
Can CodeT5 embeddings be adapted for efficient

Code Clone Detection and Retrieval?

Chinmay Rane, M.Tech

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Professor David Gregg

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Chinmay Rane

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Chinmay Rane

August 19, 2022

Can CodeT5 embeddings be adapted for efficient

Code Clone Detection and Retrieval?

Chinmay Rane, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Professor David Gregg

With the increase in the number of programs written every day, it becomes challenging to
maintain a large software repository. Owing to this, large-scale code clone detection and
retrieval have become a necessity. There exist several works offering solutions to solve the
problem. However, most of the works have trouble maintaining a balance between accu-
racy and scalability. Classical approaches have high scalability but lower precision whereas
recent neural network-based models have high precision but suffer from scalability. In this
work, we show how CodeT5 a recent neural network-based model could be modified to
reduce its usage during clone retrieval. Particularly, we fine-tune the architecture to ex-
tract code embeddings rich in semantic and syntactic information. Through experiments
on the BigCloneBench dataset, we assess the efficacy of the generated code embeddings
and show how our proposed Nearest Neighbor-based retrieval approach fetches clones in
real-time while achieving comparable accuracy to the original CodeT5 architecture.

Keywords: Clone Detection, Clone Retrieval, Deep Learning, Neural Networks, Code
Embeddings, K-Nearest Neighbor Search

Acknowledgments

Firstly, I would like to thank my supervisor, Professor David Gregg, for giving me the free-

dom to work and experiment with my ideas. My deepest gratitude to David for guiding

me throughout, supporting me through difficult times, and motivating me to do my best.

Secondly, I would like to express my appreciation to Professor Stefan Weber for providing

invaluable suggestions for improving my dissertation. I would also like to thank Mr. Gul

Aftab Ahmed for showing me the direction, especially during the implementation phase.

I am grateful to my colleagues who constantly encouraged me and provided me with

steady consolation and direction during the dissertation. Finally, I would like to thank my

wonderful parents for their constant love and support which provided me with solidarity

to successfully complete the thesis. I am grateful for the endless sacrifices they have made

in making me stand where I am today. So, I dedicate this dissertation to my parents.

Chinmay Rane

University of Dublin, Trinity College

August 2022

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

1.2.1 Code clone terminologies . 3

1.2.2 Code clone types . 3

1.3 Problem Statement . 5

1.4 Research Questions . 6

1.5 Research Objectives . 7

1.6 Thesis Overview . 7

1.7 Thesis Structure . 8

Chapter 2 Literature Review 9

2.1 Why do code clones often arise in practice? 9

2.2 Problems caused by code clones . 10

2.3 Classical clone detection and retrieval techniques 11

2.3.1 Text-based approaches . 11

2.3.2 Token-based approaches . 11

2.3.3 AST-based approaches . 12

2.3.4 PDG-based approaches . 12

2.3.5 Hybrid approaches . 12

2.4 Deep learning-based clone detection and retrieval methods 13

2.4.1 Embeddings . 16

2.5 Conclusion . 18

v

Chapter 3 Methodology 19

3.1 Data Overview . 19

3.1.1 BigCloneBench . 20

3.2 Data Pre-processing . 20

3.3 Original CodeT5 Architecture . 21

3.3.1 Working of CodeT5 architecture . 22

3.3.2 Opportunity of improving the CodeT5 architecture 24

3.4 Proposed modified CodeT5 architecture . 25

3.5 Training Procedure . 26

3.5.1 Cosine Embedding loss . 26

3.5.2 Binary Cross Entropy loss . 28

Chapter 4 Experiments and Results 31

4.1 Experimental Setup . 31

4.1.1 Implementation details . 31

4.1.2 Evaluation Metrics . 32

4.2 Results . 34

4.2.1 Experiment 1 . 34

4.2.2 Experiment 2 . 37

4.2.3 Experiment 3 . 44

Chapter 5 Conclusion and Future Work 47

5.1 Conclusion . 47

5.2 Limitations . 48

5.3 Future Scope . 48

Bibliography 50

vi

List of Tables

3.1 Characteristics of the datasets . 19

3.2 Layers in the Feedforward Neural Network 30

4.1 Results of original and fine-tuned modified CodeT5 architecture on the

clone detection task. Figures in bold (resp. underline) refers to the best

(resp. second best) value on the metric. 35

4.2 Results on code clone detection. Figures in bold (resp. underline) repre-

sents the best (resp. second best) score on the metric 36

vii

List of Figures

1.1 Type-1 Clones . 3

1.2 Type-2 Clones . 4

1.3 Type-3 Clones . 4

1.4 Type-4 Clones . 5

2.1 Pre-training CodeBERT on Masked Language Modeling 14

2.2 Pre-training GraphCodeBERT on Masked Language Modeling 15

2.3 Visualization of word embeddings for non-stop words in documents x and y

produced by Word2Vec algorithm. Orange triangles and blue dots represent

words in the documents x and y respectively. 16

3.1 A sample true clone pair in the BigCloneBench dataset classified as Weak

Type-3 clone . 20

3.2 Working of the CodeT5 architecture . 22

3.3 Working of the proposed modified CodeT5 architecture 25

3.4 Learning code embeddings by minimizing cosine embedding loss 28

3.5 Learning code embeddings by minimizing binary cross entropy loss 29

4.1 Visualizing code embeddings in the 2D cartesian plane. Each blue dot

represents a distinct code fragment in the corpus 38

4.2 Clusters identified in the code embeddings by DBSCAN algorithm 39

4.3 Determining the optimal number of clusters in KMeans using elbow curve . 40

4.4 Clusters identified in the code embeddings by KMeans clustering algorithm 41

4.5 Functionalities encoded within the seven clusters identified by KMeans

algorithm . 42

4.6 Total time taken to answer n queries . 44

4.7 Accuracy of the systems in response to n queries 45

viii

Chapter 1

Introduction

Code clones are defined in the literature as two identical or similar pieces of code [55].

Code clone detection is an interesting area of research concerning locating code clones

within a software repository. There are numerous reasons for creating code clones —

modifying existing software code, reformatting the code, rewriting the code base in a

faster and stable programming language [51]. Code clones are known to introduce prob-

lems in software maintenance such as bug propagation [60]. For instance, a bug identified

in the original code needs to be fixed in all the duplicated code fragments. Thus, there

exists a need to detect code clones in order to allow the programmers to efficiently man-

age (reuse) the code fragments. This helps save time, effort, and organization resources.

Other advantages of detecting code clones include copyright infringement detection, pla-

giarism detection [7, 24], code maintainability, and bug detection.

Several tools and techniques [16, 19, 58, 72, 74, 5, 21, 22, 25] have been proposed

for detecting code clones from the software code base. However, maintaining a balance

between accuracy and scalability is still an active area of research. Code clone retrieval

is another interesting challenge that aims at retrieving code clones from a given code

repository. There has been a lot of work in this space. Most of the works in this field typ-

ically use information retrieval methods [18, 17, 64, 30, 34, 29, 12]. Recent code retrieval

approaches focus on leveraging deep learning techniques [50, 28] to solve the problem.

This chapter is structured as follows: Section 1.1 presents the motivation behind this

research work. Section 1.2 describes certain code clone specific terminologies and details.

Further, the problem statement is identified in Section 1.3, followed by research questions

in Section 1.4 and the objectives enumerated in Section 1.5. Finally, Sections 1.6 and 1.7

presents a brief overview of the thesis and its organization respectively.

1

1.1 Motivation

Today, in most organizations we find multiple software engineers and developers contribut-

ing to the company’s large software code base. With the enormous amount of source code

being generated every day, large-scale code clone detection becomes a necessity. Detecting

clones help the developers review and maintain the code base efficiently. In addition, it

offers a quick solution to bug propagation. In other words, developers can quickly detect

and fix bugs such as security errors in all clones arising due to a potential security flaw

in the original code.

Code clone retrieval is generally combined with Integrated Development Environments

(IDEs) to offer engineers easy solutions to enhance object-oriented programming. We

know that it is impossible for a person to manually monitor the whole code repository

and come up with recommendations to improve the code. This is where IDEs such as

Visual Studio Code, and PyCharm come into play. They provide users with intelligent

suggestions of similar codes already present in the code repository to save their time in

implementing the function from scratch and thus, promote code reusability.

A code clone detection and retrieval system need to be accurate and scalable in order

to find clones in real-time. Classical systems utilize information retrieval methods such as

suffix trees, hashing, bags of tokens, and combinatorial search for detecting and retrieving

codes. However, recent neural network-based approaches are able to surpass the accuracy

of classical methods by a large margin. Recent works incorporate deep learning and em-

ploy huge neural network architectures for both code clone detection and retrieval. These

architectures result in exceptional accuracy in code clone detection but do not scale well

for code clone retrieval. This is because they perform pair-wise code comparisons to rank

similar codes in the database consuming a large amount of time.

This motivates us to adopt deep learning techniques and focus on reducing the time

complexity of the neural network approach while maintaining accuracy. We aim to mini-

mize the use of such computationally-heavy neural network-based architectures by relying

on its embeddings (representations; explained in Section 2.4.1) instead. Comparing code

embeddings is much faster than comparing codes using these architectures. We expect

the embeddings to retain rich semantic and syntactic information, thus helping us to

efficiently detect and retrieve code clones.

2

1.2 Background

This section provides a short description of the code clone terminologies. Further, it

introduces the types of code clones recognized in the literature [61, 60].

1.2.1 Code clone terminologies

Code Block. Set of programming statements that are defined within a finite scope (gen-

erally enclosed within brackets).

Code fragment. A continuous piece of code, specified by the tuple (l, s, e) where ’l’, ’s’,

and ’e’ represent the source file, start, and end of the fragment respectively.

Clone pair. A pair of similar code fragments, represented by the tuple (f1, f2, ϕ) where

f1 and f2 indicate the pair of clones and ϕ denotes their clone type.

Clone class. A distinct set of code fragments that are similar. It is represented by the

tuple (f1, f2, ..., fn, ϕ)

Inter-Project Clone. A clone pair (f1, f2, ϕ) identified in two different software repos-

itories.

Intra-Project Clone. A clone pair (f1, f2, ϕ) identified within a single software repos-

itory.

1.2.2 Code clone types

Code clones are categorized into four types depending upon their complexity and similar-

ity [56]. These are described below:

Figure 1.1: Type-1 Clones

3

Type-1. Includes two identical code fragments having differences in comments, layout,

and whitespaces. Fig. 1.1 represents an example of Type-1 clone.

