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Abstract

Over recent years, Connected Autonomous Vehicles (CAVs) have been a trending re-
search area due to their promising benefits and advanced technology. A large array of
studies have shown that CAVs can improve traffic efficiency and safety in mixed traffic
modes. The researchers in this domain have proposed several traffic management tech-
niques utilizing the potential of CAVs to increase highway capacity, and reduce travel
time, road accidents, and fuel consumption. A dedicated lane for CAVs is one of the
proposed techniques. However, the dedicated lane is a relatively new area, and thus the
research based on the impact of the dedicated lane on traffic mode with both CAVs and
HDVs is limited. Recent studies in this domain have utilized mixed traffic modes with
different distributions of CAVs and HDVs, and varying numbers of dedicated lanes. The
majority of these studies have shown that at a higher CAV penetration rate, the dedi-
cated lane technique improves traffic efficiency. However, the impact of the dedicated
lane on a realistic highway network with real-time traffic flow is unclear.

This study aims to analyze the expected impact of dedicated lanes on traffic effi-
ciency in a realistic motorway network with real-time traffic data. For this purpose,
the performance of several dedicated lane strategies has been studied for varied CAV
penetration rates and traffic volumes. The significance of the deployment of dedicated
lanes from both the left side and right sides of the motorway has also been studied.

The simulation experiments in this study are designed based on the position of
the dedicated lane, the number of dedicated lanes, CAV penetration rates, and several
traffic scenarios with both validation and a realistic highway network. The experiments
are highly resource and time-consuming, and also generate a large amount of data.
The results show that the assignment of dedicated lanes shows improvement in traffic
efficiency. For saturated flow, one dedicated lane shows improvement in trip duration
for CAV MPR 70% to 90%. For congested flow, one dedicated lane shows improvement
in traffic efficiency for CAV MPR 30% to 70% and two dedicated lanes for CAV MPR
70% to 90%. No impact was observed during the free-flow traffic scenario. We also find
that the optimal position and location of the dedicated lane are highly dependent on
the complexity of the highway network. Based on the simulation experiments, a rule-
based adaptive approach to dynamically assign the dedicated lane. The performance of
this approach is evaluated with 24-hour real traffic data with all other lane strategies
implemented in this work.
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1 Introduction

This chapter states the motivation for this work in Section 1.1. Section 1.2 gives a
brief introduction to the dedicated lane strategy, its benefits, and research gaps.

1.1 Motivation

Traffic congestion is an eternal problem for the area of road transportation and road
infrastructure. Traffic congestion can be termed as a phenomenon where the road de-
mand is more than the road capacity (3). Congestion occurs when the regular traffic
flow is disrupted by unnecessary lane changes, shock waves produced due to declara-
tions, and bottlenecks increasing in overall travel time. High population density and
insufficient road infrastructure are also reasons for the increased traffic congestion.
Traffic congestion does not only affect travel time but also has impacts on environmen-
tal and economic factors. Increased travel time results in increased fuel purchases. In
2014, traffic congestion in the United States resulted in 6.9 billion additional hours of
travel with 3.1 billion gallons of excess fuel purchased compared to usual (35).

As per the World Health Organization (WHO) 1, every year on average 1.35 mil-
lion people are killed due to road traffic injuries across the globe. 20-50 million other
injuries are reported which also result in partial or permanent disability. Road traffic ac-
cidents are the world’s ninth leading cause of death and are anticipated to become the
fifth leading cause by 2030 (28). Also, with increased road congestion, road transporta-
tion accounts for three-quarters of transport emissions which significantly increases the
level of air pollution.

Human Driven Vehicles [HDVs] have an imperfection driving factor that majorly
depends on the driver’s habits. Also, Humans Driven vehicles are prone to degrada-
tion of traffic performance due to human errors (6). Connected Autonomous Vehicles
[CAVs] are designed with the primary purpose of improving traffic situations and road
safety. CAVs can communicate with other Autonomous Vehicles and infrastructure, and
this allows CAVs to obtain and share data between vehicles. In the near future, we
would expect a mixed traffic mode with both human-driven and CAVs on the road. In
recent times, multiple studies have been conducted to understand the impact of CAV in
such mixed traffic flows in both ideal and realistic conditions. Results from these stud-
ies show that CAVs can improve traffic efficiency, and reduce traffic congestion (17)
(11). The Insurance Institute for Highway Safety [IIHS] states that level 4 Autonomous

