Training using DDQN
	Neural Network Architecture

	Training and Results of the Model
	Difficulties
	Summary

	Evaluation
	Objective
	Metrics
	Evaluation Scenarios
	Setup
	Weather Parameters
	Spawning more vehicles - High traffic
	Evaluation of Action sets

	Comparison with DQN Model
	Evaluation Summary

	Conclusion
	Thesis Contribution
	Future Work