Type-2. Includes two similar code fragments with differences in their variable names and

values. Note that Type-2 clones also include Type-1 differences. An example of a Type-2

clone is displayed in Fig. 1.2

Figure 1.2: Type-2 Clones

Type-3. Includes two code fragments that have syntactic similarity but differ at the

statement level. These are generally modifications of one another where statements are

either added, replaced, or deleted. Type-3 clones encompass the Type-1 and Type-2 dif-

ferences as well. Fig. 1.3 shows an example of a Type-3 clone.

Figure 1.3: Type-3 Clones

Type-4. Includes two code fragments that are syntactically dissimilar but semantically

similar. Type-4 clones are minor variations of a single functionality. In comparison, Type-

3 clones look syntactically similar but are semantically different. Fig. 1.4 illustrates an

example of Type-4 clone.

4

Figure 1.4: Type-4 Clones

1.3 Problem Statement

While classical code clone detection approaches [20, 39] do an exceptional job of identify-

ing Type-1 and Type-2 clones on a large scale, they struggle with detecting Type-3 and

Type-4 clones. In real life, most of the code clones exist as Type-3 and Type-4 clones

[53]. Hence, there exists a requirement for a system that is able to identify semantically

similar clones whilst being scalable.

A few works that achieve high accuracy and scalability on code clone detection appli-

cations make assumptions about the target domain [32, 6]. For instance, [6] detects clones

only in android applications. Such code clone detection approaches are domain-specific

and do not work well when applied on large-scale domain-independent datasets [56].

Recent works [13, 69] for code clone detection and retrieval leverage deep learning

architectures (CodeBERT, CodeT5 resp.) to achieve remarkable accuracy at the expense

of scalability. These works require quadratic time complexity O(n2) for retrieving clone

pairs in the dataset. This is because these approaches perform pairwise code comparisons

to identify the clone pairs with high similarity. In other words, to identify all clones in

the repository, every code fragment needs to be compared against another resulting in

O (n2) comparisons or (n× (n− 1)/2) comparisons to be precise, where n is the number

of code fragments in the dataset.

These aforementioned challenges bring the need for developing a system to address

code clone detection and retrieval in an efficient and scalable way. An ideal system must

have low space and time complexity and must quickly adapt to the ever-growing amount

of source code every day.

5

1.4 Research Questions

According to the problems stated, the following research questions can be identified:

Research Question 1. Can we modify the CodeT5 architecture to make it scalable

for code clone detection and retrieval?

CodeT5 [69] is a transformer-based architecture trained for code understanding and gener-

ation tasks. The transformer architecture is developed by Vaswani et al. [66] for language

processing tasks, that work by learning the interrelation between words in the sentence

using a novel ”attention” mechanism (explained in section 3.3.1). The CodeT5 achieves

state-of-the-art results in code clone detection and other downstream tasks. CodeT5 takes

as input two code fragments, produces a single code embedding, and further employs a

classifier to detect the level of similarity between them.

Research Question 2. Does the CodeT5 representations capture different function-

alities of code corpus?

The purpose of this question is to verify whether the code embeddings generated by the

Codet5 model capture rich syntactic and semantic information present in the code frag-

ments. In this work, we will plot visualizations to derive insights to address the question.

Research Question 3. How effective is the Nearest Neighbor search on the CodeT5

embeddings?

Using CodeT5-generated embeddings, we aim to perform a nearest neighbor search on

the code repository in order to rank and identify the closest clone pair given a query code.

This would help answer the question — ”Whether the CodeT5 embeddings can be adapted

to efficient code clone retrieval?”. In addition, we aim to analyze the accuracy and scal-

ability of the proposed information retrieval system using CodeT5-generated embeddings.

6

1.5 Research Objectives

We formulate the following set of research objectives based on the research questions

posed in the previous subsection.

1. To assess whether the modified CodeT5 architecture results in high performance.

2. To explore whether the CodeT5-generated embeddings distinctly capture code char-

acteristics.

3. To identify whether the generated code embeddings can be segregated into unique

categories.

4. To figure out the effectiveness of CodeT5-generated embeddings for code clone re-

trieval at scale.

1.6 Thesis Overview

The thesis presents an approach to detecting and retrieving code clone pairs while requir-

ing lower memory and time when compared to using the original CodeT5. The CodeT5

architecture is adopted and modified in an attempt to make it scalable. The code clones

are detected by fine-tuning the pre-trained model in a supervised learning setup. Two dif-

ferent training strategies are evaluated for producing semantically rich code embeddings.

The results using these strategies are further compared against standard classification

metrics.

The fine-tuned model is used to generate embeddings for every code in the dataset.

The generated embeddings are then assessed to verify whether they capture meaningful

interpretations (characteristics of the codes in the dataset). Ideally, the embeddings of

clone pairs must appear closer in the feature space and farther from the non-clone pairs.

Finally, the generated embeddings are used in the code clone retrieval task. Retrieving

code clones using code embeddings has the advantage of being faster and space efficient

than pairwise code comparison using the original CodeT5 architecture.

7

1.7 Thesis Structure

The flow of the thesis is presented as follows:

Chapter 2 [Literature Review] - Presents existing code clone detection and retrieval

approaches.

Chapter 3 [Methodology] - Describes the dataset used in the study, followed by the

text pre-processing techniques used. Further, explains the original CodeT5 architecture

and the proposed methodology to train the modified CodeT5 architecture.

Chapter 4 [Experiments and Results] - Describes the evaluation metrics used, fol-

lowed by results discussion and visualization.

Chapter 5 [Conclusion and Future Work] - Concludes the thesis and identifies the

limitations and presents the future work that could be carried out in this direction.

8

Chapter 2

Literature Review

Code clone detection and retrieval have been an interesting area of research for a long

time and we can find a significant amount of work done in this direction. This chapter

reviews the research work carried out in the literature by taking as reference some of

the most comprehensive surveys conducted [60, 51, 38, 1, 75]. Firstly, we discuss ”why

code clones often arise in practice”. Secondly, we highlight the problems caused by the

presence of code clones. Further, we review the classical code clone detection and re-

trieval approaches, followed by the deep learning approaches. Finally, we talk about the

measures to evaluate code clones.

2.1 Why do code clones often arise in practice?

Code clones exist in a software repository for numerous reasons. Some of the reasons

identified in the literature are:

1. Promote code reusability

A widely used practice in the development community is to copy-paste-modify code

from various web sources such as StackOverflow, Github Gists. This creates code clones

within the software repository. Developers predominantly use this programming practice

in an attempt to save the time and effort required to implement everything from scratch.

However, it is worth noting that this sort of copying from random sources is completely

unacceptable in most commercial software development environments. It involves a mas-

sive breach of copyright and leaves the company very prone to being sued for breach of

copyright. A work [27] discovered that developers also clone the existing software reposi-

tory and modify the code to adapt it to their use case. This is totally legal but can be bad

9

a software engineering practice, depending on how large are the cut and pasted fragments.

2. Maintenance Benefits

Existing codes are well-tested and approved by a large team/community. Therefore, it

makes sense to build new code on top of the existing ones. Rewriting codes from scratch

consumes time and can introduce new errors. In certain companies, developers are often

asked to reuse the code and adapt it according to the new client’s requirements.

3. Starter code in IDEs

Several IDEs such as Eclipse, IntelliJ IDEA provide the user with the flexibility to

choose the type of project he/she wants to create based on the specifications such as Java,

Maven, Gradle, Android, etc. When the user selects an option, the IDE automatically

generates the boilerplate code for the user. Another example is IDEs automatically gen-

erating getter setter methods for class variables. This also contributes to creating code

clones.

4. Project Deadlines

Often, developers are subjected to pressure due to project deadlines. Thus, the devel-

opers can make bad choices under pressure and copy code from other sources to adapt it

to fit their specifications.

5. Accidental Cloning

It is nearly impossible to monitor the organization’s large software repository manu-

ally. Developers may unintentionally write code that already exists in the code repository.

This creates duplicated code fragments that can be solved by IDEs automatically sug-

gesting the developers to import the existing code to promote code reusability.

2.2 Problems caused by code clones

While code clones can be beneficial in saving time and resources for the organization.

They are known to introduce problems for the organization as well. Some of the well-

known issues identified in the literature are:

1. Bug propagation

If the original code contains bugs or errors, they get propagated to all its clones [36].

Thus, creating a major problem in code maintenance. For instance, a flaw in the original

10

code can result in a potential security breach, hence, the software maintainers need to

take immediate actions to resolve the issue across all the clones.

2. Introduce new errors

Many a time, developers copy inconsistent and incomplete code from various sources

and merge them [56]. They might overlook important information such as the required

package versions and their dependencies. This introduces new errors in their software

system as a result of incompatibility of the copied codes.

2.3 Classical clone detection and retrieval techniques

Classical code clone detection and retrieval techniques utilize information retrieval meth-

ods. They typically vary based on the way of representing source codes, comparison

algorithms used, and the computational complexity. Some of the classical techniques

include suffix trees [25, 32], bags of tokens [25, 36, 4], hashing, combinatorial search, ab-

stract syntax trees (ASTs) [5, 67, 73], text representations [4, 8, 23, 10], and program

dependence graphs (PDGs) [31, 33, 37], etc. These approaches are described in brief in

the subsections below:

2.3.1 Text-based approaches

Text-based techniques use traditional natural language processing techniques such as

text cleaning (comments removal, whitespace removal), and text normalization (stem-

ming, lemmatization) for pre-processing of the source codes. They further employ string-

matching algorithms to identify code clones. For instance, Baker et al. [3] detect clones by

running a string-matching algorithm line-by-line. Ducasse et al. [10] uses a string-based

Dynamic Pattern Matching algorithm to detect clones and proposes a solution that is

language-independent.

2.3.2 Token-based approaches

Unlike text-based approaches, a token-based approach applies a transformation to the

source code and converts it into a sequence of tokens. This is generally done by parsing

the code using a lexical analyzer. The sequence of tokens is further scanned to detect

11

duplicated subsequences, that are returned as clones. Token-based approaches identify

clones with high recall and are robust to code changes such as spacing and formatting

[51]. CP-Miner [36] and Baker’s Dup [4] are two state-of-the-art token-based code clone

detection techniques.

2.3.3 AST-based approaches

Abstract syntax tree-based approaches convert the programs into a parse tree-based struc-

ture using a compiler of the programming language. Further, they employ a tree-matching

algorithm to detect similar sub-trees. The source codes corresponding to the sub-trees are

returned as clones. While AST-based approaches have high precision, they suffer from

scalability issues. This is because of the lack of efficient algorithms for approximately

matching ASTs. Moreover, the trees can have a large depth and consume a significant

amount of memory. A few pioneering works done in this direction using AST-based tech-

niques include Yang’s approach [73] and Baxter’s CloneDR [5].