1World Health Organization :https://www.who.int/news-room/fact-sheets/detail/road-traffic-
injuries
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Vehicles can reduce traffic crashes and fatalities caused due to road accidents (6). Sev-
eral traffic management and lane management techniques such as congestion predic-
tion, traffic flow control, speed limit policies, Adaptive Cruise Control, and Cooperative
Adaptive Cruise Control have been suggested to improve traffic efficiency using CAVs.
However, the presence of Human Drive Vehicles (HDVs) in the traffic flow is likely to
impact the potential benefits promised by CAVs. The movements of HDVs can not be
entirely controlled and manipulated as compared to that of CAVs. Because of this HDVs
tend not to follow the road policies which can result in randomness and uncertainty.
This in turn can reduce the overall performance of the CAVs in mixed traffic mode.

As mentioned earlier, CAVs can communicate with each other which enables data
sharing between a group of CAVs. This information sharing is very useful in traffic and
congestion management. For example, the leader vehicle can transfer the message of
an accident that occurred in the lane to the following vehicles. Based on this infor-
mation, the following CAVs can adjust their route and avoid creating congestion on
the lane. The communication technologies used in these vehicles vary in range and
thus the presence of HDVs can impact the connectivity between two or more CAVs (43)
(15). The vehicle-to-vehicle (V2V) communication is also focused on vehicle safety
and reducing collisions (36). The HDVs primarily depends on the visual and hearing
perception of the driver. HDVs also lack information about the road and surrounding
conditions which increases the risk factor. Hence the presence of HDVs along with CAVs
in the traffic can overall increases traffic accidents (46). The studies conducted on the
evaluation of safety parameters under mixed traffic mode show that the traffic safety
index increases with an increase in the CAV penetration rate. CAVs are also modeled
with cautious driving and car following models which is another reason cited that leads
to improvement of the traffic safety (46) (48).

1.2 Dedicated Lane Management

A dedicated lane management (41) is one of the plausible solutions to improve traf-
fic efficiency in mixed traffic mode. Dedicated lanes or Managed lanes are a type of
lanes used to improve the traffic flow, and vehicle throughput. These lanes allow only a
specific type or class of vehicles to travel. The application of managed lanes can further
be extended to environmental benefits such as air quality improvement, emission re-
duction with improved traffic, and highway efficiency. The term managed lanes refers
to highway facilities with operational strategies effectively deployed and managed in
response to changing conditions. (2) Managed lanes are meant to be a congestion
management strategy and its benefits can only be utilized when there is frequent traffic
congestion that results in significant travel time delays. Understanding and analysis
of traffic demand in the given geographical areas play a vital role to draft managed
lane strategies. Examples of dedicated lane strategies: High occupancy vehicle lanes,
Bus lanes, etc (30). A dedicated lane for CAVs is an extension of the aforementioned
strategy. A specific lane setup only for CAVs allows the CAVs to follow each other with
minimum inter-vehicle distance. Also, CAVs traveling in close proximity can increase
the vehicle to vehicle communication and data sharing. The dedicated lane strategy
also helps to mitigate the p the degradation of CAVs to AVs. For example, in a mixed
traffic mode when a CAV is followed by or is following an HDV, it is no longer a con-
nected vehicle. With only CAVs traveling in a specific lane, the chances of this situation
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would reduce. A dedicated lane would allow CAVs to follow CAVs which in turn would
allow these vehicles to with minimum inter-vehicle distance. This can increase the
number of vehicles traveling over the same period. Setting up the dedicated lane(s)
would also allow CAVs to understand the surrounding environment with the help of
sensors and other CAVs, sharing information and adapting control measures based on
the situation which would increase overall highway and traffic efficiency. Improvement
in traffic efficiency will lead to reducing air pollution and fuel consumption.

