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Abstract

A digital twin is a virtual replica of a physical object that is constantly updated through map-
ping between them. Digital twins have the potential to improve transportation by providing
insights into traffic conditions, assisting in traffic management applications, and measuring
the effect of infrastructure changes on traffic flow.

The dissertation proposes a framework for building digital twins of the motorway by col-
lecting various sensor data. The framework collects data from motorway sensors using an
Apache Kafka-based communication mechanism and supports consuming data from four dif-
ferent sensors: inductive loops, motorway cameras, toll bridge cameras, and probe vehicles.
The collected data will be passed to a sensor fusion model which will perform the data pro-
cessing and error correction. The processed data will be fed into the agent mapping model,
which will model the traffic flow. The agent mapping model will use an agent-based approach
to simulate the vehicles as agents. Agent-based approach is a simulation modelling technique
that treats each vehicle as an agent and models it individually based on its interactions with
the environment. Simulation of Urban Mobility (SUMO), a microscopic simulator, will be used
to simulate the modelled traffic flow. To advance the vehicles between the sensor readings,
SUMO’s car following model and lane changing model will be used.

The framework is inspired by the Kalman filter, a sensor fusion technique that predicts and
corrects the state using previous data iteratively. Similarly, the concept of our framework is
to iteratively estimate the vehicle’s state based on the initial sensor data reading and advance
the vehicles. The framework estimates the new state and corrects it based on the sensor data.

The framework is being evaluated by creating a digital twin of Dublin’s M50 motorway. A
SUMO simulation of the M50 motorway serves as the physical entity for this digital twin. The
number of total vehicles and the average speed of the entire simulation are used to compare
the physical entity and the digital twin. The dissertation also discusses potential future work
for the framework to improve performance and accurately model traffic flow.
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1 Introduction

A digital twin is a virtual replica of the physical world, and a framework is the basic
underlying structure of a system that can be used to build digital twins of any motorway by
collecting data from roadway sensors. This dissertation presents a framework for building
digital twins of motorways that will aid in the implementation of traffic management
systems and the assessment of the impact of infrastructure changes on traffic flow.

1.1 Motivation

Transportation has become an integral part of our daily lives and it is difficult to imagine a
world without it. A good transportation system can improve the lives of individuals while
also benefiting a country’s population, economy, business community, and
environment.(Importance of Transportation in Different Aspects of Life n.d.)

According to Transport Infrastructure Ireland (Our National Road Network n.d.) and the
Irish Transport Trends 2021 report published by the Department of Transport’s Strategic
Research and Analysis Division (Transport Trends 2021 n.d.), there are 101,316 km of roads
in Ireland, of which 13.1% are regional highways and 81.6% are local roads. The primary
route between cities and towns consists of 5,293 km, or 5.2% of all roads, of which 995 km,
or 18.8% are motorways.

A major part of the every day commute is through roadways, where traffic congestion is a
major issue. As the population grows, the transportation system may encounter a number of
problems, including traffic congestion, infrastructure maintenance, efficient traffic flow
management, monitoring, and alerting users to alternate routes in case of emergencies
(Dasgupta et al. 2021). All of these issues must be monitored and analyzed in order to be
resolved. A digital twin can help with this process by modelling the traffic flow, monitoring,
and improving decision making. A digital twin creates a representation of the real object
based on the data exchanged between the two. It has the potential to revolutionize traffic
management and operations by creating a link between the actual roadway and the
simulation model in order to estimate the product life-cycle and offer practical maintenance
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advice to decision-makers.(Gao et al. 2021)

1.2 Objective

The goal of this study is to create a framework for digital twins of motorways by gathering
data from the real-world and modelling it with the help of SUMO simulator. We need data
that describes the vehicles travelling on the motorway in order to represent it. Data from
multiple sensors is collected on real time and fused together to obtain the appropriate data
required for modelling traffic flow in the digital twin.

Sensors on moving vehicles can be used to collect data, allowing us to obtain information
such as the type of vehicle, its exact location, its speed, the path it follows, and the vehicles
in its vicinity. Fixed sensors, such as inductive loops, can be used to collect data such as the
number of vehicles that travel pass over them. Traffic signal cameras can provide
information about traffic flow. Toll booths can also be used to collect comparable
information. Sensor data streams from various sensors are collected at varying frequencies
and latency. Some may have missing or incorrect data, while others may fail to supply the
necessary information. Despite the fact that some sensors will produce the same data, this
data can be fused together to improve accuracy and eliminate errors. The processed data is
then fed into the model to create the digital twin.

In our framework, we will collect data from multiple sensors, process it and use agent-based
approach to map the vehicles in the digital twin. For evaluating the framework, a digital
twin of the Dublin’s M50 motorway will be generated. A SUMO simulation of the M50
motorway will serve as the physical entity for the digital twin.

1.3 Approach

The framework supports generating digital twins using four types of sensors: inductive loops,
motorway cameras, toll bridge cameras, and probe vehicles. Sensor data is collected using a
Kafka-based communication mechanism to build the digital twin framework. This
mechanism will collect and transmit data from the real-world simulation as a Kafka
Producer. The proposed framework will read the data as a Kafka Consumer in real time and
use SUMO simulation to model the traffic flow in the digital twin. The collected data will
then be passed onto the senor fusion model, which will process it, correct errors, and predict
the state of the vehicles in the simulation. The vehicles are then modelled in the simulation
as agents using an agent-based approach.
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1.4 Challenges

There are several challenges that are faced in developing the digital twin framework. Some
of the challenges and the solutions used to overcome them are discussed below.

Simulating the data in real time

Obtaining real-time data and generating digital twins from it can be difficult because we do
not observe the exact route that the vehicle will take, and it is possible that the sensor will
stop sending data for that specific vehicle after a certain time. To address this issue,
SUMO’s car following model and lane changing model are used, which advance the vehicle
in the simulation when no data is available for the vehicle.

Mapping data to the vehicles in the simulation

There may be hundreds of vehicles on the road at the same time, and not all sensors can
send data with the vehicle’s unique identifier. It is difficult to map the vehicles to the
simulation in such scenarios.To overcome this, agent based approach is used where each
vehicle will be treated as an agent and simulated in a microscopic simulation SUMO which
focuses on modelling individual agents based on their high level data.

Evaluating the frameworks performance

The framework built can be used to develop a digital twin for any motorway. Evaluating this
framework can be difficult as data from real world needs to be transmitted. For this
dissertation a SUMO representation of the M50 motorway will be used as real world and
digital twin will be created for this motorway and compared.

