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Abstract

Connected autonomous driving has piqued the curiosity of the research community over recent
years due to its potential to provide driving assistance and reduce traffic congestion, among
other benefits. Despite promising advancements, safe lane-changing remains a significant
challenge for connected autonomous vehicles (CAVs), particularly in mixed and dynamic traffic
conditions. Investigation of the state-of-the-art papers on motion planning for CAVs suggests
a gap in research for safety supervisor techniques for lane changing algorithms in CAVs.

This paper uses multi-agent reinforcement learning (MARL) to model lane-changing in con-
nected autonomous vehicles in mixed traffic scenarios, i.e., with human-driven vehicles (HDVs)
on the road. Parameter sharing and replay buffer are employed to motivate cooperative be-
haviour and collaboration among CAVs. An OpenAI gym-like environment highway-env is
developed and modified to simulate the lane changing in CAVs. In addition, various state-of-
the-art safety supervisor techniques for reinforcement learning (RL) approaches are analysed,
and their applicability to designing safer MARL for lane changing of connected autonomous
vehicles (MARL-CAV) is examined. Comprehensive analysis and experimental results show
that integrating some promising safety supervisors to MARL for lane changing in CAVs is
challenging, and none of the existing safety supervisor techniques can be directly applied to
MARL-CAV as these safety techniques require prior knowledge of unsafe states and recovery
policies.
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1 Introduction

Over the past few years, the buzz surrounding self-driving automobiles has grown significantly.
The automotive industry is undergoing significant technical transformation at the dawn of the
twenty-first century, as several significant automotive and technology organisations attempt
to create and advance autonomous vehicle technologies.

Google launched their autonomous driving project “Waymo” in 2009 (Google 2022) and has
recently partnered with Jaguar to develop self-driving vehicles. Tesla’s Autopilot is arguably
the most advanced self-driving technology today (Tesla’s Autopilot 2022). Many leading
automobile organisations like Mercedes Benz, General Motors etc., are actively researching,
developing and testing autonomous vehicle technologies (Innovation 2022, Motors 2022).

Improvements in traffic mobility, eco-friendly vehicles, fewer fossil fuels and safer roads are
among the benefits promised by the autonomous vehicle industry. Therefore autonomous
vehicle technology has spurred a significant drive in the research of autonomous driving tech-
nology in academia and industry.

“The key with autonomous is the whole ecosystem. One of the keys
to having a truly fully autonomous is vehicles talking to each other.” -
Mary Barra, GM CEO

A connected autonomous vehicle (CAV) is an autonomous vehicle linked to other vehicles or
roadside units (Paret et al. 2022). Digital connectivity is predicted to positively impact driving
comfort, traffic efficiency, and safety. CAV technology is expected to generate jobs and create
a new market for connected, automated, and cooperative driving.

Therefore, connected autonomous vehicle (CAV) technology is a major focus of governments
worldwide. In recent times substantial progress has been made in developing CAV technologies.
In 2016 the European Commission adopted a European Strategy on Cooperative Intelligent
Transport Systems (C-ITS), a milestone toward cooperative, connected and automated mo-
bility (Commission 2022). With a focus on adopting and deploying CAV infrastructure on a
large scale, “Realising connected vehicle implementation” and “advancing automation” are the
two primary strategic priorities in USDOT’s ITS 2015-2019 strategic plan (USDOT 2022).
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Autonomous car driving is one of the most important topics in the contemporary artificial
intelligence (AI) research field with a potentially huge impact (Darapaneni et al. 2021). Over
the last decade, there has been a lot of research on using AI algorithms to develop autonomous
vehicle software (Haydari & Yılmaz 2022a, Takehara & Gonsalves 2021, Darapaneni et al. 2021,
Liu 2020, Okuyama et al. 2018, Kulkarni et al. 2018).

“Self-driving cars are the natural extension of active safety and obviously
something we should do” – Elon Musk.

Safety in intelligent transportation systems is the first strategic goal of the US department
of transportation (DOT 2022). Though there has been great advancement in AV technology
over the past decade that has made this possible, the number of traffic accidents involving
autonomous vehicles has increased in recent years (Dixit et al. 2016, Favarò et al. 2017).

A major problem with automated driving at its current stage of development is that it is not
yet reliable and safe (Martens & van den Beukel 2013). At the time of writing this dissertation,
all the autonomous vehicles on the market are semi-automatic. Therefore, when automated
driving fails or is limited, i.e., the onboard computer algorithms cannot make a safe decision,
it expects the human driver to take over, and if there is a delay in this transition, it leads to
an accident.

This motivates the development of safer software that uses artificial intelligence to drive the
vehicle safely.

This chapter introduces autonomous vehicles and connected autonomous vehicles in more
detail and provides a background of the science behind their functioning and decision-making.
This is followed by motivation for this work, the research question it addresses and its contri-
bution. The chapter ends with a brief outline of the thesis layout.

1.1 Background

This section briefly discusses the background about autonomous and connected autonomous
vehicles ( 1.1.1). Then it discusses how motion planning works for CAVs (1.1.2) and at the
end briefly talks about safe motion planning in CAVs (1.1.3).

1.1.1 Introduction to Connected Autonomous Vehicles

Autonomous Vehicles (AV)

An autonomous vehicle can be defined as a vehicle capable of travelling unassisted anywhere
and at any time, with no restrictions and without the help or even the presence of a driver(Paret
et al. 2022).
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Driving requires a variety of functions beyond decision-making, most notably involving in-
formation acquisition in support of environment perception. If all of those other functions
were also performed by self-contained systems in the vehicle, its automation system could
legitimately be considered to be “autonomous”. If the vehicles use communications with the
infrastructure or other vehicles to acquire information or to negotiate manoeuvres, they have
“cooperative” rather than “autonomous” automation systems (Shladover 2018).

Autonomous vehicles can be classified based on the level of automation capability. SAE
International (formerly the Society of Automotive Engineers) has developed a five-level clas-
sification of automated driving systems, which is useful for distinguishing the capabilities
available at each level. SAE (2022) classifies autonomous driving at five levels based on driver
support features, automated driving features and human responsibilities in the driver’s seat.

Connected Vehicles (CV)

Connected vehicles possess the ability to knit vehicles and infrastructure elements into a well-
integrated transportation system and hence, support a wide range of Intelligent Transportation
Systems (ITS) applications. (Shladover 2018)

The connectivity in connected vehicles can be of several types, namely V2V (vehicle to vehicle),
V2I (vehicle to infrastructure), I2V (Infrastructure to vehicle), V2P (vehicle to pedestrian),
and V2X (Vehicle to anything). This section focuses on some aspects of V2V (vehicle to
vehicle) communication.

Shladover (2018) stated that V2V connectivity can enable applications such as :

• Cooperative collision warnings and hazard alerts, as tested in the Safety Pilot Model
Deployment

• Cooperative collision mitigation or avoidance, incorporating active braking

• Cooperative adaptive cruise control, with a tighter vehicle following control than con-
ventional adaptive cruise control and enhanced traffic flow stability

• Close-formation automated platooning, enabling aerodynamic drafting and lane capacity
increases

• Automated manoeuvre negotiation at merging locations or intersections

These time-critical and safety-critical applications need very low latency and high-reliability
communications. For most of these applications, the communicated data is used to augment
the data acquired by onboard remote sensors, which remain the primary source of data about
time-critical and safety-critical conditions.
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Connected Autonomous Vehicles (CAVs)

The CV and AV developments have been proceeding along somewhat independent paths, but
there should be a strong synergy between them. They provide complementary contributions to
improving transportation system performance and safety. Connectivity integrates the vehicles
and the infrastructure into a system whose performance can be adjusted to satisfy various
societal goals (Shladover 2018).

An AV without connectivity is like a sensory-deprived driver who can only see the surrounding
environment but cannot communicate with other drivers by any currently available means and
therefore lacks full knowledge of that environment.

The CV communication links provide information that AV sensors cannot see (maneuver
commands issued to other vehicles, faults on other vehicles, accelerations of those vehicles)
and can also provide information about vehicles beyond the immediate line of sight. This is
crucial for dampening shock waves in traffic, which means that it has a strong impact on
roadway capacity, energy consumption, emissions and safety.

Autonomous vehicles (AVs without connectivity) can only see the vehicles immediately adja-
cent to them, which means that they cannot see the vehicles several positions further ahead
and therefore cannot anticipate acceleration or braking transients in traffic. In this regard,
they are worse than human drivers and produce less stable car following than human drivers
(Milanes 2014). When V2V communication is added to provide information about the mo-
tions of the vehicles further ahead, the disturbances are dampened, and traffic flow becomes
much smoother.

V2V connectivity also has important safety implications. At the most elementary level, many
secondary rear-end crashes on highways could be eliminated if V2V communications could
alert drivers approaching a congestion queue that the traffic ahead is going much slower or
stopped. If any vehicle encounters a hazard or suffers an internal fault, it can communicate
that information to its neighbours to start their safety recovery responses immediately, even
before their own sensors detect any problems. If a vehicle suffers such a severe fault that its
communication system is disabled, the sudden loss of communications from that vehicle also
informs its neighbours about a problem, providing a fail-safe backup.

This paper examines the current state-of-the-art approaches for lane-changing in Connected
Autonomous Vehicles (CAVs).

1.1.2 Motion Planning for Connected Autonomous Vehicles

The motion planning problem is the task of navigating an autonomous vehicle to its destination
safely and comfortably while following the rules of the road.
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At a high level, this task can be decomposed into a hierarchy of optimisation problems. Each
of which will have different constraints and objectives.

The first part of motion planning in autonomous vehicles includes estimating the vehicle’s
state, localising its surrounding vehicles, obstacles, lane detection etc. The sensors that help
with this are an accelerometer, Gyroscope, LIDAR (Light Detection and Ranging) and GNSS
(Global Navigation Satellite Systems). Sensor Fusion using Kalman Filter is used to fuse the
data from several sensors to estimate the state of any robotic system in real-time.

The second part is modelling the vehicle’s motion. Different mathematical models are used
as suitable control-oriented models to represent vehicles.

Kinematic Bicycle Modeling is used to capture vehicle motion in normal driving conditions.
This model is used to design controllers for autonomous vehicles. It captures vehicle motion
with steering rates and velocity inputs. Dynamic Modeling is used to get higher fidelity
predictions than are possible with kinematic models. This higher fidelity, however, comes at
the cost of higher computational complexity. So both kinematic and dynamic models have
their uses in self-driving development.

The third and fourth parts of motion planning are behaviour and path planning. These are
the most important parts of motion planning, they aim to decide when it is safe to proceed
considering the static and dynamic constraints. Behaviour planning focuses on high-level
decision-making required to follow the rules of the road and recognise which manoeuvres are
safe to make in a given driving scenario. The path planner finds a kinematically feasible and
collision-free path.

The motion planning for connected autonomous vehicles (CAVs) differs from motion plan-
ning for autonomous vehicles (AVs) because the CAVs can connect with nearby vehicles and
roadside units using communication technology like dedicated short-range communication
(DSRC). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) can be established us-
ing DSRC, which helps in cooperative-adaptive cruise control as multiple connected vehicles
can communicate and take cooperative action (Rana & Hossain 2021). Vehicles can also
share information with each other enabling collective learning enabling decentralized planning
with shared information.

5



1.1.3 Safety in Motion Planning for Connected Autonomous Ve-

hicles

The safety in connected autonomous vehicle (CAvs) refers to the ability of the CAV system
to function normally and to ensure safety of passengers and other road users. This includes
the following criteria:

• CAV should ensure smooth manoeuvres in road like lane following, lane changing, merg-
ing etc.

• CAV should avoid collision with nearby vehicles, pedestrian or other obstacles in road.

• CAV should not change the speed very aggressively which might be uncomfortable for
the passengers.

• CAV should follow the traffic rules.

Absence of any one or more criteria can be considered unsafe motion planning. Perhaps
the biggest obstacle to Artificial Intelligence (AI) becoming a more popular replacement for
traditional engineering solutions in safety-critical applications is safety. One of the underlying
problems is the fact that formal guarantees are currently lacking in neural networks, making
them generally unreliable. In AI approaches like Reinforcement Learning there is no formal
guarantee that the agent will learn a given task safely. This is because the agent visits unsafe
states during exploration phase of reinforcement learning algorithm. However, in real-world
safety-critical systems would require an exploratory algorithm to ensure safety.