In recent times, several studies have been performed to understand the impact of
the dedicated lane on traffic congestion. The impact of dedicated lanes in mixed traffic
mode has been studied under different traffic volumes. Some of the works, also con-
sidered the number of dedicated lanes, the width of the dedicated lanes, and the CAV
penetration rate. Some of the studies have also suggested different strategies for dif-
ferent traffic situations based on the aforementioned factors. The result shows that the
dedicated lane strategies improve the traffic capacity, and traffic safety and reduce the
effect of traffic shock waves (44) (47). It is also observed that the effect of a dedicated
lane is seen at a higher rate of CAV penetration. Also, the number of dedicated lanes
required to achieve the desired results depend on the traffic volume and CAV penetra-
tion rate. However, the majority of these studies consider a hypothetical and simple
highway network and static traffic flow. Thus the applicability of a dedicated lane is
not thoroughly validated in realistic conditions. The dedicated lane is a relatively new
domain and provides a great opportunity for a detailed analysis of the impact of ded-
icated lanes. It is important to validate the feasibility and impact of dedicated lanes
considering multiple factors such as the complexity of the highway network, CAV pen-
etration rate, etc. The rest of this paper is organized in the following manner: Chapter
2 provides the background for CAVs, and the terminology related to CAVs. Chapter 3
analyses the related work and states the research question for this study. Chapter 4
states the simulation experiments, experiment design in detail. Chapter 5 states the
observations from the simulation experiments. Finally, chapter 6 summarises the con-
clusion and states the future scope of this study.
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2 Background

This chapter gives a brief background about Autonomous Vehicles (AVs) in section 2.1,
Connected Autonomous Vehicles (CAVs) 2.2. Section 2.3 explains the various termi-
nologies related to the vehicular system. Section 2.4 explains the state-of-the-art simu-
lation models for microscopic simulations. Section 4.2 compared the several simulation
platforms available for microscopic simulation.

2.1 Autonomous Vehicles

Smart urban mobility is a way of transforming cities with the combination of advanced
vehicular technologies and intelligent transport systems. An autonomous vehicle (AV)
is one of the most advanced concepts that utilize technology and is capable of tak-
ing driving decisions without any human involvement. As per the definition, an Au-
tonomous vehicle is supposed to undertake all the driving tasks using its underlying
software system. However, based on the functions performed by the vehicles, the Soci-
ety of Automotive Engineers International (SAE) defines six levels of automation (23).
These six levels can be broadly classified into two categories, one where Humans are
driving the vehicle along with driving support functions offered by the vehicle and one
where Humans are not driving the vehicle (6).

• Level 0: No Automation Level 0 can be considered a Human Driven Vehicle where
there is no automation involved. Although the vehicle can have driver assistance
features limited to providing warnings and short-term assistance. (6)

• Level 1: Driver Assistance Level 1 driving assistance features are capable of per-
forming vehicular movement control tasks in the lateral or longitudinal direction.
Although, these systems are capable of limited Object and Event Detection Re-
sponse (OEDR) and are not capable of dealing with some Driving Dynamic Task
(DDT) situations. Therefore, the driver has to constantly supervise the perfor-
mance of these features (6).

• Level 2: Partial Automation Compared to Level 1, in Level 2 the vehicle is capable
of performing vehicular movement control tasks in both lateral and longitudinal
directions. Similar to that of level1, these systems are also capable of limited
Object and Event Detection Response (OEDR) and are not capable of dealing
with some Driving Dynamic Task (DDT) situations. Therefore, the driver has to
constantly supervise the performance of these features (6). It is important that
the driver continuously monitor the driving environment and be in a position to
take over the vehicle control immediately when necessary with both Level 1 and
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2 systems providing driving comfort and convenience (6).

• Level 3: Conditional Automation Unlike Level 1 and Level 2, Level 3 Automated
Driving System (ADS) features are capable of monitoring and controlling the Dy-
namic Driving Tasks. The driver need not require to supervise the operation and
performance when these features are engaged. This level of automation allows
the driver to get involved in other activities but the presence of the driver is re-
quired to take over the control immediately when the system requests the driver
to do so. Hence Vehicle to Human interface plays an important role in this level
where the system can notify and easily gain the attention of the user. These fea-
tures will not operate unless all the required conditions are met (6).

• Level 4: High Automation Similar to that of Level 3, the driver does not need
to supervise the Automated Driving System features once it is engaged in Level
4 automation. Along with the features of Level 3 automation, Level 4 ADS is
capable of performing DDT fallback. DDT fallback is the response by the driver
to perform dynamic driving tasks after ADS DDT-related failure. Level 4 ADS
can also achieve minimal risk conditions i.e., bring the vehicle to stable or stop
condition if it doesn’t receive any response from the user. These two features are
the key differences between Level 3 and Level 4. Due to these added features, the
driver need not require to take over the control of the vehicle in any situation (6).