1.5 Structure

The rest of the dissertation is divided into five chapters. The second chapter will provide the
necessary background work for this project as well as the state of the art for digital twins
and sensor fusion. The third chapter will describe the digital twin framework’s design and
proposed architecture. The fourth chapter will describe the framework’s implementation,
and the fifth chapter will discuss its evaluation. The final chapter will provide a conclusion
and limitations as well as a section on future works.
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2 Background and Related Work

This chapter discusses the background information required for a better understanding of
the proposed framework. The first section explains digital twins and sensor fusion. The
following section discusses the current state of the art in the field of digital twin and sensor
fusion. Finally, an overview of all the tools and supporting projects is provided.

2.1 Digital Twins

A digital twin is a virtual representation of a physical object that functions by interacting
with the physical object by creating a mapping between them. Using real-time sensor data,
the digital twin continuously adapts to changes in the environment. It has the ability to
predict and detect potential issues with the physical entity. The physical entity, the sensors

Figure 2.1: Digital Twin

that transmit data from the physical entity, the data collected from the sensors, and the
models required for generating digital twins are the main components of a digital twin. It
generates a virtual representation of a physical object using the data collected and the
models used to process it. Digital twins are currently gaining popularity in industries such as
manufacturing, transportation, healthcare, and urban intelligence. By communicating with
the physical entity, digital twins can assist these domains in monitoring, evaluating, and
assessing risk, as well as providing mechanisms to provide solutions and manipulate the
system.
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2.2 Sensor Fusion

Building the digital twin necessarily requires the collection and analysis of traffic sensor data;
however, data from a single sensor is insufficient, and data gathered from multiple sources
may not be consistent or amount to significant data. Sensor fusion, also known as data
fusion, is the process of combining data from multiple sensors in order to create a more
accurate model of the vehicle by balancing the capabilities of various sensors (What Is
Sensor Fusion? n.d.). For accurate traffic estimation, data fusion techniques are critical for
transforming available data into consistent and complete data. Different sensors have
different benefits and drawbacks, such as a camera, which can distinguish between objects
well but is easily blinded by dust or weather conditions. While reliable, inductive loops can
only identify things based on changes in traffic speed and flow characteristics. Sensor fusion
techniques can also be used to correct errors and improve the accuracy of data from a single
sensor. The physical entity and the data collected from it are the primary components of the
digital twin. Sensor fusion is important in this component because it fuses sensory data to
make it more understandable by providing high-level insights.

Sensor fusion can be applied to data from different types of sensors or multiple sensors of

Figure 2.2: Whyte’s classification based on the relations between the data sources (Castanedo
2013)

the same type based on the data that they return. Based on the relationship between the
various sensors Durrant-Whyte (1988) proposes categorizing sensor fusion into three distinct
categories. Complementary: Sensor fusion used for data provided by different sensors that
represent different parts of the same vicinity, and by combining the data, it can provide a
good overall characteristic. Redundant: The sensor fusion used for the data provided about
the same characteristic of the same target. Cooperative: The sensor fusion used for the data
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by different sensors which can be combined to generate a new characteristic which is not
initially present (Castanedo 2013).

Varshney (1997) also proposes a three-level data fusion model, from low to high level, with
the low level model’s results serving as an input for the high level model. The first level of
data fusion involves processing raw sensor data to estimate an object’s basic state. For
example, data is collected from multiple sensors such as inductive loops, cameras, and probe
vehicles and combined to obtain basic traffic information such as speed and flow in order to
model the traffic. The second level of data fusion is used to derive data features and
patterns based on the first level’s estimated states. The third level of fusion is used to
predict events and make decisions based on the second level’s features and patterns.

In this framework, we are processing data for the first level in order to obtain the basic
traffic state estimation needed to model the traffic flow in the digital twin. Several
techniques for this level of data fusion are discussed further below.(Ou 2011)

Kalman filter

The Kalman filter provides the best estimate of the state through an iterative process of
predicting and correcting the state. It predicts and corrects the state iteratively using the
initial data by computing the Kalman Gain to make the filter an optimal estimator.

The image 2.3 above explains the Kalman filter and implies that as the data becomes more

Figure 2.3: Kalman Filter (Ou 2011)

uncertain, more weight is placed on the prediction and vice versa. The Kalman filter also
adjusts the observation model’s sensitivity to changes in the state variables
proportionally.

The solution can be provided for models with linear or Gaussian data, i.e. normal
distribution. It is incapable of providing accurate information to the non-linear system.
There are two variations of Kalman filters: Extended Kalman Filter and Unscented Kalman
Filter. For slightly non-linear systems, an extended Kalman filter that linearizes the data
using Jacobians and Taylor Series can be used. The unscented Kalman filter is an
improvement on the extended Kalman filter. It linearizes the data using sigma point
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prediction and requires a large dataset for prediction.

Particle filter

This is also an iterative processing filter with two prediction and correction phases, similar to
the Kalman filter, but it can process data with nonlinearity and a non-Gaussian system. It is
a simulation-based technique capable of achieving Bayesian optimal estimation. It provides a
global approximation of the data and outperforms the extended and unscented Kalman
filters when there is a large amount of data.

Linear Programming

This technique uses historical data to estimate the current state. It processes data in large
batches to find the largest or smallest value for optimal estimation. The value is determined
by objective functions and is constrained by linear inequality constraints. Linear
programming has a lower computational cost than the Kalman filter and can produce results
with a wide range of values.

Treiber filter

It is based on spatiotemporal characteristics; for example, in traffic travel estimation, it
considers speeds in both congested and free flow conditions. It is similar to image processing
in that it can only be applied to data of the same type.

2.3 State of the Art in Digital Twins

The digital twin’s main concept is to collect data from various sensors and create a virtual
representation of the physical world. The data collected from the sensors cannot be directly
used to model the digital twins. Sensor fusion techniques must be used to ensure that the
data is consistent and complete. Digital twins are used vastly in industries such as
manufacturing, transportation, and healthcare. There is a lot of research going on with
digital twins and sensor fusion. The following section discusses the current state of the art in
digital twins and sensor fusion.

State of the Art for Digital Twins

Nowadays, transportation is such an important part of our daily lives that any minor delay or
congestion in our daily commutes has a significant impact on our lives. One such mode of
transportation is the airplane. Thousands of people travel around the world on flights, and
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even minor delays have a significant impact. The airport is a critical factor in the smooth
operation of the aerospace department. If the airport does not function properly, it may
cause problems such as runway collisions and ground vehicle congestion. One such study
(Saifutdinov et al. 2020) proposes the use of digital twins to develop and test solutions in
the field of centralized ground transportation control at airports to address these issues. The
proposed model simulates various scenarios in the transportation network that require the
use of a centralized control system. The spatial coordinate details received from the surface
movement radar (SMR) and onboard systems of the vehicles are used as input for these
models. The scheduling-routing system also collects data about the vehicle’s state. Machine
learning and artificial intelligence algorithms are also used in the proposed solution. The
digital twin is created by simulating the processes in the transport network of any airport
under consideration using Ground Traffic Scenario Simulation (GTSS). The study is
structured around three major components: 1) A simulation model that serves as a data
source for the Digital Twin; 2) The Digital Twin, which is a dynamic information model of
the observed and controlled process; and 3) Applications, which are computer programs that
use the data collected by the Digital Twin. The 5-15 minute simulation scenarios allow the
potential user to specify which vehicles are involved in traffic during the simulation time by
specifying the time of their appearance as well as the route with all stop points.