2.3.4 PDG-based approaches

Unlike the aforementioned approaches, PDG-based approaches utilize semantic informa-

tion of the program to generate code representations. They work similar to ASTs but

also encode information pertaining to control flow and data flow within the source code.

Therefore, they are more robust to changes within the code such as reordered statements,

insertion, and deletion of code. Komondoor and Horowitz [31] used a variable depen-

dency graph to represent the source code. They converted the task of finding clones into

detecting isomorphic subgraphs within the program dependency graph.

2.3.5 Hybrid approaches

Hybrid approaches encompass a blend of the aforementioned approaches. Researchers

have tried to combine multiple program representations in order to balance high precision,

recall and achieve scalability. For instance, Koschke et al. [32] proposed a token-based

approach with ASTs for representing the source codes, and his approach resulted in linear

scaling with time, making it appealing for large-scale applications. Another pioneering

work by Jiang et al. [22] includes a hybrid approach to clone detection. They represent

the program using AST and convert it into a vector representation. Further, they em-

12

ploy a hashing algorithm to cluster the vectors. The vectors within the same cluster are

returned as clones.

2.4 Deep learning-based clone detection and retrieval

methods

Deep learning-based techniques use Neural Networks (NN) [72, 2, 50] to address clone

detection and retrieval. These techniques generally differ in the way they represent the

programs or train various NN architectures. State of the art deep learning models have

high precision and recall in clone detection but do not scale well in retrieval tasks. This

section provides a brief summary of the existing works employing deep learning techniques

for both tasks. Some excellent survey papers highlighting the pros and cons of deep learn-

ing techniques for clone detection are [61, 35].

Code2Vec. Alon et al. [2] proposed a NN-based Code2Vec algorithm that transforms the

code fragments into continuous distributed representations. They represent each source

code fragment as a fixed length contiguous vector (code embeddings; explained in Section

2.4.1) that is able to retain semantic information within the code. The code embeddings

are able to solve analogical reasoning tasks similar to Word2vec and Glove. Word2Vec

[42] and Glove [45] are algorithms used in natural language processing to represent words

as continuous vector spaces that capture word-to-word relationships. Code2Vec was orig-

inally developed to predict the method name given the code snippet but was later used

in other works [47, 26] for performing semantic code clone detection.

RNNs and LSTMs. White et al. [72] use traditional Recurrent NNs (RNNs) for

modeling structural and syntactical information present within the code fragments. They

achieved 93% precision at detecting method-level and file-level clones. Wei et al. [71] used

Long Short-Term Memory (LSTM) to learn code representations by modeling ASTs. The

representations are learned by minimizing a hash function which computes the hamming

distance between the hash codes of the code pairs.

Ensemble learning. Sheneamer and Kalita [59] extract syntactic and semantic features

from ASTs and PDGs to train machine learning and deep learning classifiers for code

clone detection. They further combine multiple classifiers in an ensemble to predict the

clone type.

13

Figure 2.1: Pre-training CodeBERT on Masked Language Modeling1

CodeNN. Gu et al. [14] proposed CodeNN, a deep neural network to perform code

search on large datasets. CodeNN embeds the programs and their descriptions into a

high-dimensional vector space referred to as embeddings (explained in Section 2.4.1), such

that the description and its respective code snippet appear closer in the feature space.

Thus, given a description of the method, CodeNN automatically retrieves matching code

snippets from the database.

CodeBERT. CodeBERT [13] is a state-of-the-art neural network developed for code un-

derstanding and generation tasks. It learns neural representations of natural language

and programming language pairs by modeling them using a popular neural network ar-

chitecture. Particularly, it uses BERT [9] as its underlying architecture and pre-trains its

parameters using two different training objectives — Masked Language Modeling and a

novel Replaced Token Detection task. The training takes as input the program descrip-

tion along with the actual program and returns a single representation containing rich

information about the program and its description. The pre-trained architecture is then

fine-tuned for the multiple downstream applications such as code search, clone detection,

code summarization, etc. Figure 2.2 shows CodeBERT being trained on the Masked Lan-

guage Modeling objective.

Graph NN. Wang et al. [68] were the first authors to use Graph Neural Networks

(GNNs) to detect semantic clones. They proposed FA-AST (Flow Augmented AST), a

0Code Intelligence

14

https://github.com/nanduan/nanduan.github.io/blob/main/Pre-trained%20Models%20and%20Benchmark%20for%20Code%20Intelligence.KDD%20keynote%202021.pdf

Figure 2.2: Pre-training GraphCodeBERT on Masked Language Modeling2

technique that leverages control and data flow graphs to enhance the ASTs. The authors

employ GNNs on FA-AST to measure the similarity between the code pairs.

GraphCodeBERT [15] was developed to solve an important limitation of CodeBERT,

that is, to incorporate structural information of the code. CodeBERT represents programs

as a sequence of tokens and ignores the inherent structure of code which can provide cru-

cial information about the code semantics. Therefore, the authors use the program’s

data flow graph to encode semantic information relating to the dependencies between the

variables. GraphCodeBERT is pre-trained on three tasks — Masked Language Modeling,

predicting dependency edges in the code structure, and aligning representations between

source code and code structure. The proposed model improves CodeBERT results and

achieves state-of-the-art performance on four downstream tasks.

CodeT5. Wang et al. proposed CodeT5 [70], an encoder-decoder-based Transformer

model that leverages user-defined identifiers to capture semantic properties in the code.

The authors extend a Seq2Seq-based T5 model [49] (developed for natural language under-

standing and generation tasks) for code understanding and generation applications. They

propose a novel identifier-aware pre-training objective to model the crucial token-type

(identifier) information from the programming language. CodeT5 results in state-of-the-

art performance on fourteen code-related sub-tasks defined in CodeXGLUE [41] (including

code clone detection) and significantly outperforms the prior architectures.

1Code Intelligence

15

https://github.com/nanduan/nanduan.github.io/blob/main/Pre-trained%20Models%20and%20Benchmark%20for%20Code%20Intelligence.KDD%20keynote%202021.pdf

Figure 2.3: Visualization of word embeddings for non-stop words in documents x and y
produced by Word2Vec algorithm. Orange triangles and blue dots represent words in

the documents x and y respectively3

2.4.1 Embeddings

Embeddings refer to a low-dimensional continuous space in which one can project the

high-dimensional vectors. They capture rich semantic information present in the inputs

such that the inputs which are related have their embeddings closer in the feature space.

The closeness between the embeddings is determined by the level of similarity between

the inputs.

In this section, we discuss a few popular word embedding algorithms and later intro-

duce code embeddings. Our idea is to use the code embeddings to perform both code

clone detection and retrieval in order to minimize the use of computationally-heavy ar-

chitectures.

Word embeddings

Word embeddings are a way of representing each word in the input text. The concept

of word embeddings became popular after Tomas Mikolov proposed Word2Vec algorithm

[42] in 2013. A year later, Pennington et al. proposed GloVe (Global Vectors for word rep-

resentation) [44], an improved word embedding algorithm which models the co-occurrence

word matrix to capture word-to-word relations. Both the algorithms assign a single rep-

resentation for every word in the corpus. These word representations can be used for

several downstream applications including machine translation, text summarization, text

classification, etc.

16

All the word embedding algorithms have a common property — the embeddings of

similar words appear closer in space and those of non-related words occur farther in space.

The illustration in Fig. 2.3 shows how non-stop words in both documents relate to each

other in the embedding space. This leads us to think about how the authors enforce this

property in the word embeddings. In reality, they design loss functions that guide the

neural network to generate such representations. For instance, the Word2Vec algorithm

uses negative sampling loss to impose the property.

One major drawback of the Word2Vec and GloVe algorithms is that they are unable

to address the issue of polysemy. Polysemy refers to the co-existence of words having

multiple meanings. For example, the word ”bank” can refer to a river bank or a place

to store money safely. Thus, the word ”bank” should have several different embeddings

based on the context. However, the algorithms assign a single representation to every

word. This is where the idea of contextual embeddings evolved. Recent architectures

such as BERT [9], ELMo [46] produce contextual embeddings for every word based on

the surrounding words (context).

Code embeddings

Similar to word embeddings, we aim to generate code embeddings using CodeT5 archi-

tecture for every code in the repository. These code embeddings will be used for clone

detection and retrieval. The idea of using code embeddings emerged to minimize the use

of the architecture during inference. For clone detection, we will compare embeddings

of the code pairs to determine the level of similarity between them. Similarly, for clone

retrieval, we will experiment using the nearest neighbor search for comparing the query

code embedding with the pre-computed embeddings of the codes in the dataset.

3Word embeddings - IBM Research

17

https://www.ibm.com/blogs/research/2018/11/word-movers-embedding/

2.5 Conclusion

This chapter provided a brief overview of the existing works in code clone detection

and retrieval. Initially, we described some of the classical approaches, followed by the

more recent deep learning-based approaches. The classical approaches suffer from either

low precision or low recall. Neural networks overcome their limitations but suffer from

scalability issues. So, we can view it as a tradeoff between precision, recall, and scalability.

In this work, we aim to achieve high precision, and high recall while reducing the time

complexity compared to O(n2) pairwise comparison, by utilizing CodeT5 embeddings

instead of the architecture for pairwise code comparisons.

18

Chapter 3

Methodology

3.1 Data Overview

CodeXGLUE [41] is a benchmark dataset containing a collection of 10 code-related tasks

across 14 datasets. There exists two popular datasets for clone detection and retrieval

defined in CodeXGLUE which are BigCloneBench [63] and POJ-104 [43] respectively.

There is another popular dataset for code clone detection which is the Google Code Jam

repository1 (GCJ). We use the filtered BigCloneBench dataset for both tasks because it

is commonly used in existing clone detection works. In addition, it contains enough code

fragments and a large vocabulary size to fit within our computational limits. Table 3.1

shows the statistics of the aforementioned datasets. The section below describes the Big-

CloneBench dataset and discusses the pre-processing performed on the codes.

Table 3.1: Characteristics of the datasets

Characteristics BigCloneBench GCJ POJ

Code fragments 9,134 1,669 52,000
Vocabulary Size 77,535 8,033 -

Average code length 32.89 58.79 35.25
True clone pairs 336,498 275,570 12,974,000
False clone pairs 2,080,088 1,116,376 1,339,000,000

Language Java Java C/C++

1https://code.google.com/codejam/contests.html

19

Figure 3.1: A sample true clone pair in the BigCloneBench dataset classified as Weak
Type-3 clone

3.1.1 BigCloneBench

BigCloneBench is a widely used benchmarking dataset for comparing clone detection al-

gorithms. It holds a collection of 6 million true clone pairs and 260k false clone pairs in

Java programming language covering 10 different functionalities. BigCloneBench includes

all four types of code clones (Type-1/2/3/4) with different strengths. Wang et al. [68]

shared a filtered version of the BigCloneBench dataset by removing programs that were

not labeled as true/false clone pairs.