• Level 5: Full Automation Full automation in Level 5 means that Automated Driv-
ing System can fully operate the vehicle under all road conditions where a tradi-
tional human-driven vehicle can operate. These systems are not designed keeping
in mind any weather or geographic conditions. Similar to that of Level 3 and Level
4, a user does not need to supervise the Level 5 ADS. A fully autonomous vehi-
cle also has limitations under certain environmental circumstances such as snow
storms, and floods, where human expertise might be required (6).

Figure 2.1 summarized these levels of automation with an respective examples.

The futurama exhibit by General Motors in 1939 built the foundation for the concept
of automated vehicles. An early depiction of automated cars was done by Norman
Bel Geddes. In the 1950s miniature and full-size systems of the automated vehicle
were developed by Radio Corporation of America in collaboration with General Motors.
From the 1960s to the 2000s several such projects were undertaken in the field of
autonomous vehicles. The grand challenges organized by DARPA [Defence Advanced
Research Projects Agency] boosted the developments in the vehicular automation field.
The DARPA challenges required autonomous driving through various terrain. During
the initial series in 2004, none of the participants could complete the challenge. In the
consequent challenges in 2005 and 2007, significant advancement was observed and
several robots demonstrating autonomous driving capabilities were introduced to the
world. (39)

2.2 Connected Autonomous Vehicles

Autonomous driving software consists of three layers: Perception, Planning, and Con-
trol. (39) Perception deals with consuming data generated by sensors and surrounding
predictions based on sensor data. Planning deals with the dynamic driving tasks and
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Figure 2.1: Levels of driving automation
(23)
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control takes care of the actual vehicle controls. Information gathering is the primary
key to perception. This information can also be obtained from other infrastructure or
other vehicles. This is where the concept of a Connected Autonomous Vehicle comes
into the picture. (6) Based on the environments with which the vehicle can interact
within the connected network, the connected vehicle’s technologies can be classified
as:

• V2X (Vehicle to Anything): All the entities that can establish communication with
a vehicle fall under the umbrella of Vehicle to Anything. The below-mentioned
list gives the most widely established features and is not exhaustive.

• V2V (Vehicle to Vehicle): V2V communication allows vehicles to share informa-
tion about speed, location, and direction with other vehicles. This is achieved with
the help of wireless networks. V2V communication is not limited to a similar type
of vehicle and can be achieved by any type of vehicle with the required software
setup. Along with the radar and cameras, this information from other vehicles
helps increase the performance of vehicle safety systems and avoid fatal crashes
and accidents. V2V can also enable applications such as Automatic maneuvering
at crossroads and intersections, automated platooning, etc.

• V2I (Vehicle to Infrastructure) and I2V (Infrastructure to Vehicle): V2I commu-
nication allows vehicles to share information with road infrastructure and vice
versa(I2V). Similar to that V2V, V2I-I2V is also achieved with the help of wireless
communication. Road components can store and exchange information about
the traffic situation, accidents, and speed limits with vehicles. Similarly, vehicles
can also share information about their speed, and system failures with the road
infrastructure.

• V2P (Vehicle to Pedestrian): V2P communication enables the communication be-
tween vehicles and pedestrians and allows pedestrians to be a part of the Intelli-
gent Transport System. The information exchange between vehicles and pedes-
trian is important as pedestrians have different movement characteristics. This
communication can help reduce pedestrian fatalities due to vehicles.

2.2.1 Communication Technologies in CAVs

Vehicles can communicate with other vehicles and Intelligent Transport System in-
frastructure components with a variety of communication technologies. Based on the
range, type of information, and security constraints these communication technologies
can be implemented in a connected vehicular network. (23)

• Dedicated Short-Range Communication (DSRC): This is a wireless licensed and
protected technology similar to WiFi designed primarily to use in road infrastruc-
ture. This technology has attracted attention due to its features of communicating
critical messages over a short distance. However, the application of DSRC is lim-
ited to highway transportation. (37)

• WiFi: The usage of WiFi in road transportation is very limited due to its availabil-
ity and latency over long-distance communications. WiFi is also prone to packet
drops and hence lacks the credibility to transfer important messages. (37)
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• Cellular communications: This category consists of technologies such as 4G, 5G,
WiMAX, etc. This category reduces the dependency on public agencies since the
infrastructure for these technologies is easily available in the majority of areas.
Based on its usage, users have to pay for the services under this category. (37)

• Satellite communication: The infrastructure setup for satellite communication is
costly as compared to other technologies. The system can be used for selected
applications such as areas lacking a strong cellular network. (37)

• Bluetooth: Bluetooth is a short-range wireless technology that operates on Ultra
High Radio Frequency waves ranging from 2.402 GHz to 2.48 GHz. The applica-
tion of this technology for Intelligent Transport system is limited due to its shirt
range and limited bandwidth.

