

School of Computer Science and Statistics

Political Position Estimation of
Politicians Using Social Media

Communication

Karishma Rao

August 2022

A Dissertation submitted in partial fulfilment of

the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Dr. Carl Vogel

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Karishma Rao

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Karishma Rao

August 19, 2022

Acknowledgements

I would like to take this opportunity to thank all the people without whom this dissertation work

would not have been possible.

Firstly, I would like to thank my supervisor Dr. Carl Vogel for his support and guidance over the

course of this project work. His feedback, suggestions and insights were greatly helpful in the

completion of this dissertation.

I would like to thank my parents and my brother for their constant encouragement and support.

Their feedback from a third-person perspective helped me refine the work. Their emotional support

was indispensable.

Lastly, I would like to thank my friends for being there for me throughout the tumultuous period

of this dissertation.

KARISHMA RAO

University of Dublin, Trinity College

August 2022

 ii

Political Position Estimation of Politicians using Social

Media Communication

Karishma Rao, Master of Science in Computer Science

University of Dublin, Trinity College Dublin, 2022

Supervisor: Dr. Carl Vogel

Politicians make use of social media to communicate with the public and voice their opinions on

different subject matters of public interest. Social media communication is an accessible and easy way

for the politicians to express their stance and try and gain the public’s favour. However, does this

communication accurately represent the voting behaviour of the elected representatives? This project

aims to use Twitter communications of the members of the Dáil Éireann (TDs or deputies), the lower

house of the Oireachtas (the Irish Parliament) to try and predict their voting behaviour in the motions

put forward in front of the Dáil Éireann. The information the general public is exposed to is limited to

communications by the officials through different media. By trying to align the online text contributed

by the elected officials with their behavior during legislative vote, it is possible to try to get a measure

on whether there is delivery on promises made. As part of this study, the tweets of the members of the

Dáil Éireann were extracted using Twitter API and the voting data of the deputies were extracted from

the Oireachtas’s official website. The two datasets were aligned and after text pre-processing and feature

engineering techniques were employed, the data was evaluated, and predictions were made using three

different classifiers. Another dataset was prepared that used only the voting behaviour of the TDs

obtained from the Oireachtas’s website and the models were evaluated against this dataset. The

performance of twitter and voting data combined dataset models were compared against the models that

used only the TDs voting data. This was done to analyse if there was any improvement in the predictions

of the TD voting behaviour after adding features from the Twitter data. It was found that out of the three

classifiers, the performance of the Decision Tree classifier significantly improved after aligning the

twitter data with the individual deputy voting data. The Random Forest classifier performed the best in

both cases. The results obtained in this study indicate that with a more finely tuned dataset, twitter data

can be used to predict the voting behaviour of the TDs in the legislature.

 iii

Contents

ACKNOWLEDGEMENTS ... I

LIST OF TABLES .. V

LIST OF FIGURES .. VI

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 MOTIVATION .. 1
1.3 RESEARCH QUESTION... 2
1.4 RESEARCH OBJECTIVE .. 2
1.5 DISSERTATION STRUCTURE .. 3

CHAPTER 2 LITERATURE REVIEW .. 4

CHAPTER 3 DATA COLLECTION AND PROCESSING .. 7

3.1 DATA OVERVIEW AND FEATURE ENGINEERING: .. 7
3.1.1 Data Collection: .. 7
3.1.2 Dataset Description: ... 9
3.1.3 Data pre-processing: ... 10
3.1.4 Data alignment: ... 12
3.1.5 Feature Engineering: .. 13
3.1.6 Data Imbalance: .. 14
3.1.7 Data splitting: .. 15

CHAPTER 4 METHODOLOGY ... 17

4.1 TARGET LABELLING: .. 17
4.2 VECTORIZATION: .. 17
4.3 COMBINING FEATURES WITH DATAFRAMEMAPPER: .. 18
4.4 MODELLING: .. 19

4.4.1 Multinomial Logistic Regression: ... 19
4.4.2 Decision Tree Classifier: ... 20
4.4.3 Random Forest Classifier: .. 20

4.5 HYPERPARAMETER TUNING:... 22
4.5.1 k-fold Cross Validation: .. 22
4.5.2 GridSearchCV: .. 22

4.6 EVALUATION METRICS: .. 23
4.6.1 Accuracy score: ... 23
4.6.2 F1 score: .. 23

CHAPTER 5 RESULTS .. 25

5.1 DUMMY CLASSIFIER: .. 25
5.2 BASELINE MODEL: ... 25
5.3 MULTINOMIAL LOGISTIC CLASSIFIER: ... 25
5.4 DECISION TREE CLASSIFIER: .. 28
5.5 RANDOM FOREST CLASSIFIER: ... 28
5.6 RESULTS FROM TWITTER AND MOTION DATA COMBINED DATASET: .. 31

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 33

 iv

6.1 CONCLUSION .. 33
6.2 CHALLENGES .. 34
6.3 FUTURE WORK .. 34

BIBLIOGRAPHY .. 36

 v

List of Tables

Table 3. 1: Description of columns in Twitter dataset ... 9
Table 3. 2: Description of columns in motion dataset ... 10

Table 5. 1: F1 scores of features when trained using Multinomial Logistic Regression for different C
values ... 26
Table 5. 2: Accuracy scores of features when trained using Multinomial Logistic Regression 27
Table 5. 3: Best parameter values for features when trained using Decision Tree classifier 28
Table 5. 4: Accuracy scores of features when trained using Decision Tree classifier 28
Table 5. 5: F1 scores of features for different values of n_estimators for Random Forest classifier 29
Table 5. 6: Accuracy scores of features when trained using random forest classifier 30
Table 5. 7: Summarised performance results for all 3 models .. 31
Table 5. 8: Accuracy scores for all 3 models when trained using the Twitter and motion data

combined dataset ... 31

 vi

List of Figures

Figure 3. 1: Sample tweet data extracted from Twitter API .. 8
Figure 3. 2: Motion data sample as extracted from Oireachtas website .. 8
Figure 3. 3: Motion data sample after transformation data to right form .. 9
Figure 3. 4: Twitter data pre-processing flow diagram ... 12
Figure 3. 5: Data distribution of voting output of TDs in the motion dataset 15

Figure 4. 1: Sample output of CountVectorizer() .. 18
Figure 4. 2: Random Forest algorithm ... 21

Figure 5. 1: Error bar plots for F1 scores for hyperparamter tuning of C ... 27
Figure 5. 2: Error bar plots for F1 scores for hyperparameter tuning of n_estimators 30

Chapter 1

Introduction

1.1 Background

Estimation of the political position of parties and of politicians has long since been a topic of interest in

the field of Cognitive InfoCommunications. In the early 2000’s work has been done to estimate the

political ideology or inclination of parties as left-wing or right-wing by analysing the party manifestos.

The whole text was converted to text units by either expert coders or by using computer coding

techniques. The method of analysis that used expert coders involved manually reading and interpreting

the text according to a prior confirmed coding scheme and then classifying the political stance. Whereas

computer coding techniques relied on a more quantitative rather than a qualitative analysis, by

classifying the text according to the contents of pre-defined dictionaries. With the advent of social

media, there was a rising interest in using the online content put out by politicians and parties to gather

predictions on popularity or election voting outcomes. There has been work done on using social media

communications to gauge the public’s opinion on politics and popularity of candidates. Research has

also been done on the effect of social media in influencing people’s opinions.

1.2 Motivation

Politicians survive on winning the public’s opinion in their favour. Spending millions on campaigns

and advertisements used to be the only way to get recognition and gain momentum. This creates an

atmosphere where those backed by powerful people eclipse over the newcomers. Social media provides

the means to bridge this gap in monetary and power differences. It has become an increasingly relevant

platform for political communication. According to Twitters advertising resources statistics, Twitter

had 1.35 million users in Ireland at the start of 2022 [1]. That’s around 27% of the population. Given

that Twitter restricts the age to 13 and above and only 7% of the population lies in the age range 13-17,

Twitter provides a great platform for the politicians to directly speak to a huge chunk of their voter’s

base. Based on a recent study on the effect of social media on political competitions [2], it has been

found that social media platforms provide a good launching pad for newcomers to gain support at almost

no cost. For both the newcomers and also the well-established politicians, social media platforms lets

them connect to their voters at a human level. The popularity metrics of the communication like likes,

 2

comments or retweets would also give them an idea about how their views and opinions are being

received and also to learn about the issues that the public is most concerned about.

Looking at it from the public’s perspective, social media serves as an easy way for them to connect to

the politicians in their district and get to know the policies they support or even to highlight matters to

interest. The voting power lies with the public and the information they are exposed to is limited to

communications by the officials through different media.