Another study (Wang et al. 2021) suggests using the Unity game engine to create a
framework for creating a digital twin simulation of connected and autonomous vehicles
(CAVs). The proposed architecture considers both the physical and digital worlds. The
physical world consists of simulated real-world objects such as road networks, ego CAVs, and
other vehicles, whereas the digital world consists of the three sub layers of the unity game
engine: 1)Unity game objects are used to build the hardware and as the main simulation
platform, 2)Unity scripting API is used for software, and 3)External tools such as SUMO,
Python, and Amazon Web Services (AWS) are used to enhance the simulation. Using data
from the current trip as well as all previous trips in the driver database, the "Personalized
Adaptive Cruise Control" (P-ACC) algorithm is used to generate the driver’s preferred time
gap value. The results of this algorithm are delivered to the ego vehicle in Unity when the
driver activates the automated control, where they can be applied to the P-ACC algorithm.
The paper mentions the algorithms and methodology used to build the digital twin, as well
as test scenarios and applications once it is formed, but it does not go into detail about the
process.

These studies explain the algorithm used as well as the input and output data, but they lack
information on the evaluation process used to measure the framework’s performance.
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State of the Art for Sensor Fusion Techniques

Collecting data is not enough to create a digital twin; the data must also be processed and
combined in order to be used as an input for the model. There are many techniques
available for sensor fusion. One such technique is discussed in the study by Dong & Evans
(2007) which explains the data fusion techniques to combine data from inductive loops and
cameras. The main purpose of this study is to use these two sensors to determine the state
of the road. The proposed system would collect sensor data, process it, and present the
results to an operator via a single user interface. Because each sensor has its own set of
advantages and disadvantages, combining them can improve detection rate (DR), reduce
false alarm rate (FAR), and provide built-in redundancy. Loop detection methods are used to
detect cars traveling through the induction loop by constructing the loops in pairs, and the
vehicle is simulated from the entering loop to the exit loop, assisting in the calculation of
vehicle length and speed measurement. When vehicles or obstacles are visible within the
image analysis zone, image analysis algorithms are used to identify the vehicles using data
from the cameras, and an image analysis alert is triggered. After applying the algorithms to
the individual sensors, Bayesian analysis is used to combine the data from image analysis
and loop sensors modules providing detections of the road-state and associated confidence
measures. The study describes the algorithm used for the individual sensors in details but
does not provide much information about the Bayesian analysis.

The study by Houbraken et al. (2015) proposes a system that fuses floating car data (FCD)
with stationary detector data (SDD) (cameras, inductive loops) to construct a traffic state
estimation using adaptive smoothing technique, also known as the extended and generalized
Treiber-Helbing filter (EGTF). This filter combines individual data into a comprehensive
traffic state estimation using kinematic wave theory applied to road traffic. To estimate the
traffic state, the road network is represented as a dynamic system in which traffic flows
along the road from the origin to the destination while considering free flow and congested
traffic. This document offers data source normalization strategies to avoid bias toward a
single source. The system was tested along a 20-kilometer stretch of the A58 highway.
Individual data samples can be integrated in a single data fusion method to estimate traffic
state by taking them into account and normalizing them. According to the findings of this
study, this corrects individual data source bias, resulting in a more accurate prediction of
traffic state.

2.4 Tools

This section gives a brief description of all the tools that are used for building the
framework.
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2.4.1 SUMO

Simulation of Urban Mobility (SUMO) is an open source microscopic traffic simulation
engine designed to handle large road networks. As each vehicle has its own route, a
microscopic simulation models each vehicle individually as it moves through the network.
Every vehicle in SUMO is simulated by taking its own capabilities and driver behaviour into
account. For simulating a traffic flow, we need network information, traffic infrastructure
and demand. SUMO provides a number of tools for working with these components, as well
as an SUMO-GUI application for visual simulation observation (SUMO User Documentation
n.d.).

SUMO provides traffic demand modelling by defining a vehicle trip or route. A trip is the
movement of a vehicle defined by the starting and ending edges, whereas a route is an
expanded trip defined by specifying all the edges the vehicle will move. SUMO also has its
own inbuilt car following and lane changing model for smoothly simulating vehicles. The car
following model defines the vehicle’s movement and speed in relation to its leading vehicle
by constantly attempting to maintain a safe distance between them, whereas the lane
changing model determines the lane changing strategy based on the traffic conditions
around the vehicle. In this project, we use SUMO to represent the road network and
simulate the vehicles in the network using sensor data. We also use SUMO’s car following
and lane changing model to advance the vehicle in the simulation (Abidin et al. 2015).

SUMO also has tools for generating and storing simulation output files, which can be
triggered from the command line while starting the simulation. The output files can then be
used to visualize the simulation results by passing them through the visualization tools. To
evaluate our framework, we generate two output files: tripinfo.xml and statistics.xml.

The tripinfo.xml output file contains information about every vehicle. It includes the
vehicle’s departure time, speed, duration, speed factor, and many other parameters. The
statistic.xml output contains average simulation details such as total vehicle load, total
running vehicles, overall trip details, and so on.

Figure 2.4: Screenshot of tripinfo.xml
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Figure 2.5: Screenshot of statistic.xml

2.4.2 TraCI

The Traffic Control Interface (TraCI) provides users with access to running road simulations
and allows them to retrieve and manipulate simulated objects. TraCI connects to SUMO
using a client/server TCP architecture. Sumo acts as a server, waiting for all applications to
connect and take control and simulate continuously until a client requests that the
simulation be terminated. TraCI offers full simulation control by providing various methods
for changing the behavior of the simulation’s objects. We can use TraCI to introduce new
vehicles into the simulation or modify existing ones. TraCI provides a number of methods for
extracting and modifying vehicle states such as speed, route, and location. We can also
retrieve and change the values of other objects such as edges, traffic lights, and inductive
loops (Introduction to TraCI n.d.).

In this framework we are using TraCI along with python. We begin the simulation with
TraCI and use it in our model to add new vehicles using the traci.vehicel.add method and
change their location using the traci.vehicel.moveToXY method by providing longitude and
latitude values. TraCI serves as the link between models and simulation in our framework,
allowing us to control and modify the digital twin representation.