2.3 Vehicular system terminology

2.3.1 Headway Distribution

Time headways are the time intervals between the passage of successive vehicles passed
a point on the highway. Time headways indicate the rate of the flow, hence these can be
considered the building blocks of traffic flow. The traffic flow value is inversely propor-
tional to the time headway. The values of time headway depend largely on highway and
traffic situations; hence the values can vary depending on the situation. On a lightly
trafficked highway, a range of headways will be observed from zero values between
overtaking vehicles to longer headways between widely spaced vehicles. Whereas for
heavily trafficked highways, there are fewer widely spaced vehicles and all vehicles
are traveling at uniform headways. Measurement approaches: 1. Using a device that
can record the arrivals of vehicles at a designated time 2. Using aerial photography to
record the distribution of headway between successive vehicles (23)

2.3.2 Managed Lanes

Managed lanes are a type of lanes used to improve the traffic flow, and vehicle through-
put. The application of managed lanes can further be extended to environmental ben-
efits such as air quality improvement, emission reduction with improved traffic, and
highway efficiency. The term managed lanes refers to highway facilities with opera-
tional strategies effectively deployed and managed in response to changing conditions.
(2) Managed lanes are meant to be a congestion management strategy and its benefits
can only be utilized when there is the frequent traffic congestion that results in sig-
nificant travel time delays. Understanding and analysis of traffic demand in the given
geographical areas play a vital role to draft managed lane strategies. Examples of ded-
icated lane strategies: High occupancy vehicle lanes, Bus lanes, etc (30)

2.3.3 Speed

In kinematics, Speed is defined as the change in position of any object over a period of
time. The vehicle speed varies for different vehicle types and plays an important role
in traffic management. The average speed of the vehicles is a crucial traffic measure
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for traffic efficiency. Based on the vehicle speed, several speed management strategies
have been proposed. (30)

2.3.4 Volume

Volume is defined as the number of vehicles passing through a particular point. The
volume is generally associated with a lane, an edge, or a junction. The traffic volume
is directly related to traffic flow and hence plays a significant role as a traffic measure.
(30)

2.3.5 Flow (q)

Flow is another traffic measure that is calculated as the number of vehicles passing
through a specific point per hour. It is usually denoted by vehicles per hour. For exam-
ple, if 2000 vehicles are passing through a point on a highway every 20 minutes then
the flow rate for that point would be 6000 vehicles/hour. Flow is very widely used to
evaluate the capacity of a lane or entire highway. Flow can also be used to calculate
the vehicle throughput which is denoted in vehicles per hour per kilometer. (30)

2.3.6 Density (k)

Density can be defined as the number of vehicles occupying a certain roadway length.
Density can help identify if the traffic on the roadway is congested or free-flow based on
the distance between the vehicles. High density indicates a bumper-to-bumper traffic
situation. (30)

2.4 Microscopic Simulation models

There is no standard approach to model CAVs and simulate traffic with CAVs. The sim-
ulation can vary from macroscopic level to mesoscopic level to microscopic level based
on the level of detail required (16) (7). In the microscopic model, vehicle behavior
and intersections are described at a low level of detail. The traffic flow is represented
by speed, flow, and density. This method is an accurate and simple way of modeling
traffic simulation. However, this method is not suitable to demonstrate interactions
among the vehicles. (8) The basic idea behind mesoscopic models is to explain traffic
flow dynamics in aggregate while describing individual driver behavior with probabil-
ity distribution functions (20). Mesoscopic models are a combination of microscopic
modeling and macroscopic modeling. In this model, platoon dispersion is stimulated.
There are two methods of mesoscopic modeling which are platoon dispersion and ve-
hicle platoon behavior. Microscopic models provide highly detailed vehicle motions
where an individual vehicle is viewed as a distinct agent that must adhere to particular
governing criteria. The goal of microscopic modeling is to collect data factors such as
flow, density, speed, travel and delay time, and shock waves. Microscopic modeling
includes car following models, and lane changing models. For this study, microscopic
traffic modeling is followed.
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2.4.1 The GM Car following model