Following this train of thought, it would be interesting to see if the opinions voiced by these politicians

on social media aligns with how they vote in the legislative assemblies, which is where all the actual

decisions affecting the lives of the general public are made. The common man has no way of knowing

how the politician they voted for, votes on the policies that influences the public’s regular life. Although,

the voting details of the motions that were debated and voted on are published on the official websites

of these legislatures, a regular person would not regularly go and check these websites to see how their

elected representative is voting.

It can be assumed that an elected official would use social media platforms to voice their stance on

matters of public interest and that is how they would correspondingly vote for in the legislatures. This

leads to the question of whether these social media communications can be used to predict how a

politician would vote in the future. Of course, not all the social media content put out by the politicians

are connected to their views on political matters. Since it’s a platform they can use to make them seem

more relatable to the public, it could also include titbits about their personal life or hobbies and such.

This proves to be an interesting subject matter of study. Can the Twitter data, which would have a huge

range of content, be used to predict the voting behaviour of the politician?

1.3 Research Question

Can Twitter data of the elected members (TDs or deputies) of the Dáil Éireann (lower house of the Irish

Parliament or Oireachtas), be used to predict their voting behaviour in the legislature?

1.4 Research objective

As discussed previously, social media is an important arena in the political sphere. With the number of

social media users on the rise every year, it has become a powerful tool that can be employed by

politicians to gain favour. There have been numerous studies on the effect of social media in the political
domain. This research aims to link the publicly available opinions and views openly stated on Twitter

with the rather obscure voting behaviour of the individual elected representatives.

This project aims to get an estimate of the political position of the elected representatives of the Dáil

Éireann, that is, the TDs/deputies from their tweets. The objective is to determine if this estimate of

their political position can be used to predict the legislative behaviour of the deputies. Legislative

behaviour in this context means predicting how the deputy would vote when a motion is being debated

on during a Parliamentary session.

To achieve this objective, the approach is to use text data analytics techniques on the Twitter data and

TD voting data and simultaneously do a comparison of the relative informativity of the linguistic and

non-linguistic features used. The method designed was to get the twitter data and align it with the

legislative voting data obtained from the official parliamentary website. Appropriate feature

engineering techniques would then be employed on this aligned dataset that would have been cleaned

 3

using text pre-processing techniques. In order to get predictions on future voting behaviour of the

deputies, the data would be fed into machine learning models. This necessitates the conversion of the

text data into appropriate numeric forms through vectorization to be used as input for machine learning

classifiers. Since the objective was to see if twitter data provides adequate insight into the political

position of the elected representative, two different datasets would be prepared for comparison of the

accuracy of the predictions. This would give insight on whether adding twitter data does indeed improve

the accuracy of the predictions on how the elected deputy would vote in the future motions.

1.5 Dissertation Structure

The following is a description of the layout of the rest of this dissertation. Chapter 2 gives an overview

of the related research that has been done on political position estimation, sentiment analysis and the
area of cognitive infocommunications. Chapter 3 details the data collection and processing stage.

Chapter 4 describes the methodology followed in this study, explaining the experiments designed,

models and evaluation methods used. Chapter 5 presents the results of the project work. Chapter 6 is

the conclusion that summarizes the work and challenges encountered. It also highlights possible areas

of future work based on the results of this study.

 4

Chapter 2

Literature Review

This chapter focusses on the prior research work that has been carried out in this area. It explores the

approach used previously for political position estimation and discusses related works on the techniques

used in this study.

Research papers on the discipline of cognitive infocommunications contributed towards the

understanding of this area.

‘Cognitive infocommunications (CogInfoCom) is an interdisciplinary field that targets engineering

applications based on emergent synergies between ICT and the cognitive sciences’ [3]. The analysis of

social media networks has a two-fold application in CogInfoCom. It can be used for getting an insight

for social phenomenon such as understanding political analysis or the much recent case of analysis of

the spread of a pandemic like Covid-19. A lot of research has been done in the field of metadata and

content analysis of social media such as flagging offensive content, predicting popularity, mining to get

crowd opinion. The other application in CogInfoCom is providing user with information that enables

them to make choices such as through review systems or aggregation services. Social networks have

been proven to have increasing cognitive capabilities. [4] argues that providing solutions to both private

(that is, thought) and public problems (communication) for humans is a pre-requisite for the assimilation

of a CogInfoCom technology as a success.

The perceptions and actions of humans are fundamentally driven by their emotions. The emotional

information is coded into both verbal and non-verbal cues in a daily context. The current research on

effectively decoding these social cues is diversified and fragmented. [5] suggests a more collaborative

approach to implement a robust context-aware human computer interaction system. These include

efforts to build a shared digital data repository, new methods for processing data and better

computational models that can interpret context. Two main research pipelines are proposed: one dealing

with cognitive communication and the second focussing on the technological implementation of the

insights gained from the behavioural analysis from the first area. This technological implementation

includes development of efficient algorithms for social learning.

There has been exploratory work on emotion detection from multimodal signals such as the detection

of spontaneous emotions from a TV political debate speech [6]. Spontaneous emotions are harder to

detect than acted emotions due to their task dependent nature. Both the categorical and dimensional

models were considered to label the emotions of the audio chunks through crowdsourcing. SVM and

FNN methods were used but the fixed-length constraint for the FNN model inhibited the accuracy score.

Accomplishing a task merely does not signify the existence of collaborative effort from a group.

 5

[7] attempted to construct linguistic measures for behaviour of small groups working in collaboration.

The linguistic behaviour pattern was observed by also including psychological factors like personality

traits of each individual and perception of dominance.

Another work relating to linguistic and behavioural interaction was an automatic scoring system of oral

delivery skills [8]. This envelopes the detection and rating of verbal and non-verbal elements. The video

classification dataset was generated from unsupervised learning. Such an approach of active data

representation is faster than the conventional approaches that involve the design of event detectors

through supervised learning. The results were largely in line with human scores.

The research on social media analytics has been extensive and varied. [9] provides a starting point for

research into multimodal conformity. The aim was to analyse the contents of Tumblr blogs and check

if it conforms to the blog name. This has an extended application in filtering content in websites or

portals requiring moderation through the titles or URLs.

The semantics used in a text may influence the impact of the text on the reader’s thoughts and emotions.
Research has been done on use of text data analytics for emotional analysis. The work [10] examined

the linguistics choices of online news covering incidents of terrorist attacks and compared it with those

used in the case of natural disasters. The purpose was to identify whether the news articles employed

linguistic choices that would comparatively elicit more emotions of fear and anxiety among readers

when the topic was terrorist attacks. This was implemented by analysing nominal and verbal categories

and the articles on terrorist attacks had more verb usage indicating the hypothesis to be true.

The left-right positions of political parties have been theorised to affect other arguments such as the

voting behaviour, policy making, competition during elections and such. This ideological position

estimation is a crucial steppingstone to a whole body of subsequent research that deals with various

aspects of politics and democracy. The MRG (Manifestos Research Group) has played a key role in

initial research on party position estimation by coding the party manifestos from a range of countries

and estimated their left-right position. [11] attempted to find the best way to use this MRG data (which

at the time, was the only data available) to estimate political position and quantify the quality of this

data from the accuracy obtained from their method. The MRG data was found to be quite accurate for

implementation of political position.

[12] proposed the use of computer coded content analysis techniques to estimate the political position

of politicians instead of the conventional method of using expert coders. These computer coding

techniques followed a dictionary-based approach. Although the paper introduced a new explicitly

positional expert coding scheme, it was noted that the huge amount of hand-coding associated

outweighs the benefits. This avenue of using computer coding techniques opened the possibility to

estimate the political position of individual politicians, as research up till then had been limited to

political parties. [13] presented a novel method of treating text as data in the form of words and not

something that needs to be read and interpreted. This was a breakaway from the traditional textual

content analysis techniques using human or computer coding. As the method treated words as data, it

meant the method could be extended to other languages without requiring knowledge of the language

by the analyst. This method was applied to estimate political position from party manifestos and then

extended to estimate political position from speeches made in legislature. They also provided a measure

of uncertainty of the political position estimate, enabling the categorisation to be statistically significant

or merely an error. [14] compared the linguistically quantifiable features of the party manifestos of

small right-wing European parties and found that fully computerized analysis can give insights into

right-wing party policies.

With the rise of social media there was now a new source of data available for political analysis apart

from political texts from manifestos. The use of social media to study and predict the offline behaviour

of the subjects is the new area of study. There has been work done on the influence of social media on

stock markets, economics, public sentiment, etc. Much work has been done on the influence of social

media on people and the possibility of its effect on their behaviour in other spheres. A sub-area of

research in this field focusses on the effect of social media on the political scenario. The work suggests

 6

that there is increasing evidence that social media communication can be used as an indicator for offline

behaviour. There have been studies to support that social media popularity is indicative of election

outcomes. [15] found that the Twitter mentions of a candidate were a statically significant indicator of

how the candidate performed in the elections. This study was an improvement over the previous studies

as it took into account an array of variables such as the district’s gender and race composition,

established media coverage and incumbency. Furthermore, the study found that social media provided

a more accurate estimate of the political behaviour than televised media. [16] did an analysis on the

performance of Twitter data in predicting election outcomes when location data is added. They note

that user data on social media platforms has transitioned from only text to multimedia content and there

needs to be more research in the area of multimodal sentiment analysis. The effort so far has been on

NLP techniques that focus on text based data. [21] gives a survey of sentiment analysis techniques.