This dissertation aims to review and analyse external safety techniques that can be applied
to AI algorithms for connected autonomous vehicle manoeuvres and can ensure with high
probability that the vehicle stays safe.

6



1.2 Motivation

Connected and automated vehicle (CAV) technologies have been developed throughout the
years to improve traffic safety, mobility, and environmental impacts. The lane-changing feature
is one of the CAVs technologies that make it possible.

Figure 1.1: Illustration of the considered lane changing in mixed traffic scenario. CAVs (green)
and HDVs (blue).

CAVs must communicate with other road users, who can be cooperative or aggressive, alert
or inattentive. Such disparities in traits can result in a wide range of interacting behaviours.
As a result, CAVs must be aware of such uncertainties when planning their behaviours to
achieve safe and efficient autonomous driving. The CAVs need to consider the action of other
human-driven vehicles and autonomous vehicles during lane changing, making this a difficult
task to automate.

Several variants of AI algorithms based on algorithms like deep reinforcement learning, game
theory and rule-based, have been proposed for efficient lane changing among CAVs. How-
ever, most papers do not discuss the safety constraints in these safety-critical lane-changing
manoeuvres. I wish to compare the current state-of-the-art algorithms based on their im-
plementation’s safety challenges and limitations to avoid crashing with static and dynamic
obstacles. This would help me understand the trade-off between the safety (of driver and
vehicle) and efficiency (in lane-changing) aspects of these algorithms. Furthermore, I also
wish to investigate novel variant of safety approaches for the AI algorithms which prioritises
safety in lane-changing manoeuvres.

Safe Reinforcement learning aims to create a safe learning algorithm while testing and during
training. Most of the implementation of reinforcement learning introduce safety either through
reward function or through an external supervisor which guides the agent during the training
process. The literature on the later approach is limited, and I wish investigate the possibility
of using external safety supervisors to simulate safe lane changing in CAVs.
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Two questions which motivate this dissertation are:

• How do make safer multi-agent reinforcement algorithms for lane changing in CAVs?

• How to ensure safety with scalability, i.e. as the penetration rate of CAVs increases,
how can we ensure safety?

1.3 Research Question

The purpose of this project is to answer the following research question:

“Can external safety supervisors help enhance the safety of multi-agent RL algorithm for lane
changing in connected autonomous vehicles?”

From this question, the following research objectives were defined:

• Understand state-of-art AI algorithms proposed for efficient lane changing.

• Compare and evaluate different AI algorithms for lane changing and how they ensure
the safety of both drivers and connected autonomous vehicles.

• Analyse various external safety supervision techniques to understand their functioning,
assumptions and limitations.

• Compare and evaluate these safety supervision techniques for lane changing in connected
autonomous vehicles.

8



1.4 Contribution

The main contributions and technical advancements of this dissertation are as follows:

1. Formulated mixed-traffic lane changing problem (with CAVs and HDVs coexisting in
different lanes) as cooperative decentralised multi-agent reinforcement learning (MARL)
problem with custom reward function specific for lane-changing task.

2. Investigated multiple state-of-the-art safety techniques that enable safe exploration in
the multi-agent setting.

3. Analysed the functioning, assumptions and limitations of these safety techniques to
verify their suitability in MARL for lane changing in CAVs.

1.5 Overview of Thesis

The structure of the thesis is explained in this section. Chapter 1 starts with a brief background
of connected autonomous vehicles and motion planning in connected autonomous vehicles.
The motivation, research question and contribution are presented after the background. Next,
Chapter 2 discusses the first recent research related to motion planning and lane changing in
CAVs. After that, previous works on safety approaches for lane-changing in CAVs are discussed.
Then the focus is on recent research on reinforcement learning and safety approaches in
reinforcement learning. Next, Chapter 3 presents the formulation of lane changing in CAVs
as a multi-agent RL (MARL) problem. Chapter 4 provides a thorough analysis of external
safety techniques for MARL. Chapter 5 covers the implementation details of the simulation
platform used to simulate MARL for lane changing in CAVs. In Chapter 6, an evaluation
of the MARL-CAV model is performed, and the results are discussed in detail. Finally, the
conclusion of the dissertation was provided in Chapter 7, and it also covers the challenges,
future work and the author’s reflection on this project work.
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2 Literature Review

This chapter discusses the various papers I have studied in filed of artificial intelligence al-
gorithms and autonomous vehicles. This chapter has helped drive the discussions in this
dissertation to answer the stated the research questions. It first discusses the state of the art
in motion planning for CAVs (Section 2.1), then focuses on lane changing approaches (Section
2.2), before discussing the existing approaches to safety for CAV lane changes (Section 2.3).
Then it discusses the recent advancements in multi-agent reinforcement learning (MARL)
(2.4). Finally, this chapter discusses the external safety approaches for MARL applied in re-
cent research.

2.1 Motion Planning for CAV

Motion planning generates the driving manoeuvre to be performed by the vehicle. Various
manoeuvres in roads like maintaining stable speed, deceleration, acceleration, lane following,
lane merging, lane changing and obstacle scenarios like static and dynamic obstacles affect
the driving behaviour and are modelled into the vehicle behaviour planning. Over the years,
several approaches have been studied to develop motion planners for autonomous vehicles.

In the literature, there are four prevailing architectures to solve the behavioural planning
problem: Finite State Machines, rule-based, game theory and machine learning. These are
discussed in turn.

2.1.1 Finite State Machines

Finite State Machines are a computational model for systems whose output depends on the
entire history of their inputs. They are composed of states representing the vehicle’s required
manoeuvres and transitions dictating how the state should evolve depending on the inputs.
States are based on the perception of their surroundings. Bae et al. (2020) used a motion finite
state machine to plan actions like a left turn, right turn, and lane following and control finite
state machine to plan actions like stop, acceleration, and deceleration. Chen et al. (2019)
proposed a motion planner for CAVs where the motion planner creates a finite-state machine
(FSM) to decide the best driving strategies while considering oncoming vehicles. Temporal
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windows are constructed using information pieces from the connected vehicle, particularly
vehicle location and speed, to control the driving states’ transition of the FSM.

2.1.2 Rule Based

• These types of systems consist of a hierarchy of rules, where the hierarchy represents the
relative importance of each rule. Each rule may correspond to a rule of the road, such
as stopping at a red light, or a driving best practice such as maintaining a two-second
gap between the ego-vehicle and a leading vehicle.

2.1.3 Game Theory

• The basic premise of game theory is that players maximize their individual payoffs to
outperform opponents’ strategies and produce better results. The autonomous driving
vehicle is an agent in a game, and so are the nearby cars. Each vehicle has a certain
goal, such as to go at a certain pace or stay in a particular lane. The agents must also
adhere to restrictions, such as following speed limits and avoiding collisions with other
vehicles.

• Fisac et al. (2019) presented a game-theoretic framework for hierarchical trajectory
planning for autonomous vehicles interacting with human-driven vehicles on the road.

• Le Cleac’h et al. (2021) proposed a game theory-based approach of using constraint
multi-player dynamic games to handle trajectory-optimization problems for multiple
autonomous cars in a freeway merging scenario. Ji & Levinson (2020) reviewed multiple
papers that used game theory approaches for lane changing in autonomous vehicles.

2.1.4 Machine Learning - Deep Learning (DL) and Reinforcement

Learning (RL)

• Motion planning for autonomous vehicles is a complex task due to the nonlinear and
stochastic of complex transportation systems. A vehicle manoeuvring task can involve
consideration of many dynamic variables like speed (and acceleration) of neighbouring
vehicles, headway, i.e. distance from the front vehicle, obstacles in the road (pedestrian,
road under construction), and traffic sign detection, and road structure etc. Therefore,
it is a complicated task with a lot of data involved. Machine learning algorithms tend
to perform better in tasks involving a lot of data.

• Generally, rule-based algorithms are designed based on the author’s knowledge, but they
might not scale in real-life scenarios. Therefore, rule-based or finite state machines might
behave wrongly in a completely new scenario; hence machine learning algorithms like
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deep learning and reinforcement learning are more prominently used in motion planning
and other aspects of intelligent transportation systems.

• Deep learning (DL) involves training deep neural network models using a lot of data
to map certain inputs (like surrounding vehicles data, traffic sign image data etc.) to
outputs (like steering angle, acceleration).

• Chen et al. (2020) used deep recurrent neural networks to predict the velocity of nearby
vehicles and generate driving trajectories for ego-vehicle using polynomial curves.

• Li et al. (2019) used Long Short Term Memory, a recurrent neural network, to learn
traffic patterns and predict short-term traffic status.

• Veres & Moussa (2020) reviewed several papers where DL has been successfully used in
various tasks like traffic sign control, navigation, traffic flow prediction and route predic-
tion. However, Deep Learning has been employed for various applications in intelligent
transportation systems (ITS). Another type of machine learning, i.e. Reinforcement
Learning, is more widely used for motion planning.

• Reinforcement learning is the process of determining an optimal decision-making policy
that maximizes some reward for the agent. The reinforcement learning process requires
the agent to perform actions in an environment often given by simulation. This agent is
then rewarded according to its interaction with the environment, allowing it to converge
to an optimal policy through successive interactions.

• Haydari & Yılmaz (2022b) reviewed several papers that have used different reinforcement
learning techniques to plan the motion of autonomous vehicles. The RL-based ITS
controllers dominate the actor-critic and Q-learning-based Deep Q Networks (DQN)
and Deep Deterministic Policy Gradient (DDPG) algorithms. Deep RL approaches are
favoured over normal RL methods for high-dimensional state spaces. Policy-based deep
RL approaches are better suited for continuous action spaces than value-based deep RL
methods in terms of action space (Haydari & Yılmaz 2022b).

2.1.5 Summary

From the discussion in this section, it can be inferred that machine learning approaches like
reinforcement learning are more widely studied and more suitable for motion planning in
autonomous and connected autonomous vehicles.

2.2 Lane changing approaches for CAV

This section focuses on a more specific use case of motion planning in autonomous and con-
nected autonomous vehicles. Lane changing remains a challenging task where the autonomous
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vehicle has to predict the actions of neighbouring vehicles while changing lanes to avoid a
collision. Furthermore, an autonomous vehicle is supposed to undertake the lane change ma-
noeuvring without aggressive acceleration or deceleration and smoothly to ensure the comfort
of the passengers.

Various approaches for lane changing in connected autonomous vehicles (CAVs) are discussed
and compared in this section.

2.2.1 Rule-based approaches

Some papers use rule-based approaches. Li et al. (2018) presented lane changing task among
CAVs as an objective function with various constraints (to avoid collision). A step-by-step
computational framework is proposed, which divides the lane-changing task into sub-problems,
each with a collision-avoidance constraint. Orthogonal collocation direct transcription with
interior-point method is used to sequentially solve each sub-task until an optimal solution which
satisfies all constraints is reached. Zheng et al. (2020) used modified version of Minimizing
Overall Braking Induced by Lane Changes Model (MOBIL) (Kesting et al. 2010), a rule-based
lane changing algorithm. They proposed a cooperative lane-changing strategy to improve
traffic operation and safety at a diverging area nearby a highway off-ramp in an environment
with connected and automated vehicles (CAVs). The road towards the off-ramp is divided into
“Discretionary lane change zone” and “Mandatory/Cooperative lane change zone”. The rules
are defined such that the safe lane changing gaps are proactively created to make vehicles
move into the target lane by cooperative vehicle deceleration on the target lane.

2.2.2 Game theoretic approaches

Game theoretic (GT) approaches are common for planning lane-changing in connected au-
tonomous vehicles. Lin et al. (2019) proposed a cooperative lane changing strategy using a
transferable utility games framework which allows vehicles to engage in transactions where
gaps in traffic are created in exchange for monetary compensation. The proposed approach is
best suited to discretionary lane change manoeuvres. Based on CAV vehicle-to-vehicle (V2V)
communication functionality, the paper presents a lane-changing mechanism that allows vehi-
cles to purchase right of way or compensate other vehicles for allowing them to change lanes.
Liao et al. (2021) proposed a game theory-based ramp merging strategy with a decentralized
algorithm, providing the optimal merging sequence and associated speed trajectory for each
CAV in the mixed traffic . In the simulation performed in the paper, the car-following and
lane changing are performed by default models in SUMO and Unity platforms. The proposed
algorithm for ramp merging predicts a conflict scenario between an ego CAV with CAV/legacy
vehicles and uses game theory to determine the merge sequence and acceleration controls for
the ego CAV. The overall cost function in the algorithm is a function of collision risks, comfort
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Table 2.1: Different game theory approaches with their features
.