The filtered BigCloneBench dataset consists of 9,134 programs written in Java cov-

ering several functionalities such as file transfer, SQL queries, etc. The training dataset

includes 901,028 equally balanced true and false clone pairs. The validation and test set

consists of 415,416 clone pairs each. Fig. 3.1 illustrates a true clone pair in the dataset.

The clone pair programs shown in the figure implement the function of copying the con-

tent of a source file into the destination file in two similar ways. We use the filtered

dataset for our experiments. From here on, we will refer to the filtered version of the

dataset as BigCloneBench (BCB) unless stated otherwise.

3.2 Data Pre-processing

This section describes the pre-processing steps applied to all the programs in the Big-

CloneBench dataset. During inference, the pre-processing steps are applied to every query

code to convert it into a standard form to be input to the architecture. Pre-processing is

required to clean and normalize the source codes to improve the model performance. We

employ the following steps to pre-process the codes

20

Removal of unnecessary code. The irrelevant parts of the source code such as the

whitespaces and the comments are discarded. This leaves us with only the crucial parts

of the code such as the function name, its parameters, user-defined identifiers, variable

names, and values.

Tokenization. Tokenization is the process of splitting the code fragments into smaller

units called tokens. It is one of the crucial steps involved in improving the model per-

formance by handling out-of-the-vocabulary (OOV) words. Similar to BERT and GPT,

we employ CodeT5’s pre-trained Byte-Pair-Encoding (BPE) tokenizer which is trained as

proposed by Radford et al. [48]. The BPE tokenizer reduces the sequence length and is

determined to work better on the understanding and generation tasks [69].

Code-specific features. As proposed in CodeT5, we extract the code-specific features

by leveraging the token-type (identifier) information in the source code. The identifiers

are code tokens that are common to many programming languages capturing rich code

semantics. The CodeT5 tokenizer uses the identifier information and converts the code

into features to be utilized during training.

Encoding programs. The original CodeT5 architecture is pre-trained on natural lan-

guage description and program pairs (NL-PL) or program-program pairs (PL-PL). It

concatenates the tokens of the bimodal inputs by putting a [SEP] token between them.

[SEP] acts as a separation between the PL-PL or the NL-PL pairs. Since we modify the

architecture to take as input a single code we use [PAD] tokens after the code tokens to

pad the tokens to their maximum length and ignore the [SEP] token. Our input sequence

can be represented as ([CLS], c1, c2, c3, ..., cn, [PAD], [PAD], ..., [PAD]) where [CLS] rep-

resents the classification token, c and n represents the individual code tokens and number

of tokens in the program respectively.

3.3 Original CodeT5 Architecture

A simplified version of the original CodeT5 architecture is depicted in Fig. 3.2. This

section explains the working of the CodeT5 architecture. In the next section, we explain

the modified architecture and depict how it solves the limitations of the original model.

21

Figure 3.2: Working of the CodeT5 architecture

3.3.1 Working of CodeT5 architecture

As can be seen in Fig. 3.2, the CodeT5 architecture takes as input a sequence of code-code

(PL-PL) pairs, performs certain computations, and returns the embeddings corresponding

to each input token. The embedding of the first token [CLS] contains a rich summary

of both the codes which is further used for performing clone detection and retrieval.

The main computation performed by the architecture is defined as attention proposed by

[66] (explained in Section 3.3.1). The CodeT5 architecture is pre-trained on 3 different

objective functions (Masked Span Prediction, Identifier Tagging, and Masked Identifier

Prediction) providing feedback to the model parameters for enriching the code under-

standing. We briefly describe the attention operation along with the objective functions

below.

22

Attention. The encoder of the CodeT5 performs an attention operation on the input

tokens to understand how each token of the first code relates to its own tokens as well

as to the tokens of the second code. In other words, the attention mechanism generates

contextualized token embeddings capturing inter-code (between code-1 and code-2) and

intra-code (within code-1/code-2) relationships. The self-attention operation generates

three vectors K,Q, V for each token which act as the key, query, and value pairs. The

self-attention operation is defined by the equation 3.1.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (3.1)

where dk represents the dimension of the key vector and softmax is a non-linear func-

tion applied to convert the raw scores into normalized probabilities.

Masked Span Prediction (MSP). Denoising has proved to be effective in improving

model understanding against a wide variety of text-related tasks [49]. It enables the

model to predict noised tokens using the denoised ones. Thus, it learns the interaction

between noised and denoised tokens. The MSP objective function is a type of denoising

objective in which some code tokens are initially corrupted using certain noising functions

and given as input to the model for reconstructing the tokens. The model leverages

the non-corrupted tokens to predict the corrupted ones. The CodeT5 authors employ

identifier-aware denoising to improve the code understanding process. The objective can

be represented by equation 3.2.

LMSP(θ) =
k∑

t=1

− logPθ

(
xmask
t | x\mask,xmask

<t

)
(3.2)

where xmask
t is the masked token to be predicted, x\mask represents the masked input,

and xmask
<t represents the sequence generated till time t. The goal is to optimize the model

parameters θ to minimize the loss function.

Identifier Tagging (IT). CodeT5 introduces this novel objective function to amal-

gamate code-specific structural information in the architecture. The objective of this

function is to label each token of the sequence and hence it is also referred to as a se-

quence labeling task. Sequence labeling aims at predicting whether or not each token

is an identifier in the programming language. Essentially, the authors compute Binary

Cross Entropy loss at each token given by the equation 3.3.

23

LIT(θ) =
m∑
i=1

−[yi log pi + (1 − yi) log(1 − pi)] (3.3)

where pi is the probability over the vocabulary, yi is the actual label (1 if the token is

an identifier, 0 if not) and θ represents the model parameters.

Masked Identifier Prediction (MIP). In this objective function, all the identifiers

in the program are masked and the model is trained to predict them, given the natural

language description of the program. This objective enforces the model to learn about

code semantics. The model predicts the identifiers in an auto-regressive fashion. The loss

function is similar to equation 3.2 and represented by equation 3.4.

LMIP(θ) =

|I|∑
j=1

− logPθ(Ij | x\I, I<t) (3.4)

where Ij is the predicted identifier, x\I is the masked input, and I<t is the sequence

predicted till time t.

The overall CodeT5 pre-training loss function is a combination of the three loss func-

tions with equal weightings given in the equation 3.5.

Lfinal(θ) = LMSP(θ) + LIT(θ) + LMIP(θ) (3.5)

3.3.2 Opportunity of improving the CodeT5 architecture

The pre-trained CodeT5 model achieves remarkable results in detecting all types of clones

with great precision and recall [69]. This behavior is expected because the pre-training

three objectives guide the model in understanding the code syntax and semantics well.

Coming to the clone retrieval task, CodeT5 retrieves clones with great accuracy because it

is capable of distinguishing between codes and calculating the level of similarity between

code pairs.

However, it has a major drawback in clone retrieval — pairwise code comparisons for

determining the similarity level, thus requiring O(n2) comparisons ((n× (n− 1)/2) times

architecture usage) and consuming a great deal of time. As can be seen in Fig. 3.2, the

architecture takes a single input containing the code-1 and code-2 tokens concatenated

and compute a combined embedding containing rich information about the relationship

between both the programs. This embedding is further fed into a 2-layer feedforward

24

Figure 3.3: Working of the proposed modified CodeT5 architecture

neural network which outputs a similarity score. The similarity score is then used for

ranking the codes during clone retrieval.

Could we reduce the number of times the neural network architecture is used during

inference for code retrieval? Yes, in the next section, we discuss how the architectural

design can be modified to reduce its usage from O(n2) to only O(n) during code retrieval

for n queries.

3.4 Proposed modified CodeT5 architecture

Our modified CodeT5 architecture is illustrated in Fig. 3.3. Instead of taking two codes

as input to the model as described in the original architecture, we generate embedding

for each code individually. For the clone detection task, we compute raw embeddings for

both the code separately and then experiment with two different training strategies to

learn these embeddings. Once the embeddings are trained, we compute and store them

for every code in the BCB dataset.

25

Our idea is to use the code embeddings for comparison during clone retrieval rather

than using the whole architecture. This proposal is based on the assumption that the em-

beddings capture syntactic and semantic information present in the program. We conduct

experiments to assess the efficacy of these embeddings in Chapter 4. If the assumption

holds true, then the clone retrieval task reduces to comparing these embeddings, which is

faster and more efficient than using architecture for pairwise comparison.

3.5 Training Procedure

In this section, we describe two different training strategies that we use for learning the

parameters of the modified CodeT5 architecture. One training objective is to minimize

the cosine distance between the embeddings of code clones and maximize the distance

between the embeddings of non-clones, referred to as the Cosine Embedding loss. An-

other training objective is to compute the Binary Cross Entropy loss in order to perform

clone detection and automatically learn code embeddings during this process. These two

strategies are described in the following subsections.

Note that we fine-tune the model instead of training it from scratch. Fine-tuning is a

training strategy wherein we take a model already pre-trained on a certain task and apply

it to our task. The idea is that the pre-trained model already understands the patterns

in the data. Fine-tuning a pre-trained model allows for generating better results while

saving a significant amount of training time and cost.

3.5.1 Cosine Embedding loss

In this training strategy, we aim to bring the embeddings of the true clone pairs closer

to the common embedding space and simultaneously push the embeddings of non-clone

pairs farther from each other. We use a cosine similarity metric to determine the level of

similarity between each code pair. Using the cosine similarity, we define a cosine embed-

ding loss and plan to minimize the loss by updating the model parameters. In this way,

the model learns to project the code into an embedding vector rich in code syntax and

semantics.

Cosine similarity. Cosine similarity represents the level of similarity between two vec-

tors. In our case, we project two codes into embedding vectors using the architecture and

26

compute the cosine similarity. If the two vectors point in the same direction they have a

high level of similarity and vice versa. The cosine similarity is essentially the dot product

of both vectors normalized by the product of their magnitude. The cosine similarity out-

puts a floating point value in the range [0, 1], where the value 0 (1 resp.) indicates the

highest level of dissimilarity (similarity resp.) between vectors. Given two vectors A and

B, the cosine similarity is defined by equation 3.6.