Feature selection is the first step in sentiment analysis and the approaches for this have been lexicon

based or automated statistical methods. Point-wise mutual information, latent semantic indexing and

chi-square method are the most popular feature selection methods.

[17] shows the feasibility of tri-modal sentiment analysis that combines audio, visual and textual data.

They produced a new dataset sourced from YouTube videos and through experiments showed that the

integration of all 3 is an improvement over models that use one modality at a time. They identified

polarized words, smile, gaze, pauses and pitch as the most useful differentiators.

The current state-of -the-art in task based sentiment analysis mostly ignores the complexity of human

emotions, failing to capture the dimensionality and granularity in its entirety. The current research is

mostly based on document, sentence and word level sentiment analysis.

[18] traced the development of statistical methods that are used in the analysis of literary styles. The

approach developed from using word length and frequencies for authorship identification to using

statistical methods that used function words like conjunctions to assign probabilities to authorship

beliefs. Different statistical techniques were employed over time. In recent times stylometry has shifted

because of the advent of machine learning and AI and the huge volume of easily accessible digital data.

These modern techniques treat stylometry as a pattern detection problem. [19] presented a technique of

using letter bigrams for authorship attribution. The work justified the versatility of the technique by

testing it on a diverse range of texts and previously published datasets.

[20] aimed to use Twitter data of Dublin City Council members along with the Councillor and motion

data to predict the voting behaviour of the Councillors in the city council. The results obtained were

marginally adequate to support this idea. This project work uses this paper as the main guideline for the

approach followed and extends the dataset to analyse the behaviour of elected representatives at a

national level.

 7

Chapter 3

Data Collection and Processing

3.1 Data Overview and Feature Engineering:

A major part of this project work went into the data collection and feature engineering aspect. The

methods employed for this have been described below.

3.1.1 Data Collection:

There were two different datasets that had to be collected: Twitter data and deputy voting data.

Twitter Data:

The twitter data of the TDs were collected using the Twitter API. The extraction of tweets of a specific

user requires Elevated Developer access. This had to be requested through the Twitter developer portal.

Twitter API restricts the number of tweets that can be extracted from a specific user to the most recent

3200 tweets. But this was not a problem, as the scope of this project restricted the Twitter timeline to

the period between January 1, 2022 to June 30, 2022 and none of the TDs twitter exceeded the limit for

this time frame.

The list of usernames of the TDs were acquired online from a website [22]. Of the 160 total deputies of

the parliament, 7 do not use Twitter. These were excluded from the study. There was a problem

extracting the Twitter data of 8 deputies through the API from their username. In the end, a total of 146

TDs were considered for this experiment and their tweets were extracted. Python’s tweepy library was

used to get data from the API and the user_timeline function was used to get the tweets of specific users

from their usernames. Initially, Twitter data was obtained for the period February 2019 to June 2022

resulting in 298,881 rows of data. But this dataset had to be reduced to only include the tweets from

January 1, 2022 to June 30, 2022 due to problems arising while data alignment with the voting data as

described later in this section. The tweets were stored in a csv file to be used.

 8

Figure 3. 1: Sample tweet data extracted from Twitter API

Voting Data:

A crucial part of this project was to acquire the voting data of the TDs. The Oireachtas’ website

publishes data on all the debates and measures that have been discussed and voted on in the Parliament

for both the Dáil Éireann and Seanad (upper house of the Parliament). It has the motion title, the motion

text or the debate transcript and the details of how each member voted for that motion. All the motions

for the time period January 1, 2022 to June 30, 2022 were considered for this project. The data had to

be acquired directly from the website using web scraping techniques. This was done using Python’s

Beautiful Soup package. This package allows to easily parse html data and extract only the data that’s

required for the analysis. This extracted motion data was again saved in a csv file for further use. The

columns scraped from the website were ‘deputy, ‘motion_date’, ‘motion_title’ and ‘vote’. The

username column was added to the voting dataset from the file containing the deputy names and

corresponding Twitter usernames using excel lookup function, resulting in 5 columns in the final

dataset.

Figure 3. 2: Motion data sample as extracted from Oireachtas website

 9

Figure 3. 3: Motion data sample after transformation data to right form

The figures 3.2 and 3.3 show the sample of the data extracted from the Oireachtas website. Figure 3.2

shows the crude data obtained from html parsing. The ‘Yes’, ‘No’ and ‘Abstain’ columns had the names

of all the deputies that had voted ‘Yes’, ‘No’ or ‘Abstain’ respectively for every motion. This data had

to be transformed in a form that had each deputy name as a separate row. This was done using data

transformation techniques in Python.

3.1.2 Dataset Description:

The Twitter dataset consists of 392,862 rows of tweet data. The columns considered for this study were

the ‘User’, ‘Tweet’ and ‘Created At’. A description of the columns has been given in the table below:

Column Description

User Twitter screen name (username) of the user.

Tweet Full text of the tweet.

Created At Tweet creation date.

Table 3. 1: Description of columns in Twitter dataset

The motion voting dataset consists of 9263 rows of data. the table below (Table 3.5) gives the

description of the columns extracted and considered for this experiment:

 10

Column Description

deputy Name of the TD.

username Username of the TD.

motion_date Date of the motion vote.

motion_title The title of the motion.

vote The TDs vote for the motion.

Table 3. 2: Description of columns in motion dataset

3.1.3 Data pre-processing:

The data obtained from these websites is very noisy. Before this data can be used to train the machine

learning models it needs to be cleaned and processed. This involves applying various data pre-

processing techniques. This is an important step in order to achieve results with good accuracy. The

model needs to be trained on only the important features of the data to improve efficiency and obtain

meaningful results. The steps taken for data pre-processing on the two datasets have been explained

below. The pre-processing techniques were employed on the ‘Tweet’ column of Twitter data and the

‘motion’ column of the voting data.

Punctuation:

Punctuation marks don’t contain essential information. This is redundant data. Punctuations were

removed from both the columns. This was done using regex in Python. The ‘re’ module has

functionalities for regular expression matching. The expression '[^\w\s]+' removes any character that is

not a word character or whitespace.

Tokenization:

Tokenization is a common step in text analytics. It refers to splitting a document, sentence, phrase or

words into smaller units (tokens) as needed by the application. In this case, the tweets and motion title

needed to be split into words. Python’s ntlk library was used for this purpose. The tokenize() module

of ntlk has functionalities to tokenize the data. It can either tokenise a sentence into words using

word_tokenize() or a paragraph into sentences using sent_tokenize(). The word_tokenize() function was
used to get a list of words for each tweet and each motion title. This data can now be used as an input

for further data processing like removal of stop words.

Stop words:

Stop words are words that are frequently used in the English language. These include pronouns,

conjunctions, articles, etc. such as a, the. These words are part of the grammatical sentence structure

but do not add much information to the sentence in the context of processing for ML models. Removing

these words helps in getting rid of unwanted text features that don’t add meaning to the data. It is just

noise that increases the data size and processing time and may end up skewing the model training

towards unwanted results. The ntlk library of Python has a pre-defined list of stop words in 16 different

languages. This list of stop words defined in the corpus module was used to remove all the stop words.

 11

ntlk requires a list of words as input. This requires tokenisation before stop words removal. The list of

words is matched against the list of words in the stopwords module in corpus and removed if it is present

in the corpus list. This list of pre-defined stop words can be accessed using ntlk.corpus.stopwords.

Conversion to lowercase:

Python is a case sensitive language. This means that ‘Hello’ would be treated differently from ‘hello’.

The data is hence converted to all lowercase to enable accurate comparison in the later stages of the

implementation. The lower() function was used on the list of words obtained from the previous step to

convert all the words into lowercase.

Tweet specific pre-processing:

Since the tweet text has some special data that adds noise to the data and does not add any meaning,

some additional pre-processing had to be performed on the ‘Tweet’ column in the Twitter dataset. In

case the tweet was a retweet, the data includes the retweet tag ‘RT’ to identify it as a retweet. The ‘re’

module of Python was used to remove all the ‘RT’s from the text. For the purpose of this study, equal

importance was given to both the tweets posted by the deputy and the tweets that were retweeted by the

deputy. This was done based on the assumption that if a politician retweets something it would mean

that he supports the text it contains and is a representation of his position on the matter. It should be

noted though that Twitter allows the addition of your own comments to the post before retweeting. This

means that retweeting something does not always mean support for the text in the retweet as the

politician might have added his own comments that are against the opinion voiced in the retweet.