Model Features

The empirical GT model is reliable due to being calibrated from real sce-
narios

Classic Nash equilibrium model achieves the best personal choices with complete
information

The incomplete information game model separates LC into two types: mandatory and dis-
cretionary

The sequential game model supposes one reacts first and the other responds
later

EGT-based model promotes the cooperative rate in groups progres-
sively

(of passengers and drivers) and mobility (of traffic).

Ji & Levinson (2020) reviewed the development of game-theoretic models for lane changing
over three decades; these algorithms can be classified according to their different methodolo-
gies and objective function. Firstly, the paper has reviewed the utility (which the drivers may
gain from their actions) function and how it was improved over time. The most recent papers
generally frame utility as a function of safety, time headway, space, and travel time. Table
2.1 shows varying game theory algorithms used in lane changing:

Most of the papers that used the game theory approach for lane changing designed the
cost/utility function of lane change manoeuvres using these seven components, namely, safety,
equilibrium, control, travel efficiency, route choice, lane preference, and willingness (to change
lanes), to design cooperative controllers.

In summary, the basic form GT-based models have developed from simple static forms with
complete information that consider few factors to complicated dynamic forms with incomplete
information that cover multiple factors. They all demonstrate the feasibility of GT in revealing
human interaction and decision-making processes. Evolutionary game theory (EGT) based
lane changing algorithms can be used to build more cooperative and selfless lane-changing
algorithms.

2.2.3 Reinforcement learning approaches

Fu et al. (2020) modelled the lane-changing problem as a deep reinforcement learning pro-
cess to learn the optimal lane-changing strategy through a deep deterministic policy gradient
(DDPG) algorithm. They also proposed a collective learning framework to use the collective
intelligence of CAVs to improve the performance of autonomous lane-changing strategies.
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Through knowledge transfer, on the one hand, the privileged information reduces the unnec-
essary action space, thereby accelerating the learning process. On the other hand, through
the continuous accumulation of knowledge and the improvement of the DRL model, the CAVs
in the whole network can learn the optimal autonomous driving model.

Zhou et al. (2021) proposed a decentralized cooperative multi-agent reinforcement learning
algorithm with an actor-critic policy for lane changing among CAVs. The paper considers
a lane-changing decision-making problem statement having multiple AVs in a mixed-traffic
highway environment with varying levels of traffic densities. The proposed algorithm fea-
tures a novel local reward design incorporating safety, efficiency and passenger comfort and a
parameter-sharing scheme to foster inter-agent collaborations.

The proposed algorithm was thoughtfully designed to overcome the limitations of other state-
of-the-art RL algorithms for lane changing. It achieved stable performance for varying degrees
of traffic densities and varying levels of aggressiveness in HDVs. It also showed relatively higher
stability and success when compared with other state-of-the-art RL algorithms like Multi-agent
Proximal Policy Optimization (MAPPO), Multi-agent actor-critic using Kronecker-Factored
Trust Region (MAACKTR), Multi-agent Deep Q-Network (MADQN).

Ye et al. (2020) proposed an automated mandatory lane change strategy using proximal
policy optimization-based deep reinforcement learning, showing great advantages in learning
efficiency while maintaining stable performance. Unlike previous studies which used deep
Q learning, they used the safe proximal policy optimization (PPO)-based deep reinforcement
learning method, which combines the policy with a safety intervention module. The simulation
is done on SUMO with the relatively simple scenario as the state space of the RL environment
is composed of a total of 21 continuous state variables from both the ego-vehicle and its
surrounding five vehicles. IDM and Mobil are used for HDVs.The reward function consists of
comfort (lateral jerks and longitudinal jerks), efficiency (travel time and relative distance to
the target lane;) and safety (risk of collisions and near collisions). The Safety intervention
module identifies “catastrophic” actions and returns a negative penalty reward.

Chen et al. (2022) proposed an efficient and scalable MARL framework that can be used in
dynamic traffic where the communication topology could be time-varying. Parameter sharing
and local rewards are exploited to foster inter-agent cooperation while achieving great scala-
bility. An action masking scheme improves learning efficiency by filtering out invalid/unsafe
actions at each step. In addition, a novel priority-based safety supervisor is developed to
significantly reduce collision rates and greatly expedite the training process.

2.2.4 Summary

From the papers studied in Sections 2.1 and 2.2 it can be inferred that reinforcement learning
is most widely used to develop approaches for motion planning in connected autonomous
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vehicles.

2.3 Safety approaches in Lane changing for CAV

As of now, the lane-changing approaches have been discussed. The rule-based, game theoretic
and reinforcement learning (RL) approaches are common, with RL approaches being more
extensively used. This section discusses the safety aspect of these approaches in detail.

2.3.1 Rule-based

Khayatian et al. (2021) have discussed that most lane-changing algorithms have a safety
buffer around each vehicle to cover for localization and trajectory tracking uncertainties. The
paper proposes a trajectory-based definition for RSS rules that works in all situations, including
merges, intersections, and unstructured roads. The proposed algorithm can be integrated with
any motion planner algorithm. The paper presents a cooperative driving algorithm for CAVs
based on proposed RSS rules. Zheng et al. (2020) proposed cooperative strategies to enable
safe lane changing and used a set of metrics, namely The total travel time (TTT), Time
Exposed Time-to-collision (TET) and the modified Time Integrated Time-to-collision (TIT),
as ways to evaluate the safety of lane changing algorithms. A lower TET value indicates a
safer situation. TIT calculates the entity of the TTC lower than the threshold, expressing the
severity associated with safety-critical situations.

2.3.2 Game Theory Based

All the game-theoretic approaches discussed in the previous section reflcapproaches referred
to (Lin et al. 2019, Liao et al. 2021, Ji & Levinson 2020) the safety of agents and were
taken into account by customizing the utility/cost function. There were no other approaches
discussed to inculcate safety into their approaches. This shows a gap in research where we
can introduce external knowledge for adding safety into game-theory approaches.

2.3.3 Reinforcement Learning Based

Fu et al. (2020) discussed blockchain-based collective learning framework for lane-changing
in CAVs and introduced headway distance (i.e. the distance between ego-vehicle and leading
vehicle) into reward function to make the lane changes safer.

Ye et al. (2020) used proximal policy optimization (PPO) for lane-changing in autonomous
vehicles and introduced collision reward to penalize unsafe actions, and used a safety inter-
vention module to label the output action from the algorithm as “catastrophic” or “safe”.
However, the details of the safety intervention module were not discussed.
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Zhou et al. (2021) proposed multi-agent actor-critic RL for cooperative lane changing among
autonomous vehicles used headway distance and collision penalty in reward function to add
safety into their design.

Chen et al. (2022) also used headway distance and collision penalty in reward function to
add safety but also proposed a novel priority-based safety supervisor which predicts the action
of neighbouring vehicles to enable safer decisions. This was the only paper which used an
external safety technique.

Surprisingly, most papers introduce the safety aspect through utility or reward functions in
game-theoretic and RL approaches. We can infer a research gap as external safety techniques
for lane-changing algorithms for connected autonomous vehicles are less prevalent. This moti-
vates me to work towards using external safety techniques in Game theory and Reinforcement
Learning to develop safer RL-based lane-changing algorithms for connected autonomous ve-
hicles.

2.3.4 Summary

In section 2.2 the conclusion was that reinforcement learning techniques are most widely used
for lane changing in CAVs. In this section it was observed that in recent literature, the safety
in MARL was achieved strictly through reward functions. In the following sections, the focus
will be on multi-agent reinforcement learning techniques and exploring techniques that can be
used to develop external safety supervisors for RL algorithms.

2.4 Multi-agent Reinforcement Learning (MARL)

2.4.1 Overview

This section focuses on reinforcement learning (RL) and how multi-agent reinforcement
(MARL) works. The section also discusses challenges in MARL and which category of RL
algorithms works better for developing MARL.

Most successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous
driving, involve the participation of more than one single agent, which naturally falls into the
realm of multi-agent RL (MARL) (Zhang, Yang & Başar 2019).

Generally, reinforcement learning algorithms can be divided into model-based and model-free
RL. Model-based means the RL agent has access to or learns a model of the environment,
whereas, in model-free RL, the agent doesn’t know about the state transition function of the
environment. In simple words, it doesn’t know for certain what the state of the environment
will be when an action is taken. The key benefit of having a model-based implementation
is that it enables the agent to plan by anticipating future events, analyzing the outcomes of
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various options, and making explicit decisions regarding its options. The main drawback is
that the agent frequently does not have access to a ground-truth model of the environment
(Achiam 2018). For a lane-changing scenario of CAVs, there is no uncertainty about how
the environment will change by the action of one or more agents. Therefore, model-free RL
approaches are studied and applied in this dissertation.

Furthermore, the two main approaches to represent and train agents in model-free RL are
Q-learning and policy optimization. Deep Q learning algorithms try to learn the optimal
Q function Q(s, a) with a function approximator Qθ(s, a). It generally uses an objective
function based on Bellman equation. To the contrary, Policy optimization algorithms try to
directly learn the policy πθ(a|s) by optimizing parameters theta by using gradient ascent on
performance objective J(πθ) (Achiam 2018).

The primary advantage of policy optimization approaches is that they are principled, in that
we explicitly optimize for what we desire. This makes them more stable and dependable. Q-
learning approaches, on the other hand, only indirectly improve agent performance by training
Qθ to meet a self-consistency equation. Since there are so many failure scenarios in this type
of learning, it is less stable. When they do work, however, Q-learning approaches have the
benefit of being far more sample efficient than policy optimization techniques since they can
reuse data more efficiently (Russell & Norvig 2016).

There are a number of algorithms that exist on this spectrum and are capable of carefully
balancing the strengths and limitations of each side. Sample efficiency is a problem for some
of the most effective RL algorithms in recent years, such as trust region policy optimization
(TRPO), proximal policy optimization (PPO), and asynchronous actor-critic agents (A3C)
(Haarnoja et al. 2018).

2.4.2 MARL Approaches

Lowe et al. (2017) discussed that the Q-learning-based reinforcement learning algorithm is
not fit for multi-agent scenarios and policy gradient methods are better for the same. Each
agent learns independently optimal Q function but as agents are independently updating their
policies as learning progresses, the environment appears non-stationary from any agent’s view
and violates the Markov assumptions required for convergence of Q learning. It was further
discussed that in the policy gradient methods, the policy is generally probabilistic and suffers
from a high degree of variance; multi-agent systems amplify this. The paper proposes using
deterministic policies to avoid big variations between episodes. The paper also proposes the use
of Actor-Critic networks where training will be centralized, and execution will be decentralized.

Schulman et al. (2017) discussed that Actor-Critic methods are sensitive to perturbations as
small changes in underlying parameters of neural networks can lead to large changes in policy
space. Proximal Policy Optimization (PPO) addresses this by limiting the updates to policy
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networks. The ratio of the new policy to the old policy is constrained to ensure that the
gradient step is not huge. The ratio is needed to be in a certain range that is used to create
a clipped loss function to avoid very high values of loss.

Zhou et al. (2021) and Chen et al. (2022) proposed policy-based advantage actor-critic algo-
rithms to model lane-changing for connected autonomous vehicles.

There are benefits of policy-based methods over Q-learning methods. The state-of-art papers
on lane-changing for AVs/CAVs also used policy-based methods. Therefore, a policy-based RL
algorithm, proximal policy optimization (PPO) is used in this dissertation. This is explained
in more detail in section 3.1.3.

Partial observability is a fundamental premise of MARL setups as the agents only have access
to their local observations rather than the entire state of the environment since the agents
are often dispersed throughout the environment.