Cosine Similarity(A,B) = cos(θ) =
A ·B

||A|| · ||B||
(3.6)

Cosine Embedding (CE) loss. The CE loss is derived from the cosine similarity. This

loss is used to measure whether the two vectors are similar or dissimilar. If the two

vectors of true (false resp.) clone pairs are predicted dissimilar (similar resp.), then the

loss penalizes the model parameters. In other words, if the prediction and the actual label

do not match the loss function takes a high value. The CE loss for each sample is defined

in the equation 3.7.

lCE(x1, x2, y) =

{
1 − cos(x1, x2) if y = 1

max(0, cos(x1, x2) − γ), otherwise
(3.7)

where (x1, x2) are two embedding vectors, y is the true label and γ is the margin

which is a tunable hyperparameter. We use the default value of the margin (γ = 0). The

CE loss encourages the cosine angle between the embedding vectors to be small if both

vectors are similar [62].

Fine-tuning CodeT5 parameters on CE loss. Fig. 3.4 depicts how the architecture

is fine-tuned by minimizing the CE loss. We instantiate a single pre-trained CodeT5 ar-

chitecture and input code-1 and code-2 tokens to extract their embeddings individually.

Thus, there is parameter sharing (single CodeT5 instance) as illustrated in the figure.

Once, the code embeddings are generated, the CE loss is computed and the model pa-

rameters are updated using gradient descent. The gradient descent [54] is an optimization

algorithm to adjust the model parameters in order to minimize the loss function.

Inference on clone detection. During clone detection inference, we input the code

tokens to fine-tuned architecture. Specifically, we input code-1 and code-2 tokens indi-

vidually to the model to extract their embeddings. The cosine similarity between the

embeddings is computed which determines the level of similarity between the code pairs.

Finally, we compare the similarity score with a certain threshold. If the similarity lies

27

Figure 3.4: Learning code embeddings by minimizing cosine embedding loss

above the threshold, the code pairs are claimed to be true clones and vice versa.

Inference on clone retrieval. Once the architecture is fine-tuned, we pre-compute and

store the embeddings corresponding to all the codes within the dataset. During clone

retrieval inference, the input is a single query code. We use the architecture only once to

extract the query code embeddings. We then compute the cosine similarity between the

query code embeddings and all the pre-computed embeddings. The codes in the dataset

are ranked according to their similarity with the query code. Finally, we choose and re-

trieve the top− k codes as the clone pairs.

3.5.2 Binary Cross Entropy loss

In this strategy, we train the architecture to perform clone detection and automatically

learn the parameters to generate the code embeddings during the process. This strategy

differs from the previous conceptually and also by the way of computing loss on the em-

bedding vectors. Let’s first define and state the characteristics of the loss function.

Binary Cross Entropy (BCE) loss. It is a common loss function used in binary

classification problems. In our case, given a code pair, we aim to predict whether they

are true clone pairs or not. The BCE loss penalizes the model by returning a high value

28

Figure 3.5: Learning code embeddings by minimizing binary cross entropy loss

for every wrong prediction. It can be represented by equation 3.8.

lBCE(ŷ, y) =
1

N

N∑
i=1

[yi · log (ŷi) + (1 − yi) · log (1 − ŷi)] (3.8)

where N is the total number of samples, y is the true label (’1’ if true clone pair

otherwise ’0’), and ŷ is the predicted label. We train the model to minimize the loss and

automatically learn the parameters to produce code embeddings.

Fine-tuning CodeT5 parameters on BCE loss. Fig. 3.5 illustrates how the architec-

ture is fine-tuned by minimizing the BCE loss. The whole process is similar to fine-tuning

the architecture on CE loss till the point the embeddings are extracted individually. Af-

ter that, the code embeddings are concatenated horizontally and given to a feedforward

neural network (classifier) for classification. The output of the classifier is a probability

indicating the level of similarity between the code pair.

Feedforward neural network. The original CodeT5 architecture uses a 2-layered feed-

forward neural network taking as input a single embedding of 768 dimensions. Similar

to the original CodeT5 model, we design a feedforward neural network that consists of

29

two dense layers with non-linear functions following each dense layer. The only difference

between the original CodeT5 feedforward neural network with ours is the number of input

dimensions. We have input as a 1,536-dimensional vector as we concatenate code-1 and

code-2 embeddings each having a 768-dimensional vector. The 2-layer classifier architec-

ture is presented in Table 3.2. The sigmoid function takes as input raw scores (logits) and

converts them into probability between [0, 1]. The classifier takes as input concatenated

code embeddings and computes the weighted average over the embeddings, followed by

the non-linear activation functions (Tanh or Sigmoid). The total number of trainable pa-

rameters in the classifier is 1,181,954. Note that the architecture including the classifier

network is trained in an end-to-end manner.

Table 3.2: Layers in the Feedforward Neural Network

Layer Input shape Output Shape # Parameters

Linear-1 [1, 1536] [1, 768] 1,180,416

Tanh [1, 768] [1, 768] -

Linear-2 [1, 768] [1, 1] 1,538

Sigmoid [1, 1] [1, 1] -

Inference on clone detection. During clone detection inference, we use the CodeT5 ar-

chitecture to generate embeddings corresponding to both the codes individually. Further,

our feedforward neural network predicts a probability indicating the level of similarity be-

tween the codes. If the probability is greater than a threshold (p ≥ 0.5), then we classify

the code pair as true clones.

Inference on clone retrieval. We pre-compute and store the embeddings using the

fine-tuned architecture on the codes present in the entire dataset. During inference, we

fetch the query code embeddings using the architecture. We experiment with the nearest

neighbor search algorithm (KNN) using the euclidean distance as the comparison metric.

The codes are now ranked according to their distances with the query code embeddings

and the top− k codes are retrieved as the clone pairs.

30

Chapter 4

Experiments and Results

This chapter describes the experiments conducted to assess the performance of the mod-

ified CodeT5 architecture for both clone detection and retrieval. The results obtained

from each experiment are analyzed and discussed.

4.1 Experimental Setup

In the following subsection, we describe the specific implementation details and choices

for reproducing our work on the BCB dataset. In subsection 4.1.2, we introduce the eval-

uation metrics used for assessing the performance of our system on both clone detection

and retrieval task.

4.1.1 Implementation details

Our work is carried out in Python programming language (version 3.7.12). In particular,

we use the PyTorch deep learning framework (version 1.11.0) for model implementation,

training, and optimization. We use the CodeT5 implementation1 provided in the Hug-

gingFace transformers library (version 4.18). The model is fine-tuned for 2 epochs on both

training strategies — Cosine Embedding loss (CE) and Binary Cross Entropy (BCE) loss.

We use the Kaggle2 platform for training the models which provide NVIDIA Tesla P100

GPUs for parallel computation. Training the model for 2 epochs took between 40-45

hours on the P100 GPU accelerators.

We used the AdamW [40] as the optimization algorithm with a learning rate of 5e− 5

1https://huggingface.co/Salesforce/codet5-small
2https://www.kaggle.com/

31

and epsilon value of 1e − 8, as given in the CodeT5 implementation3. The training and

validation batch size was kept as 16 and 128 respectively. The maximum token length of

codes was kept at 128 to retain maximum information as well as stay within the compu-

tational limits of Kaggle.

4.1.2 Evaluation Metrics

The clone detection and retrieval systems are evaluated against a set of standard metrics

identified in the literature [21, 22, 52, 57]. These metrics help determine the efficiency of

the algorithm and allow the users to choose the system that best fits their use case. The

metrics we use in our work for clone detection and retrieval are described below.

Clone Detection

For clone detection, we use precision, recall, and f1-score as the metrics for comparing the

performance of the existing works with ours. These metrics are defined below:

1. Precision

Precision is a standard classification metric that determines ”What fraction of total clone

pairs predicted by the model are actually true clone pairs?” The true clone pairs identified

by the model are referred to as True Positives (TP) and the falsely predicted clone pairs

are referred to as False Positives (FP). Therefore, the precision can be represented by the

equation 4.1.

Precision (P) =
TP

TP + FP
(4.1)

The value of precision varies in the range [0, 1]. A precision of 1 indicates that there are

no false positives predicted.

2. Recall

Recall determines ”What fraction of actual clone pairs are accurately predicted by the

system as true clone pairs. The number of true clone pairs correctly identified by the

model is called True Positives (TP) and the true clone pairs incorrectly classified by the

model are called False Negatives (FN). Hence, the recall is represented by the equation

4.2.

3https://github.com/salesforce/CodeT5

32

Recall (R) =
TP

TP + FN
(4.2)

Recall takes values in the range [0, 1], where a value of 1 indicates all of the true clone

pairs correctly identified as clones by the model and vice versa. Note that a trivial clas-

sifier can have a recall of 1 by simply classifying every code pair as a true clone.

3. F1 score

F1 score is a performance metric that is a combination of precision and recall. Comparing

two or more classifiers using precision and recall is difficult. Assume if classifier A has high

precision but classifier B has a high recall, then it is difficult to determine which classifier

performs the best. Due to this reason, the F1 score was designed as a single metric to

compare the performance of two or more classifiers. It is defined as the harmonic mean

of precision and recall and represented by the equation 4.3.

F1 score =
2 × P ×R

P + R
(4.3)

F1 score takes value in the range [0, 1], where a value of 1 indicates the best possible

classifier. A high F1 score in clone detection indicates a model that is able to distinguish

between positive and negative clone pairs.

Clone Retrieval

Clone retrieval is the task of fetching clones from a repository of codes, given a query code.

For clone retrieval, we assess the performance of the systems against two simple metrics:

time and accuracy. The specific details of how we calculate the time and accuracy of the

algorithm are defined below.

1. Execution time

We calculate the total time required for the system to answer n queries. In other words,

for each query, we start the timer the moment the system parses query code and end

when the system retrieves k potential clone pairs. We now sum the total time required

for answering all n queries. Ideally, we want the system to consume minimum time to

retrieve the clone pairs.

2. Accuracy

The accuracy is calculated for n queries by diving the number of correct clone retrieval

33

by the total number of queries. For every query, we consider an accurate clone retrieval,

if the system retrieves a true clone pair in the top k retrieved codes.

4.2 Results

In this section, we describe the experiments conducted and present the results. We per-

form three experiments — Experiment 1 illustrates our results on the clone detection

task using our modified neural network architecture and presents a comparison with the

existing works. In experiment 2, we visualize the code embeddings and identify the func-

tionalities in the data captured by the embeddings. In experiment 3, we perform clone

retrieval and assess the performance of our proposed solution.

4.2.1 Experiment 1

We divide the experiment into two parts. First, we present and compare the results of two

of our proposed training strategies — CE and BCE loss. Second, we compare the results

of our best model with the existing works against the clone detection metrics defined in

the previous subsection.

