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Mixture Models and EM Algorithm

Unnikrishnan Muraleedharan, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Jason Wyse

The main idea of this work is to understand the importance of clustering. Unsupervised
Learning is essential as most of the data available in the real world are not labelled. This
dissertation mainly focuses on the functioning of the EM Algorithm on Mixture Models.
It also discusses the various clustering techniques like KMeans and KMeans++ algorithm
and their main differences. It also establishes how KMeans can be said to be a rudimentary
form of EM Algorithm. Further, the importance of initialisation in the EM Algorithm is
shown by implementing the algorithm on the same dataset using different initialisations.
Performance is measured with the help of the number of iterations for convergence and
agreeability using a synthetic data generated. KMeans++ was observed to have better
performance. The actual usage of clustering is demonstrated by applying it to a real-
world dataset and observing the results. The BIC(Bayesian Information Criteria) value
was used to find the ideal clusters in the data.
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Chapter 1

Introduction

1.1 Overview

Machine Learning (ML) is not just a buzzword anymore and has captured the imagina-

tion of scientists and policymakers, alike, making central to the digital transformation

initiatives across the world today.

ML has gained prominence in recent years for the primary reason that it generates

vast amounts of data from different applications resulting from an increase in accessibility.

It is important to analyse this data and discover interesting insights that will be useful in

the future not only to enhance current operational efficiency but also identify predictive

trends to enhance productivity.

This process can be quickly accomplished with the help of machines. The machine

“learns” from the vast pool of data and improves itself over the process. The increased

processing and computational powers, along with the improved algorithms, has today

enabled what is referred to as “Machine Learning” to scale new heights. Any activity

involving repetitive tasks that could be automated also comes under its purview. ML

thus reduces human effort and increases the overall efficiency of the process.

Machine Learning evolved tremendously after the 1990s with the scientist and tech-

nologists realising that statistics and computer technology can be combined, leading to

probabilistic results, which, in turn, could lead to more precise and quantified results.

Machine Learning finds various applications in different fields, including Image Recogni-

tion (identifying features in an Image), Speech Recognition (converting speech into text),

and predicting trends, and has enormous usage in sectors such as financial services as well

as in healthcare to achieve better patient outcomes through early detection of diseases.

At a very high level, ML can be regarded as the process of generating a model based

on available data. This model which is build using an algorithm can be fed with input
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to predict the output. Its performance depends on various factors such as accuracy,

complexity, and computational time, among others.

ML can be divided into three classes based on the process involved in generating the

model. This is represented in the form of a flow chart in the paper (1) as shown in Fig-

ure 1.1.

Figure 1.1: ML can be divided into Unsupervised, Supervised and Re-
inforcement Learning(1)

To discuss the illustration (Figure 1.1) further, Supervised Learning involves the gen-

eration of a model from labelled data. The model is created by using data and learning

from it, which closely maps the data points with the label so that an input given can

predict what the label could be in the future. This is usually tested by dividing the data

into a train-test split of 70-30 per cent. The model is generated using the training set and

then tested on remaining 30 percent data. The accuracy of the model can be understood

using this. The output of Supervised learning can be Categorical or Real-Valued, and

based on this, it is divided into Classification and Regression problems, respectively.

Unsupervised Learning is another crucial Machine Learning technique involving train-

ing a model from unlabeled data. This technique requires coded algorithms that act on

the data without prior knowledge and finds and learns from the data. The main type

of Unsupervised Learning is Clustering. The model tries to find a relationship in the

subset of the parent group, which is unique to the subset and helps to separate it from

the others. Association is another type of unsupervised learning that helps establish a

rule that can describe a significant portion of the data. Different techniques can be used

for implementing clustering and association. A working clustering approach need not

work the same way in two different datasets, i.e., it varies with the data and performance
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evaluation methods used.

Reinforcement Learning is a machine learning technique that generates a model based

on maximising and minimising the rewards and penalties by placing an agent in an en-

vironment it has not seen before. The behaviour of the agent controls the reward and

penalty.

1.2 Motivation

Technology advancement has led to applying these methods directly using numerous li-

braries in languages such as R (2) and Python (3) etc. This helped to create models by

feeding in the data to these inbuilt functions without knowing much of the inner work-

ings. Scikit Learn (4) is a popular ML Python library that is simple and provides different

functions for implementing various machine learning tasks. It also helps us to pre-process,

visualise and execute machine learning tasks. Implementing clustering and generating a

model with this is straightforward. The model will work perfectly, but if there is a slight

variation in the expected results, it is difficult to understand the root cause. The reasons

could be numerous - from the initialisation techniques used to the hidden approxima-

tions. It is important to have in-depth knowledge of these techniques from the ground up

to prevent this.

This dissertation’s primary focus is on understanding the concept of Clustering, which

falls under Unsupervised Learning. The reason for choosing Unsupervised learning is be-

cause most of the data generated in the present world are not labelled. A massive amount

of human effort and time is involved in labelling the data. In addition, implementing this

ML technique will help us to identify any unknown patterns in a simple, time-efficient

and less costly manner. The manual intervention involved is also reduced. This method

is considered a type of exploratory data analysis in which one is unaware of the results

beforehand. Implementing this would help to segregate the data without any biases such

as prior knowledge about the data types that would have come, if a human was involved

in the process.

The collection of individual pieces of data that are related to a parent subject and are

grouped is called Dataset. It could be readings or observations of a particular subject

over a period of time under certain circumstances. When the dataset is analysed, it

can be observed that they could be drawn from different probability distributions such

as Uniform, Normal and Binomial etc. In addition, there can be cases wherein it is a

distribution formed by the superposition of multiple distributions, and such a distribution

is called Mixture Models. The majority of the datasets follow such behaviour. This can

be found only by exploring the dataset and running various tests to establish the same.
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Implementing clustering techniques would help us to understand or separate the different

clusters from such data. This has multiple applications in fields including advertising,

healthcare image compression and data mining, among others.

EM Algorithm (5) is a type of clustering technique that can be applied to a dataset.

It is an important probabilistic clustering technique. Once clustering is done using this

technique, we can define a probability value for each point belonging to a particular cluster.

This technique is critical when the data under consideration involves heterogeneous data,

i.e. data with missing values and low redundancy. One application in which the EM

algorithm plays a vital role is in survival analysis. This has emerged from actuarial

statistics, spanning hundreds of years of use in evaluating annuities, insurance rates and

life expectancy (6). This data can be considered at a high level as a dataset with missing

data because it involves collecting data from people over time at regular intervals, which

would include challenges such as failure to collect data during a period. In this scenario,

EM algorithm can be applied such that the missing data is filled with sensible values and

the EM is run, which would make these values more accurate over the iterations. In terms

of clustering, this technique also gives us the probability with which a particular data point

belongs to a cluster, which offers a more detailed clustering information. Knowing the

group’s details would enable us to define a function with the data provided, find missing

values and even predict to which cluster a new data would fall.

At a deep level, the dissertation focuses on the Mixture Models and EM algorithms.

Scikit Learn library has a inbuilt function to implement the EM Algorithm (4). However,

it is essential to understand the inner working of the inbuilt library functions and clearly

understand the black box mystery involved in generating the model.

This dissertation tries to find answers to the following questions:

• The different types of techniques involved in clustering.

• The importance of initialisation and different types of techniques involved.

• Are we fully aware of the assumptions used by functions defined in libraries?

• Do we know the underlying concepts that are applied to get the output?

• If we write a similar function, will the output be the same?

1.3 Contribution

The dissertation’s primary objective is to understand the concept of clustering. To under-

stand this, we need to generate a well-defined dataset and implement clustering techniques
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and study how well the method will be able to define the parameters. KMeans (7) (8)

is one of the most essential and efficient clustering techniques. However, KMeans has a

non-probabilistic approach for clustering. EM algorithm gives a probabilistic approach

toward clustering, and KMeans is considered a particular case of EM algorithm (9). There

are applications in which KMeans are needed, such as image compression, in which we

can compress the image size by reducing the number of colour combinations, as shown in

Figure 1.2. KMeans and EM algorithm is developed from the root level with a clear un-

derstanding of each step involved. The developed algorithms are applied to the synthetic

dataset generated, and the results are studied. EM Algorithm consists of initialisation in

the beginning. This has a significant impact on the results. Usually, KMeans is done on

the dataset, and the parameters obtained are used for this initialisation. KMeans++ (10)

is another critical approach discussed in this dissertation. In simple terms, it is an in-

telligent initialisation technique for the initialisation of centroids, which guarantees that

the centroids selected initially are widely separated. This algorithm is also developed and

studied in this dissertation.

Figure 1.2: Application of KMeans Algorithm to Images. It shows how
varying K can help in the compression of the image. The original image
has a palette of K colours. Applying the KMeans segments the image
based on the value of K. On increasing, K decreases the quality and size
of the original image. .(9)

The final objective of the dissertation is to apply these developed algorithms to a real-

world dataset and observe the results. The Galaxy dataset (11) is chosen for this, which

remains a debatable dataset across the scientific community. The aim is to determine the

clusters from the data points. The data points represent the velocities with which the

galaxies shift away from our galaxy. The clusters found by running the EM algorithm

would give us an idea about the number of galaxies in the universe.
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1.4 Dissertation Structure

Chapter 1: : This chapter gives an overview and clear objectives on what the disserta-

tion is trying to achieve.

Chapter 2: : This chapter covers a detailed study of the background of this dissertation.

Different approaches such as the KMeans, KMeans++ and the EM Algorithm are

discussed in detail.

Chapter 3: This chapter covers the methodology and the process involved in implement-

ing the clustering techniques in this dissertation.

Chapter 4: This chapter discusses the findings and observations obtained by imple-

menting the techniques on a synthetic dataset. It studies and observes the results

obtained on the same dataset using the inbuilt library functions. It also shows the

difference in the parameters obtained by choosing different initialisation techniques

in EM.