Some challenges are inherent in MARL settings, like the aforementioned partial observability
and non-stationarity of the environment as the environment is affected not only by one agent
but all the agents present. Therefore, the learning of one agent is unstable in multi-agent
RL as the environment is no longer stationary from each agent’s perspective. This leads to
learning instability due to which agents don’t converge to the optimal solutions (Canese et al.
2021). However, agents can communicate information such as observations, intentions or
experiences to stabilize learning. The learning is stabilized as the shared experience prevents
the network from overfitting to recent experiences and improves sample efficiency. With
communication, agents will better understand the environment (or the other agents), and,
therefore can coordinate their behaviours (Zhu et al. 2022).

2.4.3 Cooperative MARL

Generally, MARL algorithms can be classified into cooperative and non-cooperative. In par-
ticular, in the cooperative setting, agents collaborate to optimize a common long-term return
and achieve a common goal; while in the competitive setting, the return of agents usually
sum up to zero (Zhang, Yang & Başar 2019).

In this paper, the focus is on the cooperative environment, where all agents are encouraged to
collaborate in order to accomplish a shared objective, namely, safe maneuvering with maximum
throughput.

Generally, in the cooperative MARL setup the training of agents can be performed in three
ways: centralized, concurrent and parameter sharing (Gupta et al. 2017).

In the centralized approach, the learning happens jointly for all the agents. The joint obser-
vation of all agents is mapped to a joint action using a centralized policy. These approaches
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are resource intensive as the state space increases with the number of agents, which hinders
scalability.

In contrast to centralized methods, in concurrent learning approaches, several agents learn in-
dependently while operating in the same environment. There are individual networks, policies,
observations, and actions for each of them. The drawback with this approach is that every
agent is learning through a different policy, so the number of parameters is huge and there
is no sharing of information. Furthermore, it might lead to instability as the environment is
non-stationary because each agent is learning on their own independently of others.

When similar agents are learning similar behaviours, their parameters can be shared to enhance
the speed of learning and decrease the complexity and resource utilization of the algorithm
(Kaushik et al. 2019). This is possible in the parameter-sharing cooperative approach. Gupta
et al. (2017) have discussed that if the agents are homogeneous, their policies may be trained
more efficiently using parameter sharing. In the parameter-sharing approach, we allow all the
agents to share the parameters of a single policy. This allows the policy to be trained with the
experiences of all agents simultaneously. However, it still allows different behaviour between
agents because each agent receives different observations, which includes their respective
index.

The MARL approach discussed by Zhou et al. (2021) and Chen et al. (2022) uses parameter
sharing and experience replay memory. The replay memory or buffer contains the shared
experiences of all agents, which is used to update the parameters of the decentralised policy
after the completion of one episode. This approach would benefit the simulation of connected
autonomous vehicles (CAVs), as this highlights the notion of collaboration and cooperation
among agents using a decentralized policy.

2.4.4 Summary

In this section the varying range of RL algorithms for multi-agent RL (MARL) was discussed
and the use of model-free policy-based RL for MARL was justified. The techniques to develop
cooperative agents was also discussed. The use of PPO algorithm to model lane-changing in
CAVs as cooperative-MARL is explained in detail in section 3.2

2.5 Safety approaches in MARL

2.5.1 Overview

Deep reinforcement learning techniques are able to maximize the intended reward, but they
may not always ensure safety throughout the learning or execution stages.

This section focuses on studying the implementation of MARL in other domains and exploring
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different safety approaches applied there. As inferred in Section 2.3 the safety in lane changing
approaches are often limited to introducing safety through the reward function. However,
safety in MARL implementation can be introduced through a few other approaches as well,
which are discussed below;

Safe Reinforcement Learning can be defined as the process of learning policies that maxi-
mize the expectation of the return in problems in which it is important to ensure reasonable
system performance and/or respect safety constraints during the learning and/or deployment
processes. (García & Fernández 2015)

While training the reinforcement learning (RL) agent requires exploring many states to learn
optimal policy. In the exploration phase the agent might encounter some unsafe states which
makes Reinforcement Learning approach unsuitable for safety-critical systems as here failure
can be risky (Thananjeyan et al. 2020) . As a result, safe reinforcement learning is an emerging
topic of research that combines control-theoretic techniques with RL to address this problem.

Generally, in the literature, the safety is introduced into RL method using two different ap-
proaches. First approach exclusively focuses on getting a safe policy at the conclusion of
training (Geibel & Wysotzki 2005, Chow et al. 2017) and second approach focuses on safe
exploration during training (Cheng et al. 2019, Berkenkamp et al. 2017).

In this paper the later approach is discussed. García & Fernández (2015) have discussed
this approach which involves adjusting the exploratory process to take into account external
knowledge (such as teacher advice or demonstrations) or to follow a specific of a risk metric.

2.5.2 External safety supervisors

Most previous papers discussed in section 2.3 focused on optimizing policies based on returns
and adding safety constraints to the reward function. But none truly guarantees safety, e.g.
no unsafe state is ever visited during the training and execution process.

ElSayed-Aly et al. (2021) proposed to enforce safety specifications as a “shield” using a formal
method called Linear Temporal Logic (LTL), a commonly used specification language in formal
methods for safety-critical systems. The shield guarantees safety during learning by monitoring
the RL agent’s actions and preventing the exploration of any unsafe action that violates the
LTL safety specification. Here the exploration process of the RL agent is modified through
the incorporation of external knowledge i.e. shields act similarly to a teacher who provides
information (e.g., safe actions) to the learner when necessary.

Zhang, Bastani & Kumar (2019) proposed model predictive shielding where the algorithm
predicts the next states of each agent when the learnt policy is followed. If the predicted next
states are recoverable for all agents it uses the learnt policy, otherwise uses a recovery policy
for the agents who will move into irrecoverable states after the current action.
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Cai et al. (2021) discussed that relying on the reward functions of MARL only is not sufficient
to guarantee safety. It proposes that control barrier functions (CBF) can be used to shield
unsafe actions, and CBF lead to minimal interference to the action of an agent. The composite
CBF corrects an agent’s action only if it violates safety constraints, and the composite CBF
revises the action of an agent as few as possible. In the proposed safe MARL framework, an
agent has its CBFs that can be different from the CBFs of other agents.

Contrary to Qin et al. (2021), in (Ames et al. 2017) CBF is non-learning where the CBF h

is computed first using optimization methods like Sum-of-Squares, then the control inputs u

are computed online using h by solving quadratic programming problems.

Choi et al. (2020) presented a RL-framework that formulates quadratic programming incorpo-
rating control barrier functions (CBFs) and control laypunov functions (CLFs) as constraints
with an objective to minimize the norm of the control input. They proposed to learn the
uncertainty in CBFs and CLFs through reinforcement learning and the quadratic program uses
the learned uncertainties in combination with safety and stability constraints to solve for the
control input point-wise in time.

Emam et al. (2021) framed safety as a differentiable control barrier function layer. They used
Gaussian Process to learn the model dynamics which is used by the control barrier function
to minimally alter the action from RL algorithm to ensure safety of the agent.

Qin et al. (2021) proposed a framework of jointly learning safe multi-agent control policies and
CBF safety certificates. The algorithm defines a combined loss function for CBFs and control
policy, during the training the CBFs regulate the control policies to satisfy the decentralized
CBF conditions. They proposed a decentralized control framework that scales to an arbitrarily
large number (>1000) agents. They use online policy refinement, i.e. the CBF monitors the
actions that are input to the controller and CBF refines the action u and enforces the states
of agents to remain in a safe set.

Cheng et al. (2019) proposed a framework for combining model-free RL algorithms with
control barrier functions (CBFs) to ensure safety and increase exploration effectiveness even
in the presence of uncertain model information. They use Gaussian processes to estimate the
unknown model dynamics.

Zanon & Gros (2021) suggested a strategy that would integrate Model Predictive Control
(MPC) and RL to ensure safety. RL is used to tweak the MPC parameters, enhancing closed-
loop performance in a data-driven manner. MPC is utilized as a function approximator within
RL to give safety and stability assurances.

Thananjeyan et al. (2020) proposed using a composite policy π which selects between a task-
driven policy and a recovery policy at each time step based on whether the agent will violate
safety constraints in the near future.

22



2.5.3 Summary

From the discussion in this section, it can be inferred that safety techniques like shielding,
control barrier functions, model predictive control and recovery policies are used in MARL
implementation for different domains. In the following sections these approaches are evaluated
to understand their functioning, limitations and the possibility of using them for MARL in lane
changing for connected autonomous vehicles.

2.6 Conclusion

In Section 2.2 it was observed that reinforcement learning approaches are most widely used to
model motion planning in CAVs. Therefore, this dissertation uses multi-agent reinforcement
learning to model the lane changing in connected autonomous vehicles.

In Section 2.3 it was observed that most of the implementation of lane changing in CAVs
use reward or utility function to ensure safety. However, there is a research gap in usage of
external safety techniques for lane changing in CAVs. In Section 2.5 various external safety
approaches for MARL were discussed.

This dissertation aims to evaluate these external safety techniques and examine the feasibility
of using them in multi-agent RL for connected autonomous vehicle scenarios.
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3 Methodology

To answer the research question of whether external safety supervisor can enhance the safety
of lane changing in connected autonomous vehicles, we first need to model the lane changing
in connected autonomous vehicles as a multi-agent reinforcement problem. Then the external
safety approaches discussed in Section 2.5 can be analysed to understand the possibility of
integrating these approaches with multi-agent reinforcement learning.

In this chapter I briefly discuss the preliminaries of reinforcement learning (RL) in Section 3.1.1
and multi-agent reinforcement learning (MARL) in Section 3.1.2. After that I discuss in detail
how lane changing in connected autonomous vehicles (CAVs) can be modelled as a multi-
agent reinforcement problem. In the following section

3.1 Multi-agent RL (MARL) Formulation

This section discusses the background on single-agent (3.1.1), multi-agent reinforcement learn-
ing (3.1.2) and a policy based RL algorithm called Proximal policy optimization (3.1.3).

3.1.1 Preliminaries of Reinforcement Learning (RL)

Reinforcement Learning (RL) enables an artificial agent to an learn optimal strategy from
the environment through trial and error. Generally an RL problem is modelled as a partially-
observable Markov decision process (PO-MDP) because an agent can only observe part of
the state st . It is called a Markov decision process because it follows the Markov property i.e.
the future state of the environment only depends on the present state.

The formal representation of a partially observable MDP is defined as the tuple (S,A,R, γ).
An agent at each time step t observes state st ∈ S ⊆ Rn and takes an action at ∈ A ⊆ Rm.
Upon taking the action the agent receives reward rt ⊆ R based on reward function R, also,
subsequently moves to state st+1 at time step tt+1. The transition of agent from st to st+1 is
generally called one iteration. The transition of agent through a sequence of states ending in
terminal state is called an episode.

The RL agent interacts with the environment to learn the optimal policy π∗ : S → A, a
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mapping from states to actions, that maximizes the expected future reward Rt =
∑T

k=0 γ
krt+k ,

where rt+k is the reward at time step t+k and γ ⊂ (0, 1] is the discount factor that quantifies
the relative importance of future rewards.

The state-value function V (s) returns the expected reward when an agent starts at state s

and follows policy π afterwards. The optimal state-value function V ∗(s) returns the expected
reward when an agent starts at state s and follows the optimal policy π∗ afterwards. Similarly,
the action-value function Q(s, a) returns the expected return obtained by selecting an action
a in state s and following the policy π afterwards. The optimal action-value function Q∗(s, a)

returns the expected reward when agent starts at state s, takes an action a and follows the
optimal policy π∗ afterwards.

In model-free reinforcement learning, the policy π is represented by a neural network param-
eterised by the learnable parameter θ. The goal is to learn suitable θ values so that optimal
agent behaviour is achieved. The optimal behaviour of an agent can be quantified using a
reward function.

For any action at taken by the agent in any state st the reward function is represented in
equation 1

rt = R (st , at) (1)

The policy is optimal when the cumulative rewards over a trajectory is maximum. The return
(cumulative reward) can be represented in two ways:

A finite-horizon undiscounted return, which is the sum of rewards after a fixed window of
steps:

R(τ) = R
T∑
t=0

rt (2)

An infinite horizon discounted return, which is the agent’s sum of all the rewards discounted
by how far in the future each reward was earned. This reward calculation incorporates a
discount factor γ ∈ (0, 1).