Removal of the RT tags does not address these specific cases.

The tweet texts also contained URLs, emojis, hashtags and twitter handles of the mentions in the tweet.

These do not add much meaning to the data. To reduce the size and complexity of the data these were

removed using preprocessor module of tweet-preprocessor. preprocessor.set_options was used to

specify the data that needed to be removed. Preprocessor runs through all options by default unless

certain options have been specified. The preprocessor.clean() function is then used to remove the data

that has been specified in the set_options. In this case the options specified were OPT.URL,

OPT.EMOJI, OPT.MENTION and OPT.HASHTAG.

 12

Figure 3. 4: Twitter data pre-processing flow diagram

3.1.4 Data alignment:

To use the Twitter data to predict the voting behaviour of the deputy in future motions, the Twitter and

motion voting datasets had to be combined first. The data was brought together such that for every
motion and deputy from the voting dataset should align with all the tweets that the deputy had tweeted

before the date of the motion. The resultant dataset should have all the tweets that the TD had tweeted
before the date of the motion aligned with each motion, for every TD under consideration. Every row

in the aligned dataset would correspond to every tweet that the deputy has tweeted before the date of

the motion, for every single motion that they voted on.

To do this, first the ‘motion_date’ and ‘Created At’ columns from the voting data and Twitter data were

brought into the same datetime format. The datasets were imported as dataframes in Python. This

resulted in two dataframes: one containing the tweets of all the TDs and the other containing the motion

voting data of all the TDs. To align these two dataframes a row by row comparison of the tweet date

and username with the motion date and username was carried out. For every row in the twitter

dataframe, the usernames in the two dataframes were first compared. If this was found to be the same

then the tweet date and the motion date was compared. If the tweet date was before the motion date then

the tweet data was appended to the motion data row and this was added as a new row in the resulting

 13

dataframe. For instance, if the motion date was suppose January 26, 2022. Then all the tweets that a

particular deputy had posted before this date would get added as a new row along with the motion data

in the resulting dataframe. If the deputy had 100 tweets before this date then there would be 100 rows

of data, one row for every tweet. The resulting row would have the columns from both dataframes, that

is, ‘User’, ‘Tweet’, ‘Created At’ from Twitter dataset and ‘deputy’, ‘motion_date’, ‘motion_title’ and

‘vote’ from the motion dataset. This resulted in a fully aligned dataset. This operation was done using

itertuples function of Python, which proved to be very time consuming.

The initial datasets had twitter data from February 2019 to June 2022 with 298,881 rows and motion

data from February 2020 (when the current 33rd Dáil Eireann members were elected to power) to June

2022 with 40,514 rows, resulting in approximately 12,108,864,834 row by row comparisons as every

row in each dataset had to be compared to each other. This would have required computational resources

beyond the scope of what was currently available. The computational complexity was reduced by

comparing the time taken with different subsets of data and finally, only the data from January 2022

was considered for the scope of this project due to time and resource constraints.

The final fully aligned dataset had 1,983,938 rows of data.

3.1.5 Feature Engineering:

The quality of the output of the ML models depends on the quality of the input that was fed into it.

Garbage-in, garbage-out is a popular notion in machine learning. These inputs to the models are called

features. These features are usually in the form of columns of data. As part of any text analytics, it is

essential to identify and use the most informative features to get the best results. This is done by the

process of feature engineering. The goal of feature engineering is to produce new features or enhance

exiting features to ensure proper inputs to the model and enhance accuracy.

The following section describes the feature engineering techniques used in this project.

Text similarity:

The twitter data would be useful in predicting the motion voting behaviour of a deputy only if the two

texts are similar in context. A politician’s views on climate change would not influence their opinion

on marriage laws for example. Thus, adding a feature that gave a measure of the similarity between the

tweet text and the motion text would be add valuable information to the dataset. If the two texts have

very low similarity, the tweet text would likely not influence the voting pattern of the deputy for that

motion.

The Jaccard Index similarity was used to compute this similarity between the two texts. The Jaccard

index is essentially an intersection by union ratio of two sets. For two texts it gives the ratio of the

number of common words to the total number of words. A higher Jaccard score would indicate greater
similarity between the texts.

J (A, B) =
|𝐴 ∩𝐵|

|𝐴 ⋃𝐵|

The tweet text and motion title texts were in the form of list of strings after the pre-processing. To

compute the Jaccard index between the two lists of strings, they were first converted to sets using the

set() function. This allowed the use of the intersection() and union() set functions to be used. The Jaccard

index score was computed between the tweet text and motion title text for every row in the combined

dataset. This new feature was named ‘similarity’ and added to the dataset as a new column.

Negation count:

 14

The negative words used in a sentence gives an idea about the person’s point of view. It is helpful when

analysing if the person is for or against the text being considered. A negative word count in the texts

would thus be helpful in making predictions. The idea behind this is that when comparing the tweet

texts and motion title texts, if the texts are highly similar with good textual overlap, in that case if the

number of negation words in the tweet text is higher than the negation words in the motion texts, it can

be safe to conclude that the deputy is against the said motion. As there was no pre-defined library that

contained a list of negation words, a list was manually created. This list contained negation words from

the English language such as not, never, hardly, seldom, exclude, neither, etc. This curated list of words

was used to get the count of negated words in the tokenized tweet text and the tokenized motion title

text. The negation count feature was added to the dataset as two new columns: tweet_neg_count and

motion_neg_count.

Baseline model features:

The motion dataset containing just the data from the motions and how the deputies voted was going to

be used as a baseline for comparison against the combined dataset model. Some feature engineering

techniques were applied to this voting dataset to improve its efficiency in making predictions. A new

column most_common_vote was added to the motion dataset. This column contained the most common

vote of the deputy from all the past motions, for every deputy. The possible options in a Parliamentary

motion vote are ‘Yes’, ‘No’ or ‘Abstain’. For every deputy the most_common_vote column held the

most frequently occuring vote by that deputy in the past. If the deputy had voted ‘Yes’ in most of the

motions, then this could indicate that they are likely to vote ‘Yes’ in the future motions too. This was

achieved in python by grouping the rows by the deputy names and then using Pandas series mode

operation on the vote column to determine the most common vote for that deputy.

The other column that was added to the motion dataset was the last_vote column. This column was

populated from the voting behaviour of the deputy in the last motion. The basic principle here was that

if there is some pattern of behaviour in the deputy’s voting behaviour where they had become more

agreeable or disagreeable during a period of time, then they might vote the same way in the next vote.

The data was sorted first based on the deputy username and then the motion date. The new column then

contained the vote from the previous motion. As an example, if the motion under consideration was

dated 21 February 2022 and the deputy voted ‘No’ for the motion dated immediately before this date

say on 31 January 2022, then the last vote column would be populated with ‘No’ for the motion dated

21 February. This was implemented in Python by using the dataframe shift() function on the vote

column.

3.1.6 Data Imbalance:

In order to get insight into the kind of data we are dealing with a histogram of the voting data was
plotted. The graph shows how each of the deputies voted in all the motions. It can be seen that the data

is fairly skewed toward ‘Yes’ and ‘No’. The number of ‘Abstain’ votes is significantly less as compared

to the other two. This was noted to be taken into consideration when tuning the hyperparameters for the

classifier models.

 15

Figure 3. 5: Data distribution of voting output of TDs in the motion dataset

3.1.7 Data splitting:

The splitting of the dataset into train-test datasets is an essential step in machine learning. This allows

for evaluation of the model performance. Train-test split involves splitting the data into two subsets of

data. The training data that would be used to train the model and the test data which is used to evaluate

the performance of the model on new data that it has not seen during training. This evaluation is done

by comparing the output prediction of the model for the test data with the actual target variable value.

For this project the baseline and combined datasets were both split into train-validate-test data. This is

done to avoid over fitting of the model. This mechanism gives a measure of the generalization of the

model. A good model should be able to generalize well for any new input that is fed into it and still get

good accuracy in making predictions. The model training is done using the training dataset. The

validation data is used to gauge the performance of the model. It is useful when tuning the

hyperparameters as the accuracy for validation data gives an unbiased view of the model performance.

It is also useful to decide the input features of the model or tune other model configurations. For every

epoch, the model is trained using the training data and then evaluated using the validation data. All

these go towards tuning the model to attain the best performance possible. The test data is completely

unseen data that hasn’t been used anywhere before during model training or tuning. This new unseen

data is fed into the final model to get a completely unbiased performance measure of the model. It is an
indicator of how well the model is generalizing.