Experiment 1.1

Table 4.1 depicts the results of our modified CodeT5 architecture fine-tuned on two train-

ing strategies along with the original CodeT5 results on the clone detection task. The first

row in the table represents the results of the original CodeT5 architecture (with concate-

nated code tokens as described in Section 3.3) on the clone detection task. The second

row represents the original architecture directly used without any fine-tuning on single

code input. The third and the fourth row represent the modified CodeT5 architecture

fine-tuned on CE and BCE losses respectively.

As we can see from Table 4.1, the original CodeT5 performs the best on all metrics,

followed by our modified CodeT5 architecture fine-tuned on BCE loss. One reason why

our fine-tuned CodeT5 architecture lags behind the original CodeT5 architecture can be

attributed to the fact that the CodeT5 authors use a maximum code token length of 400.

However, we truncate the maximum code token length to 128 to stay within our com-

putational limits, thus losing a lot of useful information. Note that the original CodeT5

results were taken from their Github4 repository and not from their work [69], as they

4https://github.com/salesforce/CodeT5/issues/55#issuecomment-1178517051

34

Table 4.1: Results of original and fine-tuned modified CodeT5 architecture on the clone
detection task. Figures in bold (resp. underline) refers to the best (resp. second best)

value on the metric.

Architecture Precision Recall F1 score

Original CodeT5 0.9526 0.9474 0.9500

Original CodeT5

(Single Code input)
0.2076 0.2519 0.2276

Our training strategies

Fine-tuned CodeT5

(CE loss)
0.6242 0.9346 0.7485

Fine-tuned CodeT5

(BCE loss)
0.8972 0.9074 0.9023

claimed to have reported incorrect result in the paper.

We can see in the second row that if single code tokens are given as input to the

original CodeT5 architecture without fine-tuning, we get very poor results on the task.

This is expected because the original CodeT5 is pre-trained on concatenated code-1 and

code-2 tokens. It can be clearly observed in the table that fine-tuning modified CodeT5

using BCE loss achieves a higher F1-score (0.9023) than using CE loss (0.7485). Thus, we

can conclude that fine-tuning modified CodeT5 by minimizing BCE loss tends to provide

better code embeddings than CE loss. To verify this claim, we perform Experiment-2 in

which we visualize the code embeddings and generate meaningful interpretations.

Experiment 1.2

Table 4.2 compares the results of some of the notable works against our best result on

the clone detection task. All the results are generated on the BCB testing dataset.

The results of the existing works are arranged in ascending order of F1 scores. We can

observe that the classical clone detection approaches using ASTs such as RtvNN [72] and

Deckard [22] have high precision but low recall values and thus a lower F1-score. Works

such as CDLH [71] and ASTNN [75] which model ASTs using classical deep learning

architectures (such as RNNs and LSTMs) obtain better precision and recall scores than

RtvNN and Deckard.

35

Table 4.2: Results on code clone detection. Figures in bold (resp. underline) represents
the best (resp. second best) score on the metric

Architecture Precision Recall F1 score

RtvNN [72] 0.95 0.01 0.01

Deckard [22] 0.93 0.02 0.03

CDLH [71] 0.92 0.74 0.82

ASTNN [75] 0.92 0.94 0.93

RoBERTa [15] 0.949 0.922 0.935

CodeBERT [13] 0.947 0.934 0.941

FA-AST [68] 0.96 0.94 0.95

GraphCodeBERT [15] 0.948 0.952 0.95

CodeT5 [70] 0.952 0.947 0.95

Ours 0.897 0.907 0.902

Recent deep learning architectures such as RoBERTa [15], CodeBERT [13], Graph-

CodeBERT [15], CodeT5 [69] and FA-AST [68] compete to attain top results on the

task. Three architectures — FA-AST, GraphCodeBERT, and CodeT5, currently achieve

state-of-the-art F1 scores (0.95) on the clone detection task. Our best model which is the

modified CodeT5 architecture fine-tuned on BCE loss obtains an F1 score of 0.902. The

main reason why our best model drops in the F1 score is because we use a maximum code

token length of 128 as opposed to all the other architectures which use a maximum code

sequence length greater than 400. Our focus was never to achieve top results in clone

detection but to assess whether the CodeT5 embeddings are capable of capturing essen-

tial semantic and syntactic code information. Our secondary aim is to identify whether

the code embeddings could be useful for clone detection and retrieval. Thus, we can con-

clude that our best model achieves a considerable performance on the clone detection task.

36

4.2.2 Experiment 2

In this experiment, we aim to verify whether the code embeddings extracted from the

fine-tuned CodeT5 architecture capture several functionalities present in the code corpus.

In turn, this will confirm that CodeT5 is able to comprehend semantic and syntactic

information from the programs. We will now explain the steps we take to verify this

assumption.

Firstly, we run the fine-tuned modified architecture using BCE loss on all the code

snippets present in the dataset and extract corresponding code embeddings. Each code

embeddings are 768-dimensional continuous vectors representing useful code-specific in-

formation. Once, the code embeddings are extracted, we apply a popular dimensionality

reduction technique, T-SNE, to reduce the 768D vector into 2D. This is done so that we

can visualize the code embeddings in a 2D cartesian plane and derive meaningful inter-

pretations. We explain the T-SNE algorithm briefly below and then visualize the code

embeddings in 2D.

T-SNE. T-distributed Stochastic Neighbor Embeddings [65] is a dimensionality reduc-

tion technique, majorly used to visualize high-dimensional data in 2D or 3D. Let’s briefly

understand how it works. The algorithm randomly initializes 2D embeddings for all high-

dimensional data points. It then transforms the similarities between the high-dimensional

data and low-dimensional data points to joint probabilities and minimizes the KL diver-

gence (distance) between the two probability distributions. This way the low-dimensional

embeddings are trained to reflect/mimic the similarity present in the high-dimensional

data points. The KL divergence between two probability distributions P (x) and Q(x)

belonging to χ probability space data points is given in the equation 4.4.

DKL(P ∥ Q) =
∑
x∈X

P (x) · log

(
P (x)

Q(x)

)
(4.4)

37

Figure 4.1: Visualizing code embeddings in the 2D cartesian plane. Each blue dot
represents a distinct code fragment in the corpus

Visualizing 2D code embeddings

Fig. 4.1 illustrates the 768D code embeddings plotted in 2D by reducing the dimension-

ality using the T-SNE algorithm. Every blue dot in the figure represents a unique code

fragment in the BCB dataset. We can see that the codes can be grouped into a certain

number of categories. The codes within a category might belong to similar functionalities.

If this is the case, then our assumption regarding code embeddings capturing the code-

specific details holds true. Since there exists a distinct separation between the groups,

we will now try grouping the code embeddings into k clusters to gather more information

about what each cluster represents. We experiment with two different clustering algo-

rithms — KMeans and DBSCAN.

38

Figure 4.2: Clusters identified in the code embeddings by DBSCAN algorithm

DBSCAN. Density-Based Spatial Clustering of Applications with Noise [11] is a clus-

tering algorithm that automatically determines the optimal number of clusters. It can is

known to discover clusters possessing an arbitrary shape. The algorithm finds core data

points present in a high-density region and expands clusters from them. We apply the

DBSCAN algorithm to the extracted 768D code embeddings to identify inherent clusters

present in the code corpus.

We can observe from Fig. 4.2 that the number of clusters identified by the DBSCAN

algorithm is suboptimal. There are eight clusters identified by the algorithm. However,

some of the clusters overlap each other and are not distinctly separated. Therefore, we

pivot to the KMeans clustering algorithm with the hope to get optimal clustering to iden-

tify the functionalities encoded in the clustered code embeddings.

39

KMeans clustering. KMeans clustering is an iterative algorithm that divides n ob-

servations into k distinct clusters (categories). The algorithm begins with initializing k

centroids that act as representative of each cluster. The algorithm works in two stages

— (i) Cluster assignment and (ii) Centroid movement. After centroid initialization, the

algorithm finds the nearest centroid for each data point and assigns it the corresponding

cluster. Once all data points are assigned a cluster, the centroids of each cluster are

translated to the mean of the coordinates of all data points contained within that cluster.

This process is repeated till the algorithm is converged.

We apply KMeans clustering on the 768D code embeddings to group them into cat-

egories with the intention of understanding what each category represents. The optimal

number of clusters k is determined using the elbow-curve method. Fig. 4.3 shows the

elbow curve plotted for varying values of k against two distance metrics — inertia and

distortion. Inertia is defined as the sum of squared distances from every data point to its

nearest centroid. While distortion is the average of squared distances from every cluster

centroid to all points contained within the centroid.

Choosing K in KMeans clustering. From Fig. 4.3 we determine the optimal value of

number of clusters k. Typically, we find the point which acts as an elbow, meaning that,

the point after which the curve is a straight line. We can observe from both subfigures

that after k = 7, the curves flatten, indicating the optimal cluster value. Therefore, we

choose k = 7 and apply the KMeans clustering algorithm to the extracted code embed-

dings.

Figure 4.3: Determining the optimal number of clusters in KMeans using elbow curve

40

Figure 4.4: Clusters identified in the code embeddings by KMeans clustering algorithm

Visualizing clusters identified using KMeans. Fig. 4.4 depicts the seven clusters

identified by the algorithm. The algorithm seems to have We can spot some misclassifi-

cation such as the points at the bottom center of the figure are considered by KMeans

to be within cluster 6 (brown), however, the points seem to be closer to cluster 7 (pink).

Nevertheless, we can see that KMeans clustering does a better job at identifying distinct

clusters than the DBSCAN algorithm. We are now interested in finding out what each

cluster represents. The next subsection talks about how we figure out the functionalities

encoded by data points within each cluster.

Visualizing functionalities encoded by each cluster

For visualizing the functionalities encoded, we consider all the codes within each cluster,

identified by the KMeans algorithm. For each cluster, we extract the 50 most frequent

words in the codes encompassed within the cluster. By visualizing the top frequent words,

we can get an idea of the characteristics of the codes in every cluster.

41

Figure 4.5: Functionalities encoded within the seven clusters identified by KMeans
algorithm

Fig. 4.5 illustrates a word cloud depicting the top 50 words present in each of the

seven clusters. We can see that each cluster represents a unique functionality. The codes

within the cluster can be considered slight variations of that functionality and hence can

be categorized as clones. The functionalities represented by each cluster are:

1. Cluster 1 (URLS) - It can be seen from the figure that a few top words in

this cluster are [”URL”, ”openconnection”, ”new URL”, ”String”]. Thus, we can

conclude this cluster contains codes related to opening an URL connection, perhaps,

fetching a resource from the URL, and closing the connection.