2.4.3 Apache Kafka

Apache Kafka is an event streaming platform that allows users to publish and subscribe to
event streams. Kafka also has the ability to store and process event streams. It is a
distributed system that communicates between clients and servers using the
high-performance TCP protocol, making it highly elastic, fault-tolerant, and scalable. It
works as a messaging system that uses a producer-consumer architecture, with producers
being the applications that publish events to Kafka and consumers being the users that
subscribe to receive and process the events (Kafka documentation n.d.).

Due to the total decoupling between producers and consumers, the producer need not wait
for the consumer to connect before publishing the data. Events are categorized and
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broadcast as topics, and each topic can be further subdivided into partitions distributed
across multiple Kafka brokers. Multiple producers and subscribers can publish and read data
simultaneously on the topics which enables parallel processing.

To retrieve data from the sensors, we use an Apache Kafka-based communication
mechanism in this framework. The data is collected and transmitted by the Kafka producer,
and our framework will read the data as a Kafka consumer.

2.5 Supporting Projects

This section discusses the projects that help our framework implement various digital twin
components.

2.5.1 A Communication Architecture for Transportation Digital

Twins using Apache Kafka

The study proposes by Fennell (2022) is a communication service architecture between the
digital twin and the motorway sensors using Apache Kafka. It examines the sensor’s
characteristics and the type of data it produces. The data is then collected from the physical
entity, which is a simulation of Dublin’s M50 motorway. Data collected by the architecture is
from four different sensors: inductive loops, motorway cameras, toll bridge cameras, and
probe vehicles. Sensor data is divided into Topics based on sensor type, and each Topic
contains partitions for individual sensors. The data is streamed to an Apache Kafka broker
hosted on Amazon AWS EC2. The collected data is transmitted as a Kafka producer.

This proposed architecture will be used as a communication mechanism in our framework to
collect sensor data. It serves as a middle-ware between the sensors and the digital twin. Our
framework will act as a Kafka consumer, gathering data from all four sensors.

2.5.2 Quantifying the impact of connected and autonomous ve-

hicles on traffic efficiency and safety in mixed traffic

The paper by Gueriau & Dusparic (2020) investigates the impact of connected and
autonomous vehicles (CAVs) on three types of networks, simulating traffic flow with the help
of SUMO of vehicles with varying levels of automation using historical Irish road traffic data.
CAVs’ impact is assessed on three networks: an urban network, a 17.1 km stretch of
national road, and a 7 km four-lane motorway with two intersections. The evaluation traffic
flow is based on data collected in Ireland between 2012 and 2019 with various traffic loads:
congested, free-flow, and saturated. It provides a 24-hour simulation of traffic flow.
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We will evaluate our framework using one of the research networks. The M50 simulation of
a 7-kilometer four-lane motorway will be used to generate the digital twin of the M50
motorway, which will include two significant interchanges with national road junctions N7
and N9. The SUMO simulation of the motorway will serve as the physical counterpart to
our digital twin.
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3 Design

This chapter describes the proposed framework design by first explaining the architecture
and then detailing the components of the digital twin.

3.1 Architecture

The framework’s proposed architecture includes several components such as the physical
entity, a communication mechanism with Kafka Producer and Consumer, data pre-processing
sensor fusion models, agent mapping models, and a digital twin simulation.

The physical entity that describes the network and the sensors available on the network is
represented by a SUMO simulation of the real-world motorway. These sensors are modelled
in order to represent the actual sensors on the roads. The digital twin framework receives
data from these sensors. To collect the data, an Apache Kafka based communication
mechanism is used. The data will be collected by the communication mechanism and
published as a Kafka Producer and as a Kafka Consumer, our framework will consume the
data. Our framework supports generating the digital twin with four different sensors:
Inductive loops, Motorway cameras, Toll bridge cameras and Probe vehicle. The data from
each sensor group is transmitted as a separate Topic and our consumer will get these data
from four different topics. The data is collected in real time when the physical entity
simulation is running. The Kafka consumer will continue to retrieve data until the Producer
publishes it.

Data from various sensor types will be sent to their respective sensor fusion models. Some
of the data may be inaccurate, and some data may be missing. The sensor fusion model’s
primary responsibility is to process and correct data. It is also in charge of calculating the
missing parameters based on the existing ones. Cameras, for example, transmits data about
the vehicle’s speed, direction, and distance. The sensor fusion model will calculate the
vehicle’s approximate location using these data.

After pre-processing, the data is sent to the Agent mapping model, which is in charge of
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Figure 3.1: Proposed Architecture

mapping the vehicles in the simulation. To map the vehicle in the simulation, an
agent-based approach is used, with each vehicle treated as an agent. SUMO simulation is
used in our framework to model traffic flow which is a microscopic simulation concerned
with modelling individual agents based on their parameters. The agent mapping model will
determine whether the vehicle is already present in the simulation based on the parameter
calculated in the sensor fusion model. If the vehicle is already present, the state and
behaviour of the vehicle are updated; otherwise, a new agent is introduced into the
simulation. The model and simulation interact via TraCI, a traffic control interface that
allows access to retrieve and manipulate the simulation object.
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3.2 Components of Digital Twin

A digital twin consists of a physical entity, a virtual simulation, and the link between them.
Our proposed architecture is divided into four components: Physical motorway entity,
Motorway sensors, Data collection, and Models.Each of the elements will be discussed in
detail below.

Figure 3.2: Components of Digital Twin

3.2.1 Physical Motorway entity

The most important component in creating a digital twin is the real-world motorway. The
network for the digital twin will be built to replicate the lanes and intersections, as well as the
sensors installed in the same locations as the physical motorway entity, in order to recreate
it. Using a real-world motorway as a physical entity may be challenging due to the difficulty
of collecting data from all sensors in real time; thus, a SUMO simulation representing the
real-world motorway will be used as a physical entity, describing its key features.

3.2.2 Motorway Sensors

Sensors are essential when creating a digital twin because they act as a mapping between the
physical world and the digital twin. Sensors collect data from the real world, which is then
transmitted to the digital twins. We need a lot of data to recreate the traffic flow, such as
vehicle speeds, locations, and vehicle counts. Since all of these data cannot be provided by a
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single type of sensor, multiple sensors must be used to collect and combine the data. We are
using a SUMO simulation as the physical entity, hence the virtual sensors are modelled in
the simulation which is intended to be an accurate representation of the real-world sensors
found on motorways. The proposed architecture supports four types of sensors: an inductive
loop, a motorway camera, a toll bridge camera, and probe vehicles.

Inductive Loops

An inductive loop functions similarly to a metal detector, which is commonly used to detect
traffic by monitoring changes in the field when moving vehicles pass over it. It is made of a
coiled wire loop that is installed into or beneath the road’s surface. For the duration that
the vehicle is passing over the loop, a change in the magnetic field is created in the loop.
This shift in the magnetic field is interpreted as a demand for the vehicle by the
controller(Inductive loops n.d.).
In our framework, the inductive loop data is used to verify the number of vehicles that have
passed through the loop, ensuring proper replication of the vehicle route. The inductive loop
data is received from the publisher every second, with an estimated accuracy of 95%(Fennell
2022).