For this project, the Twitter data from January 1, 2022 to June 1, 2022 was used as training data and the

data for the month of June was used as test data. For the motion voting dataset the training data was

from January 1, 2022 to June 15, 2022. The test data was all the data between June 15, 2022 to June

30, 2022. This is because for the motion data, there were 5062 rows of voting data just between June

15 to June 30 as compared to 3671 rows of data between January 1 to June 15. This training data and

test data were stored as separate csv files. Python’s sklearn’s train_test_split () was used to split the data

into training and validation data. It is first imported from sklearn.model_selection. This function takes

the X and y data as input along with the test size. Here X is the input data containing the features and y

is the target variable that we are trying to predict. In this case the target variable y is the vote column

 16

taking the possible values ‘Yes’, ‘No’ or ‘Abstain’. The test size was specified as 0.2. This splits the

data into 80% as training data and 20% for validation data. The training data file was split in this manner.

The test data was imported as a separate dataframe from the csv file and left as is.

 17

Chapter 4

Methodology

After data collection, pre-processing and splitting into train test validation, the next step is to prepare

the data to be fed into the ML models. This is a classification problem and the data needed to be

formatted as per the requirement. In order to get the data into the right format to be fed into the ML

model, appropriate NLP techniques had to be applied. The following section describes this.

4.1 Target labelling:

The algorithms for machine learning classifiers deal with numeric data. The target variable in this case

was the vote column that contains text data as ‘Yes’, ‘No’ or ‘Abstain’. A target_label function was

defined that mapped the text labels to a number and this was added as the new ‘target’ column in the

training and test datasets for both the combined dataset and the motion dataset. The target variable held

the value 0 for ‘Abstain’, 1 for ‘No’ and 2 for ‘Yes’.

4.2 Vectorization:

Vectorization is an important concept in NLP. It is a method of mapping text into a vector of

numbers. This is important as the ML algorithms support numeric inputs and not text inputs. There

are various ways in Python to convert words into numbers. For this project, CountVectorizer() was

selected to perform this vectorization. CountVectorizer function is imported from the

sklearn.feature_extraction.text module. The fit_transform() function of CountVectorizer performs the

actual data transformation based on the options set using the CountVectorizer function.

CountVectorizer takes text input and maps it into a vector where each word is represented by its

frequency of occurrence in the text. For example, given a text as input:

text = [‘hello this is sample data sample’, ‘this is the second statement’].

 18

In this case the CountVectorizer will have two text inputs. Each input is automatically pre-processed

and tokenized and then represented as a matrix of numbers. It converts everything to lowercase and

tokenizes at word level by default. The output in this example is shown below:

hello this is sample data the second statement

1 1 1 2 1 0 0 0

0 1 1 0 0 1 1 1

Figure 4. 1: Sample output of CountVectorizer()

This matrix is created by taking each unique word in the whole input text as an individual column. For

the list of strings, each string is one row in the matrix. The value of a cell is the count of the number of

times that word occurs in the string.

For the motion dataset, CountVectorizer was run on the motion title column. For the combined dataset,

CountVectorizer was implemented on the motion title and tweet text column. For the combined dataset

the max_features option of CountVectorizer had to be used on the tweet text and motion title text

columns, to restrict the number of features due to excessive usage of RAM otherwise. This is because

the matrix generated from vectorization of the tweets and the motion title was very big. For the logistic

regression classifier the max_features was set to 500 for both columns. For decision tree and random

forest the max_features was set to 300 for both columns.

4.3 Combining features with DataFrameMapper:

In this work, two different datasets are being considered. Each dataset will be trained and evaluated by

ML models. One dataset contains only the councillor username, the motion title and date and their vote.

This dataset is referred to as the motion dataset and is used as a baseline for comparison. The other

dataset is the combined dataset which contains the Twitter data aligned with the motion data as

discussed previously. For the combined dataset, all the features are used as input to the model and

predictions are obtained. But for the baseline motion dataset, the features were fed individually into the

model to obtain the performance with a single feature as input and also, all features together were used

as input to get the model performance.

When only one feature is being used as input to the model, it can be used directly if it is in the right

format. After vectorization of a text column, the transformed text is now a matrix. If only one feature

is being considered, then this vectorized data can be used as the input to the model. But to combine this

feature with other text or non-text features and feed all the features as an input to the model requires

special processing. The DataFrameMapper is a module in python’s sklearn-pandas library. With

DataFrameMapper pre-processing techniques can be applied to multiple column features and these

features are then grouped together as a single object. This object is then used as the input to the classifier

models. The DataFrameMapper takes a list of tuples as its input. Each tuple represents a column in the

dataset that we want to use as a feature input to the model. Column name is used as the first element.

The second element specifies the pre-processing technique that needs to be applied to that column to

get it into the right format for the classifier input.

The transformations that were applied to each column for the two datasets is given below:

motion_title: CountVectorizer()

tweet: CountVectorizer()

 19

most_common_vote: CategoricalImputer(strategy='constant', fill_value='unknown') followed by

LabelBinarizer

last_vote CategoricalImputer(strategy='constant', fill_value='unknown') followed by LabelBinarizer()

username CategoricalImputer(strategy='constant', fill_value='unknown') followed by LabelBinarizer()

similarity: None

tweet_neg_count: None

motion_neg_count: None

The CategoricalImputer function used here replaces missing values in the data with the text specified

in the fill_value. The strategy used is constant which means that all missing values will be replaced by

the constant text specified. The other option would have been to replace it with the most frequent value.

Once the missing values are filled, the LabelBinarizer then maps each label in the categorical data to a

unique number.

The None keyword is used in DataFrameMapper when no data transformation needs to be performed

for that particular column.

Thus, for the motion dataset the motion_title, most_common_vote, last_vote and username columns

were passed as columns to the DataFrameMapper. The model was evaluated one feature at a time and

also for all the features. For the combined dataset the motion_title, tweet, similarity, tweet_neg_count

and motion_neg_count were passed as inputs to the mapper.

4.4 Modelling:

3 ML algorithms were implemented on both the baseline motion dataset and the combined dataset. The

algorithms selected for this experiment were Multinomial Logistic Regression, Decision Tree Classifier

and Random Forest Classifier.

4.4.1 Multinomial Logistic Regression:

Logistic regression is normally used for binary classification where the target variable can take only

two values. By default, logistic regression cannot be used for multi-class classification, that is, problems

that have more than 2 values for the target variable. But in our case the target variable had 3 possible

values: Yes, No or Abstain. One strategy to implement logistic regression on a multi-class problem is

one-vs-all. In this strategy the multi-class problem is converted to multiple binary classification

problems and logistic regression is applied on these subsets. However an easier alternative is the

multinomial logistic regression which natively provides support for multi-class problems. Multinomial

logistic regression is an extension of logistic regression that allows for multi-class classification. It

changes the loss function to cross-entropy loss and the output is a probability for each class variable

instead of a single probability prediction.

Logistic regression is implemented using sklearn’s library. The model LogisticRegression is imported

from sklearn.linear_model module. This standard logistic regression model can be configured as a

multinomial logistic regression model by setting the multi_class argument to multinomial.

model = LogisticRegression (multi_class='multinomial', penalty='l2', solver='lbfgs',

max_iter=50000)

 20

The penalty term penalizes high values of the cross-entropy loss function. It is a form of regularization

to account for overfitting problems.

The L2 penalty is given by:

𝐿2 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜃𝑇𝜃 = ∑ 𝜃𝑗
2𝑛

𝑗=1 , where 𝜃 is the cost function.

max_iter specifies the maximum number of iterations for the algorithm to converge.

The hyperparameter value C is selected using k-fold cross validation method which is explained further

in this report. This hyperparameter value has an inverse relationship with the penalty term. As C

increases, the penalty becomes less significant, increasing the value of parameters.

4.4.2 Decision Tree Classifier:

A decision tree algorithm uses a set of rules to reach a final decision. It is a supervised learning

technique. The working of the algorithm uses the logic of splitting of the dataset using yes/no questions

and keep splitting until the data points for each target class is separate. This results in the formation of

a tree structure. The last nodes in this tree are the leaf node and the first node, which is the whole training

dataset, is the root node. A label is then assigned to each leaf node. This is done using the most common

label for the data points in that node. The evaluation of the split is done by computing the loss functions

that evaluate node purity. Gini index or entropy can be used to measure the node purity. The gini index

gives a measure of the variance. The entropy is a measure of disorder in the node. It is a measure of

randomness.

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2

𝐶

𝑖=1

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐸(𝑆) = ∑ −𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐶

𝑖=1

Decision tree algorithm is implemented in Python using DecisionTreeClassifier that needs to be

imported from the sklearn.tree module. The parameters ‘criterion’, ‘max_depth’, ‘max_features’ and

‘splitter’ were then computed by hyperparameter tuning through GridSearchCV. The default values

were assigned for the rest of the parameters.

criterion: Default is gini. This specifies the criteria for measuring the quality of the split.

splitter: specifies the strategy to choose the split. The split can be ‘best’ to choose best split or ‘random’

to choose a random split from the possible options.

max_depth: to specify the maximum allowed depth of the tree

max_features: specifies the number of features to consider when deciding the split.