2. Cluster 2 (Files) - The top words identified in the cluster are [”File”, ”String”,

”FileInputStream”, ”FileOutputSteam”, ”contains”, ”try”, ”catch”, ”java io”, ”copy-

File”]. Hence, we can conclude that this cluster contains codes associated with

reading file inputs and producing a file output. It also contains codes for copying

the contents of one file to another.

3. Cluster 3 (MD5) - The top words identified in this cluster are [”MessageDigest”,

42

”MD5”, ”SHA”, ”NoSuchAlgorithmException”, ”String password”, ”update pass-

word”]. Looking at the words we can comment that this cluster encompasses codes

that are responsible for securely hashing and storing user passwords. MD5 is a

cryptographic hashing algorithm popularly used to convert variable-length string

input to a fixed 128-length hashed output.

4. Cluster 4 (SQL) - The top 50 words represented by codes in this cluster include

[”SQLException”, ”SQL rollback”, ”insert”, ”executeUpdate”, ”SetAutoCommit

false”]. We can conclude that this cluster contains codes executing different SQL

queries.

5. Cluster 5 (Reading input text) - The top words identified in this cluster are

[”new BufferedReader”, ”new InputStream”, ”readLine”, ”substring”, ”String line”].

We can comment that this cluster encodes the program that reads and stores the

stream of text in the buffer. Then, applies various functionalities to the text such

as getting a substring from the text.

6. Cluster 6 (Java identifiers) - Some of the top words present in this cluster are

[”int”, ”final”, ”static”, ”public”, ”void”, ”list”]. Looking at the words we can claim

that this cluster represents the codes carrying out simple java operations. Most of

the top words identified are keywords or identifiers present in the java programming

language.

7. Cluster 7 (FTP connection) - The top words identified in this cluster are [”new

FTPClient”, ”FTP disconnect”, ”FTP Server”, ”FTPReply isPositiveCompletion”,

”FTP login”]. By observing the words, we can tell that this cluster encompasses

codes containing functions to establish FTP (File Transfer Protocol) connection,

transfer files and data, and then close the connection.

43

Figure 4.6: Total time taken to answer n queries

4.2.3 Experiment 3

In this experiment, we are interested in finding out the total time required by both the

original CodeT5 and our proposed KNN-based retrieval system to answer n queries. Fur-

ther, we compare through visualization how accurate both systems are at answering the

queries.

KNN-based retrieval. We pre-compute and store the code embeddings of the existing

codes in the dataset. In the BCB testing dataset, we have the code pairs as input. We

consider the first code to be the query code. Now, we use our fine-tuned architecture to

extract the query code embeddings and employ KNN to compare the query code embed-

dings with existing ones and retrieve the top − k best matching code clones. We choose

k = 20, thus retrieving 20 codes closest to the query code. In most websites, we observe

somewhere between 10-25 elements being retrieved for a search query and hence the choice

of the k.

Execution time

Fig. 4.6 illustrates the time-based comparison of the original CodeT5 architecture and

our proposed solution. We can see that the original architecture takes a great deal of time

as the number of queries increases, in the order of 102 minutes. However, the proposed

KNN-based retrieval system takes around 1 minute to address 50 queries. Thus we can

conclude that the proposed KNN-based retrieval system is scalable.

44

Figure 4.7: Accuracy of the systems in response to n queries

For every query, the original CodeT5 architecture runs through all the existing code

in the dataset, concatenates the query code tokens with the existing codes one by one,

and produces a similarity score. Further, the codes in the dataset are ranked in descend-

ing order according to their similarity score. Since the architecture runs for n times (n

represents total codes in the corpus) for each query it ends up consuming a lot of time.

However, in our case, we run the fine-tuned architecture once for every query to extract

its embeddings and then use the KNN algorithm for comparing the embeddings.

Accuracy

Fig. 4.7 depicts the accuracy of both systems in response to n queries. We define accuracy

as a fraction of total queries containing the true clone pair in the top k retrieved clone

pairs by the system. We can observe from the figure that the performance of both systems

is comparable. There exists a drop in the accuracy of our proposed KNN-based retrieval

system when compared to the original CodeT5 model. This drop can be attributed to

two factors — (i) We truncate the maximum code token length to 128 which is way below

the 400 token limit used in the original CodeT5; (ii) In the original CodeT5 architecture,

the model gets both codes as inputs. This is beneficial as the model is able to capture

the interrelation between the codes. However, in our case, the fine-tuned model generates

embeddings by looking at the codes independently.

Note that for the inference the true clone pairs were picked randomly from the BCB

testing dataset. The first code in the clone pair is considered the query code. From Fig.

45

4.7 it is visible that the average accuracy of our proposed KNN-based system is close to

0.9, whereas the average accuracy of the original CodeT5-based retrieval model is close

to 0.96. Thus, we can conclude that our proposed KNN-based retrieval system has a

comparable accuracy and can retrieve code clones in lesser time.

46

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, we propose to modify the architecture of CodeT5 in an attempt to reduce

its usage during clone retrieval. CodeT5 is a recent neural network that achieves state-of-

the-art results on a variety of code understanding and generation tasks, including clone

detection. The CodeT5 architecture is not designed to perform clone retrieval due to

the large number of pairwise code comparisons using the architecture. This brings us to

the motivation for the work. We propose to modify the architecture to generate code

embeddings for each code separately as opposed to their original way of taking both code

pairs as input. Comparing two code embeddings is way faster than comparing two codes

using the architecture. We make an assumption that the embeddings are able to retain

useful semantic and syntactic language information.

We experiment with two different training strategies using Cosine Embedding loss and

Binary Cross Entropy loss. We confirm through evaluation that fine-tuning the modified

architecture using BCE loss results in better performance on the clone detection task as

compared to CE loss. As a result, we used the fine-tuned model on BCE loss for carrying

out further experiments. For clone detection, the code embeddings for both code pairs are

concatenated and passed through a 2-layered feedforward neural network which outputs

a similarity score. Finally, we compare the similarity score to a threshold and determine

whether the codes are clones. Our proposed system achieves an F1 score of 0.902 on clone

detection.

Next, we verify the assumption made about code embeddings by visualizing them and

extracting meaningful interpretations. First, the embeddings are converted from high-

47

dimensional space to low-dimensional space for visualization purposes. Further, KMeans

algorithm is employed to group the embeddings into 7 clusters. We identify by visualizing

through word clouds what each cluster represents. We conclude that the programs within

a cluster encode minor variations of the same functionality. This confirms that the code

embeddings are capable of capturing rich code-specific information.

For clone retrieval, we propose a nearest neighbor-based retrieval system that addresses

queries in real-time. The proposed system takes 102 order of execution time (mins) lesser

as compared to the original CodeT5 for responding to 50 queries while achieving compa-

rable accuracy. Thus, we confirm that the code embeddings can be used for both clone

detection and retrieval.

5.2 Limitations

There are a few limitations of our proposed approach for both clone detection and re-

trieval. In clone detection, we separately extract code embeddings for the code pairs

using the modified CodeT5 architecture. As a result, the code embeddings are not able

to capture the interrelation between the code pairs unlike in the original CodeT5 archi-

tecture, resulting in a loss of performance. In addition, due to constrained computation

resources, we truncate the code tokens to a maximum length of 128 which might result

in unreliable code embeddings for codes with token length greater than 128.

In clone retrieval, our proposed KNN-based retrieval computes euclidean distance

across 768 dimensions. Although the computation takes a fraction of a second for a small

number of queries, however, it will take a significant time given a million queries. Can

we do better? Yes, perhaps by reducing the dimensionality while preserving the inter-

similarity between code pairs as in the high-dimensions, we can gain in time.

5.3 Future Scope

In this work, we performed clone detection and retrieval on a BCB dataset consisting of

9,134 java programs. Hence, at the moment our proposed system works only for code

fragments written in java. This could be extended to include a multilingual programming

dataset. Most languages have similar syntactical structures, thus the model can bet-

48

ter understand similar and dissimilar properties across various programming languages.

There could be a unified model developed in the future, that would be able to perform

multilingual clone detection and retrieval.

In the future, we can hope to witness more work leveraging code embeddings to per-

form code understanding and generation tasks. Code embeddings offer several advantages

including reduced time for pairwise comparison and significant accuracy in retrieval. This

could be the way forward to perform large-scale code clone detection and other code-

specific tasks such as code summarization, code search, etc.

Another direction could be to perform knowledge distillation of huge neural network-

based architectures to develop a smaller model that captures the same knowledge learned

by the bigger network. This can help speed up both the clone detection and retrieval

process. Several others works are focused on designing loss functions to better train the

architecture. Future work could involve experimenting with a combination of both CE

and BCE losses to train optimal code embeddings. There is a possibility of training code

embeddings using negative sampling loss [42] which is used to generate word embeddings

such as Word2Vec.

Many works have found data pre-processing to be a better solution than designing

huge neural network-based architectures for code-related tasks. An extensive code pre-

processing can result in even a smaller neural network better able to comprehend the

code-specific properties and produce remarkable results. Code processing is still an active

area of research and it would be interesting to witness how future works perform feature

engineering to extract meaningful features from the programs.

49

Bibliography

[1] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool. A systematic

review on code clone detection. IEEE access, 7:86121–86144, 2019.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. Code2vec: Learning distributed

representations of code. Proc. ACM Program. Lang., 3(POPL), jan 2019.

[3] B. S. Baker. A program for identifying duplicated code. Computing Science and

Statistics, pages 49–49, 1993.

[4] B. S. Baker. On finding duplication and near-duplication in large software systems.

In Proceedings of 2nd Working Conference on Reverse Engineering, pages 86–95.

IEEE, 1995.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection

using abstract syntax trees. In Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272), pages 368–377. IEEE, 1998.

[6] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and scalability simultaneously

in detecting application clones on android markets. In Proceedings of the 36th Inter-

national Conference on Software Engineering, pages 175–186, 2014.

[7] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano. Extracting code clones for

refactoring using combinations of clone metrics. In Proceedings of the 5th Interna-

tional Workshop on Software Clones, pages 7–13, 2011.

[8] J. R. Cordy, T. R. Dean, and N. Synytskyy. Practical language-independent detection

of near-miss clones. In Proceedings of the 2004 conference of the Centre for Advanced

Studies on Collaborative research, pages 1–12. Citeseer, 2004.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

50

pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational

Linguistics.

[10] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for de-

tecting duplicated code. In Proceedings IEEE International Conference on Software

Maintenance-1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No.

99CB36360), pages 109–118. IEEE, 1999.