Chapter 5: This chapter discusses the limitations of the current algorithms developed

and also throws light into the future works that could be carried out, leading to

more understanding of the clustering techniques.

High level structure of the dissertation is shown in Figure 1.3

Figure 1.3: Structure of Dissertation
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Chapter 2

State of the Art

This chapter gives a deeper understanding of the background of this dissertation. The

different clustering techniques used and the importance of each of them are discussed. It

dives into the basics of each step during the algorithm, and how the individual clusters are

separated and the parameters are estimated. Since we are dealing with mixture models,

we need to understand what they are and how they differ from other models. Later we will

discuss the KMeans and KMeans++ algorithms, which are simple clustering techniques.

It also discusses the shortcomings of these algorithms and how it is used as an initialisation

technique in the EM Algorithm. And finally, the EM Algorithm is discussed.

2.1 Mixture Models

Suppose we have a random variable x, with p(x) as the probability distribution . If we

decide to study the random variable, we need to be in a place to define a model that

will have a similar probability distribution. This model can be used to understand the

parameters of the distribution. However, this is not simple, as there could be an infinite

number of probability distributions that would lead to the generation of the data under

observation. The distribution could be binomial or multinomial if the random variables

under consideration are discrete and independent. On the other hand, if the data under

consideration is continuous, it could be from a Gaussian or Normal Distribution.

The parameters such as mean, variance and weights can be used to define the distri-

bution. It is a parametric method of modelling. Fitting a model to a dataset means that

we are adjusting the parameters of a model such that they will represent the probability

distribution function of the data we are exploring. A frequentist approach is chosen for

fitting the model by selecting the parameters and then optimising them based on some

criteria. The limitation of this approach is that the accuracy of the model is critical. It
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means that a poor model will generate poor predictive performance.

Mixture models are used to deal with real-world data. These models are frequently

utilised in machine learning, statistical analysis, pattern recognition, and data mining. In

theory, we can create a dataset that can be easily fitted using single distribution functions.

But in a real-world scenario, the case would be such that the data would be represented

more accurately by fitting multiple individual distributions. This would represent the

probability distribution function of the dataset more accurately.

For example, consider the “Old Faithful” dataset (12), which comprises 272 measure-

ments in 2 variables. Each measurement represents the waiting and eruption times (mins)

for an Old faithful geyser. Figure 2.1 represents the distribution plot of the data. It can

be seen that fitting three Gaussian distributions model fits the data more accurately than

a single Gaussian distribution model. These super positions, which are created by lin-

early combining more fundamental distributions like Gaussians, can be represented as

probabilistic models called mixture distributions. (9). In summary, we can say that if we

can properly select the number of Gaussians, mean, variance and mixing coefficients (the

parameters of the combination), the probability distribution of most of the data can be

represented to a reasonable level of accuracy.

Figure 2.1: The Gaussian distribution function plot in the Old Faithful
Dataset(1-D). The blue line shows three individual clusters, and the red
shows their superposition. The aim of doing clustering is to fit a model
with a distribution function similar to the red line. (9)

The normal distribution in a single dimension is shown in Equation 2.1.

N
(
yi;µ, σ

2
)
=

1√
2πσ2

exp

(
− (yi − µ)2

2σ2

)
(2.1)

where µ and σ2 represents the mean and variance of the data.
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A representation of mixture of Gaussian’s which is a superposition of individual Gaussian

is shown in Equation 2.2:

p(x) =
G∑

g=1

πg.N
(
yi ;µg , σ

2
g

)
(2.2)

Here πg is called mixing coefficients or weights, and it satisfies the following condition:

G∑
g=1

πg = 1 (2.3)

We also know that N(yi ;µg , σ
2
g) ≥ 0, which is a condition needed for the probability

p(x) ≥ 0, for all G (groups)

Looking at this condition and Equation 2.3, we can see that the value of the mixing

coefficient lies between 0 and 1, and the sum of all will be equal to 1.

The parameters represent the shape of the Gaussian. Let {π1, π2...πG} , {µ1, µ2...µG}
and {Σ1,Σ2...ΣG} be the parameters. To assign values to this, we can use maximum

likelihood. From Equation 2.2, we compute the log-likelihood using:

log
(
p
(
x|π, µ, σ2

))
=

n∑
i=1

log

[
G∑

g=1

πg.N
(
yi ;µg , σ

2
g

)]

=
n∑

i=1

log

[
G∑

g=1

πg.
1√
2πσ2

g

exp

(
− (yi − µg)

2

2σ2
g

)] (2.4)

This is a complex calculation as it involves summing the natural logarithm values over

g. This will prevent us from getting a closed-form solution. One of the methods that could

be employed to solve this would be using the EM algorithm. In a nutshell, what it does

is that the parameters are initialised. With these the log-likelihood is calculated. The

parameters are again re-estimated. This process is repeated till the convergence of log-

likelihood value. Over each iteration, the likelihood value increases. The EM algorithm

is discussed in detail in the coming sections.

2.2 KMeans

The main objective of the clustering technique, which comes under Unsupervised Learn-

ing, is to locate clusters within data. Clustering is defined as the process of finding

homogeneity in a subset within the whole dataset. The data points within a cluster will
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have some similarities that will help to separate them from the others in the dataset.

KMeans (7) (8) is a well-known simple clustering technique still used for several appli-

cations and is based on the work of Llyod in 1982. It is a non-probabilistic clustering

technique, i.e., once clustering is done, every data-point is allocated to a cluster, and no

details about the degree of the association to the clusters are given. The goal of KMeans

is to assign each data point in the dataset to a cluster such that the sum of the squares

of the distances to the centroids of the clusters is as small as possible.

Mathematically, it can be expressed as follows:

Consider a dataset having N number of observations in the dimensional space, D which

is represented as {x1, x2...xN}. We aim to find clusters within this group satisfying the

condition of KMeans. Suppose we have K clusters. µk is a parameter that represents the

centroid of the kth cluster. We define a variable called responsibility represented by rnk,

which can take values of either 0 or 1. It takes the value 1 when a point comes from that

cluster and 0 otherwise.

The objective function can be defined represented by Equation 2.5.

J =
N∑

n=1

K∑
k=1

τnk∥xn − µk∥2 (2.5)

In Equation 2.5, rnk and µk are the unknowns. We need to compute the parameters

in order to minimise the objective function. There is a need for an iterative process such

that in one of the steps, the µk is kept constant, the rnk is computed to minimise J, and

in the next step, the rnk is kept constant, and the µk is computed to minimise J.

In simple terms, the algorithm first initialises the number of clusters. Then the cen-

troids of these clusters are defined. We then compute the euclidean distances from each

data point to all the centroids. These points are allocated to a cluster which has the least

distance. Once this is done, the centroids are calculated with the allocated points. Again,

the distance from the points to these new centroids is computed. The points are again

assigned to the clusters similarly as above. The procedure is repeated till the values of

the determined centroids remains unchanged or falls within a threshold selected.

Mathematically, it can be represented as below:

τnk =

{
1 if k = argminj∥xn − µj∥2

0 otherwise.
(2.6)

µk =

∑
n τnkxn∑
n τnk

(2.7)
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Consider a cluster K=1. Then, the
∑

n rnk equals the number of points assigned to a

cluster, and
∑

n rnkxn will be the sum of the points in that cluster. With this, we can say

that this expression represents the cluster’s mean.

Figure 2.2 represents the KMeans clustering done for the famous Old Faithful Dataset (12).

The data has been standardised such that the mean=0 and the standard deviation=1.

Figure 2.2: KMeans Algorithm working in the Old Faithful Dataset.
The data is rescaled with a mean=0 and a standard deviation=1. Data
points are plotted in green and shown in (a). Centroids are shown using
the cross. (b), (c), (d), (e), (f), (g), and (h) represents the change in
the centroids during each of the iterations in the KMeans Algorithm.
(i) shows the final clustering obtained when the centroids converge.(9)

The initialisation of the initial parameters such as the clusters present and the centroids

plays a crucial role. The accuracy and number of iterations taken to converge depend on

these initialisations. Additionally, there is a chance that the convergence will occur to the
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local minima rather than the global minima if the initialisation is incorrect. The ideal

choice is to choose centroids within the dataset. This prevents choosing centroids that

lie outside the dataset’s scope, resulting in incorrect clustering. It can also be noted that

the shape of the clusters formed in KMeans is spherical. It doesn’t give the flexibility of

changing the shape of the clusters to fit the points accurately. Consider a case where a

point lies almost close to the centre of the two clusters; in this case, point will be allocated

to one cluster, which is inappropriate. This is why this algorithm is also called a hard

clustering technique.

Despite being widely used for generic clustering, KMeans has three significant draw-

backs: it does not scale well, it is has a tendency to converge to local minima and the

number of clusters(K) is an input given by the user. (13). Having an idea about the

dataset and placing close points in the same subtree as discussed by Ramasubramanian,

V. and Kuldip K. Paliwal in the (14) can improve the computational speed.

One simple method to determine the cluster number (K) is plotting the sum of the

squared distance among the centroids and points. This method is called as Elbow method.

Figure 2.3 shows the plot of the same for a synthetic dataset generated having 3 clusters.

It can be seen that at K=3, there is a bend. For that particular dataset, that is the

optimum value of K. At K=3, the sum of the squares of the distances between the points,

and the centroids within the clusters are ideal, beyond which it slowly converges. Since

we know that there are 3 clusters, the result we got from the Elbow plot supports, and

hence it can be used as a technique to initialise the value of K.

Figure 2.3: Elbow Plot: Distortion vs K

To have a good clustering using KMeans, we must ensure that the centroids of the
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initial clusters chosen are well spread within the dataset scope. This leads to the require-

ment for new techniques for selecting the centroids, and KMeans++ (10) is an excellent

method to achieve the same. The following section discusses in detail the KMeans++

algorithm.