4.4.3 Random Forest Classifier:

 21

The random forest classifier is essentially an ensemble of decision trees. Each decision tree in the forest

predicts an output class. The class with the most votes is then given as the output of the model as the

final prediction.

Figure 4. 2: Random Forest algorithm

In order to get good results from the model, the individual trees should have low correlations with each

other. In order to ensure this low correlation, random forest employs bagging. Bagging involves random

sampling of the dataset with replacement. Suppose the training data is [a, b, c, d] then with bagging in

random forest for each tree a random sample of size N (4) is taken from this set, with replacement. [c,

d, c, b] could be a resultant dataset for a tree. This results in different trees and ensures that no two trees

are too correlated. Additionally, when considering which features to use for a split, random forest can

only pick from a random subset of the available features and not every available feature. This also leads

to more variance in the trees. Random forests make up for over-fitting that occurs with decision trees

and generally results in more accuracy. However it is slower than decision tree algorithm as it needs to

compute multiple decision trees.

Random forest algorithm is implemented using sklearn’s RandomForestClassifier. This class is

imported from sklearn.ensemble. For this project, the n_estimators parameter was configured through

hyperparameter tuning. n_estimators parameter is used to specify the number of decision trees to be

used in the algorithm. The other parameter values such as criterion, max_depth etc were kept at the

default values.

 22

4.5 Hyperparameter tuning:

A crucial part of any machine learning problem is to configure the various available parameters. The

configuration settings could either boost or reduce the performance. It is not possible to manually set

different parameter values and then evaluate and compare the performance for those. There are many

hyperparameter tuning methods that have been developed to make this easier. It is a mechanism to test

the model performance for a range of possible values and then select the best ones. These tuning

mechanisms can be used to select any model configuration question such as choosing the best feature,

the number of trees in a random forest or the maximum depth of the tree, etc. The hyperparameter

techniques that have been used in this project work have been discussed below.

4.5.1 k-fold Cross Validation:

k-fold cross validation method can be used to evaluate the model performance for a range of different

parameter values. The dataset is shuffled and then split into ‘k’ groups as specified. For each group,

that group is held-out as test data and the rest of the data is used to train the model. It is then evaluated

against this held-out test data. The accuracy score is then saved and the model is discarded. This is

repeated for all ‘k’ splits of the data. For instance, if k=5, the data would be split into 5 subsets and the

output of this cross validation would be 5 evaluation scores.

In this project k=5 was used. This method of k-fold validation was used to choose the hyperparameter

value C in the logistic regression classifier and the parameter n_estimators in random forest classifier.

The best parameter values obtained as a result were then used to configure the final model. To

implement this validation in Python, cross_val_score() was used which is available in the

sklearn.model_selection module.

The parameters that were specified to use this function were:

estimator: specifies the model that is to be used to fit the data.

X: the data to be fit.

y: the target variable.

scoring: the metric to be used to evaluate the model performance.

cv: the splitting strategy. If int then it specifies the number of folds in k-fold.

4.5.2 GridSearchCV:

The GridSearchCV is scikit-learn’s hyperparameter tuning tool. It is imported from the

sklearn.model_selection module. The different parameters with their ranges are specified in a parameter

grid. GridSearchCV then runs through all the parameters and gives the best combination of these

parameters as the output. The criteria for selection of the best parameter is based on a scoring metric

specified. However it should be noted that the ‘best parameters’ that the GridSearchCV arrives at is

only the best amongst the range that was specified in the grid.

GridSearchCV was used in this project to arrive at the best parameters for the decision tree classifier.

The parameters that were specified in the grid are given below:

'criterion': ['gini', 'entropy']

 23

'max_depth': [None, 2, 4, 6, 8, 10]

'max_features': [None, 'sqrt', 'log2', 0.2, 0.4, 0.6, 0.8]

'splitter': ['best', 'random']

The GridSearchCV inputs specified were:

‘estimator’: specifies the model.

‘param_grid’: specifies the parameter grid to be used.

‘cv’: determines the cross-validation strategy.

‘n_jobs’: specifies the number of jobs to be run in parallel.

4.6 Evaluation metrics:

Evaluation metrics are important when analysing the performance of the model. These metrics are used

when selecting the best set of parameters during hyperparameter tuning and also to compare the

performance of the 3 models used in this experiment. The following section describes the evaluation

metrics that were used in this project for hyperparameter selection and model performance comparison.

4.6.1 Accuracy score:

The accuracy score gives a measure of the number of correct predictions against the total number of

predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

For binary classification accuracy can be explained in terms of positives and negatives. True Positives

(TP) are values that were predicted as True when the actual class label was also True. True Negatives

(TN) are values that were predicted as False when the actual class label was also False. False Positive

(FP) is when the prediction was True but the actual class label was False. False Negative (FN) is

predicting False when the actual label is True.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

In python the accuracy score of a model can be computed using sklearn.metrics.accuracy_score(). This

function compares the true value and the predicted value for the target variable, for all predictions.

4.6.2 F1 score:

The F1 score is a useful metric for classification models. It also works on imbalanced datasets where

the target variable are skewed towards one value. It is a combination of both the precision and the recall

of a model. F1 score is computed as the harmonic mean of the precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

It gives equal weight to both. A high F1 score means high precision and recall.

 24

The F1 score of the model was used as an evaluation metric during cross validation process. The set of

hyperparameter values that produced the highest F1 score was selected. F1 score can be computed for

cross validation using sklearn’s cross_val_score. The scoring metric parameter for this function was set

to ‘f1_macro’. In multi-class problems, the F1 score is computed for every class using one-vs-rest

approach. To get the average of the score for the model across all classes, different averaging techniques

are available: macro, micro and weighted. Macro averaging treats all classes as equally important and

computes the average of all scores across all classes. Micro average is computed from the sums of the

TP, FN and FP. Weighted averaging method gives different weights to each class when computing the

average score. The weight of the class depends on its proportion of occurrence in the dataset. Macro

averaging is good to be used in cases of imbalanced dataset and hence was the option of choice in our

case as each target variable class was to be treated as equally important.

 25

Chapter 5

Results

This chapter discusses the results obtained after applying the 3 ML classifier models to the motion

dataset and the combined dataset. The 3 ML models were applied to the motion dataset with all 4

features as input. The 3 models were also evaluated for the motion dataset taking one feature at a time,

for all 4 features. For the combined dataset, all 6 features were given as input to the 3 ML models.

5.1 Dummy classifier:

A baseline dummy classifier was used to evaluate the performance of both the baseline model using

motion data and the model trained using combined Twitter and motion data. This dummy classifier was

implemented using sklearn’s DummyClassifier with strategy = most_frequent. This gives the most

common vote as the prediction every single time. This dummy baseline model achieved an accuracy of

0.52 on training data and 0.51 on test data.

5.2 Baseline Model:

The dataset obtained only from extracting the features from the motion data website was used as a

baseline. Each feature in the motion dataset was used to train all 3 models individually and then all

together. Hyperparameter tuning was done to configure each model properly.

5.3 Multinomial Logistic Classifier:

 26

The hyperparameter value C for the classifier was selected using k-fold cross validation and F1 scoring

with macro averaging applied.

The range of values considered for C were [0.0001, 0.001, 0.01, 0.1, 1]. The hyperparameter tuning was

done taking one feature at a time.

The results obtained for the F1 score for different values of C for each feature is given below:

Feature Considered C = 0.0001 C = 0.001 C = 0.01 C = 0.1 C = 1

motion_title 0.23 0.32 0.36 0.43 0.59

most_common_vote 0.23 0.40 0.40 0.40 0.40

last_vote 0.23 0.46 0.46 0.46 0.46

username 0.23 0.23 0.23 0.22 0.22

All features 0.23 0.46 0.45 0.79 0.76

Table 5. 1: F1 scores of features when trained using Multinomial Logistic Regression for different C

values

The C value with the highest F1 score was selected for each feature and the model was trained using

that C value. The error bar plots were plotted for these F1 scores to select the C value with the highest

F1 score and low standard deviation. C = 0.1 was selected to train all models as it had the highest value

for all features.

 a. With ‘motion_title’ as feature b. With ‘most_common_vote’ as feature

 27

 c. With last_vote as feature d. With username as feature

e. With all features

Figure 5. 1: Error bar plots for F1 scores for hyperparamter tuning of C

The multinomial logistic regression model was then trained using this C value by taking each feature

individually and then all features together. The trained models were then tested on unseen test data. The

accuracy scores of these models have been given in the Table 5.2.