R(τ) =
∞∑
t=0

γtrt (3)

In reinforcement learning sometimes an action can be describe as better than other not through
absolute values like in equation 1 but by how much it is better than others on average i.e.
relative advantage of an action over other actions in that state. This is represented by an
advantage function:
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Aπ(st , at) = Qπ(s, a)− V π(s) (4)

As discussed in section 2.4 in this dissertation model-free policy based algorithms are used to
develop lane-changing algorithm for CAVs. The policy gradient algorithm’s core principle is to
increase the probabilities of actions that result in higher returns and decrease the probabilities
of actions that result in lower returns until you reach the best course of action (Achiam 2018).

Let πθ denote the policy with parameters θ and J (θ) denote the expected finite-horizon
undiscounted return of the policy. The aim is to maximize the expected return J(πθ) =

Eτ∼πθ
[R(τ)].

The gradient of J (θ) is

∇θJ (πθ) = E
τ∼πθ

[
T∑
t=0

∇θlogπθ (at |st)Aπθ(st , at)

]
(5)

where Aπθ is the advantage function for the current policy and τ is a trajectory.

The policy gradient algorithm works by updating policy parameters via stochastic gradient
ascent on policy performance.

θk+1 = θk + α∇θJ(πθk ) (6)

where α is the learning rate and α∇θJ(πθk ) is the change (or step change) in the parameters.

3.1.2 Preliminaries of Multi-agent RL (MARL)

When more than one agents are involved, the MDP is no more suitable for describing the envi-
ronment as the actions from other agents are strongly tied to the state dynamics (Canese et al.
2021). The multi-agent extension of partially observable Markov decision process (POMDP)
is called partially observable Markov games (Littman 1994).

The formal representation of a partially observable Markov game is defined as the tuple(
N ,S, {Ai}i∈N , {Ri}i∈N , γ

)
. N is the number of agents. S is the state-space of the environ-

ment, Ai is the action space of i th agent, Ri is the reward function of i th agent representing
the reward on transitioning from (st , at) to st+1 and γ is the discount factor for to calcu-
late discounted reward over a series of transitions. In the partially observable Markov game,
Oi ∈ Si is the partial observation of the environment state.

In single agent RL, the agent follows a policy π and aims to optimize the same. Similarly in
multi-agent RL, each agent i follows a stochastic policy πθi : OixAi → [0, 1].
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In multi-agent setting the aim is to maximize the expected return J(πθi) = Eτ∼πθi
[Ri(τ)].

The gradient of J (πθi) is

∇θiJ (πθi) = E
τ∼πθ

[
T∑
t=0

∇θi logπθi (at,i |st,i)Aπθi (st,i , at,i)

]
(7)

where Aπθi is the advantage function for the current policy and τ is a trajectory.

The policy gradient algorithm updates the policy parameters iteratively for each agent i via
stochastic gradient ascent on policy performance.

θik+1 = θik + α∇θiJ(πθik) (8)

where α is the learning rate and α∇θJ(πθk ) is the change (or step change) in the parameters.

3.1.3 Preliminaries of Proximal Policy Optimization for MARL

The proximal policy optimization (PPO) algorithm aims to take largest step to improve the
policy while ensuring that there is not a very large difference between the old and new policy
which might result in poor performance. It relies on specific clipping in the objective function
to eliminate incentives for the new policy to diverge much from the previous one. Proximal
policy optimization (PPO) is more sample efficient in learning policies which means it requires
less data to reach better performance (Ye et al. 2020) .

PPO updates policies via

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk , θ)] , (9)

typically taking multiple steps of (usually minibatch) SGD to maximize the objective. Here L
is given by

L(s, a, θk , θ) = min

(
πθ(a|s)
πθk (a|s)

Aπθk (s, a), clip
(
πθ(a|s)
πθk (a|s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
, (10)

in which ϵ is a (small) hyperparameter which roughly says how far away the new policy is
allowed to go from the old.

Clipping acts as a regularizer by eliminating incentives for the policy to change significantly,
and the hyperparameter ϵ measures how far the new policy can diverge from the old without
harming the goal (Achiam 2018).
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In this dissertation a PPO based cooperative multi-agent reinforcement algorithm is developed
to model lane changing in connected autonomous vehicles. The model is explained in detail
in next section.

3.2 Lane changing in Connected Autonomous Vehi-

cles as MARL (MARL-CAV)

In this section, a decentralized MARL-based approach for highway lane-changing of multiple
CAVs is discussed. This implementation is a customized version of MARL implementation in
(Chen et al. 2022).

This implementation is adapted from (Chen et al. 2022). They have also used the same
simulation environment, however their problem statement was different. They worked on
developing MARL techniques for ramp-merging scenario. I have followed their implementation
open-sourced in Github repository. I modified it for lane changing environment and added
a custom reward function discussed below. The specifics of the modification is discussed in
more detail in Section 5.

The mixed-traffic lane-changing environment is modelled as a multi-agent network: G =

{V , ε}, where each agent i ∈ v communicates with neighbours Ni using the communication
link ϵij ∈ ε. The overall dynamic system can be considered a partially-observable Markov
decision process (POMDP) which can be represented by the tuple ({Ai ,Si ,Ri}i⊆v , T ), where
Ai is the local action space, Ri is the reward space, Oi ∈ Si is the partial observation of the
environment state (Chu et al. 2020, Zhou et al. 2021).

In partially observable Markov games (multi-agent POMDP), every agent follows a decen-
tralized policy πi : OixAi → [0, 1] to chose its own action ai ,t ∼ πi(·|si ,t) at time step t.
Following is the description of individual components of the discussed POMDP setting:

1. Action Space: The action space Ai of agent i is defined as a set of high-level control
decisions, including: cruising, turn left, turn right, speed up and slow down. The action
space combination for CAVs is defined as A = A1×A2×· · ·×AN , where N is the total
number of vehicles in the environment. After receiving the high-level action, the low-
level controllers will produce corresponding throttle and steering signals to maneuver
the CAV.

2. State Space: The state spaceOi of Agent i is defined as a matrix of dimensionNNi
×F

where NNi
is the number of detected vehicles, and F is the number of features, which

is used to represent the current state of vehicles. It includes the following features:

• x : the longitudinal position of the observed vehicle relative to the ego vehicle
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• y : the lateral position of the observed vehicle relative to the ego vehicle

• vx : the longitudinal speed of the observed vehicle relative to the ego vehicle.

• vy : the lateral speed of the observed vehicle relative to the ego vehicle.

3. Reward Function: The design of the reward function is important to ensure that
the agent achieves the goal of safe lane changing. In the proposed work, the reward
function is composedly designed using multiple metric like safety, headway distance,
driving speed and right lane driving.

ri ,t = wsrs + whrh + wd rd + wrl rrl + wlcrlc (11)

where w ′s are weighing coefficients and r ′s are cost evaluation. Following are the details:

Table 3.1: Reward function components

.

Component Description

ws Penalty on collision

wh
Incentive to maintain a good headway distance
i.e., distance to front vehicle

wd

Incentive to maintain a stable speed, so that the
agent does not slow down in order to always
avoid collision

wrl

Incentive to follow right lane driving. It in-turn
encourages the vehicles to change lanes, which
start on left or center lens.

wlc Incentive to change lanes.

In the proposed approach a deep neural network is used to approximate the stochastic decen-
tralized policy π of the RL agents. This network is shared between all agents, apart from this,
a shared replay buffer is also maintained that stores the experiences from all agents. A copy
of state information i.e. observations, actions and rewards is held by the individual agents.
No agent has access to the state information of any other agent. However, as the data in
Replay Buffer is shared and identical, each agent benefits from the collective experiences of all
agents. Finally, each agent updates the policy network asynchronously at each step (Kaushik
et al. 2019). The process flow of the multi-agent RL is shown in Figure 3.1

The pseudo-code of the proposed MARL algorithm is shown in algorithm 1. The algorithm
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Figure 3.1: Flow chart of one episode where agents perform action An,t and receive reward
Rn,t and observe the next state On,t+1

is adapted from Zhou et al. (2021), Chen et al. (2022) and is very much similar to their
approach of using parameter sharing and replay buffer to enable cooperative behaviour and
collaboration among multiple connected agents/vehicles. The reasoning behind parameter
sharing and replay buffer was discussed in Literature Review section 2.4.

The hyperparameters include: the (time)-discount factor γ, the learning rate α, the total
number of training episodes M , the episode length T . The agent receives the observation si

from the environment and updates the action depending on its policy (Lines 6-9). The action
will be taken by the agent and the corresponding experience will be collected and saved to
the replay buffer (Lines 10-13). After each episode is completed, the network parameters are
updated accordingly (Lines 9-11). The parameters of the policy network are updated using
the collected experience sampled from the on-policy experience buffer after the completion of
each episode (Lines 15–16). The DONE signal is flagged if either the episode is completed
or a collision occurs. After receiving the DONE flag, all agents are reset to their initial states
to start a new episode (Line 23).
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Algorithm 1 MARL for CAVs
1: Input parameters: γ,α,T ,M
2: Output: θ
3: Initialize: oi , j ← 0, t ← 0, D ← 0
4: for j ≤ M do
5: for t ≤ T do
6: for i ∈ V do
7: observe si
8: update ai ,t ∼ πi(·|si ,t)
9: end for

10: for i ∈ V do
11: execute ai
12: update Di ← (si ,t , ai ,t , ri ,t , vi ,t)
13: end for
14: update t ← t + 1
15: if DONE then
16: for i ∈ V do
17: update θi ← θi + α∇θiJ (θi)
18: end for
19: end if
20: Initialize Di ← 0, i ∈ V
21: update j ← j + 1
22: end for
23: Initialize: oi , j ← 0, t ← 0
24: end for

3.3 Summary

This chapter discussed the overall methodology to answer the research question. In particu-
lar, the reasoning behind the use of multi-agent RL to model the lane changing in connected
autonomous vehicles was discussed. The Proximal policy optimization (PPO) algorithm used
for training the MARL for lane changing was discussed. Also, the mathematical formula-
tion, action space, state space and reward function of the proposed MARL-CAV model was
extensively discussed. It was further highlighted how this was adapted and modified for the
lane-changing use case in this dissertation.

Finally, the MARL algorithm for lane changing in CAVs was extensively discussed. The fol-
lowing chapter discusses safety supervisor approaches and their applicability.

31



4 Safe MARL-CAV Design

In Section 2.5 I discussed various formal methods used to introduce an external safety supervi-
sor for an agent in reinforcement learning algorithm, especially in a multi-agent setting. This
chapter discusses the safety requirements of MARL-CAV in Section 4.1 and then presents
a detailed analysis of these methods in Section 4.2 to verify the possibility of using these
approaches to introduce external safety in MARL-CAV.

4.1 Safety Requirements for lane changing in CAV

The design of MARL-CAV discussed in Section 3.2 only uses the reward function to introduce
some level of safety. This is achieved by penalising actions which lead to a collision and
rewarding the agents when they maintain proper headway distance from the front vehicle.
However, this is not enough to stop the agent from visiting unsafe states during the exploration
phase. Hence, an external safety supervisor might be useful to stop the agent from visiting
unsafe states.

An external safety supervisor can be applied to enhance the agent’s safety. The safety ap-
proaches discussed in Section 2.5 namely shielding, control barrier functions, model predictive
control, and recovery RL, should integrate with MARL-CAV and then we can examine if these
techniques can improve safety.

However, the safety approach should be compatible with the characteristics of the MARL-
CAV model. It should be simple, extensible and adaptable enough to easily integrate with the
MARL in lane changing for connected autonomous vehicles.

The table 4.1 shows the requirements specific to the MARL-CAV that the safety approach
should satisfy. The safety technique should support multiple controlled agents and the presence
of uncontrolled agents e.g. in lane-changing for CAVs, human-driven vehicles are also present.

Also, one requirement specific to the simulation library highway-env (Leurent 2018) is that the
safety approach should be compatible with discrete action space as this library only supports
discrete actions: move to the left lane, move to the right lane, forward, idle.
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Table 4.1: Characteristics of Lane Changing in CAVs

.

Characteristic Requirement for Safety Approach

Number of agents Should support a multi-agent scenario. It should be scalable
to a large number of agents.

Action Space Should support discrete actions as the current implementa-
tion of MARL-CAV has discrete actions.

Unsafe states informa-
tion

There is no prior information about unsafe states as the sim-
ulation is very dynamic.

Recovery/Backup Poli-
cies

There is no recovery or backup policy developed to get the
agent from unsafe to safe states.