2.3 KMeans++

To overcome the shortcomings of KMeans, the initial centroids must be carefully selected.

Arthur, David and Vassilvitskii, Sergei in (10) discuss the advantages of careful seeding

in the KMeans algorithm. KMeans++ is an algorithm built as an initial step to be

done before doing KMeans. It is an intelligent initialisation technique for the initial

centroids. Unlike the standard method, in this, the centroids are chosen based on a

probability distribution of the weighted distances. This ensures that the centroids are

widely separated, which helps to achieve accurate clustering. KMeans++ improves the

computational speed by reducing the iterations required for the centroids to converge.

Consider a case where the dataset has N number of observations in the D dimensional

space. The user defines the clusters present. One data point is chosen at random as the

cluster’s centroid. D(x) is defined as the euclidean distance from a point to the closest

centroid. Now, determine the next centroid as a point in the dataset in such a way that it

has a probability of square of the distance from that point divided by sum of the square

of the distance of all points.

Mathematically, it can be expressed as follows: We have the dataset represented by X

First centroid c1 is x, such that x ∈ X

Next centroid c2 is x′, such that x′ ∈ X and has a probability D(x′)∑
x∈X D(x)2

, where D(x)

represents the shortest distance between points and previously selected centroid, c1. This

process is repeated till we have the centroids for all the clusters.

Once we get the required centroids, the KMeans algorithm is done, and the clustering

is achieved. The advantage of KMeans++ is that it reduces the chances of outliers

being selected as the initial centroids. Since it involves the selection of centroids with

a probability, there is more clarity on the initialisations. It also increases the chances

that these points could be the centroids or lies closer to the centroid, which helps quicker

convergence.

Arthur, David & Vassilvitskii, Sergei in (10) also study the running time and the

accuracy of KMeans++ applied to four different datasets, out of which three are real-

world datasets (Cloud Dataset (15), Intrusion Dataset (15) and Spam Dataset (15)).

They studied this by choosing the value of clusters as 10, 25 and 50, and in each K, the
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algorithm was run 20 times since the first centroid was randomly selected. The minimum

values of the centroids, average potential and mean running time was reported. The

results show KMeans++ performs much better compared to KMeans in all the cases.

The running time was also reduced when KMeans++ was used. In the Synthetic dataset,

KMeans failed to cluster the dataset as it merged some clusters incorrectly. On the other

hand, the KMeans++ showed clear separated clusters in the same dataset. In the real-

world dataset, it was seen that KMeans++ gave a minimum of 10% more accuracy than

the KMeans algorithm. Notable improvement was observed in the Spam and Intrusion

dataset. Significant improvement in the convergence time was also observed by using this

careful seeding technique.

Due to its simplicity, it is used as a default method for initialisation in the EM Algo-

rithm, which will be discussed in detail in the coming section.

2.4 EM Algorithm

We had briefly discussed the need for the Expectation Maximisation algorithm when we

discussed the Mixture Models. Here we will see, in detail, how the algorithm works. The

EM algorithm (5) can be called a probabilistic clustering approach. It is used in Mixture

Models to estimate the distribution parameters with the help of finding the maximum

likelihood. One of the methods that can be employed to find the maximum likelihood of

distribution is using the EM algorithm.

The following shows how the EM algorithm can determine the parameters of the

Mixture Model.

First, consider a dataset whose labels are represented by Zi ∼ Multinominal Distribution

having mixing coefficients or weights as: {π1, π2...πG}, hereG represents the group number

and it satisfies the conditions
∑G

g=1 πg = 1.

Zi represents the group, Zig =

{
1 if the yi belongs to group g

0 Otherwise
We consider that the dataset under observation is formed from superpositions of multiple

Gaussian distributions.

A data point in the dataset can be defined as:

yi|Zi ; θzi ∼ N (µzi,Σzi), where N represents a Gaussian distribution.

Now we will consider a particular case, i.e., the dataset under consideration is a univariate

f (yi) =
∑
zi∈Z

f (yi|zi) p (zi)

=
∑
zi∈Z

f (yi|zi) πzi

(2.8)
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f(yi) =
G∑

g=1

πgN
(
yi ;µg , σ

2
g

)
(2.9)

Equation 2.9 shows Gaussian Mixture model represented by linear superposition of

individual Gaussian distributions. Naturally, the thought would be to estimate the pa-

rameters for the distribution.

Let π̂g, µ̂g, σ̂g represent the estimated parameters. To estimate the parameters, the Max-

imum Likelihood is computed.

Likelihood can be defined as the product of individual functions by independence. It can

be written as follows:

L
(
π , µ , σ2

)
= f (y1) · f (y2) · · · · f (yn)

=
n∏

i=1

f (yi)

=
n∏

i=1

[
G∑

g=1

πg ·N
(
yi ;µg , σ

2
g

)] (2.10)

Since it is Gaussian Distribution,

N
(
yi;µg, σ

2
g

)
=

1√
2πσ2

g

exp

(
− (yi − µg)

2

2σ2
g

)
(2.11)

Combining Equation 2.10 and Equation 2.11, we get:

L
(
π , µ , σ2

)
=

n∏
i=1

[
G∑

g=1

πg ·
1√
2πσ2

g

exp

(
− (yi − µg)

2

2σ2
g

)]
(2.12)

To maximise the likelihood, we need to find the natural log and equate it to 0.

log
(
L
(
π , µ , σ2

))
=

n∑
i=1

log

[
G∑

g=1

πg ·
1√
2πσ2

g

exp

(
− (yi − µg)

2

2σ2
g

)]
(2.13)

This Equation 2.13, we have seen when we had discussed the Mixture Models. However,

this does not have a straightforward solution due to the presence of singularities in the

distribution. To explain this consider a case when one of the points in the dataset is equal

to the mean of the distribution. Substituting yi = µg, in Equation 2.11, we get the normal
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distribution value as:

N
(
yi ;µg , σ

2
g

)
=

1

σg

√
2π

(2.14)

Now, if σg → 0 in Equation 2.14, then Equation 2.13 would go to infinity. As a result,

maximisation of log-likelihood for finding the model parameters cannot be a solution

as there will always be the presence of such singularities in a mixture model. In this

scenario, the approach that can be used is Expectation Maximisation (5). It provides a

simple solution by initialising the parameters and then doing the expectation step, which

finds the posterior probabilities. Later in the maximisation step, the parameters are again

computed. These actions are repeated until the convergence of log-likelihood.

The motivation for EM Algorithm is - if we know the labels Zi, then the problem is

straightforward, and the following can be used to determine the parameters:

For a group g:

π̂g =
(Number of Zi in group g)

n
(2.15)

µ̂g =

∑
Zi∈g yi

(Number of Zi in group g)
(2.16)

σ̂2
g =

∑
Zi∈g (yi − µg)

2

(Number of Zi in group g)
(2.17)

If we assume that the Zi are known, therefore the Completed likelihood can be written

as:

f (yi , Zi) = N
(
yi ;µzi , σzi

2
)
πzi (2.18)

L (y , Z ; θ) = Πn
i=1Π

G
g=1

[
πg N

(
yi ;µg , σ

2
g

)]zig
= ΠG

g=1Π
n
i=1π

zig
g N

(
yi ;µg , σ

2
g

)zig
= ΠG

g=1π
Σn

i=1zig
g Πn

i=1N
(
yi ;µg , σ

2
g

)zig (2.19)

Log Likelihood,

l (y, Z; θ) = log (L (y, Z; θ)) (2.20)

Where θ is the parameters of the distribution represented by (π, µ, σ2).

Substituting 2.19 in 2.20, we get,
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l(y, Z; θ) =
G∑

g=1

{(
n∑

i=1

Zig

)
log (πg) +

n∑
i=1

Zig log
[
N
(
yg , µg , σ

2
g

)]}

=
G∑

g=1

n∑
i=1

Zig log (πg) +
G∑

g=1

n∑
i=1

Zig log
[
N
(
yg , µg , σ

2
g

)]
=

G∑
g=1

n∑
i=1

Zig log (πg) +
G∑

g=1

n∑
i=1

Zig

[
−1

2
log
(
σ2
g

)
− − (yi − µg)

2

2σ2
g

− −1

2
log (2π)

]
(2.21)

Optimising Equation 2.21 with µg , we find the derivative with respect to µg and equate

it to 0

∂l

∂µ̂g

=
n∑

i=1

Zig
∂

∂µ̂g

[
− (yi − µ̂g)

2

2σ̂2
g

]

=
n∑

i=1

Zig

σ2
g

(yi − µ̂g)

=
1

σ2
g

[
n∑

i=1

Zigyi − µ̂g

n∑
i=1

Zig

] (2.22)

Equating Equation 2.22 to 0, we get:

µ̂g =

∑n
i=1 zigyi∑n
i=1 zig

(2.23)

Similarly, optimising the Equation 2.21 with σ2
g

∂l

∂σ̂2
g

=
n∑

i=1

zig
∂

∂σ̂2
g

[
−1

2
log
(
σ̂2
g

)
− (yi − µ̂g)

2

2σ̂2
g

]

=
n∑

i=1

zig

[
− 1

2σ̂2
g

+
(yi − µ̂g)

2

2σ̂4
g

]
=

1

σ2
g

[
−
∑n

i=1 zig
2

+

∑n
i=1 zig (yi − µ̂g)

2

2σ̂2
g

]
(2.24)

Equating Equation 2.24 to 0, we get:

σ̂2
g =

∑n
i=1 zig (yi − µ̂g)

2∑n
i=1 zig

(2.25)
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Similarly , by optimising the equation with πg and equating the derivative to 0, we get,

π̂g =

∑n
i=1 zig
n

(2.26)

With these parameters in hand, we can:

1. Make an educated guess for the values of Zig, which can be represented as sig

2. Maximise the values for mean, variance and weights

We iterate through these two steps. In each iteration, it can be seen that the likelihood

value increases and finally converges.