Feature considered Training accuracy Test accuracy

All 0.74 0.70

motion_title 0.55 0.58

most_common_vote 0.60 0.58

last_vote 0.69 0.58

username 0.60 0.59

Table 5. 2: Accuracy scores of features when trained using Multinomial Logistic Regression

It can be seen that the model that used all 4 features together as input performed the best out of all. The

accuracy of the models using only one feature each were similar to each other, with no individual feature

standing out as giving significantly higher performance. The model obtained an accuracy of about 0.70

 28

on unseen test data when all features were used together. When only a single feature was used to train

the model, the accuracy dropped to around 0.58 on test data for all the features.

5.4 Decision Tree Classifier:

For decision tree classifier the parameter tuning was done using GridSearchCV. The parameters were

tuned using 5 fold cross validation. The model was trained taking one feature at a time and all features

together. The best parameter values obtained for each feature is shown below.

Feature considered criterion max_depth max_features splitter

All entropy None None best

motion_title entropy 2 0.4 best

most_common_vote gini None None best

last_vote gini None None best

username gini None log2 Best

Table 5. 3: Best parameter values for features when trained using Decision Tree classifier

These best parameter values obtained were used to train the decision tree classifier model taking one

feature at a time and then all features together. The performance of this model is given in Table 5.4.

Feature considered Training accuracy Test accuracy

All 0.53 0.50

motion_title 0.56 0.58

most_common_vote 0.59 0.58

last_vote 0.68 0.58

username 0.60 0.59

Table 5. 4: Accuracy scores of features when trained using Decision Tree classifier

In this case, the model that trained using all the features performed the worst with only 0.50 accuracy

on test data which isn’t even better than the dummy classifier baseline model. The models trained using

only one feature at a time performed better with accuracy of 0.58. The model trained using only

username of deputy as feature performed the best with 0.59 accuracy. Overall, the decision tree model

performed poorly as compared to the multinomial logistic regression model.

5.5 Random Forest Classifier:

 29

The n_estimators parameter was tuned using k-fold validation method. The model was trained taking

one feature at a time and all features together. F1 scoring with macro averaging was used as an

evaluation metric.

The range of values considered for n were [5, 10, 50, 100, 500, 1000]. The hyperparameter tuning was

done taking one feature at a time.

The results obtained for the F1 score for different values of C for each feature is given below:

Feature Considered n = 5 n = 10 n = 50 n = 100 n = 500 n = 1000

motion_title 0.57 0.58 0.59 0.59 0.59 0.59

most_common_vote 0.40 0.40 0.40 0.40 0.40 0.40

last_vote 0.46 0.46 0.46 0.46 0.46 0.46

username 0.21 0.22 0.21 0.21 0.21 0.22

All features 0.95 0.94 0.95 0.95 0.95 0.95

Table 5. 5: F1 scores of features for different values of n_estimators for Random Forest classifier

The n value with the highest F1 score was selected for each feature and the model was trained using

that n_estimator value. The error bar plots were plotted for these F1 scores to select the n value with

the highest F1 score and low standard deviation. There wasn’t any improvement in the F1 score for

values of n greater than 50. So n_estimators = 50 was selected to train all the models.

 a. With ‘motion_title’ as feature b. With ‘most_common_vote’ as feature

 30

 c. With last_vote as feature d. With username as feature

e. With all features

Figure 5. 2: Error bar plots for F1 scores for hyperparameter tuning of n_estimators

The random forest model was then trained using this n value by taking each feature individually and

then all features together. The trained models were then tested on unseen test data. The accuracy scores

of these models have been given in the Table 5.6.

Feature considered Training accuracy Test accuracy

All 0.97 0.92

motion_title 0.55 0.58

most_common_vote 0.60 0.58

last_vote 0.68 0.58

username 0.60 0.57

Table 5. 6: Accuracy scores of features when trained using random forest classifier

The random forest model performed the best out of all 3 ML models achieving an accuracy of up to

0.92 on test data. This is significantly higher than the accuracy of the decision tree and logistic

regression models. However, when only one feature at a time was considered to train the random forest

model then the accuracy fell considerably to 0.58 which is similar to what was achieved using the

decision tree and logistic regression models.

The performance of all 3 models trained using the baseline motion dataset have been summarised in

Table 5.7.

 31

Table 5. 7: Summarised performance results for all 3 models

5.6 Results from Twitter and motion data combined

dataset:

Finally, the Twitter and motion data aligned dataset was trained using all 3 ML models. This time the

models were trained only using all features together and not individually. This was decided as from the

baseline model trained previously it was noted that the models trained using all features together

generally performed better.

As before, hyperparameter tuning was done using k-fold cross validation to select C for the logistic

regression model. C = 1 was selected for this model. For random forest classifier n_estimators = 50 was

selected after k-fold cross validation hyperparameter tuning. GridSearchCV was used to get the best

parameter values for the decision tree and criterion = ‘entropy’, max_depth = None, max_features =

None and splitter = ‘best’ was used as the configuration.

The results obtained from the 3 models have been tabulated in Table 5.8.

Algorithm Training Accuracy Test Accuracy

Multinomial Logistic Regression 0.59 0.58

Decision Tree Classifier 0.67 0.65

Random Forest Classifier 0.90 0.80

Table 5. 8: Accuracy scores for all 3 models when trained using the Twitter and motion data

combined dataset

The model performances from the combined dataset (Twitter and motion aligned data) are slightly

different than the results obtained from the models trained using just the motion dataset earlier.

Algorithm Feature Training Accuracy Test Accuracy

Logistic Regression All 0.74 0.70

Motion data 0.55 0.58

Most common vote 0.60 0.58

Last vote 0.69 0.58

username 0.60 0.59

Decision Tree All 0.53 0.50

Motion data 0.56 0.58

Most common vote 0.59 0.58

Last vote 0.68 0.58

username 0.60 0.59

Random Forest All 0.97 0.92

Motion data 0.55 0.58

Most common vote 0.60 0.58

Last vote 0.68 0.58

username 0.60 0.57

 32

Multinomial logistic regression performed the worst this time with only 0.58 accuracy on test data as

compared to 0.70 accuracy that was obtained from the motion data baseline model. The random forest

classifier again had the best performance with 0.90 accuracy on training data and 0.80 accuracy on test

data. The performance of the decision tree model improved significantly from the baseline model when

twitter data was added and the accuracy increased from 0.50 to 0.65. It should be noted that while all

models performed quite well, the decision tree model was the only one whose performance improved

after adding twitter data to the dataset while the performance of the other two models reduced as

compared to when only the motion data was used to make predictions.

However, all the models including both the baseline motion data models and the combined data models

performed better than the baseline dummy classifier model.

 33

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The motivation behind this research was to get an idea of a politician’s legislative voting behaviour

from their social media communication to enable the general public to make choice judgements on

which politicians they may support. The intent was to gauge whether the social media communications

of a politician is a reliable indicator of their actual political position on various matters of public interest.

The aim of the research was to determine if the social media communication of the politicians on Twitter

could be used to predict how they would vote for a motion in legislature.

The approach followed to answer this question was to get the voting data and the Twitter data from the

corresponding sources and then align the two. The voting behaviour predictions for each deputy was

made using this combined data. To get an accurate picture of whether adding the Twitter data was

indeed resulting in better voting behaviour predictions, the performance of these models was compared

against a baseline model which used only the motion voting data to make predictions without having

the Twitter data in the picture. For this research a lot of work went into the data collection, pre-

processing, and feature engineering stage. Web scraping skills had to be employed to get the data from

the motion voting website, and a significant amount of effort went into extracting the required features

from the html data as the information was spanned over different webpages via hyperlinks. Various

NLP feature engineering techniques had to be performed on the data as the main features were the

motion text and tweet text and extracting the important data from these and converting them to a suitable

form to be used for a ML classification problem was not straightforward. Once the final data had been

prepared with appropriate feature engineering, the model training and evaluating part was quite

undemanding.

The results obtained from this study show that with a proper cleaner dataset and an improved ML model,

Twitter data can be used to predict the voting behaviour of the politician. All 3 models achieved good

accuracy ranging from 60% to 80%. Although the models that were trained using only the motion data

also obtained similarly good accuracy except for the decision tree model. Thus, it cannot be stated that

Twitter data is ‘improving’ the predictions in all cases. But for the decision tree model, the accuracy

increased by almost 30% from 0.50 to 0.65 after adding Twitter data to the dataset. Although an

accuracy score of 0.65 by itself is not that great especially compared to random forest that achieved a

0.80 accuracy score, it can be said that with a more finely tuned and possibly larger training dataset and

a better classifier the prediction accuracy can be improved further.

 34

6.2 Challenges

One of the major challenges in this project work was the huge volume of data both from Twitter as well

as the motion voting website. This data was large and noisy, requiring a substantial amount of work

towards data preparation. Since Twitter API was used, there were issues with API timeout errors.

Because of this, the data had to be extracted for 20 to 30 deputies at a time and stored into multiple csv

files which were then concatenated at the end.