As the name suggests, the car following models is based on a follower vehicle and
leader vehicle [vehicle driving in front] where the follower vehicle reacts as per the
leader vehicle’s actions. In 1961, General Motors (GM) research laboratories proposed
a car following model based on a sensitivity-stimulus framework which predicts accel-
eration/deceleration using the difference between the leader vehicle’s and follower ve-
hicle’s current speed [relative speed of leader vehicle](25) (4). Later modified versions
were developed based on this model. The GM model is a simple linear car following
model based on two parameters: sensitivity as a constant parameter and acceleration
of the follower vehicle.

an(t) = α ∗∆f
nront(t − τn)

where an(t) is the acceleration of the vehicle n at time t. ∆f
nront(t − τn) is the relative

speed of leader vehicle at time (). taun is the reaction time, alpha is the parameter.
Overall, these GM models fail to capture real-life traffic simulations due to their limita-
tions which are caused because of the underlying assumptions. (4)

2.4.2 Collision avoidance car following model

Collision avoidance models are also known as safety distance models which are based
on the assumption that the collision is unavoidable if the leader vehicle behaves un-
predictably. These models always maintain a safe distance between the follower and
leader vehicle. In 1981 Gipps developed a general acceleration model which was based
on car-following and free-flow situations. The model was designed with characteristics
such as mimicking real traffic, model parameters are very close to apparent driver and
vehicle characteristics. As per this model, the collision between the follower vehicle
and the leader vehicle is completely avoided if the time gap between the two vehicles
is equal to or more than 3T/2. This is also referred to as a safe headway. (14). This ac-
celeration model developed by Gipps has two limitations: critical safe headway should
be maintained and vehicle speed should not exceed the desired speed (4).

2.4.3 Wiedemann model

Wiedemann car following model is developed by Rainer Wiedemann in 1974[Wiede-
mann 74] and later updated to Wiedemann 99 in 1999 (19). This model considers the
physical and psychological aspects of the driver.

The Wiedemann model works as follows: It considers four driving phases which
start with the Free driving phase where the vehicle is driven at the desired speed with-
out any restrictions imposed by surrounding vehicles. As the vehicle approaches a
leading vehicle [current vehicle is now considered as the following vehicle], the dis-
tance between the two vehicles decreases. Here the driver is expected to observe and
react entering the Reaction phase. The driver would see that his/her speed is faster
than the leading vehicle. Next, the vehicle enters in perception threshold phase where
the following vehicle driver will reduce the speed and will decelerate to maintain the
minimum safe distance from the leading vehicle. If the leading vehicle is further slow-
ing down, the following vehicle will decelerate further and reach a stationary stage to
avoid the collision (4).
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Figure 2.2: Wiedemann car following model
(34)
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2.4.4 The Intelligent Driver Model (IDM)

The Intelligent Driver Model is suitable for mixed traffic modes that include both CAVs
and HDVs (4). The IDM is a deterministic time-continuous model that focuses on the
dynamics of leader vehicle (40). Acceleration is defined as a function of the gap de-
noted by Sα(t), the speed denoted by va(t), and the speed difference denoted by ∆va(t)
between the leader and the following vehicle with the help of expressions (4):

d

dt
vα(t) = α(1− (

vα
v0
)δ − (

S∗vα∆vα
Sα

)2)

where δ is the acceleration component and the desired gap S∗ can be derived as :

S∗(vα, ∆vα) = So + S1 ∗
√

vα
v0

+ T ∗ vα +
vα∆vα

2
√
ab

in which a is the maximum acceleration, b is the maximum deceleration, T is the mini-
mum time headway, and v0 is the free speed. Based on the above equations it is evident
that the IDM models used tailored maximum acceleration along with minimum head-
way to achieve minimum safety distance between the leader and the following vehicle
with the desired velocity. IDM is used as the based model for several other models such
as Adaptive Cruise Control (ACC), and Cooperative Adaptive Cruise Control (CACC).
Although this model is widely used for multi-lane simulations, it has the following lim-
itations (5):

• The vehicle velocity can become negative which might impact the overall vehicle
modeling