For this to work effectively, it depends on the educated guess we make for the Zig. Once

we have the value of Zig, using the completed log-likelihood, we can compute the values

of π̂g’s, σ̂
2
g ’s and µ̂g’s.

It is also possible to initially guess the values of π̂g’s, σ̂
2
g ’s and µ̂g’s and then find values

of Zig’s. This is what is done in the EM Algorithm. The values of Zig’s are estimated by

their posterior expectation. It can be represented as below:

Sig = Ezig |πg ,µg ,σ2
g
{Zig} (2.27)

Conditional Probability can be written as:

P{Zig = 1|πg, µg, σ
2
g} =

P{Zig = 1|πg, µg, σ
2
g}

P{Zig = 1}

=
πgN

(
yi;µg, σ

2
g

)∑G
k=1 πkN (yi;µk, σ2

k)

(2.28)

sig = Ezig |πg ,µg ,σ2
g
{Zig} =

∑
zig∈{0,1}

ZigP (Zig) (2.29)

Only one term in the above expression would be there as others will be 0. Therefore:

sig =
πgN

(
yi;µg, σ

2
g

)∑G
k=1 πkN (yi;µk, σ2

k)
(2.30)

Now we will see how the Expectation(E) and the Maximisation(M) step are worked out.

E step: The value is computed for sig over all the data points and groups, i.e., i varying

from 1 to n (Datapoints) and g ranging from 1 to G(Groups)
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M Step: The values of the π̂g, µ̂g, and σ̂2
g are computed for g varying from 1 to G(Groups)

as below:

π̂g =

∑n
i=1 sig
n

µ̂g =

∑n
i=1 sigyi∑n
i=1 sig

σ̂2
g =

∑n
i=1 sig (yi − µ̂g)

2∑n
i=1 sig

The log-likelihood is evaluated using the below equation:

log
(
L
(
π, µ, σ2

))
=

n∑
i=1

log

[ G∑
g=1

πg ·N
(
yi;µg, σ

2
g

)]
(2.31)

This value is checked for convergence, i.e., if it falls under a threshold value. If it does

not, then the E and M step is again repeated.

Another view of the EM algorithm is when the dataset contains missing values. The

parameters for the cluster having the missing data cannot be computed. What the EM

algorithm does is it fills them with some values such as 0’s in all the missing values. These

values can be called Artificial values as they are filled by us to implement the algorithm.

With these values, the parameters are calculated. This is the M step. The missing data is

replaced with the conditional expectation values, which forms the E step. Now the E and

M steps are repeated. In each iteration, the missing data is populated with new artificial

data. The likelihood is guaranteed to increase in each iteration, and once a threshold is

achieved for the difference between the populated missing values, the iteration is stopped.

The maximum likelihood estimation is self-consistent (6), i.e., if we generate artificial

data from the Maximum log-likelihood density function, it does not change the maximum

likelihood estimation.

Another important consideration is the initialisation of parameters. Compared with

KMeans, the EM algorithm is complex as it involves more computation, and the iterations

required to reach convergence are also more. The most common method chosen for the

initialisation of parameters is by running the KMeans algorithm and taking the means

values from that. Covariance is initialised as the covariance obtained by the clusters,

and weights can be obtained by the ratio of points assigned to each cluster. With these

initialisations the EM algorithm is run.

It can be observed that KMeans is a particular case of EM. sig that we compute

during the EM algorithm can also be called as responsibility. It shows the probability of

a point falling into a particular cluster. In KMeans, as we know, it is a hard clustering
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technique. A data point is allocated a cluster even if the position of the data point is

roughly in between or close to the centre of two clusters. This means that the value of the

responsibility will be either 0 or 1, whereas, in EM algorithm, the value will be between

0 and 1.

The above algorithms can be summarised as shown in Table 2.1:

Table 2.1: Clustering Algorithms

KMeans KMeans++ EM

1. Initialise number of clus-
ters and cluster centroids

1. An initial centre is ran-
domly chosen c1 uniformly
from X

1. Initialise number of clus-
ters and cluster centroids

2. E Step - data point is
assigned to the closest cen-
troids

2. The next centre is chosen
ci = x′ ∈ X having probabil-
ity D(x′)∑

x∈X D(x)2

2. E Step – Find the respon-
sibility that of each point be-
longing to a cluster

3. M Step - Find the new
centroids of the clusters

3. Repeat the above 2 steps
till all the centre are ini-
tialised

3. M Step – Find the new
means, variance and weights
with the responsibility

4. Repeat until it the cen-
troids converge

4. Proceed with the KMeans
algorithm after the initialisa-
tion step

4. Repeat until it the pa-
rameters or the log likelihood
converges
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Chapter 3

Methodology

This chapter discusses the approach chosen to study and build the algorithms from scratch.

It details the steps involved in the algorithm and its implementation in Python. In

addition, it discusses how the different algorithms were tested with the help of a synthetic

dataset and later applied the algorithms to a real-world dataset.

3.1 Dataset

The most important part of the dissertation is to study the algorithm’s behaviour by

applying it to a real-world dataset. The algorithm needs to be first applied to a known

dataset to understand the performance, and later it needs to be used on the unknown

dataset so that we have a comparative study. For this purpose, there is a need to generate

a synthetic dataset.

The synthetic dataset is one that is generated by the machine with user-defined pa-

rameters. Initially, while doing the dissertation, due to lack of knowledge, the approach

chosen for generating the dataset was by selecting a random point and then generating

more points around it falling within a fixed radius. The equation of the circle was used

for generating the points.

Consider a circle with a radius r

Let (xc, yc) be the centres of the circle.

Generate a random angle represented by α defined as:

α = 2π∗ Random Number

We need to find a point (x, y) on the circle such that it is the defined angle from the

centre having the radius defined. The points can be defined as:

[x, y] = [r cos(α) + xc , r sin(α) + yc]

This was one of the approaches in the beginning, failing to account for several details
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about the dataset. One of the issues with this approach is that it did not account for any

clear definition of the parameters such as mean, standard deviations or the distribution

followed by the points. As a result, even if we implemented clustering, we will not have

a known outcome to compare the results we got after clustering.

Since our study deals with the Mixture Models, it was more suitable to generate ran-

dom points from a mixture distribution and later study how well the algorithm separates

the individual distributions. The dissertation is trying to implement EM Algorithm to

a univariate dataset as a result, we need to generate a synthetic dataset univariate by

nature.

Initially, the clusters and the data points in them are defined. Once the clusters are

defined, the mean and variances of each cluster need to be defined, after which we define

the centroids for each cluster. The centroids are randomly picked, having a uniform

distribution. Now weights are defined for each of the clusters. The weight is also known

as mixing coefficients. For instance, if we randomly pick up a data point from the dataset,

the probability that it will be from a particular cluster is defined by Mixing coefficients.

An array of labels with the sample size is generated, having a probability distribution of

mixing coefficients. Now the labels array is looped, and points are randomly picked from

a normal distribution based on the cluster parameters.

Figure 3.1: Histogram plot of the generated Synthetic Data. Red line
represents the probability distribution function of the same.

Now on this dataset, the clustering techniques - KMeans, KMeans++ and EM algo-

rithms are applied, and the results are studied. Generating points based on this approach
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will help us define a dataset in more detail enabling us to compare the results once the

clustering algorithm is implemented.

We aim to fit a model with a similar probability distribution function represented

by the red line in Figure 3.1. This needs to be achieved by the EM Algorithm function

developed by feeding in the data points as input.

An example of the creation of a synthetic dataset and the probability distribution of

a randomly generated sample is shown in Figure 3.1. Table 3.1 shows the configuration

used to generate the dataset.

Table 3.1: Configuration of synthetic dataset generated

Sample Cluster Mean Variance Weights

1000 3 4 -4 0 1.2 1.8 0.8 0.33 0.33 0.33

3.2 KMeans

The aim is to create a KMeans function from scratch and run it on a synthetic dataset. The

first step while doing KMeans is to define the clusters and then the initial centroids. There

are numerous ways in which this could be done. One could be to check the minimum and

maximum values present in the dataset and then generate the centroids within these limits

for the clusters. Another way is to randomly pick points from the dataset as centroids.

Once this initialisation is done, the next step is to iterate through the datapoints, compute

the distance between each point and the centroids, and assign the points to a cluster whose

distance is the shortest. After this, we can see that all the data points in the dataset will

be assigned to one of the clusters defined. The cluster centroids are now calculated from

the points assigned to a cluster. With these new centroids, the distance is again computed,

and the points are assigned to clusters. This process is repeated until the centroid value

converge or falls under a threshold.

The number of clusters is selected with the help of plotting the sum of squares of

distances between the centroids and points vs K. It can be noted that there will be an

elbow after which there is not much variation with the sum of the square of the distances

with an increase in K. Running the algorithm is straightforward; however, the value of

the chosen initial centroids plays a crucial role, as discussed in the previous chapter. The

approaches of selecting random centroids depending on the data points scope and selecting

random points within the cluster have been implemented in the function created.

Figure 3.2 shows the KMeans done on a synthetic 2-D dataset having 3 clusters. The

dataset is generated with the make blob function inside the Scikit Learn dataset library.
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It will return the dataset as well as the labels. One thousand data points with 3 clusters

are defined. The KMeans function is run on the dataset. It was run ten times to get a

more accurate clustering. Figure 3.2 shows the output of the same runs on the synthetic

dataset.