The following is the format of the data collected:

loop id lane 1 lane 2 lane 3 lane 4 timestamp
Unique identi-
fier for the set
of inductive
loops.

Vehicle count
for the induc-
tive loop on
lane 1.

Vehicle count
for the induc-
tive loop on
lane 2.

Vehicle count
for the induc-
tive loop on
lane 3.

Vehicle count
for the induc-
tive loop on
lane 4.

The simulation
timestamp the
measurements
were taken. This
is independent
of the true time
outside of the
simulation.

Table 3.1: Inductive loop data

Motorway Cameras

Cameras can help you identify and categorize vehicles on the road. They can provide
additional information such as the direction, speed, and lane of the vehicle. Cameras are less
expensive than other sensors, and they can capture images of their surroundings as well as
identify moving and stationary objects in their field of view.
The motorway camera data received from the publisher returns data from up to 200 meters
away and is oriented north and south for ease of use. The detection accuracy ranges
between 92 and 98 percent. With a 30 frames per second camera, the expected speed
measurement error rate is 2%, while the distance inaccuracy is 5% (Fennell 2022) . It
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returns the direction, speed, and distance between the camera and the vehicle, which can be
used to predict the vehicle’s location. It also returns the vehicle’s lane details, which are
used to predict the vehicle’s route and simulate the entire flow of the vehicle.

The format of the data collected is as below:

camera id lane id lane index direction distance speed timestamp
Unique
identifier
for the
camera.

Which road
the vehicle
is travelling
on.

Which lane
on the road
the vehicle
is in.

The direc-
tion the
vehicle is
travelling.

The dis-
tance
between
the vehicle
and the
camera.

The speed
in kilome-
tres per
hour the
vehicle is
travelling.

The simulation
timestamp the
measurements
were taken. This
is independent
of the true time
outside of the
simulation.

Table 3.2: Motorways Camera data

Toll Bridge Cameras

Toll bridge cameras have the same features and benefits as motorway cameras. The toll
bridge cameras are mounted on toll booths and return the same type of data along with
additional information about the vehicle’s class. The accuracy and error rate of the data
obtained from the publisher are the same as those of the motorway camera. Because both
cameras produce the same type of data, the model used to process them is the same
(Fennell 2022). The data are used in the same way to calculate the vehicles’ location and
route.

The format of the data collected is as below:

lane id lane index direction distance speed class timestamp
Which road
the vehicle
is travelling
on.

Which lane
on the road
the vehicle
is in.

The direc-
tion the
vehicle is
travelling.

The dis-
tance
between
the vehicle
and the toll
bridge.

The speed
in kilome-
tres per
hour the
vehicle is
travelling.

The class of
the vehicle.

The simulation
timestamp the
measurements
were taken. This
is independent
of the true time
outside of the
simulation.

Table 3.3: Toll Bridge Camera data
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Probe Vehicles

Probe vehicles, also known as floating cars, are vehicles that participate in traffic flow and
have the ability to assess traffic conditions and transmit these details to a traffic center. The
probe vehicles has a inbuilt location sensor to track its own location, and a communication
sensor to communicate traffic data.

The data returned from the publisher also returns data from some third part enterprises like
the real-time bus tracking, Google maps, sat-nav, and other sources that provide GPS. The
GPS is accurate to a maximum of 20 meters for services like Google maps and a maximum
of 3 meters for devices like the Garmin 16x GPS device. The estimated frequency of the
probe vehicles is 1 HZ. The probe vehicle sensors are predicted to have an inaccuracy of up
to 10 meters (Fennell 2022).

These sensors provide data with a unique identifier and the speed of the probe vehicle, as
well as longitude and latitude information. These details will be used to map the vehicles to
the simulation and advance the vehicles accordingly. The route of the vehicle is identified
using previous locations to complete the vehicle flow.

The format of the data collected is as below:
probe id location speed vehicle type timestamp
A unique
identifier
for the
vehicle.

The lati-
tude and
longitudinal
location of
the vehicle.

The speed in
kilometres per
hour the vehicle
is travelling.

The type of
vehicle.

The simulation times-
tamp the measure-
ments were taken.
This is independent of
the true time outside
of the simulation.

Table 3.4: Probe vehicle data

3.2.3 Data Collection

The data will be collected from the sensors mentioned in the previous section, but there
must be a mechanism in place to carry out the data collection and transmission process. To
accomplish this, an Apache Kafka-based communication mechanism Fennell [2022] will be
used, which will collect and stream data to the Kafka broker deployed on the Amazon AWS
EC2 instance. It serves as a producer, sending data streams to the Kafka broker endpoints.
By specifying the same broker endpoint information, our project will act as a Kafka
consumer and receive data from the publisher. The publisher will send the data as a topic,
with a separate topic created for each sensor type. Since our framework supports four types
of sensors, data will be streamed in four different topics.
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3.2.4 Models used for Prediction

Once the data is collected, it must be processed to generate the digital twin, and the
vehicles must be mapped to the simulation in order to model the traffic flow. To accomplish
these tasks, we will create two models in this framework. An agent mapping model and a
sensor fusion model. In addition, the framework will use SUMO’s car following and lane
changing models to help advance the vehicles in the simulation.

Sensor Fusion Model

The collected data is used in the digital twin to represent traffic flow, but it must be
processed and error corrected before being fed to the model. For each type of sensor, a
sensor fusion model is created that is in charge of data processing, error correction, and data
fusion.

Some sensor data may have missing or incorrect values. These parameters will be corrected
by this model. It will also use the existing parameters to calculate the parameters that are
not present in the data. This model’s input will be data returned from the sensor, and its
output will be processed data.

Each sensor will have its appropriate sensor fusion model which will process the data for that
particular sensor. Both motorways cameras and toll bridge cameras use the same sensor
fusion model because they return the same type of data such as speed, distance, direction,
and vehicle edge. We need to know the location of the vehicle in order to replicate its flow
in the simulation. This model will calculate the approximate location of the vehicle based on
the vehicle’s direction, speed, and distance from the camera. The vehicle’s path is predicted
based on the edges it has traveled on to complete the vehicle flow. The inductive loop
model verifies the number of vehicles that have passed through the loop for each timestamp.
The probe vehicle’s data will be fed into its own sensor fusion model. The model is in charge
of predicting the exact location of the vehicle while accounting for any inaccuracies in the
data.