• The vehicle velocity can tend towards negative infinity There are many extensions
to the IDM model such as Enhanced IDM (24), Foresighted Driver Model (10),
Stochastic IDM (21) that overcome these limitations

2.4.5 Extended Intelligent Driver Model

As we consider real-life traffic situations where lane changes play an important role,
the IDM model starts falling apart due to its limitations. Initially, IDM was developed
as a car following model for single-lane traffic. As lane changes are introduced to
the IDM model, the input parameters change in a non-continuous way which further
results in a decrease in leader and follower vehicles below the equilibrium distance.
The Enhanced IDM model is an extension of the IDM model along with the constant-
acceleration heuristic (CAH). This improves the reaction to cut-in maneuvers maintain-
ing the collision-free property of the IDM model. E-IDM introduces an upper thresh-
old for safe acceleration based on the constant-acceleration heuristic (CAH). Here the
driver assumes that the acceleration of the leader vehicle will not change for a few
seconds. CAH is developed based on the following assumptions:

• Acceleration of leader and follower vehicle will not change in the next few sec-
onds

• Zero reaction time

• No safe minimum distance is required at any time
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The maximum acceleration is given by :

aCAH(s, v , vl , al) =

{
v2min(al ,a)

v2
l −2smin(al ,a)

vl(v − vl) ≤ −2s ∗min(al , a)

min(al , a)− (v−vl )
2−(v−vl )
2s

otherwise
(1)

where s is the gap between leader and follower vehicle, v is the velocity of follower
vehicle, vl , and al are velocity and acceleration of leader vehicle respectively (24).

2.4.6 Lane changing model

As the name suggests, the Lane Changing Model handles the movement of a vehicle
from one lane to another lane on a multi-lane highway network. The lane changing
decision can be configured based on several factors such as speed gain after changing
the lane, the critical gap between the leading vehicle of the new lane, minimum gap re-
quired for safe maneuvering. A lane-changing model well suited for urban driving was
introduced by Gipps in 1986. This model covered the maneuvering of the vehicle with
the impact of traffic signals, heavy vehicles, and road obstructions. The models Gipps
models analyze the risk of vehicle-to-vehicle collisions, vehicle-to-obstacle collisions,
and other logical driving patterns (4).

2.5 Simulation platforms for microscopic simulation

Many licensed and open-source traffic simulators have been developed over the years
which provide a platform for real-world traffic simulation. These platforms also allow
network configurations, vehicle and traffic dynamics configuration, and traffic monitor-
ing as built-in features or with help of plug-ins. Some of the commonly used simulators
are Aimsun: Advanced Interactive Microscopic Simulator, Simulation of Urban Mobil-
ity: SUMO, Verkehr In Städten – SIMulationsmodell: PTV VISSIM, Corridor Simulation:
CORSIM.

The AIMSUN 1(Advanced Interactive Microscopic Simulator) is a software company
that provides licensed simulation platforms such as Aimsun Live, and Aimsun next.
Aimsun deals with a large portfolio that involves services such as Mobility planning,
Real-time transport management, and design and validation algorithms for CAVs. Aim-
sun was founded in 1997 in Barcelona, Spain, and was used to design some of the
largest and most complex transportation models in cities such as Paris, London, New
York, and Abu Dhabi. The tool uses the Gipps’ safety distance models and is widely
used for dynamic traffic assignment, incident management, and vehicle guidance sys-
tems (4). Aimsun supports the simulation of urban streets, freeways, interchanges, and
roundabouts. It also supports 3-D animation. Aimsun provides software with a price
based on the level of usage. The free version of some of the software is available with
restricted usage and allowance limits.

The CORSIM is a licensed microscopic traffic simulation integrated platform de-
veloped by combining micro-simulation tools such as NETSIM (tool to simulate traffic
patterns) and FRESIM (FREeway Simulation, tool to simulate freeway networks). This
tool allows users to model surface roads, freeways, and integrated networks, including

1AIMSUN https://www.aimsun.com/
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segments, frames, merges, detours, and intersections, traffic lights. It can also simulate
traffic and traffic control systems using established driver and vehicle behavior models.
The car-following logic used in this tool is designed in such a way that the lead vehicle
moves to a new position with one time-step of the simulation time. The follower vehi-
cle is then moved to a new location based on the leader vehicle’s movement, such as if
the lead vehicle decelerates at the maximum deceleration limit, the following vehicle
will come to halt to avoid collision. FRESIM uses a stimulus-response model which is
similar to the GM-type model (4). This ensures that the following vehicle always has a
safe lead. 2