The functions in the implementation can be summarised as shown in Table 3.2 and the

parameters are described in Table 3.3

Table 3.2: Functions in the developed KMeans Algorithm

Function Name Parameters Purpose Return

get centroids from points no centroids
points
features

Choose centroids from
the dataset

Array of Centroids

get random centroids no centroids
points
limit
features

Select the centroids ran-
domly from the limits
set

An array with the Cen-
troids

cal dist p1
p2

Calculates the distance
between 2 points

Distance

map clusters points
centroids

Create an array having
labels of the cluster hav-
ing the shortest distance

A Mapped array of la-
bels having the same di-
mension as the points

update cluster centroids clusters
points
no centroids
centroids

Calculates the centroid
values based on the clus-
ter passed

An array with the Cen-
troids

implement kmeans clusters
points
features

Implement the KMeans
Algorithm

An array with the la-
belling is returned

Scikit Learn Library (4) has an inbuilt kmeans function. One of the important con-

siderations of the dissertation is to draw a comparison between the inbuilt functions and

the developed function. This will give us an idea of how the implementations differ and

what can be improved. Table 3.4 shows the parameters passed as input to the KMeans

inbuilt function. Figure 3.3 shows the output obtained by passing the same dataset to

the inbuilt function.
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Table 3.3: Parameters in developed
KMeans Algorithm

Parameters Description

no centroids Number of centroids

points Data Points

features Dimension

p1 Point 1

p2 Point 2

clusters Cluster array

centroids Centroid array

limit Array with limit

Table 3.4: Parameters in kmeans
function in Scikit Learn Library

Parameter Value

n clusters 3

init random

n init 10

max iter 300

tol 1e-04

verbose 0

random state None

copy x None

algorithm llyod

Figure 3.3: Comparison of the original and the output clusters obtained
passing the same dataset used in Figure 3.2 to the inbuilt kmeans func-
tion.
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Figure 3.2: KMeans implemented to the synthetic dataset. The shift
in the centroids during each iteration is shown in the figures. The final
image shows the comparison of the original and the computed clusters
obtained when the centroids converged.

26



3.3 KMeans++

As discussed in the previous chapter, initialisation plays an essential role in convergence

and proper data clustering. KMeans++, as discussed before, is a smart initialisation

technique. It selects the initial centroids from a probability distribution. This guarantees

that the chosen centroids are not close to each other. Once the centroids are set, the

process is the same as KMeans.

The aim is to create a KMeans++ algorithm from scratch to understand the concept

involved. One of the points is randomly selected from the dataset. An array with the

probability distribution is created. The probability distribution is defined as the shortest

distance among the centroid chosen and the point divided by the sum of the distances

of each point from the centroid. With this probability distribution, the next centroid is

selected from the dataset. Once centroids for all the clusters are chosen, the same KMeans

algorithm we defined earlier was run.

Figure 3.4 shows the KMeans++ algorithm implemented on a 2D dataset randomly

generated in the same way we did for the KMeans case.

The functions in the implementation can be summarised as shown in Table 3.5 and

the parameters are described in Table 3.6.

Table 3.5: Developed KMeans++ functions

Function Name Parameters Purpose Return

get centroids no centroids
points
features

Choose centroids from the
dataset

Array of Centroids

calculate prob dist centroid
points
idx

To calculate the probablity
distribution of points for se-
lection of the remaining cen-
troids as per the Kmeans++
algorithm

An array of Probability dis-
tribution having the same
size as the points

calculate distance p1
p2

Calculates the distance be-
tween 2 points

Distance

get centroids with prob clusters
points
features

Select the remaining centroids
from a probablity distribution

An array with the Cen-
troids

map clusters points
centroids

Create an array having labels
of the cluster having the short-
est distance

A Mapped array of labels
having the same dimension
as the points

update cluster centroids clusters
points
no centroids
centroids

Calculates the centroid values
based on the cluster passed

An array with the Cen-
troids

implement kmeans pp clusters
points
features

Implement the KMeans++ Al-
gorithm

An array with the labelling
is returned
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Scikit Learn library (4) has also an inbuilt kmeansplusplus function. It is generally

used in machine learning for finding the centroids of the clusters. Table 3.7 shows the

parameters passed as input to the inbuilt function.

Figure 3.5: Centroids obtained from the inbuilt KMeans++

The plot (Figure 3.5) below shows the centroids of the clusters given by running the

library function on the same dataset.No other details about the clustering are obtained

other than the centroids and the index of the centroids from the dataset. The centroids

are shown in black in Figure 3.5.

Table 3.6: Parameters in the the devel-
oped KMeans++ Algorithm

Parameters Description

no centroids Number of centroids

points Data Points

features Dimension

p1 Point 1

p2 Point 2

clusters Cluster array

centroids Centroid array

limit Array with limit

Table 3.7: Parameters in kmeansplus-
plus function in Scikit Learn Library

Parameter Value

X Data points

n clusters 3

x squared norms None

random state None

n local trials None
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Figure 3.4: KMeans++ implemented to the synthetic dataset. The shift
in the centroids during each iteration is shown in the figures. The final
image shows the comparison of the original and the computed clusters
obtained when the centroids converged.
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3.4 EM Algorithm

The aim is to create this technique from the ground up by understanding the concept.

The synthetic data generated in the first section is the input. We are trying to cluster the

developed 1-D dataset and compute a function which would fit the data. The first step

is to initialise the centroids, variance and weights.

The initial centroids can be determined using the following techniques:

• Randomly selecting points from the dataset

• Centroids were obtained by running the KMeans algorithm

• Centroids were obtained by running the KMeans++ algorithm

The variance is initialised as a minimal value, i.e., 10−4. The weights are initialised as the

probability of each point coming from a cluster, i.e., in our case, it is defined as having

an equal probability of 1/3 for each cluster. Now with these values, the likelihood is

calculated using the probability distribution function, which takes in the points, mean

and variance. Now the E step is done where this likelihood value is used to calculate the

responsibility, which denotes the probability of a point falling into a particular cluster.

With this responsibility, the M step is done where the new mean, variance and weights

are computed. The log-likelihood is calculated using these values, and the value is stored.

The E and M steps are repeated until the relative tolerance of log-likelihood falls under

a threshold of 10−5.

The relative tolerance is calculated as follows:∣∣∣∣∣ llnew − llold
llold

∣∣∣∣∣ =
∣∣∣∣∣ llnewllold

− 1

∣∣∣∣∣
Where ll represents the log-likelihood. It can also be said that at convergence, llnew

llold
will

tend to approach 1 making the relative tolerance tending to 0.

Once the threshold is met, the iterations, means, variances and responsibilities are

returned. The agreeability between the known and computed labels is calculated using

the rand score, a function that comes under the metrics library in Scikit Learn. This

will help us determine how well the model has predicted the labels. Once the parameters

are known, we can plot the function using the normal distribution equation by defining a

variable x varying from −10 to +10. The original function and the computed functions

are plotted. The same function is run using different initialisation techniques.

The synthetic dataset was generated having the parameters shown in Table 3.8.

Figure 3.7 shows the distribution function’s plot during each iteration, and the final

function obtained.
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Table 3.8: Configuration of synthetic dataset generated

Sample Cluster Mean Variance Weights

1000 3 4 0 4 1.6 1.8 1.2 0.33 0.33 0.33

Table 3.9: Functions in the EM Algorithm developed

Function Name Parameters Purpose Return

logsumexp arr To prevent underflow and overflow when
exponential of large values come

Array

calculate loglikelihood Calculates the log-likelihood Log-likelihood

implement em means
variances
weights

Calculates the responsibilities. With
this responsibility calculates the mean,
variance and weights. Log-likelihood is
calculated. If it within a threshold from
the previous log-likelihood the loop is ex-
ited

Iteration number
means
variances
weights
log likelihood
responsibilities

Figure 3.6: GuassianMixture function in the Scikit Learn Library is
used to estimate the parameters. The distribution function with the
actual and estimated parameters from the inbuilt function is plotted.

The function and the parameters used to implement the same are summarised in

Table 3.9.

Scikit Learn Library (4) has an inbuilt function called GuassianMixture, which can

estimate the parameters of a Gaussian Mixture distribution. If the same input is passed

to the function, and the parameters can be determined, the function is plotted as above

along with the true parameters. The same is shown by Figure 3.6.
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Figure 3.7: EM Algorithm applied to the Synthetic dataset. The distri-
bution function during each iteration is shown in the figures. The final
plot shows the true and computed distribution function obtained when
the log-likelihood converged. 32



3.5 Evaluation Criteria

3.5.1 Rand Index

To understand how well the clustering was performed, we need to have certain criteria.

Rand Index (16) is one that can be used to evaluate the algorithm’s performance. This

value gives the value of similarity between labels we have and the ones we computed from

the algorithm.

It is calculated as:

R =
a+ b

nC2

(3.1)

a - No of times a pair of elements belong to one cluster

b - No of times a pair of elements do not belong to one cluster

nC2 - Unordered pairs in the unordered list

It can take a value between 0 and 1. When the value of R is 0, the labels under

consideration do not agree on the clustering of any pair. On the other hand, when the

value of R is 1, it means that the labels under consideration perfectly match.

Example to show how the Rand index is calculated:

Suppose we have 5 data points coming from 2 clusters – {a, b, c, d, e}
Known cluster labels - {0, 0, 0, 1, 1}
Now we implement one of the clustering techniques and ended up getting 3 clusters.

Computed cluster labels - {0, 0, 1, 1, 2}
The first step is to write all the possible unordered lists that can be formed using the

data points. A total of 10 combinations of unordered lists can be formed, and they are as

follows:

{d, e}, {c, e}, {c, d}, {b, e}, {b, d}, {b, c}, {a, e}, {a, d}, {a, c}, {a, b}
Next, we need to calculate the value for a and b,

a = 1 because it can be seen that the {a, b} pair belongs to the same cluster in both the

known and computed clusters.

b = 5 because it can be seen that the {a, d}, {a, e}, {b, d}, {b, e}, {c, e} pairs belong to

different clusters in both the known and computed clusters. Substituting the values in

the equation of the Rand Index, we get the value of 0.6.