Mixed traffic scenario Should support the presence of both controlled and uncon-
trolled agents in the environment.

Furthermore, in the current implementation of MARL-CAV, the environment is quite dynamic,
and there is no prior information about recovery policies or unsafe state information.

If it does not satisfy, it would require modification of either the MARL-CAV set-up or tweaks
in the safety approach. This would make the process of introducing external safety in MARL-
CAV more challenging.

The next section analyses the applicability of the safety techniques to MARL-CAVs and ex-
amines if they satisfy the requirements mentioned in the table 4.1.

4.2 Analysis of External Safety Techniques for MARL

In section 2.5, several external safety techniques applied for reinforcement learning were dis-
cussed. Generally, control-theoretic or formal methods like shielding, control barrier functions,
model predictive control and recovery policies are used to introduce external safety in MARL
implementation for different domains. These methods are reviewed in more detail in this
section, and their benefits and limitations are discussed.

4.2.1 Shielding

Shields are modelled for an RL agent using finite state machines or, more specifically, us-
ing Mealy machines. A linear temporal logic (LTL) safe specification can be translated
into a safe language accepted by deterministic finite automaton (DFA) (Kupferman & Vardi
2001). In deterministic finite automaton, a Mealy machines is represented using the tuple
(Q, q0, ΣO , ΣI , δ,λ) with a finite set of states Q, initial state q0 ∈ Q, finite sets of input
alphabet ΣI and output alphabet ΣO , the transition function δ : QxΣI → Q, and the output
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Figure 4.1: Diagram represents the functioning of the shielding technique (ElSayed-Aly et al.
2021)

function λ : QxΣI → ΣO . The shields were synthesized using the Slugs tool (Ehlers & Raman
2016) via solving two-player safety games. More details on this can be found in the paper
(ElSayed-Aly et al. 2021).

Figure 4.1 shows the shielding technique in a multi-agent setup. As discussed in (ElSayed-Aly
et al. 2021), here shields are used to update the action of RL agents to ensure that agents
stay in safe states.

ElSayed-Aly et al. (2021) claim that the shielding approach not only guarantees safety but
also learns more optimal policies with better returns than non-shield MARL, as unsafe actions
which may destabilize learning were removed.

However, shielding requires prior knowledge of safe states in the environment so that they
can be used to design shields. Safety is specified using Linear Temporal Logic (LTL). This
might be possible for a simpler environment like navigation tasks in ElSayed-Aly et al. (2021)
but could be difficult for complex environments like lane changing in connected autonomous
vehicles. As discussed in the Table 4.1, there is no prior information about unsafe states in
the MARL-CAV implementation.

4.2.2 Control Barrier Functions (CBFs)

Control Barrier Functions (CBF) is a model-based safety framework that prevents the explo-
ration of dangerous states by projecting the RL agent’s actions onto a safe set of actions.

As discussed Grandia et al. (2021), with CBFs the idea of safety is specified by defining a safe
set in the state space in which the system is required to stay. Given a time-varying set C ⊂ Rn

defined as zero superlevel set of a continuously differentiable function h : RnxR+ → R
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Figure 4.2: Diagram represents the functioning of CBFs (Emam et al. 2021)

C ≜ {x ∈ R : h(x , t) ≥ 0} (1)

where C is the safe set.

As discussed in Section 2.5, several approaches to MARL have introduced external safety
through CBFs. These papers have simulated different tasks such as navigation tasks, i.e.
agent aims to move from a source to destination like in (Qin et al. 2021, Cai et al. 2021), or
any OpenAI (Brockman et al. 2016) tasks like inverted pendulum in (Cheng et al. 2019), car
following environment (Cheng et al. 2019, Emam et al. 2021), unicycle environment (Emam
et al. 2021) and bi-pedal walker (Choi et al. 2020).

In these works authors have considered those tasks as a dynamic control affine system. Control
affine system as these are non-linear in control input u.

ẋ = f (x) + g(x)u(x) (2)

where x ∈ C ⊂ Rn and u ∈ U ⊂ Rm. Here C is set of all possible safe states of the system,
and U is a set of all admissible control inputs. Furthermore, f (x) ∈ Rn is drift dynamics
and g(x) ∈ Rnxm is the input dynamics. u(x) is the control input which is the output of the
reinforcement learning algorithm. The assumption is that u(x), f (x) and g(x) are continuous
functions.

A time-varying set C is safe if for every x0 ∈ C0, the solution xt to (2) satisfies xt ∈ Ct for all
t ∈ [0, tmax). The system in Equation 2) is safe on the set Ct if the set Ct is forward invariant
and satisfies Equation 1.

The idea of forward invariance is that if we have a state, we want to make sure that the
state of the system would stay inside the set for long time. Control Barrier Functions can be
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used as a formulation tool to achieve forward invariance and, therefore the safety of a set.
This is a very promising idea and hence control barrier function is the most widely used safety
technique out of the four techniques discussed.

As discussed in Section 2.5, Qin et al. (2021) developed a joint framework to learn CBF
safety certificates and multi-agent control policies. However, they are assuming RL as MDP
and have state information Si available during the RL agent training process, whereas as
discussed in Section 3.2, the lane changing in CAVs using MARL is a partially observable
MDP (POMDPS). Hence Si wouldn’t be available. Also, they have considered independent
policies for each agent but in our setup, as discussed in Section 3.2 we have the same policy
with shared parameters.

Cheng et al. (2019) assume knowledge of CBF and model dynamics. During training, Gaussian
Processes (GPs) are used to learn the dynamics’ uncertainty, which is then accounted for in the
CBF-based safety layer. They used a continuous action space in both the inverted pendulum
and car following tasks. Furthermore, they have only considered environments with controlled
agents but not a mix of controlled and uncontrolled agents, which will be in case of lane
changing scenario, as it will have both controlled vehicles and human-driven vehicles.

Similar to the approach of (Cheng et al. 2019), Emam et al. (2021) also used the Gaussian
process to model the system dynamics, which was used by CBF controller to learn about
unsafe states and also used by RL agents to improve sample efficiency (training with less
data). The action of the RL agents is updated by the CBF controller. Figure 4.2 represents
the function of CBF implementation in (Emam et al. 2021).

These approaches (Zhao et al. 2021, Cheng et al. 2019, Qin et al. 2021) used continuous
action space as CBF would not work for a discrete action space. Control barrier functions do
not work for discrete action space because with discrete action space the RL model cannot be
represented using differential dynamic programming and the lie derivatives would not work.
This is a major drawback as per the safety requirements discussion in Section 4.1

A key problem for this approach is figuring out how to combine knowledge of model (environ-
ment) dynamics with model-based safety. Because control barrier functions are model-based
i.e. they require information about model dynamics. Hence most of these papers either use
model-based RL like in (Emam et al. 2021) or use a statistical model to learn model dynamics
like in Qin et al. (2021), Zhao et al. (2021), Cheng et al. (2019). However, in POMDP
discussed in section 3.2 the system dynamics can be very uncertain. There is no guarantee
that a complex setting of multi-agent RL for lane changing with mixed traffic scenario can be
described with some assumptions of dynamics.
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Figure 4.3: Diagram represents the functioning of MPC (Zhang, Bastani & Kumar 2019)

4.2.3 Model Predictive Control (MPC)

Model predictive control can be defined as single or multi step ahead estimation of states that
can be reached by an agent over multiple next time steps under a sequence of control inputs.
Generally, statistical models are used to approximate the system dynamics, which helps to
predict the successive states of the environment when an action is taken by the agent. The
predicted states are then verified if they violate safety constraints and if an agent has a high
probability of reaching unsafe states, it uses a recovery (or backup) policy that brings it back
to safe states.

Model Predictive Control (MPC) methods guarantee the availability of return trajectories
to a safe state at every time step with high probability. Koller et al. (2018) proposed a
learning-based MPC scheme that provides high probability safety guarantees and helps RL
agent learn safer and optimal policies. They used OpenAI inverted pendulum environment
(Brockman et al. 2016) to run experiments. They used Ellipsoids (Kurzhanski & Varaiya
2000) to compute reachability states i.e. the predicted future states for the agent and apply
the best possible action to bring the agent back to safety.

A joint framework can be used to improve the MPC’s safety constraints and RL algorithm’s
task policy (Zanon & Gros 2021). In this paper, reinforcement learning was used to update
the parameters of MPC, and MPC was used to provide a safety guarantee to the RL agent.
This is an intuitive way of using closed-loop performance improvement. however, it might lead
to oscillatory behaviour, and neither the RL may learn optimal policy nor the MPC parameters
are good enough to ensure safety.

Unlike the single-agent RL with MPC approach in (Koller et al. 2018, Zanon & Gros 2021),
MPC can also be applied in a multi-agent setting, like in (Zhang, Bastani & Kumar 2019).
Figure 4.3 shows the functioning of this approach. In their proposed method, they are incre-
mentally checking whether each agent is in a set of stable states χstable , and if any agent is
predicted to be going into an irrecoverable or unsafe state, then recovery policy πrecovery is
used to bring the agent back to safe states χstable . The agents predicted to be in safe set after

37



current action use the respective learned policy πi . Unlike our implementation of parameter
sharing discussed in section 2.4 and 3.2 they have assumed different learned policy for each
agent which is not scalable to higher number of agents.

This approach looks promising and able to act as a safety supervisor for the RL agent. How-
ever, these approaches generally have two underlying assumptions. First, availability of a
recovery policy, also called safe policy πsafe is used to return the agent to safe state when it
is about to visit the unsafe states. Second, some prior information of either the irrecoverable
(unsafe) states or safe states.

The challenge is that the recovery policy and data of unsafe states for an environment might
not be available for all use cases. For example, in a multi-agent lane changing the setting, it
is difficult to know which all states are unsafe and how one trains a recovery policy. These
challenges are limitations to using this safety technique for multi-agent lane-changing scenar-
ios.

Though CBF has some limitations, but it has been used in a lot of publications and might be
the most promising approach for safety in multi-agent RL (MARL).
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4.2.4 Recovery RL

Figure 4.4: Diagram represents the functioning of Recovery RL (Thananjeyan et al. 2020)

The Recovery RL approach is relatively very recent compared to the previous three approaches.
Thananjeyan et al. (2020) proposed a unique approach to create an external supervisor for RL
algorithms. However, it has some similarities to model predictive control methods, especially
the one in (Zhang, Bastani & Kumar 2019).

Figure 4.4 shows the high-level functioning of the Recovery RL technique. An offline dataset
Doffline was generated which contains set of trajectories where the agent violated safety con-
straints. This was either generated manually using human knowledge or through a naive RL
policy. This Doffline data was used to train a reinforcement learning-based safety-critic pol-
icy. The safety critic was later used to estimate the agent’s probability of future constraint
violations. If the safety-critic predicts the agent’s action to be unsafe, then recovery policy
πrecovery is used to bring it back to safe states or else a learn policy πtask is used.

This approach requires us to design the Doffline either manually using human knowledge or
through a separate reinforcement learning policy. For complex systems like the multi-agent RL
model for lane changing in CAVs, it would require the first training an RL policy and extracting
the Doffline . Though the Doffline would be updated during the training of the recovery RL it
does require to run the RL model without the safety critic to collect Doffline . This in-turn
defeats the purpose of designing an external safety supervisor, as the main aim of external
safety is to stop the agent from exploring unsafe states.

39



4.2.5 Summary

Table 4.2: Analysis of the External Safety Supervisors for MARL in terms of the scenario
requirements. Green color cell means scenario requirement is satisfied

.