Aligning the Twitter data with the motion data was a challenge due to the sheer volume of the data. as

it was a row-by-row comparison of two dataframes with 392,862 and 9263 rows each (~3,639,080,706

comparisons). This was a challenging process due to resource and time constraints.

There were limitations in the proper sentiment analysis of the text such as detection of sarcasm. Nuanced
emotions like those are hard to detect and misinterpreting such nuances affects the proper classification

of the text.

A major limitation of this research work is the lack of the motion text. The motion voting data was

scraped directly from the parliament website. Unfortunately, the way the website is designed was not

ideal for scraping the motion text. The webpage had a list of all the motions voted on and the overall

outcome of the vote as ‘lost’ or ‘carried’. Each individual motion was set up as a link. The motion link

routed to a webpage that had details on the motion including how each deputy had voted. But the motion

description part was not a constant for all the motions. For some motions, the detailed description part

contained the full text of the motion that was debated upon and for some it contained the debate

transcript of the parliamentary session instead of the motion text. For this study only the motion text

was required and not the debate transcript. But there was no way to distinguish between the two texts

through web scraping. So, for the purposes of this research work only the motion title was used as a

feature. The drawback of this is that the subject matter that is being voted on is unclear from just the

title of the motion, proving to be not as insightful into what the motion is about. For example, a motion

titled ‘Home Heating Fuels’ is about calling on the Government to cancel carbon tax increase and

temporarily remove excise duty on home heating oil. But just the title in this case is giving no

information about what exactly is being voted on. This is crucial information that’s being lost as the

research is trying to estimate the politician’s political position from their tweets and try and use that

information to see how they would vote on in a similar subject matter but that is not possible if the

subject that is being voted on is unclear. The model performance would possibly improve if there was

access to the motion subject text.

6.3 Future work

As noted previously, this research only considered the title of the motion as a feature input to make

predictions. It would be useful to see how the addition of insightful motion text that succinctly

summarises the motion text, if added to the data, affects the accuracy of the predictions. This would

probably require the manual summarizing of the motions to get a descriptive column detailing the text

of the motion in a line or two.

An ablation study on the significance of each feature would be an interesting line of study as an

extension of this research. This could be done by training the classifiers with all features and then

excluding one feature at a time to see the difference in the performance of the model and gauge whether

the exclusion of any specific feature adversely affects the prediction accuracy. Analysis of the positive

or negative impact of a feature on the model would be helpful in increasing its performance.

 35

For this research, due to resource constraints only the tweet data from the Twitter API output was

considered as a feature. The other metrics like the retweet count, number of likes or comments was not

included in the study. Analysing the effect of these features on the accuracy of predictions could be a

part of later study. An interesting question that arises from this is: does the popularity of the tweet have

an effect on the voting behaviour of the politician? If a politician posts his support for a policy and the

public reaction gauged through the comments or number of likes is against the policy, would he be

likely to change his vote? Conversely, if a tweet is found to be popular among the public, would that

mean the politician would vote in favour of the motion?

This study was limited to the members of the Dáil Eireann but the same approach can be used for any

other legislative body members expanding beyond the borders of Ireland. It could be extended over

multiple countries or governing bodies. It would be interesting to see if there is variation in the results

obtained across different regions of the world and whether that difference is reflective of the culture of

the region.

 36

Bibliography

[1] “Votes.” https://www.oireachtas.ie/en/debates/votes/?debateType=dail
[2] M. Petrova et al., “Social Media and Political Contributions: The Impact of New Technology

on Political Competition.”

[3] P. Baranyi, A. Csapo, and P. Varlaki, “An overview of research trends in CogInfoCom,” in

INES 2014 - IEEE 18th International Conference on Intelligent Engineering Systems,

Proceedings, Sep. 2014, pp. 181–186. doi: 10.1109/INES.2014.6909365.

[4] C. Vogel and A. Esposito, “Linguistic and Behaviour Interaction Analysis within Cognitive

Infocommunications,” 2019.

[5] A. Esposito, A. M. Esposito, and C. Vogel, “Needs and challenges in human computer

interaction for processing social emotional information,” Pattern Recognition Letters, vol. 66,

pp. 41–51, Nov. 2015, doi: 10.1016/j.patrec.2015.02.013.

[6] M. deVelasco V´azquez, R. Justo, and A. L. Zorrilla, “Can Spontaneous Emotions be Detected

from Speech on TV Political Debates?,” 2019.

[7] M. Koutsombogera and C. Vogel, “Observing collaboration in small-group interaction,”

Multimodal Technologies and Interaction, vol. 3, no. 3, Sep. 2019, doi: 10.3390/mti3030045.

[8] F. Haider, M. Koutsombogera, O. Conlan, C. Vogel, N. Campbell, and S. Luz, “An Active

Data Representation of Videos for Automatic Scoring of Oral Presentation Delivery Skills and

Feedback Generation,” Frontiers in Computer Science, vol. 2, Jan. 2020, doi:

10.3389/fcomp.2020.00001.

[9] C. Vogel, “Multimodal conformity of expression between blog names and content,” in 4th

IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2013 -
Proceedings, 2013, pp. 23–28. doi: 10.1109/CogInfoCom.2013.6719247.

[10] A. Karampela and C. Vogel, “Nouns and Verbs in Professional Reporting of Extreme Events,”

2019.

[11] M. J. Gabel and J. D. Huber, “Putting Parties in Their Place: Inferring Party Left-Right

Ideological Positions from Party Manifestos Data,” 2000.

[12] M. Laver and J. Garry, “Estimating Policy Positions from Political Texts,” 2000.

[13] M. Laver, K. Benoit, and J. Garry, “Extracting Policy Positions from Political Texts Using

Words as Data,” 2003.

[14] S. van Gijsel and C. Vogel, “Inducing a Cline from Corpora of Political Manifestos.”

[15] J. DiGrazia, K. McKelvey, J. Bollen, and F. Rojas, “More tweets, more votes: Social media as

a quantitative indicator of political behavior,” PLoS ONE, vol. 8, no. 11, Nov. 2013, doi:

10.1371/journal.pone.0079449.

[16] L. Yue, W. Chen, X. Li, W. Zuo, and M. Yin, “A survey of sentiment analysis in social

media,” Knowledge and Information Systems, vol. 60, no. 2, pp. 617–663, Aug. 2019, doi:

10.1007/s10115-018-1236-4.

 37

[17] L.-P. Morency, R. Mihalcea, and P. Doshi, “Towards multimodal sentiment analysis:

Harvesting opinions from the web,” in Proceedings of the 13th international conference on

multimodal interfaces, 2011, pp. 169–176.

[18] D. I. Holmes, “The Evolution of Stylometry in Humanities Scholarship,” 1998. [Online].

Available: https://academic.oup.com/dsh/article/13/3/111/933269

[19] D. v Khmelev and F. J. Tweedie, “Using Markov Chains for Identification of Writers,” 2001.

[Online]. Available: https://academic.oup.com/dsh/article/16/3/299/930917

[20] A. Mitchell, A. Esposito, and C. Vogel, “Tweet Analytics for Political Position Estimation.”

[21] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A

survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–1113, Dec. 2014, doi:

10.1016/j.asej.2014.04.011.

[22] 909originals, “Here are the Twitter accounts of all the TDs in Leinster House.”

https://909originals.com/2021/07/20/twitter-tds-leinster-house/

	School of Computer Science and Statistics
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Question
	1.4 Research objective
	1.5 Dissertation Structure

	Chapter 2
	Literature Review
	Chapter 3
	Data Collection and Processing
	3.1 Data Overview and Feature Engineering:
	3.1.1 Data Collection:
	3.1.2 Dataset Description:
	3.1.3 Data pre-processing:
	3.1.4 Data alignment:
	3.1.5 Feature Engineering:
	3.1.6 Data Imbalance:
	3.1.7 Data splitting:

	Chapter 4
	Methodology
	4.1 Target labelling:
	4.2 Vectorization:
	4.3 Combining features with DataFrameMapper:
	4.4 Modelling:
	4.4.1 Multinomial Logistic Regression:
	4.4.2 Decision Tree Classifier:
	4.4.3 Random Forest Classifier:

	4.5 Hyperparameter tuning:
	4.5.1 k-fold Cross Validation:
	4.5.2 GridSearchCV:

	4.6 Evaluation metrics:
	4.6.1 Accuracy score:
	4.6.2 F1 score:

	Chapter 5
	Results
	5.1 Dummy classifier:
	5.2 Baseline Model:
	5.3 Multinomial Logistic Classifier:
	5.4 Decision Tree Classifier:
	5.5 Random Forest Classifier:
	5.6 Results from Twitter and motion data combined dataset:

	Chapter 6
	Conclusion and Future Work
	6.1 Conclusion
	6.2 Challenges
	6.3 Future work

	Bibliography