Scikit Learn Library (4) has a function rand score which takes in the true and pre-

dicted labels as input parameters and gives a float value between 0 and 1 with both these

values inclusive.
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3.5.2 Bayesian Information Criteria

The models generated only try to fit the data. There are multiple methods by which a

model can be created. It is necessary to determine which model gave the best perfor-

mance. Using the available data, the aim is to determine the best model approximating

or capable of generating the same data – or in other words, identify a model that reduces

the information loss. The two most often used criteria for selecting the model is—the

Bayesian Information Criterion (BIC) and the Akaike information criterion (AIC) are de-

rived from the study of information theory as it is used to estimate the expected value of

any information. (17). BIC varies from AIC as it gives more importance to the number

of parameters.

The general equation for information criteria is −2llmax + Penalty.

The Penalty value for AIC is 2p and for BIC is p log(n) . Here p represents the free

parameters in the mixture. Suppose we have a Gaussian Distribution having k groups,

free parameters are weight, means and variance, then: p = (k − 1) + k + k = 3k − 1

It can be seen that BIC is consistent because it gives more weightage to the number of

free parameters when compared to AIC. Yang (18) tries to study the strengths of AIC and

BIC criteria for multivariate regression analysis. As per (18), the BIC is considered to be

consistent, and AIC accounts for the minimax-rate optimal aspect. These two cannot be

combined, and one of them needs to be sacrificed. Since we are studying the performance

of the model created with EM algorithm with different initialisation techniques, we choose

BIC because it is more consistent.

3.6 Applying the EM to a Real-world dataset

The real-world dataset chosen is the univariate Galaxy dataset (11). It consists of 82 data

points which show the velocities with which the other galaxies are shifting away from our

galaxy. The number of galaxies in the universe could be found if we can determine the

clusters present in the data. The Galaxy data set is frequently used in model-based

clustering as a benchmark data set to compare the effectiveness of various modelling

strategies. (19). The dataset has been debatable in the scientific community for quite

a good number of years because the actual number of galaxies is unknown. In this

dissertation, the K values are varied from 1 to 20. For each k, the algorithm is run 20

times. The BIC value is calculated during each run, and the run giving the minimum BIC

value is considered the best run. Once this is done, the best BIC value plot for all the

clusters (1 to 20) is plotted. From the plot, the K for the minimum BIC value is taken as

the clusters. The dataset is plotted with the help of a histogram. The function is fitted
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to the dataset with the value of K with a minimum BIC value. Figure 3.8 shows the

function plot fitted with the parameters obtained by running the EM algorithm.

Figure 3.8: Histogram plot of Galaxy Dataset. The red line shows the
probability distribution function with the parameters determined by
running EM Algorithm.
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Chapter 4

Results and Observations

The KMeans and KMeans++ algorithm was built from scratch, carefully applying the

theory behind each step. A synthetic dataset was generated, and the same was passed as

input to these algorithms.

For KMeans and KMeans++, a multivariate dataset was created using the make blobs

function to generate the dataset. Table 4.1 shows the configuration of the dataset gener-

ated. The clusters and the centroids of the dataset, were returned. Table 4.2 shows the

centroids of the dataset. The scatter plot of the points is shown in the Figure 4.1.

Table 4.1: Dataset configuration for running KMeans and KMeans++

Sample 1000

Features 3

Cluster Std 1.2

Centroids number 3

Table 4.2: Centroids of the generated dataset with 3 clusters

Cluster 1 Cluster 2 Cluster 3

1.9089 8.7722 8.0516 -3.2241 -0.4267 5.5773

Through visualisation, we can easily identify the clusters since it is coloured differently.

Also, it can be seen that the clusters overlap. Our aim is to implement a clustering

technique that would separate the data points and generate an output like in Figure 4.1.

Additionally, we need to obtain the value of centroids such that the sum of the square of

the distances is minimum. To achieve this, we use KMeans and KMeans++ in the first

phase. Later we use the inbuilt functions from the Scikit Learn Library (4) and compare
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Figure 4.1: The plot of Synthetic Dataset for running KMeans and
KMeans++. Red, Green and Yellow show the clusters present in the
dataset.

the results. As experimented with and documented by Sieranoja, Sami in (20), repeating

the algorithm 100 times reduced the number of enormous clusters by a small percentage.

In our case, each algorithm is run ten times to reduce the error, and the results of all the

observations are tabulated.

4.1 KMeans

From Table 4.3, it can be seen that the best agreeability observed was 0.92, and the

corresponding centroids were: [8.0221,−3.1298] , [1.9031, 8.9771] , [−0.3685, 5.6058]. This

was attained in 9 iterations. Figure 4.2 shows the plot of the actual centroids and the

centroids we got from the best run of KMeans. It can be seen that it almost coincides,

and the degree of difference is very small.

Once the algorithm runs and the centroids converge, the output image of clustering is

as shown in Figure 4.3.
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Table 4.3: Results of developed KMeans for 10 iterations

Runs Centroids Iterations Agreeability

Centroid 1 Centroid 2 Centroid 3

1 8.0221 -3.1298 1.9136 8.9776 -0.3717 5.6151 7 0.9282

2 8.0221 -3.1298 1.9031 8.9771 -0.3685 5.6058 9 0.9293

3 1.9136 8.97768 -0.3717 5.6151 8.0221 -3.1298 7 0.9293

4 1.9031 8.9771 -0.3685 5.6058 8.0221 -3.1298 10 0.9282

5 0.7349 7.2435 7.9322 -4.2026 8.1194 -1.9698 8 0.7219

6 8.8743 -2.9382 6.818 -3.4006 0.7349 7.2435 11 0.9282

7 0.7349 7.2435 8.6411 -2.1832 7.4565 -3.9948 9 0.9282

8 7.9282 -2.1832 8.1262 -4.304 0.7349 7.2435 10 0.9282

9 8.0221 -3.1298 -0.3685 5.6058 1.9031 8.9771 9 0.9293

10 0.3717 5.6151 1.9136 8.9776 8.0221 -3.129 10 0.9282

Figure 4.2: Actual Centroids and KMeans estimated Centroids.

Figure 4.3: Comparison of clusters obtained after running KMeans with
the original clusters
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4.2 KMeans++

Table 4.4: Results of developed KMeans++ for 10 iterations

Runs Centroids Iterations Agreeability

Centroid 1 Centroid 2 Centroid 3

1 -0.3685 5.6058 1.9031 8.9771 8.0221 -3.1298 8 0.9293

2 1.9136 8.9776 8.0221 -3.1298 -0.3717 5.6151 9 0.9282

3 1.9136 8.9776 8.0221 -3.1298 -0.3717 5.6151 7 0.9282

4 -0.3685 5.6058 8.0221 -3.1298 0.3717 5.6151 12 0.9293

5 1.9031 8.9771 8.0221 -3.1298 -0.3685 5.6058 9 0.9293

6 1.9136 8.9776 8.0221 -3.1298 -0.3717 5.6151 7 0.9282

7 -0.3717 5.6151 8.0221 -3.1298 1.9136 8.9776 8 0.9282

8 1.9031 8.9771 -0.3685 5.6058 8.0221 -3.1298 9 0.9293

9 7.9322 -4.2026 0.7349 7.2435 8.1194 -1.9698 8 0.7219

10 1.9031 8.9771 8.0221 -3.1298 -0.3685 5.6058 9 0.9293

From Table 4.4, it can be seen that the best agreeability observed was 0.92 and the

corresponding centroids were: [1.9031, 8.9771], [ 8.0221, -3.1298], [-0.3685, 5.6058] This

was attained in 8 iterations. Figure 4.4 shows the clustered output after running the

KMeans++ algorithm.

Figure 4.4: Comparison of clusters obtained after running KMeans++
with the original clusters

4.3 KMeans Inbuilt Function

Using the inbuilt KMeans function defined in the Scikit Learn Library (4). The function

was executed 10 times and the results were noted. Table 4.5 shows the observations
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obtained.

Table 4.5: Results of kmeans function in Scikit Learn Library for 10 iterations

Runs Centroids Agreeability

Centroids 1 Centroids 2 Centroids 3

1 1.9031 8.9771 8.0221 -3.1298 -0.3685 5.6058 0.9293

2 1.9136 8.9776 8.0221 -3.1298 -0.3717 5.6151 0.9282

3 1.9198 8.9809 8.0221 -3.1298 -0.3717 5.6151 0.9282

4 1.9198 8.9809 8.0221 -3.1298 -0.371 5.6218 0.9282

5 -0.3717 5.6151 8.0221 -3.1298 1.9136 8.9776 0.9282

6 8.0221 -3.1298 -0.3717 5.6151 1.9136 8.9776 0.9282

7 -0.3717 5.6125 8.0221 -3.1298 1.9136 8.9776 0.9282

8 1.9136 8.9776 8.0221 -3.1298 -0.3717 5.6151 0.9282

9 -0.3693 5.6279 8.0221 -3.1298 1.9252 8.9848 0.9282

10 -0.3652 5.6180 8.0221 -3.1298 1.9137 8.9851 0.9282

It can be seen by comparing Table 4.2 and Table 4.4 that the best agreeability observed

is almost the same for the KMeans function we implemented from scratch and the built-in

functions. It can also be noted that the centroids are also identical.

4.4 KMeans++ Inbuilt Function

The built-in KMeans++ function in Scikit Learn only returns the centroids and the indices

of the centroids in the dataset. It was observed that one of the parameters in the function

was the random state. When passed as None, it generates random centroids during each

iteration while doing the KMeans++ algorithm. Figure 4.5 shows the plot of the centroids

returned from the KMeans++ inbuilt function over ten iterations.