Characteristic Shielding
Control
Barrier
Functions

Model Pre-
dictive Con-
trol

Recovery RL

Number of agents Supports
multi-agent

Supports
multi-agent

Supports
multi-agent

Supports
multi-agent

Action Space Continuous
Action

Continuous
Action

Continuous
Action

Continuous
and Discrete
Action

Model dynamics infor-
mation

Required apri-
ori

Modelled us-
ing Gaussian
Processes or
Assumed

Modelled us-
ing Gaussian
Processes, or
Assumed

Learned using
RL

Unsafe states informa-
tion Required Not required Required Required

Recovery/Backup Poli-
cies Not required Not required Required Required

Mixed agents (con-
trolled & uncontrolled)

No support
yet

No support
yet

No support
yet

No support
yet

Table 4.2 summarises the analysis of safety techniques concerning the safety requirements
discussed in Section 4.1. The green color cell means it the safety method satisfies safety
requirements. From the table, it can be inferred that none of the safety techniques satisfies
all the safety requirements; hence, there are still some open challenges in using them for
MARL-CAV. These challenges are discussed in more detail in the next section.
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4.3 Open challenges in safety for CAV-MARL

As discussed in Section 2.3, most MARL methods for CAV modelling mostly focus on achieving
optimal policies based on their reward function but this does not guarantee safety, i.e., that
no unsafe state is ever visited during the learning process. This is because penalizing agents
through negative rewards doesn’t stop them from going to unsafe states as they have to
explore different (both safe and unsafe) actions to learn about the states and rewards from
the environment.

The approaches discussed in Section 4.2, namely shielding, model predictive control, control
barrier functions and recovery RL, are ways to guarantee safety during the exploration process
as they act like an external supervisor, thereby monitoring the agents’ actions and preventing
the exploration of unsafe states. These approaches have been used to provide external safety
for MARL for other scenarios and might be applicable to the multi-agent reinforcement learning
algorithms for lane changing in CAVs. The multi-agent proximal policy optimization algorithm
discussed in Section 3.1.3 has to be modified to include one of these safety approaches.

However, this implementation will be a significant challenge. Based on the data in table 4.2
it can be inferred that most of these approaches are applied to simpler environment tasks,
like one or more agents trying to reach a goal (Qin et al. 2021, Cai et al. 2021) , navigation
tasks (Thananjeyan et al. 2020) or simple OpenAI gym environments (Cheng et al. 2019,
Emam et al. 2021, Choi et al. 2020). These approaches use statistical models to estimate the
dynamics of the system, but this might not work for a complex scenario like lane-changing in
CAVs, where other human-driven vehicles, i.e., uncontrolled agents, are present. Compared
to the static obstacles present in simpler environments, these represent dynamic obstacles.

Furthermore, as discussed in Section 4.2, these approaches come with several assumptions
like the following:

• Availability of partial or complete prior knowledge of unsafe or irrecoverable states in
shielding, model predictive control and recovery RL.

• Availability of recovery policies in case of model predictive control and recovery RL.

• Bounded system dynamics for control-theoretic methods like control barrier functions.

• Having only a single or more controlled agents in the system. Absence of uncontrolled
agents (like human-driven vehicles in the lane-changing scenarios).

As per the safety requirements in section 4.1, these assumptions will be violated in the MARL-
CAV setting discussed in section 3.2 and this posses a significant challenge in adapting these
approaches to MARL-CAV. Based on the assumptions and limitations discussed in this chapter,
the potential introduction of these safety approaches to MARL-CAV comes with theoretical
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and practical challenges.

4.3.1 Conclusion

In this chapter, the safety requirements of MARL-CAV were discussed and four different ex-
ternal safety supervision techniques were analysed to examine their compatibility with MARL-
CAV setup. Although all the approaches lack some safety requirement, we need to select a
safety technique and integrate it with MARL-CAV to verify whether these techniques enhance
safety. Based on the Table 4.2 the control barrier function approach looks simpler as
it does not require the availability of recovery policies prior information about unsafe states.
Therefore, I decided to implement safe MARL-CAV with control barrier functions (CBF).

Given the limited time, only the CBF approach was tested with MARL-CAV;The
implementation of the other three approaches i.e., shielding, model predictive control and
recovery RL for MARL-CAV is beyond the scope of this dissertation. However, this can be
done in future work.

In this chapter, I discussed the potential theoretical limitations in these safety approaches,
however, to answer the research question, this needs to be practically tested. Therefore, the
practical aspect is discussed in the following 5 and 6 chapters.
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5 Safe MARL-CAV Implementation

This chapter presents the implementation details of MARL-CAV discussed in Section 3.2.
Along with simulation details, the challenges, the modification in the simulation environment
and set-up details are discussed in different sections.

5.1 Simulation Environment

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) techniques for lane
changing in connected autonomous vehicles are mostly performed on traffic simulators as it
can be unsafe to perform real-life experiments with vehicles. Microscopic traffic simulators are
commonly used to control individual vehicles in the simulation. One of the most popular open-
source traffic simulators is Simulation Urban Mobility (SUMO) (Lopez et al. 2018). However,
the traffic control interface (TraCI) package is required to control a vehicle in SUMO. TraCi
enables users to communicate with the SUMO environment using Python. Liao et al. (2021)
and Ye et al. (2020) are discussed in the section 2.2 used SUMO for simulation.

Wu et al. (2022) proposed a framework called "Flow" that enables the use of deep rein-
forcement learning algorithms and perform control experiments for traffic micro-simulation. I
started with this framework, but it was computationally expensive and took hours to simulate
a small lane-changing scenario. Moreover, it required managing the configurations of both
SUMO and flow framework. Furthermore, flow Wu et al. (2022) is not maintained as seen in
its Github page. Due to the above-mentioned issues, I could not use Flow-SUMO and decided
to try more actively maintained and minimalist frameworks.

Chen et al. (2022) have used a more pythonic and minimalist environment highway-env Leurent
(2018) to simulate connected autonomous vehicles. However, this environment doesn’t sup-
port the simulation of multiple autonomous and connected autonomous vehicles, but it is
possible to extend and customize the environment to achieve the same. Taking inspiration
from, Chen et al. (2022) I have used the same environment and modified it to implement a
multi-agent reinforcement learning setting for lane changing in connected autonomous vehi-
cles. he modifications are discussed in detail in the next section. The highway-env environment
assumes connection between all controlled vehicles. All vehicles receive data of five surround-
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ing vehicles as observation or partial state information.

5.2 Simulation Challenges

The highway-env Leurent (2018) library was used for simulation and from the library, the
fast-highway-v0 was used for the simulation of lane changing in connected autonomous
vehicles (CAVs). Figure 5.1 shows a screenshot of the simulation.

Figure 5.1: Screenshot of the fast-highway-v0 environment with CAVs (in green) and human-
driven vehicles (in blue). In this figure the CAV is trying to change the lane to avoid collision
with HDV.

However, this library came with its fair share of limitations, as it was not tailor-made to
simulate the MARL-CAV discussed in Section 3.2. Following are some of the limitations:

• Doesn’t come with support for multi-agent in fast-highway-v0 environment.

• Doesn’t come with support for connected autonomous vehicles (reference discussion).

• Doesn’t come with support for continuous action.

To overcome these limitations significant amount of time was spent to modifying the source
code of the library to enable it to support multi-agent reinforcement learning and connected
autonomous vehicles.

First, the highway-env library was modified to support multi-agent RL and registered a new
environment fast-highway-MA-v0, which allows simulation of multiple controlled vehicles.
Second, the vanilla PPO implementation was modified to include parameter sharing and replay
buffer. This enabled the implementation of connected autonomous vehicles as discussed in
Section 2.4.3. Furthermore, the reward function was also modified as discussed in the Section
3.2. Following sections talk about the modifications in more detail:

5.2.1 Added support for multi-agent

The highway-env only supports single-agent learning in its environments. To add the support
for multi-agent, the reward function was updated to collect rewards for individual agents,
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and then individual rewards were combined to receive the collective reward. Furthermore, the
proximal policy optimization algorithm was updated to add support for multi-agent training
and developed the multi-agent PPO (MA-PPO) algorithm.

5.2.2 Added support for connected autonomous vehicles

The highway-env library does not support connected autonomous vehicles. To make the
MARL-CAV implementation support collaboration among different agents, the MA-PPO algo-
rithm was updated to support parameter sharing and add replay buffer functionality discussed
in Section 2.4.3. This ensured that agents cooperatively take action.

5.2.3 Added support for continuous action

The highway-env library out-of-box just supported discrete action for fast-highway-MA-v0
environment. Therefore, MARL-CAV was developed to work with discrete action space. These
actions were move left, move right, forward and idle.

However, as discussed in 4.3.1 the safety technique, control barrier function (CBF) was selected
to be examined whether it adds safety to MARL-CAV. CBFs only support continuous action
space. Therefore, the code for fast-highway-MA-v0 environment and MA-PPO algorithm
was updated, and support for continuous actions was added. The loss function of MA-PPO
was updated to use a Gaussian policy rather than the initial categorical policy. The continuous
actions were steering angle and throttle value for the vehicle.

The continuous action PPO setup was tested on Open AI inverted pendulum environment
Brockman et al. (2016). The algorithm worked successfully and kept the pendulum in an
upright position.

Furthermore, one more component was added to the reward function. This was added to
ensure that the vehicle gets rewarded for staying in the centre of the lane while moving in the
road.

5.3 Simulation Set-up

The developed environment, i.e., fast-highway-MA-v0, was used to simulate the lane-changing
scenario. In a MARL setting, the agent trains for a specific number of episodes, and the
reward is calculated at the end of every episode. The calculated reward value can be stored
to compare the progress of the agent’s learning. Ideally, the reward should increase as the
number of training episodes increases.

An episode in a reinforcement learning setting is one simulation of the task given to the agent.
In our case, it will be the task of the multiple vehicles (agents) to move from the start of the
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road to the end and safely change lanes. An episode terminates when any agents collide or
the maximum length is reached.

To run the experiments consistently, I have run the experiments with the following default
settings:

Table 5.1: Default simulation settings for MARL-CAV

.

Setting Value

Number of CAVs 2

Number of HDVs 6

Number of training episodes 1000

Evaluation interval 200

Number of evaluation episodes 3

Max length of each episode 20 Seconds

Termination settings Collision or Episode max
length reached.

Table 5.1 consists of the default setting for the experiments discussed in the next section. This
settings can be tweaked to change the difficulty of learning a good RL policy. For example, if
the number of CAVs are increased then it becomes difficult to learn a good policy where all
agents behave optimally. In the next section, the standard settings have been used.
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6 Evaluation

The intention of implementing the MARL-CAV in Section 3.2 was to verify whether the
external supervisor approaches discussed in Section 2.5 can be integrated into the MARL-
CAV and to check if external safety supervisor approaches work with MARL-CAV to make it
safer.

As discussed in the conclusion of 4.3, control barrier functions (CBF) is the most promising
safety technique considering the safety requirements of MARL-CAV (discussed in Section 4.1).
The necessary modification required to implement CBF with MARL-CAV is discussed in the
previous section 5.2.3. This chapter discusses the results (6.2) of the integration of control
barrier functions with MARL-CAV.

6.0.1 Evaluation Metrics

This section discusses the evaluation metrics that can be used to judge the performance of
the proximal policy optimization (PPO) algorithm for the MARL-CAV task. This would also
help benchmark this algorithm’s performance with and without integration of external safety
approach CBF.

An RL agent’s evaluation is done based on the reward it gets from the environment. When
an RL agent follows an optimal policy, the reward is highest. The RL agent receives a reward
for each episode, and during training, multiple episodes are simulated to help the RL agent
reach optimal policy.

For the evaluation, I have trained the PPO algorithm for 1000 episodes on the MARL-CAV
model. After every 200 episodes, I run a couple of evaluation episodes and calculate the
metric values.

Here episodic rewards have been used to design the metrics.

The following are two metrics which I implemented for the evaluation:

1. Average reward per episode - This metric gets the mean reward of the evaluation
episodes. Ideally, this score should increase over the training episodes to show that the
agent is getting better and receiving more rewards.
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2. Average length of episode - This metric gets the mean length of evaluation episodes
in seconds. Generally, if the agent doesn’t follow an optimal policy, it will lead to more
collisions, and collisions terminate the episodes. Hence, ideally, as the agent learns
optimal policy, the lengths of episodes should be longer.

6.0.2 Evaluation Design

The evaluation of safe MARL-CAV is performed with the help of two experiments. The first
experiment in Section 6.1validates the implementation of MARL-CAV i.e., to check whether
the implementation is able to learn a stable policy that makes safe lane changes. The second
experiment in Section 6.2 examines the applicability of CBF with MALR-CAV.

However, in the safety analysis table 4.2 we can observe that the CBF doesn’t support discrete
action. Therefore, I decided to convert the MALR-CAV’s action space to continuous action.
This is discussed in detail in the second experiment (in Section 6.2).