Agent Mapping Model

Following the completion of pre-processing and data fusion, the data is transferred to the
Agent mapping model, which employs an agent-based approach to treat each individual
vehicle as an agent and map it to the agents in the simulation. Not all sensors return the
unique vehicle identifier, it is up to this model to predict which agent the data will be
mapped to. The processed data from the sensor fusion model will be the input for this
model, and the output will be the mapping of the vehicles as agents in the simulation.
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Agent based approach: [Bonabeau 2002] A powerful simulation modelling technique that
models individual vehicles as agents based on their interactions with their environment is the
agent-based approach. One advantage of using an agent-based approach is that it is flexible,
allowing easy addition and removal of the agents. When using an agent-based approach in
conjunction with microscopic modelling, the agents can be modelled individually in the
simulation. Each agent will assess its own situation and make a decision based on a set of
rules. The agents will constantly interact with the model in order to predict its next
state.

Sumo’s car following model and lane changing models are used to advance the agents
through the simulation for each time step after mapping the data to the simulation. To
ensure a smooth and accident-free simulation, these models are configured with a minimum
gap value between vehicles while car following and strategies for efficient lane
changing.
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4 Implementation

The main components required for developing the digital twin framework are the physical
entity and the data from the physical entity. For these components, the supporting projects
described in section 2.5 are used. This chapter describes how the proposed architecture is
implemented. It goes into great detail about the models used in the framework.

4.1 Framework Overview

The proposed framework allows for the creation of digital twins for motorways using four
types of sensor data collected from the physical entity. Data is gathered using an Apache
Kafka-based communication mechanism. As described in section 3.2.3, the Kafka Producer
will collect and transmit sensor data, while our framework will act as a Kafka consumer,
retrieving data in real time. The Kafka producer sends data from each sensor group as a
separate topic. Each topic is also partitioned based on the number of sensors used.
Regardless of the number of sensors, our Kafka consumer will consume all data and process
it in a loop. After that, each data point will be forwarded to the appropriate sensor fusion
model for processing. The framework’s concept is to map the vehicles as agents in the
simulation. To accomplish this, the processed data is passed to the agent mapping model,
which uses an agent-based approach to map the vehicle in the simulation. Agent-based
modelling is a technique for simulating vehicles as agents based on their interactions with
their surroundings.

Figure 4.1: Kafka consumer code

The framework idea is inspired by the Kalman Filter. The Kalman filter is a sensor fusion
technique that predicts and corrects the state using previous data iteratively. Similarly, our
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framework’s concept is to estimate the vehicle’s state based on the initial sensor data
reading. Once the vehicle has been added to the simulation, Sumo’s car following and lane
changing models are used to advance the vehicles between senor readings. The new state
estimation is calculated, and the estimated state is corrected based on the data when the
senor data is read. This is an iterative process of predicting and correcting the vehicle’s state
estimation.

4.2 Models

The framework has two major models: sensor fusion model and agent mapping model.
Sumo’s car following and lane changing models, in addition to these, are used to advance
the vehicles in the simulation. The detailed description of all the models are provided
below.

4.2.1 Sensor Fusion Model

A sensor fusion model is in charge of data processing, error correction, and predicting the
correct values for missing or inaccurate data. A sensor fusion model is created for each type
of sensor. The model’s input is the data gathered from the physical entity via the
communication mechanism, and the model’s output is the processed data.

The same sensor fusion model is used for both the motorway and toll bridge cameras because
they provide similar data and have similar inaccuracies and noise. The cameras in the
simulation are designed to represent real-world camera sensors mounted on the road. It has
the ability to collect and return data from their north and south orientations. We know the
exact location of the camera and the edges in its vision for the north and south orientations.
The closest edge to the camera is determined by measuring the distance between the camera
and each edge. In addition, the camera’s bearing towards the nearest edge is calculated.
The direction measured in degrees from true north is referred to as the camera bearing.
Both of these data points can be used to calculate the vehicle’s location in the simulation.
The camera data returns the vehicle’s direction and speed, as well as the distance between
the vehicle and the camera. The approximate longitude and latitude of the vehicle are
calculated using the returned sensor data and the calculated bearing and closet edge.

The probe vehicle data returns the unique identifier, speed and the location details of the
vehicle. Since we have the longitude and latitude data it is easier to introduce or modify the
vehicle in the simulation. Even though we have the location details we are unaware of the
path that the vehicle follows . All of the edges that the vehicle has travelled on are
computed using the vehicle’s locations, and the path is calculated based on that. The sensor
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fusion model also adjusts the vehicle’s speed if it moves too far ahead or too far behind in
the simulation and the sensor data is not in sync with the simulation. TraCI includes
methods for slowing down and explicitly setting the vehicle’s speed.

Figure 4.2: TraCI speed methods

4.2.2 Agent Mapping Model

Once the data is prepared, the main challenge is to map the agents to the simulation. To
overcome this challenge, an agent mapping model based on the agent-based approach is
used. An agent-based approach makes decisions for the agents based on their interactions
with their environment. The primary responsibility of this model is to map the agents in the
simulation and change the state and behavior of the agents based on the data processed by
the sensor fusion model.

The data from the inductive loop returns the number of vehicles that passed through the
lane. This count is compared to the count of vehicles that have passed through the
inductive loop of the digital twin simulation at each time step. TraCI provides a method for
obtaining the ids of the vehicles that have passed through the inductive loop.

Figure 4.3: TraCI inductive loop

For the cameras, we calculate the vehicle’s approximate longitude and latitude in the sensor
fusion model. The agent mapping model will compare all of the simulation’s existing agents
in the vicinity of the location. If an agent is present within this range, the data is mapped to
the agent; otherwise, a new agent is introduced into the simulation.

Agent mapping is easier for probe vehicles as it contains a unique identifier of the vehicle.
The model simply determines whether an agent with the specified id exists in the simulation;
if so, the agent is updated; otherwise, a new agent is introduced. TraCI includes methods
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for adding and modifying vehicles in the simulation. The moveToXY method of TraCI can
be used to change the location of the vehicles based on their longitude and latitude.

Figure 4.4: TraCI adding and modifying vehicles

4.2.3 Sumo Car following model and Lane changing model

Sumo car following and lane changing models are used to advance the vehicle in the
simulation between every sensor reading. It ensures that the simulation is smooth and
accident free. Car following models explain how vehicles follow one another in a traffic flow
one at a time. It establishes a vehicle’s speed in relation to the vehicle in front of it. It
demonstrates how the vehicle in front is constantly attempting to maintain a safe distance
from the following vehicle and the following vehicle always adjusts to the leading vehicle’s
deceleration behaviour[SONGa et al. 2014]. The Intelligent Driver Model is the car-following
model employed here (IDM). Based on the optimal velocity model (OVM), it only responds
to the distance from the leading vehicle and ignores the speed of the car in front of
it[Bieker-Walz et al. n.d.].