KMeans algorithm can be used for initial initializations of these centroids generated,

leading to fewer iterations and more accurate results.
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Figure 4.5: Centroids from each iteration generated while using
kmeansplusplus function in the Scikit Learn Library

4.5 Comparing results of KMeans and KMeans++

functions developed

Visually observing Figure 4.3 and Figure 4.4, we can see that the input synthetic data

we generated has overlapping clusters. As a result, the output will have less accuracy as

KMeans and KMeans++ will do hard clustering and assign points to either of the clus-

ters. Both KMeans and KMeans++ gave similar clustering, but it can be observed that

the iteration was less for KMeans++ compared to KMeans. Comparing both the imple-

mentations, which were built from scratch, the plot of centroids with the best agreeability

value is shown in Figure 4.6.

Figure 4.6: Plot of original centroids and the centroids obtained from
developed KMeans and Kmeans++
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From this Figure 4.6, it can be seen that KMeans++ gave better accuracy as the

centroids coincide. From Table 4.3 and Table 4.4, we can see that the KMeans++ took

7 iterations and KMeans took 12 to give the same best agreeability value observed. In

summary, we can say that number of iterations taken by KMeans++ to provide the best

results is less than KMeans.

Considering all these observations, it can be said that the functions we built from

scratch are at par with the inbuilt functions, with the advantage of knowing what happens

during each step to give a clear understanding of the algorithm. It also provides the

flexibility to change the working as per the requirement.

4.6 EM Algorithm

KMeans and KMeans++ were discussed because they can be used as a logical initialisation

technique in EM Algorithm. The main area of focus for this dissertation is to study

how the EM Algorithm is applied in Mixture models for clustering. The algorithm was

implemented for a univariate distribution. The dataset was generated from a mixture

model. Table 4.6 shows the configuration of the dataset generated.

Figure 4.7: Plot of the dataset and the probability distribution function

Table 4.6: Dataset configuration for running EM Algorithm

Sample Cluster Mean Variance Weights

1000 3 4 0 -4 1.6 1.8 1.2 0.33 0.33 0.33
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An array with the labels and the dataset was generated using the synthetic generator

function we had discussed before. This label array will be used to compare the agreeability

once the clustering is done by the algorithm. The dataset was plotted. The Probability

distribution was also plotted to understand more about the dataset. Figure 4.7 shows the

plot of the dataset created.

The algorithm aims to fit a function similar to the probability distribution function

shown in Figure 4.7. The EM algorithm is run with different initialisation techniques,

and the results are tabulated in Table 4.7, Table 4.8 and Table 4.9.

4.6.1 EM Algorithm with Random Initialization

Table 4.7: Results of developed EM Algorithm run for 10 times(Random Initialisation)

Run Parameter Log Likelihood Iteration Agreeability

Mean Standard Deviation Weights

0 -5.9740 -0.2025 6.4267 0.0001 0.0001 0.0001 0.3333 0.3333 0.3333

1 -4.2353 0.6246 4.3705 1.0252 2.8280 1.0078 0.2761 0.5767 0.1472 -2044.3782 40 0.7417

2 -4.2329 0.6374 4.3725 1.0274 2.8259 1.0050 0.2771 0.5766 0.1463 -2045.9363 6 0.7410

3 -4.2313 0.6472 4.3742 1.0289 2.8247 1.0023 0.2778 0.5767 0.1455 -2047.2926 11 0.7397

4 -4.2311 0.6480 4.3744 1.0290 2.8246 1.0020 0.2779 0.5767 0.1454 -2047.7507 1 0.7397

5 -4.2310 0.6491 4.3745 1.0291 2.8245 1.0017 0.2779 0.5767 0.1454 -2046.7507 2 0.7397

6 -4.2309 0.6496 4.3746 1.0292 2.8245 1.0015 0.2780 0.5767 0.1453 -2046.9371 1 0.7397

7 -4.2308 0.6501 4.3747 1.0293 2.8245 1.0014 0.2780 0.5767 0.1453 -2046.9485 1 0.7397

8 -4.2307 0.6505 4.3748 1.0293 2.8244 1.0013 - 0.2780 0.5767 0.1452 -2046.9485 1 0.7397

9 -4.2307 0.6509 4.3749 1.0294 2.8244 1.0012 0.2781 0.5767 0.1452 -2046.9485 1 0.7397

10 -4.2306 0.6511 4.3749 1.0294 2.8244 1.0011 0.2781 0.5768 0.1452 -2046.9485 1 0.7397
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4.6.2 EM Algorithm with KMeans Initialization

Table 4.8: Results of developed EM Algorithm run for 10 times(KMeans Initialisation)

Run Parameter Log Likelihood Iteration Agreeability

Mean Standard Deviation Weights

0 4.1521 -0.0163 -4.0809 0.0001 0.0001 0.0001 0.3333 0.3333 0.3333

1 3.7387 -0.3544 -4.0986 1.6465 1.2911 1.1115 - 0.3696 0.2768 0.3536 -2119.6463 44 0.8489

2 3.7347 -0.3570 -4.0981 1.6487 1.2881 1.1117 0.3702 0.2761 0.3538 -2118.9985 2 0.8480

3 3.7271 -0.3611 -4.0967 1.6528 1.2817 1.1123 0.3713 0.2745 0.3541 -2121.0121 6 0.8473

4 3.7222 -0.3633 -4.0954 1.6555 1.2770 1.1130 0.3721 0.2734 0.3544 -2120.7214 5 0.8482

5 3.7170 -0.3651 -4.0938 1.6582 1.2717 1.1139 0.3729 0.2722 0.3548 -2120.8040 7 0.8493

6 3.7154 -0.3655 -4.0932 1.6590 1.2700 1.1142 0.3732 0.2719 0.3550 -2120.1452 2 0.8484

7 3.7127 -0.3662 -4.0921 1.6604 1.2669 1.1147 0.3736 0.2712 0.3552 -2120.3806 5 0.8484

8 3.7119 -0.3664 -4.0918 1.6609 1.2660 1.1149 0.3737 0.2710 0.3553 -2120.8435 1 0.8475

9 3.7105 -0.3667 -4.0912 1.6616 1.2643 1.1153 0.3740 0.2706 0.3554 -2119.9777 3 0.8475

10 3.7098 -0.3668 -4.0909 1.6620 1.2635 1.1154 0.3741 0.2704 0.3555 -2119.9681 1 0.8475

4.6.3 EM Algorithm with KMeans++ Initialization

Table 4.9: Results of developed EM Algorithm run for 10 times(KMeans++ Initialisation)

Run Parameter Log Likelihood Iteration Agreeability

Mean Standard Deviation Weights

0 0.4448 -4.6772 5.8569 0.0001 0.0001 0.0001 0.3333 0.3333 0.3333

1 -0.3597 -4.1429 3.8073 1.4043 1.0883 1.6146 0.2992 0.3429 0.3579 -2106.4551 75 0.8566

2 -0.3620 -4.1314 3.7850 1.3702 1.0940 1.6251 0.2925 0.3459 0.3617 -2110.9189 9 0.8580

3 -0.3646 -4.1106 3.7465 1.3137 1.1047 1.6436 0.2810 0.3509 0.3681 -2119.8094 23 0.8509

4 -0.3660 -4.0994 3.7255 1.2847 1.1108 1.6540 0.2749 0.3536 0.3715 -2120.8462 21 0.8482

5 -0.3663 -4.0973 3.7215 1.2793 1.1119 1.6560 0.2738 0.3540 0.3722 -2121.1300 5 0.8482

6 -0.3664 -4.0963 3.7197 1.2769 1.1124 1.6569 0.2733 0.3543 0.3725 -2121.8607 2 0.8482

7 -0.3666 -4.0952 3.7176 1.2741 1.1130 1.6580 0.2727 0.3545 0.3728 -2121.2983 3 0.8482

8 -0.3668 -4.0939 3.7152 1.2709 1.1137 1.6593 0.2720 0.3548 0.3732 -2120.7549 4 0.8484

9 -0.3668 -4.0935 3.7143 1.2697 1.1140 1.6597 0.2717 0.3549 0.3733 -2120.7530 1 0.8484

10 -0.3669 -4.0930 3.7134 1.2686 1.1142 1.6601 0.2715 0.3550 0.3735 -2120.1715 1 0.8484

From Table 4.7, Table 4.8 and Table 4.9 it can be seen that the KMeans and KMeans++

gave faster clustering and more agreeability compared to the random initialisation. It

can also be noted that KMeans and KMeans++ gave similar results. KMeans++ gave

more agreeability because the initialisations consider the probability distribution of the

weighted distances for the initialisation of centroids. It increases the chances of these

initial means chosen lying far from each other and closer to the centroids. The param-

eters that gave the best agreeability are highlighted in bold in Table 4.7, Table 4.8 and

Table 4.9.

GaussianMixture is an inbuilt function in the Scikit Learn Library (4) for implement-

ing EM Algorithm. The same dataset is fed into the function, and the parameters are
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determined. It is run ten times, and the parameters that gave the best BIC values were

taken.

Figure 4.8 displays the fitting of a model generated with the EM algorithm with

different initialisation techniques along with the inbuilt GaussianMixture built-in function.

Figure 4.8: Plots of Distribution function using different initialisation
techniques in EM

It can be seen that the algorithm built from scratch can fit a model similar to the

original function and give a good agreeability value. One of the drawbacks of the built-in

function is that the value of the responsibilities of the data points cannot be retrieved. This

implementation gives us more clarity of working like the responsibility values, iterations

taken to converge and the log-likelihood values. These parameters are critical when we

study the algorithm. This provides a more flexible approach to clustering.

4.7 Defining the Degree of separations between clus-

ters

In general, the difficulty in separating the clusters lies in the degree of separation they

have in between. The EM algorithm is guaranteed to work with clusters that are well

separated. KMeans and KMeans++ will also work well with well-separated clusters, but

they will do a hard clustering of data points.