This design would also help to understand the difference in the performance of the same RL
algorithm, i.e. PPO with and without CBF as a safety layer when the algorithm is tested
on the MARL-CAV environment. The expectation is that in second experiment the
number collisions would decrease and agents reach optimal policy faster compared to first
experiment.

In terms of the evaluation metrics, the second experiment should have a higher
average evaluation reward and better average episode length compared to the
first experiment

6.1 MARL-CAV validation

This experiment simulates lane changing in CAV using the PPO RL algorithm. This experiment
aims to ensure that the implementation of MARL-CAV is valid where the agents can learn
lane changing after a few training episodes. In this experiment, the vehicle aims to learn
to safely change lanes avoiding collision with other CAVs or HDVs while taking discrete
actions. The details of the set-up are as follows:

1. Number of CAVs - 2

2. Number of HDVs - 6

3. Action type - Discrete (left, right, forward, idle)

4. Reward Function

- Penalty on collision
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- Reward for headway

- Reward for lane change

- Reward for right lane

5. Number of training episodes - 1000

6. Number of Evaluation episodes - 3

(a) Average evaluation reward (b) Average episode length

Figure 6.1: Metrics for MARL-CAV validation with discrete action space and 1000 training
episodes

From Figure 6.1a we can observe that the average rewards of evaluation episodes have in-
creased over the number of training episodes. In the beginning of training, the average reward
was negative because there must be a lot of collisions resulting in higher penalties and negative
rewards. The policy would not be good during the initial training episodes.

As the training reached 350 episodes, the policy improved, resulting in fewer or no collisions
and higher rewards.

From Figure 6.1b we can observe that the average length of evaluation episodes has increased
to the maximum episode length. Like in 6.1b, after around 350 training episodes, the episodes
do not terminate from collisions and run till the maximum duration

From both the metric values and graphs, it can be inferred that the MARL-CAV
set-up is valid, and the agents can learn to make lane changes safely.

6.2 MARL-CAV with control barrier function

This experiment aims to simulate safe lane changing in CAVs using the control barrier functions
with PPO RL algorithm. As discussed in Section 6.0.2, for I had to first modify the MARL-
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CAV implementation to work with continuous action space. This is explained in detail in
Section 5.2.3.

Before checking the performance of CBF with MARL-CAV, one important step is to validate
the performance of PPO algorithm with continuous action space. In this experiment, the
vehicle aims to learn to safely change lanes avoiding collision with other CAVs or HDVs
while taking continuous actions. The details of the set-up are as follows:

1. Number of CAVs - 2

2. Number of HDVs - 6

3. Action type - Continuous (Steering angle and Throttle)

4. Reward Function

- Penalty on collision

- Reward for headway

- Reward for lane change

- Reward for right lane

- Reward for vehicle to stay in lane

5. Number of training episodes - 1000

6. Number of Evaluation episodes - 3

(a) Average evaluation reward (b) Average episode length

Figure 6.2: Metrics for MARL-CAV validation with continuous action space and 1000 training
episodes

From Figure 6.2 we observe that MARL-CAV with continuous action space cannot achieve
optimal policy. The rewards in 6.2a are high negative values indicating poor policy and a high
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number of collisions. The zig-zag nature of the graph shows that the policy is unstable and
the agent is not learning.

In Figure 6.2b we can see similar observation; the evaluation episodes terminate before reaching
maximum episode length i.e. 20 seconds.

It is clear from the metrics that MARL-CAV is not able to achieve stable performance with
continuous action.

As the MARL-CAV is not working properly with continuous action space I could
not work further on it to integrate the control barrier functions as the control
barrier functions only work with continuous action space.

6.3 Discussion

The results in the first experiment (in Section 6.1) validated the implementation of MARL-
CAV. The values of evaluation metrics increased over time (in Figure 6.1), indicating agents
are able to learn a stable policy.

However, the results of second experiment 6.2 are not good. The values of evaluation metrics
oscillate over time (in Figure 6.2) and show high negative rewards for the entire duration of the
training, this indicates that agents are unable to learn a stable policy when a continuous
action space was used. As discussed in the implementation section 5.2.3 the continuous action
did work for the OpenAI inverted pendulum environment (Brockman et al. 2016). As this
experiment has failed, the integration of CBF with MARL-CAV is unsuccessful.

I spent a significant amount of time (over a week) debugging the cause of this poor perfor-
mance of MARL-CAV with continuous action but could not fix the issue. While simulating
this, I observed that the agents often leave the lanes. It could be because the RL policy does
not control the steering angle and throttle to appropriate values. Due to this, I even added
a reward to keep the agents at the centre of the lane, but still, there were no improvements.
The issue might be with the source code of the simulation library highway-env (Leurent 2018).
However, it is difficult to pinpoint the issue without more time and detailed analysis.

The RL algorithm could not learn an optimal policy in the second experiment. Hence, I
could not apply the control barrier approach to MARL-CAV. Since the control barrier function
approach only works with continuous action space, this poses a significant drawback in the
application of CBFs, as the majority of the papers in the literature that have implemented
MARL for lane changing in CAVs have used a discrete action space Chen et al. (2022), Zhou
et al. (2021), Ye et al. (2020) compared to a few Fu et al. (2020) who have used continuous
action space.

From the experiments, it can be inferred that the integration of existing safety approaches
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like CBF to multi-agent RL in CAVs is not straight-forward and is a significant engineering
challenge. Even though this experiment failed, I kept this to highlight the limitations of
existing safety approach for MARL and the challenges in developing safe MARL for connected
autonomous vehicles.
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7 Conclusion

This Chapter summarises the work presented in this report, highlight the challenges encoun-
tered, discusses future work and concludes with a reflection of the author on his experience
doing this project.

7.1 Summary

This dissertation developed a multi-agent reinforcement learning (MARL) based lane changing
algorithm for connected autonomous vehicles (MARL-CAV). Parameter sharing and replay-
buffer schemes were used to ensure collaboration among connected vehicles. The implemen-
tation of MARL-CAV was validated in the experiment in Section 6.1. The main intention of
developing the MARL-CAV model was to examine whether external safety supervisors can help
enhance the safety of MARL for connected autonomous vehicles in a mixed traffic scenario. As
this topic is quite advanced, most of the papers reviewed in this dissertation were published in
last three years. The investigation showed that most of the state-of-the-art implementations
of MARL for lane changing in CAVs use a custom reward function to introduce safety, but
this is not completely safe as the agents still visit unsafe states during the exploration phase
of the RL algorithm.

State-of-the-art external safety techniques for MARL were extensively researched and analysed.
It was observed that broadly these techniques come with a fair share of assumptions that can
be classified into two groups; the first type of technique uses some prior information about
unsafe states to develop safety critic which can provide the probability of agents being in
unsafe situations in future states, and uses a separate recovery policy to bring the agent back
to safe states. The model predictive control and Recovery RL safety approaches belong to this
category. The second type of technique creates a set of safe states by estimating the dynamics
of the system. They learn about unsafe states and project the actions of the reinforcement
learning (RL) agent into the safe set and constrain unsafe action. The shielding and Control
barrier functions safety approaches belong to this second category.

The characteristics of safe MARL for lane changing scenarios were discussed (summarised
in Table 4.1), and it was inferred that an ideal safety supervisor approach should support
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both continuous and discrete actions, should operate in a mixed traffic scenario, should not
require a recovery policy and any prior information about unsafe states. Based on these, the
functioning and limitations of different external safety supervisors for multi-agent RL were
analysed and summarised in Table 4.2. It was observed that these safety techniques come
with many assumptions like availability of recovery policies, prior information about unsafe
states, the requirement of continuous action space etc. and are often not simulated in mixed
agents (controlled and uncontrolled) scenarios.

These assumptions mean these techniques might not be directly applied to MARL for CAVs.
To further verify the same, an experiment (in Section 6.2) was performed where the MARL-
CAV setup was modified (from discrete actions to control action space) to support control
barrier functions. However, the MARL-CAV implementation with continuous action could not
reach a stable policy, and hence it could not be verified whether external safety technique
control barrier functions can enhance the safety of MARL-CAV. However, the experiment
highlights that integrating these safety approaches to MARL-CAV is not straightforward and
requires significant work, which involves modifying either the MARL-CAV implementation or
the safety techniques.

7.2 Challenges

The papers reviewed while studying literature for this dissertation were published quite recently.
Most of them being published in the last three years. This made the project interesting but
equally challenging.

During the state-of-the-art research, it was observed that there was plenty of research on
different AI approaches for motion planning in CAVs. However, there is not much work
showing research on safe AI approaches for motion planning in CAVs. This made it difficult
to investigate the research questions. In addition, though some external safety approaches
for MARL were found, these were never applied in a complex setting like lane changing for
connected autonomous vehicles.

Moreover, the source code of these safety approaches is not open-sourced; hence, implement-
ing these from scratch is challenging and requires a lot of time. Even if some of them are
open-sourced, it is still a challenge to integrate these with a new task like MARL-CAV in this
dissertation because the initial implementation is mostly done for a specific environment.

Apart from the above challenges, some were faced during the simulation environment devel-
opment. These were discussed in detail in the section 5.2. Even after solving these challenges,
modifying the simulation environment to work with continuous action space was still a huge
task. This issue was unresolved due to the limited time.

Despite these challenges, significant work was done to solve these issues and answer the stated
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research question.

7.3 Future Work

This dissertation aimed to contribute to the noteworthy research gap of safe MARL for CAVs
and leaves plenty of room for future work. In this dissertation, only one (i.e., control barrier
functions) out of the four (shielding, control barrier functions, model predictive control and
Recovery RL) discussed safety approaches was experimented with. In future work, the suit-
ability of the next most promising approach, as per the analysis table 4.2i.e., Recovery RL,
can be examined.

The experiments in Sections 6.1 and 6.2 were done with the default number of CAVs and
HDVs. This could be changed to increase the penetration rate of CAVs, and variance in results
can be studied. Also, the maximum duration of episodes in the experiments was 20 seconds.
This could be increased to verify those stable RL policies that perform well, even for longer
simulations.

Apart from this, in this dissertation, the proximal policy optimization (PPO) algorithm is
used. However, other policy-based RL algorithms can also be applied, and the performance
of multiple algorithms can be compared.

7.4 Dissertation Reflection

Deep learning has increased interest in adding new systems to which artificial intelligence (AI)
will be applied. Reinforcement learning (RL) has also had a renaissance, with Deep RL models
created to compete with experts in games like Go and Atari.

Nevertheless, RL is still having trouble being adopted and successfully used in various ap-
plications, particularly regarding safety-critical jobs like robotics, autonomous driving, and
industrial control. This dissertation was motivated by the idea that safe RL is an open prob-
lem.

Generally, in reinforcement learning papers, the reward function is modified to ensure agents’
safety, but this does not completely ensure safety as the agents still visit unsafe states. This
would be a problem when RL is used in real-life safety-critical applications, e.g. application of
RL in lane changing for connected automated vehicles. Hence, the research question was to
verify whether an external safety supervisor can be employed to enhance the safety of MARL
for CAVs.

The research question was simple, and finding the answer was very challenging. In the process,
I connected with some researchers and working professionals in top the self-driving industry
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through email. It was great to see these people are open to helping and discuss the theo-
retical and practical challenges I faced while working on this dissertation. As discussed in
the conclusion, the second experiment to study the use of control barrier functions (CBF) in
MARL-CAV was unsuccessful. This motivated the question: Are these safety methods scal-
able and applicable to MARL-CAV environments? Initially, my research question was specific
to CBFs, but when this did not work, I decided to pivot the research question a bit and with
the limited time left, I decided to perform an extensive theoretical analysis of all four external
safety approaches. Interestingly, the conclusion was similar, none of these approaches can be
directly applied to MARL-CAV, and their integration into MARL-CAV is challenging. At the
end of this dissertation, I can say that creating safe MARL for CAVs is a challenging task,
and there is no easy option to solve it. It is still an open problem, and current research is far
from building truly safe MARL approaches for connected autonomous vehicles.

I started with limited knowledge of reinforcement learning and connected autonomous vehicles.
I am glad that this dissertation has helped me learn and understand reinforcement learning in
more detail. This has also helped me to understand the challenges one can face when research
ideas are applied to simulate real-world scenarios. Thanks to Trinity College Dublin and Prof.
Melanie for giving this opportunity to work on state-of-the-art research problems.
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