The lane changing model decides whether or not to change lanes for a vehicle based on the
traffic conditions around it. While performing the lane change, it also adjusts the speed of
the vehicle and the obstructing vehicle. In our framework we are using the Sumo’s default
lane changing model LC2013. [Erdmann 2014]
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5 Evaluation

This chapter discusses the framework evaluation process in order to assess the feasibility of
the proposed approach. It will also be useful in identifying the approach’s limitations and the
measures needed to extend the framework.

5.1 Test Setup

We will create a digital twin of Dublin’s M50 motorway to evaluate the framework. The
SUMO simulation of the M50 motorway created in the project by Gueriau & Dusparic [2020]
is used for the physical entity. The simulation includes a 7-kilometer motorway network with
two major interchanges with national road junctions N7 and N9.

Figure 5.1: M50 motorway and its SUMO simulation [Fennell 2022]
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5.2 Scenarios and Evaluation metrics

The SUMO simulation of the motorway offers 24 hour simulation. For evaluating the digital
twin in all the traffic conditions, the simulation will be executed for three different time
periods. All scenarios will be executed thrice to obtain the model’s average results and
ensure that the result is not biased.

For comparing the digital twin with the physical entity and to measure how successfully the
digital twin is modelling the traffic flow, the total number of running vehicles in the
simulation will be compared. In addition, the average speed of the vehicles in the entire
simulation will be compared. SUMO generates a tripinfo.xml and a statictics.xml output file
during the simulation to gather this data. The trip info file contains information about the
vehicles in the simulation that is relevant to specific vehicles, such as the departure position,
arrival position, duration, speed factor, and so on. The statistics output file contains general
information about the simulation, such as total vehicles loaded, total vehicles running, trip
and pedestrian details, and so on. With the generated output, bar plots will be created for
quick visual comparison of data.

5.2.1 Scenario 1

The first scenario considered for evaluation is morning traffic on congested roads. From 9:00
a.m., a digital twin is created for a 15-minute simulation. The digital twin is run three times
to ensure that the data is not biased, and the average data is used for comparison with the
physical entity.

Comparing the total number of running vehicles

We will compare the total number of vehicles running in the simulation for this experiment.
The digital twin is run three times, and the results of all three runs are compared to the
physical entity’s results. We are using the SUMO simulation of the M50 motorway from the
supporting project as the physical entity for our digital twin for evaluation purposes.
Because this is a simulation, the results will be the same for all three runs.

Figure 5.2 depicts a bar plot for the number of running vehicles in the physical entity,
followed by the number of running vehicles for the three digital twin executions.
The above plot shows that the number of running vehicles is lower in the digital twin than in
the physical entity. The number of running vehicles for the three execution of the digital
twin also slightly differs.

The following plot in figure 5.3 shows a bar plot comparing the number of vehicles in the
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Figure 5.2: Total number of running vehicles for scenario 1

physical entity to the results of the digital twin’s average of three executions.

Figure 5.3: Total number of running vehicles average for scenario 1

The total number of running vehicles in the physical entity is 1562, and the average total of
running vehicles in the digital twin of three executions is 1291, according to the bar plots.
The digital twin is under counting vehicles by nearly 17%. Several factors can influence the
number of vehicles in the digital twin. The framework only supports four types of sensors,
which provides limited data for traffic modeling. The framework’s models have not yet been
developed to count the number of vehicles entering and exiting the motorway. Furthermore,
there may be discrepancies in reading sensor data, and it is possible that sensors are not
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collecting data for all vehicles, resulting in an under counting of vehicles in digital
twins.

Comparing the average trip speed

The bar plots in figure 5.4 below represent the simulation’s average trip speed in m/s. The
first bar in the first figure represents the physical entity’s average speed, while the remaining
bars represent the digital twins’ average speed when executed three times.

Figure 5.4: Average trip speed of 3 digital twins run for scenario 1

Figure 5.5: Average trip speed for scenario 1

The average trip speed of the digital twins executed three times is averaged out and shown
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as a single bar in the second plot 5.5.
The plots show that the digital twin’s speed is significantly lower, and the vehicles modeled
in the digital twins travel at a slower speed. The physical entity’s average speed is 20.44,
while the digital twin’s is 14.1833. There is nearly a 30% difference between the two. Some
of the reasons for this could be that the data is not capturing accurate speed information
and that the speed data from the sensors is inaccurate.

Comparing the speed factor distribution

The plots below represent the speed factor distribution in relation to the number of vehicles
in the simulation. The speed factor is the ratio of the vehicle’s speed to the maximum speed
allowed. This data is obtained from the trip info file created during the simulation. It
contains information about each vehicle.

The speed factor for three runs of the physical entity simulation is shown in the figure 5.6.
Because this is an SUMO simulation of the M50 motorway for a 24 hour traffic flow, the
data used for all runs is the same and hence the distribution is also identical for all three
runs.

Figure 5.6: Speed factor distribution of physical entity for scenario 1

Figure 5.7 shows the speed factor distribution of the vehicles in the digital twin over three
runs.
We can see from comparing the speed distribution bar plots of the physical entity and its
digital twin that it follows a normal distribution with data that is symmetrically distributed.
Both the physical entity and digital twin bar plots exhibit this pattern. We can see that the
mean for both of them is around 0.3 to 0.4, and the speed factor of most vehicles is around
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Figure 5.7: Speed factor distribution of digital twin for scenario 1

this value.

After comparing all three measures of the physical entity and the digital twin, we discovered
that the digital twin models traffic relatively slower and has a lower number of running
vehicles. Some potential reasons for this include sensor data inaccuracy, a lack of support for
counting the number of vehicles entering and exiting, and a lack of sensors of sufficient
variety to provide data. All of these are potential future framework works. In addition, the
framework itself needs to be improved in order to model traffic flow.

5.2.2 Scenario 2

The second scenario for evaluation is evening traffic, when the roads are not that congested.
From 19:00 pm, the digital twin is created for a 15-minute simulation. The digital twin is
run three times to ensure that the data is not biased, and the average data is used for
comparison with the physical entity. The plots generated for this scenario are for the same
metrics as in scenario 1 and depict the same data as in scenario 1.

Comparing the total number of running vehicles

Scenario 2 runs the digital twin for the saturated traffic flow, and thus the total number of
running vehicles in the physical entity is 1190, and the average total of running vehicles in
the digital twin of three executions is around 813, as shown in the figure 5.8 and 5.9. As in
scenario 1, the digital twin under counts the vehicles in this scenario as well. However, in
this scenario from figure 5.8, we can see that the digital execution is inconsistent across the
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Figure 5.8: Total number of running vehicles for scenario 2

Figure 5.9: Total number of running vehicles average for scenario 2

three runs. The total number of vehicles for the first run is 925, while the remaining two
executions have 777 and 735 vehicles, respectively.