Consider a case when there are 2 clusters present in a univariate distribution having

means as µ1 and µ2 and variance as σ1 and σ2. Let the distance between the means be
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△. Entropy can be defined as the measure of disorder present in the dataset. It can also

be said that when the value of entropy is minimum, the clusters can be easily separated.

Mathematically it can be written as:

E = −
K∑
k=1

Pj log(Pj)

Where Pj represents the responsibility value which gives us an idea of the probability of

a datapoint belonging to a particular cluster.

Suppose we have 2 clusters, then the value of entropy is maximised when the value P1

and P2 are equal. We also know that P1 + P2 = 1.

So therefore P1 = P2 = 0.5. This means there is an equal chance for the point to be in

both clusters which makes it difficult to cluster.

Consider a case when the mean is defined as:

µ1 = 0 and µ2 = µ1 +△
Similarly, consider variance is defined as:

σ2
1 = 1 and σ2

2 = τ 2σ2
1 = σ2

1

The relationship between the µ1, µ2,△, Pj and E can be found by simulating Equation 4.1.

Pj =
πgϕ

(
x;µj, σ

2
j

)∑K
k=1 πkϕ (x;µk, σ2

k)
(4.1)

If the value of △ = 0, it means that the 2 clusters are overlapping. This would be

difficult for our algorithm to cluster. We need to use clustering techniques that would

consider the entropy factor and a method which would require a subspace sampling like

the Gustafson-Kessel Subspace Clustering (21).

It was observed that when the mean of the two clusters was identical, the clustering

gave poor results, i.e., agreeability was less than 0.5, which means that it failed to separate

the clusters. When the value of △ = τ 2, it was observed that the agreeability improved

better than the clusters having the same mean. However, the value was between 0.5 and

0.7, which is still very low for a good clustering. Further on increasing this value, it was

seen that the agreeability increased.

4.8 Galaxy Dataset

The dataset is converted to a Data frame using the Pandas (22) library in Python. The

aim of the experiment is to use the clustering algorithm to find the clusters present in

the dataset. The procedure followed is that the value of the cluster is varied from 1 to

46



20, and in each K value, the EM algorithm is run ten times, and the model that gave

the minimum BIC value was taken. Now BIC value vs K is plotted, and we get a plot as

shown in Figure 4.9.

Figure 4.9: BIC Score for different K

From the plot (Figure 4.9), the value for K for which the model gave the lowest BIC

value is chosen as the clusters. It can be seen that the lowest BIC value is observed at

K=4, and corresponding parameters are noted. With these parameters, the probability

distribution function is plotted, as shown in Figure 3.8.

This dataset is controversial, and different models can be fitted based on the cluster

number. Here we have chosen BIC as a criterion for the selection of the clusters. Clustering

this data, we would get the number of galaxies in the universe. It isn’t easy to have a clear

answer to this question. It varies with the criteria chosen for selection and the method

used for clustering.
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Chapter 5

Conclusion and Future Works

Programming in Python has evolved drastically due to its ease of use and availability

of direct functions for most tasks. Scikit Learn Library (4) is the most famous one for

executing machine learning functions in Python. Most algorithms are readily available

in the Scikit Learn library to do majority of the machine learning tasks such as different

types of Regression, Clustering, and Preprocessing. Clustering is an essential technique

under Unsupervised Machine Learning. The dissertation aimed to implement the EM

Algorithm from the root up and apply it to a real-world dataset. This would give us

a clear understanding of how the algorithm works and provides flexibility to the whole

process, which the inbuilt function fails to do. In implementing the EM Algorithm,

initialising the parameters plays a critical role. Different techniques are used, out of

which KMeans and KMeans++ are very important. KMeans and KMeans++ algorithms

are also implemented from scratch. The similarities and differences between them were

studied and applied to different synthetic data, and the results were observed.

An improvement in the accuracy and execution time was observed when the initialisa-

tion methods changed. It showed faster convergence and more accurate clustering when

the initialisation was good. Using the inbuilt functions for the same purpose directly is

like giving input to a black box without understanding how the algorithm works. If the

performance of the function is not accurate, there is no flexibility to understand how the

function is defined and make necessary corrections. However, if we define a function, we

will have the confidence to explain with a clear understanding of the functioning of the

inner statements. It also allows the flexibility to change the output and input in favour

of the requirement.

EM Algorithm finds its main application when the data under consideration has miss-

ing values. It also has a good application in Pattern Recognition, Image segmentation,

and Data mining problems. It can also be seen that KMeans and EM algorithms are
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closely related. It can be summarized that the EM is a two-step process to find the max-

imum log-likelihood solution. It is an iterative process of 2 steps, the E step in which

the responsibility of a datapoint belonging to a cluster is calculated using the likelihood

and then the M step, with the parameters of the distribution like the mean, variance

and weights are calculated with this responsibility. After the M step, the log-likelihood is

calculated and checked for convergence. The process is repeated if it is not converged or

falls under a threshold set.

Currently, the limitation of the EM Algorithm function implemented is that it only

supports the univariate distribution. Most real-world datasets are multivariate and are

not supported by the implementation. It can be extended to multivariate by making

changes to the equations. Table 5.1 shows the changes to be done to implement it for

Multivariate Distributions.

Table 5.1: EM in Univariate and Multivariate cases

Univariate Distribution Multivariate Distribution

Let xi ∈ Univariate Distribution Let xi = xi1, xi2, · · ·xid ∈ Rd

(Belongs to a Multivariate Distribution in d dimensions)
E step E step

Sik =
πkϕ(xi;µk,σ

2
k)∑G

g=1 πgϕ(xi;µg ,σ2
g)

Sik =
πkϕd(Xi;µk,

∑
k)∑G

g=1 πgϕd(Xi;µg ,
∑

g)
M step

πk =
∑n

i=1 Sik

n
πk =

∑n
i=1 Sik

n

µk =
∑n

i=1 SikXi∑n
i=1 Sik

µk =
∑n

i=1 Sikxi∑n
i=1 Sik

∈ Rd

σ2
k =

∑n
i=1 Sik(Xi−µk)

2

n

∑
k =

∑n
i=1 Sik(xi−µk)(xi−µk)

τ

n

If the current implementation is changed a little, it can accommodate the Multivari-

ate case, giving the function implemented an increased application in real-world data.

Additionally, the mixture distributions are currently coming from the superposition of

multiple Gaussian Distributions. This could also be expanded into various distributions

like Mixtures of Bernoulli distributions. This could also lead to increased applications in

the present world datasets.

We have discussed and implemented mainly three clustering techniques. It can be

seen that different clustering techniques are suitable for different datasets, and there is

no one clustering technique that fits all datasets. This can only be found out by studying

the dataset, statistically implementing various procedures to understand them, and later

applying a suitable clustering algorithm and then studying the results. The current im-

plementation can be extended and published as a library having different clustering algo-

rithms like BIRCH (23), DBSCAN (24), Affinity Propagation Clustering Algorithm (25),

and OPTICS algorithm (26), which can be configured based on the dataset input.
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Appendix

Dataset Generated for testing EM Algorithm

The function returns the array of datapoints and labels.

Sample size - 100

Cluster 1 - [Mean = 4, Variance = 1.6]

Cluster 2 - [Mean = 0, Variance = 1.8]

Cluster 3 - [Mean = -4, Variance = 1.2]

Sample data points generated for testing the EM algorithm is as follows:

[-4.7992296 , -4.01709602, 4.0148895 , 0.04519512, -5.06339894, 2.87541568, 0.86967226,

-2.8796678 , 4.92469682, -2.95873976, 1.71153414, -3.49728092, 1.45861897, -6.50318026,

4.38054232, 2.94354019, 0.78948193, 1.68393786, -3.7312411 , 1.23877229, -4.62013442,

-0.40995411, -3.23438263, 5.24351688, 5.03148761, -3.56237757, 3.70982308, 5.57707522,

0.17756134, 2.76037168, -2.83507323, 3.07100039, 4.7106732 , -3.66989446, -4.17089294,

-7.41633544, -5.73261326, 6.44504413, -0.15481344, -6.15444619, -6.06955754, 2.63466314,

-4.37506931, 6.67254713, 3.92092281, -4.47653055, 3.10976208, -1.04346032, -4.81169808,

0.35476144, 4.06590366, -2.87029709, 4.93102187, 0.38682194, 3.66211849, 0.44011338, -

4.60559172, -2.5636032 , 5.32806023, 4.46902767, 7.0768629 , -3.80096226, 2.9147181 ,

1.36140363, -3.88296488, 0.23244367, 5.56871543, 3.24084374, 2.39252758, 3.06323084,

2.21711782, -3.78864429, -6.23138021, -3.54990649, 3.19599762, -0.42253938, 3.36608011,

-0.10810009, 6.51525922, 4.98294599, -4.60712893, 3.0074766 , -1.57060911, -3.49931299,

-4.2487759 , 3.14114963, 3.42790069, -4.77070404, -3.80537902, -3.18876962, -6.21167251,

3.97352117, 2.03608312, -2.88482193, -5.77993548, 0.95564781, 4.14318117, -1.66143309,

1.93051832, 0.47002926]

The Mixture model label for the same is as follows:

[2, 2, 0, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 2, 0, 0, 1, 1, 2, 0, 2, 1, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 2,

2, 2, 0, 1, 2, 2, 1, 2, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 0,

0, 2, 2, 2, 0, 1, 1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 1, 0, 0, 1, 1, 1]
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All the clusters are given equal weightage i.e. 1/3. The number of datapoints belonging

to each cluster is: Cluster 1 - 39, Cluster 2 - 26 and Cluster 3 - 35. The plot of

the data points and the distribution is shown in Figure 1.

Figure 1: Plot of the dataset and the probability distribution function
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