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for

discovering clusters in large spatial databases with noise. In kdd, volume 96, pages

226–231, 1996.

[12] M. R. Farhadi, B. C. Fung, Y. B. Fung, P. Charland, S. Preda, and M. Debbabi.

Scalable code clone search for malware analysis. Digital Investigation, 15:46–60, 2015.

[13] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,

D. Jiang, et al. Codebert: A pre-trained model for programming and natural lan-

guages. arXiv preprint arXiv:2002.08155, 2020.

[14] X. Gu, H. Zhang, and S. Kim. Deep code search. In 2018 IEEE/ACM 40th Interna-

tional Conference on Software Engineering (ICSE), pages 933–944. IEEE, 2018.

[15] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,

S. Fu, et al. Graphcodebert: Pre-training code representations with data flow. arXiv

preprint arXiv:2009.08366, 2020.

[16] A. Gupta, B. Suri, and S. Misra. A systematic literature review: code bad smells

in java source code. In International Conference on Computational Science and Its

Applications, pages 665–682. Springer, 2017.

[17] M. Hammad, Ö. Babur, H. A. Basit, and M. van den Brand. Clone-advisor: recom-

mending code tokens and clone methods with deep learning and information retrieval.

PeerJ Computer Science, 7:e737, 2021.

[18] M. Hammad, Ö. Babur, H. A. Basit, and M. Van Den Brand. Clone-seeker: Effective

code clone search using annotations. IEEE Access, 10:11696–11713, 2022.

[19] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental code clone detection:

A pdg-based approach. In 2011 18th Working Conference on Reverse Engineering,

pages 3–12. IEEE Computer Society, 2011.

51

[20] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone

detection: incremental, distributed, scalable. In 2010 IEEE International Conference

on Software Maintenance, pages 1–9. IEEE, 2010.

[21] Y. Jia, B. Binkley, M. Harman, J. Krinke, and M. Matsushita. A proposed approach

to fast and precise clone detection. Proceedings of IWSC, 2009.

[22] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate

tree-based detection of code clones. In 29th International Conference on Software

Engineering (ICSE’07), pages 96–105. IEEE, 2007.

[23] J. H. Johnson. Identifying redundancy in source code using fingerprints. In Pro-

ceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative

research: software engineering-Volume 1, pages 171–183, 1993.

[24] N. Juillerat and B. Hirsbrunner. An algorithm for detecting and removing clones

in java code. In Proceedings of the 3rd Workshop on Software Evolution through

Transformations: Embracing the Change, SeTra, volume 2006, pages 63–74, 2006.

[25] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based code

clone detection system for large scale source code. IEEE Transactions on Software

Engineering, 28(7):654–670, 2002.

[26] H. J. Kang, T. F. Bissyandé, and D. Lo. Assessing the generalizability of code2vec

token embeddings. In 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 1–12. IEEE, 2019.

[27] C. J. Kapser and M. W. Godfrey. “cloning considered harmful” considered harmful:

patterns of cloning in software. Empirical Software Engineering, 13(6):645–692, 2008.

[28] I. Keivanloo and J. Rilling. Source code clone search. In Code Clone Analysis, pages

121–134. Springer, 2021.

[29] I. Keivanloo, J. Rilling, and P. Charland. Internet-scale real-time code clone search

via multi-level indexing. In 2011 18th Working Conference on Reverse Engineering,

pages 23–27. IEEE, 2011.

[30] I. Keivanloo, C. K. Roy, and J. Rilling. Towards source code clone search via infor-

mation retrieval.

[31] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.

In International static analysis symposium, pages 40–56. Springer, 2001.

52

[32] R. Koschke. Large-scale inter-system clone detection using suffix trees. In 2012 16th

European Conference on Software Maintenance and Reengineering, pages 309–318.

IEEE, 2012.

[33] J. Krinke. Identifying similar code with program dependence graphs. In Proceedings

Eighth Working Conference on Reverse Engineering, pages 301–309. IEEE, 2001.

[34] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim. Instant code clone search. In Pro-

ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations

of software engineering, pages 167–176, 2010.

[35] M. Lei, H. Li, J. Li, N. Aundhkar, and D.-K. Kim. Deep learning application on code

clone detection: A review of current knowledge. Journal of Systems and Software,

184:111141, 2022.

[36] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding copy-paste and

related bugs in operating system code. In OSdi, volume 4, pages 289–302, 2004.

[37] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: detection of software plagiarism

by program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 872–881,

2006.

[38] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. Grundy. Opportunities and challenges

in code search tools. ACM Computing Surveys (CSUR), 54(9):1–40, 2021.

[39] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis

and visualization of open source programs using distributed ccfinder: D-ccfinder. In

29th International Conference on Software Engineering (ICSE’07), pages 106–115.

IEEE, 2007.

[40] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In 7th Interna-

tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

[41] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain,

D. Jiang, D. Tang, et al. Codexglue: A machine learning benchmark dataset for code

understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-

resentations of words and phrases and their compositionality. Advances in neural

information processing systems, 26, 2013.

53

[43] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks over

tree structures for programming language processing. In Thirtieth AAAI conference

on artificial intelligence, 2016.

[44] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word repre-

sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, Oct. 2014. Associa-

tion for Computational Linguistics.

[45] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543, 2014.

[46] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer. Deep contextualized word representations. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237,

New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[47] A. Prasad. Code Clone Detection Using Code2Vec. University of California, Irvine,

2020.

[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[49] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

P. J. Liu, et al. Exploring the limits of transfer learning with a unified text-to-text

transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[50] C. Ragkhitwetsagul and J. Krinke. Siamese: scalable and incremental code

clone search via multiple code representations. Empirical Software Engineering,

24(4):2236–2284, 2019.

[51] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Queen’s

School of Computing TR, 541(115):64–68, 2007.

[52] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach. Science of computer pro-

gramming, 74(7):470–495, 2009.

54

[53] C. K. Roy, M. F. Zibran, and R. Koschke. The vision of software clone manage-

ment: Past, present, and future (keynote paper). In 2014 Software Evolution Week-

IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), pages 18–33. IEEE, 2014.

[54] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

[55] N. Saini, S. Singh, et al. Code clones: Detection and management. Procedia computer

science, 132:718–727, 2018.

[56] H. Sajnani. Large-scale code clone detection. University of California, Irvine, 2016.

[57] H. Sajnani, V. Saini, and C. Lopes. A parallel and efficient approach to large scale

clone detection. Journal of Software: Evolution and Process, 27(6):402–429, 2015.

[58] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcerercc: Scaling

code clone detection to big-code. In Proceedings of the 38th International Conference

on Software Engineering, pages 1157–1168, 2016.

[59] A. Sheneamer and J. Kalita. Semantic clone detection using machine learning.

In 2016 15th IEEE international conference on machine learning and applications

(ICMLA), pages 1024–1028. IEEE, 2016.

[60] A. Sheneamer and J. Kalita. A survey of software clone detection techniques. Inter-

national Journal of Computer Applications, 137(10):1–21, 2016.

[61] G. Shobha, A. Rana, V. Kansal, and S. Tanwar. Code clone detection—a systematic

review. Emerging Technologies in Data Mining and Information Security, pages 645–

655, 2021.

[62] S. Sudholt and G. A. Fink. Evaluating word string embeddings and loss functions

for cnn-based word spotting. In 2017 14th iapr international conference on document

analysis and recognition (icdar), volume 1, pages 493–498. IEEE, 2017.

[63] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. Towards a big

data curated benchmark of inter-project code clones. In 2014 IEEE International

Conference on Software Maintenance and Evolution, pages 476–480. IEEE, 2014.

[64] R. Tairas and J. Gray. An information retrieval process to aid in the analysis of code

clones. Empirical Software Engineering, 14(1):33–56, 2009.

55

[65] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(11), 2008.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information pro-

cessing systems, 30, 2017.

[67] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code

by frequent itemset techniques. In Source Code Analysis and Manipulation, Fourth

IEEE International Workshop on, pages 128–135. IEEE, 2004.

[68] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin. Detecting code clones with graph neural

network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 261–

271. IEEE, 2020.

[69] Y. Wang, W. Wang, S. Joty, and S. C. Hoi. Codet5: Identifier-aware unified

pre-trained encoder-decoder models for code understanding and generation. arXiv

preprint arXiv:2109.00859, 2021.

[70] Y. Wang, W. Wang, S. Joty, and S. C. Hoi. CodeT5: Identifier-aware unified pre-

trained encoder-decoder models for code understanding and generation. In Proceed-

ings of the 2021 Conference on Empirical Methods in Natural Language Processing,

pages 8696–8708, Online and Punta Cana, Dominican Republic, Nov. 2021. Associ-

ation for Computational Linguistics.

[71] H. Wei and M. Li. Supervised deep features for software functional clone detection

by exploiting lexical and syntactical information in source code. In IJCAI, pages

3034–3040, 2017.

[72] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code frag-

ments for code clone detection. In 2016 31st IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 87–98. IEEE, 2016.

[73] W. Yang. Identifying syntactic differences between two programs. Software: Practice

and Experience, 21(7):739–755, 1991.

[74] Y. Yang, Z. Ren, X. Chen, and H. Jiang. Structural function based code clone

detection using a new hybrid technique. In 2018 IEEE 42nd annual computer software

and applications conference (COMPSAC), volume 1, pages 286–291. IEEE, 2018.

56

[75] H. Zhang and K. Sakurai. A survey of software clone detection from security per-

spective. IEEE Access, 9:48157–48173, 2021.

57

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation
	Background
	Code clone terminologies
	Code clone types

	Problem Statement
	Research Questions
	Research Objectives
	Thesis Overview
	Thesis Structure

	Chapter Literature Review
	Why do code clones often arise in practice?
	Problems caused by code clones
	Classical clone detection and retrieval techniques
	Text-based approaches
	Token-based approaches
	AST-based approaches
	PDG-based approaches
	Hybrid approaches

	Deep learning-based clone detection and retrieval methods
	Embeddings

	Conclusion

	Chapter Methodology
	Data Overview
	BigCloneBench

	Data Pre-processing
	Original CodeT5 Architecture
	Working of CodeT5 architecture
	Opportunity of improving the CodeT5 architecture

	Proposed modified CodeT5 architecture
	Training Procedure
	Cosine Embedding loss
	Binary Cross Entropy loss

	Chapter Experiments and Results
	Experimental Setup
	Implementation details
	Evaluation Metrics

	Results
	Experiment 1
	Experiment 2
	Experiment 3

	Chapter Conclusion and Future Work
	Conclusion
	Limitations
	Future Scope

	Bibliography