Comparing the average trip speed

As in scenario 1, the digital twin models the traffic significantly slower in this scenario as
well. The physical entity’s average speed is 20.85 m/s, while the digital twin’s is 14.24 m/s.
The average speed data shows a nearly 31% difference.
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Figure 5.10: Average trip speed of 3 digital twins run for scenario 2

Figure 5.11: Average trip speed for scenario 2

Comparing the speed factor distribution

In this scenario, too, the speed factor distribution follows a normal distribution with the data
symmetrically distributed. This pattern can be seen in both the physical entity and digital
twin bar plots. We can see that the mean for the physical entity is 0.35 to 0.45 and for the
digital twin is around 0.3, which corresponds to the speed factor of most vehicles.
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Figure 5.12: Speed factor distribution of physical entity for scenario 2

Figure 5.13: Speed factor distribution of digital twin for scenario 2

5.2.3 Scenario 3

The third scenario is evaluated for a free flow traffic at 22:00 pm. The digital twin is
executed for a 15 minutes simulation and to ensure the results are not biased, it is executed
thrice and the average is used for the comparison. The plots generated for this scenario are
for the same metrics as in scenario 1 and depict the same data as in scenario 1.
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Figure 5.14: Total number of running vehicles for scenario 3

Figure 5.15: Total number of running vehicles average for scenario 3

Comparing the total number of running vehicles

Scenario 3 runs the digital twin for the free flow traffic. The total number of running
vehicles in the physical entity is 487, and the average total of running vehicles in the digital
twin of three executions is around 383, as shown in plots 1 and 2. In this scenario, as in
scenario 1, the digital twin under counts the vehicles. However, as illustrated in Figure 1,
the digital execution is inconsistent across the three runs. In fact, in this scenario, the digital
twin behaves strangely, and the number of running vehicles is greater than the physical
entity for the first execution. The remaining two executions have 336 and 304 vehicles,
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respectively, demonstrating a significant difference between the first execution and the
remaining two executions.

Comparing the average trip speed

Figure 5.16: Average trip speed of 3 digital twins run for scenario 3

Figure 5.17: Average trip speed for scenario 3

In this scenario as well, the digital twin models traffic significantly slower. The average
speed of the physical entity is 21.69 m/s, while the digital twin’s is 14.1133 m/s. The
difference in average speed is nearly 34%.
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Comparing the speed factor distribution

Figure 5.18: Speed factor distribution of physical entity for scenario 3

Figure 5.19: Speed factor distribution of digital twin for scenario 3

We can see from comparing the speed distribution bar plots of the physical entity and its
digital twin that it follows a normal distribution with data that is symmetrically distributed.
Both the physical entity and digital twin bar plots exhibit this pattern. We can see that the
mean for the physical entity is around 0.25 to 3 and for the digital twin is around 0.3 to
0.35, and the speed factor of most vehicles is around this value.
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5.2.4 Discussion

For evaluating the framework, the digital twin was executed for 15 mins for different
timestamp which included a free flow, saturated and congested traffic flow. The digital twin
was also run three times in order to average the results and compare them to the SUMO
simulation of the motorway.

It is difficult to draw conclusions about the performance of the digital twin based on the
results of the scenarios. The metrics used to assess the digital twin are also limited. We
discovered that the speed factor distribution shows correlation in both the physical entity
and the digital twin based on the plots. However, it has been discovered that the digital
twin consistently under counts vehicles and models traffic flow at a slower rate than the
physical entity. One of the reasons for this could be inaccurate sensor readings.
Furthermore, the sensors may not be able to capture all of the vehicle’s data. Many things
are still missing from the framework, such as the model for counting the number of vehicles
entering and exiting the motorway. Sensor fusion methods could be improved as well. All of
these observations can be resolved by extending the framework, as mentioned in the section
on future work.
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6 Conclusion and Future works

This section gives the conclusion for the proposed framework and outlines the limitations of
the framework. Furthermore, this section describes some of the potential future works that
can be done to improve the framework.

6.1 Conclusion

The dissertation proposes a framework for developing digital twins of motorways, with a
design that includes all of the components of a digital twin. The digital twin model is
divided into different components based on the various necessary requirements by the digital
twin. The significance of each component is explained, along with the approach used to
implement each component.

The initial chapters of the dissertation discusses the current state of the art as well as the
tools needed for the framework. The framework can collect sensor data by using an Apache
Kafka-based communication mechanism. The framework was designed to support data from
four types of sensors: inductive loops, motorway cameras, toll bridge cameras, and probe
vehicles. The collected data is sent to the models for data processing and agent mapping,
and the traffic flow is modeled using SUMO and TraCI.

To evaluate the framework, a digital twin of Dublin’s M50 motorway was created using data
from all four types of sensors. The physical entity used in this case was an SUMO simulation
of the M50 motorway. From the evaluation section we concluded that the framework was
able to successful model the traffic flow. The number of vehicles, average speed, and speed
factor distribution are used to evaluate the digital twin.

6.2 Limitations

The designed framework was able to create a digital twin and model the traffic flow for the
M50 motorway, but it does have some limitations. The framework’s communication
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mechanism reads data in batches sequentially and processes it one at a time. When
compared to the physical entity, this causes a delay in traffic flow in the digital twin. The
evaluation metrics used are limited and cannot accurately evaluate the digital twin. A model
for predicting the number of vehicles entering and exiting the motorway is also lacking from
the framework. Keeping all of these limitations in mind, the section on future work discusses
methods for overcoming them.

6.3 Future work

The designed framework was capable of creating a digital twin of a motorway by collecting
data from sensors and modelling traffic flow accordingly. To evaluate the framework, we
built a digital twin of the M50 highway and compared its various characteristics. There are
many things that can be done to improve the framework and achieve better results in future
research. This section will go over some of the potential future initiatives for this
framework.

The developed framework currently supports four types of sensor data: inductive loops,
motorway cameras, toll bridge cameras, and probe vehicles. The framework can be expanded
to support additional sensors that can provide data in addition to the current sensor data.
For example, radar data can be collected for object detection. Data from the drivers mobile
phone sensors could be collected as well, which could assist in determining the exact
location of the vehicles. Out of the four supported sensors, the probe vehicle can provide
this data, but for the rest of the vehicles, mobile phone GPS may be useful. Additional
sensor fusion models that combine data from multiple sensors and perform error correction
on the data could be added in future research. For example, the Kalman filter could be used
to correct GPS errors. Methods for correcting and validating other sensor data could also be
discovered.

The models could be expanded, and a new model for predicting the number of vehicles
entering and exiting the motorway through the intersections could be introduced. Along
with this, further experimentation can be done with additional evaluation metrics for
measuring the performance of the framework.
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