VISSIM 3 is developed by PVT vision in 1992. With this software, users can modify
the parameters of the factors controlling driving behavior such as lane-change, gap-
acceptance, and car-following models. The benefits of VISSIM include:

• Support for Connected Autonomous Vehicles (CAVs)

• User can modify the vehicle behavior

• Built-in traffic capacity and safety evaluation measures

• Integration with external driving models

Due to these benefits, VISSIM is one of the most widely used platforms for micro-
simulation. VISSIM also provides two Wiedemann car-following models for different
application conditions, including the Wiedemann 74 and 99. The Wiedemann 74 model
can be used for urban traffic and merging areas. (4)

SUMO (Simulation of Urban Mobility) is another free and open-source traffic sim-
ulation platform developed in 2001. This platform facilitates the modeling of multi-
model traffic systems which can consist of different types of vehicles and public trans-
port. It also supports the creation of complex road networks. SUMO comes with built-in
tools which allow network creation using external network files, automate route cre-
ation and calculations, and traffic evaluations. It is also possible to extend the usability
of SUMO with the help of APIs. Simulations can also be controlled using custom python
scripts with the help of built-in libraries such as sumolib, Traci, etc. SUMO supports var-
ious car following and lane changing models. Customer models can also be configured
using SUMO APIs.

2CORSIM, https://mctrans-wordpress-prd-app.azurewebsites.net/tsis-corsim/
3PTV VISSIM, https://www.myptv.com/en/mobility-software/ptv-vissim
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3 Related work

This chapter describes the related work in the traffic management area and assesses
the work based on requirements such as CAVs Market Penetration Rate, Complexity of
highway network, Traffic Levels, and Type of study. The majority of the existing works,
discuss how traffic flow management is achieved using methods such as Ad-hoc routing,
Lane detections, etc but only a few of them have considered the need of increasing the
proportion of CAVs in a single lane or areas to create autonomous vehicle zones. This
would not only help utilize the CAVs’ capabilities up to a large extent but also increase
traffic efficiency as CAVs travel with lower headway. With the lower headway, a single
lane can accommodate more CAVs and the CAVs can share information. The Sections
below 3.1 and 3.2 explains the various techniques proposed to improve traffic efficiency.

3.1 Traffic Management Strategies

This section describes various strategies proposed to improve traffic efficiency without
using lane management strategies. The description of these strategies is focused on the
implementation and outcome of the strategies.

Peng et al., (32) propose a solution to improve traffic efficiency in in-signalized in-
tersections using the vehicle to vehicle communication in CAVs and deep reinforcement
learning. The approach considers a congestion situation caused by Human Driven Ve-
hicles at the double-lane intersection. Here each lane consists of a fleet of one CAV
and multiple HDVs. Each CAV leads the multiple HDVs in the respective lane. This
approach assumes that the two CAVs can communicate with each other and share in-
formation about their location and speed. The behavior of CAVs is controlled by the
Deep Reinforcement Learning model. CAVs coordinate with each other to avoid queu-
ing at the intersection. To achieve this one CAV adjusts its velocity to maintain a time
gap between itself and the other CAV to cross the intersection and avoid congestion.
With their adaptive capability, CAVs control the flow of HDVs in the lane and maintain
a steady flow to improve traffic efficiency. The solution is implemented on lanes with
No CAV, 1 CAV, and 2 CAVs. The results show decreases in the number of waiting or
stopped vehicles before the intersection with an increase in the number of CAVs in the
lane. The application of this solution remains limited to an intersection and considers
a non-general traffic situation. The study also does not consider the situations such as
lane-changing, variable number of HDVs, and CAVs (32).

Subraveti et el., (29) propose multiple strategies to improve traffic flow at bottle-
necks using lane assignment for CAVs. The approach focuses on reducing the unneces-
sary lane changes by both HDVs and CAVs. The strategies are based on the assumption
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that the destination of the traveling vehicle is known and accordingly CAV lane assign-
ment is performed for existing and through vehicles. The strategies are proposed for
bottleneck scenarios such as Diverges, Merges, and Weaves. For diverges, a setup with
a single deceleration lane is considered. The lane change conflicts at the bottlenecks
are proposed to be minimized by assigning left lanes to the furthest traveling vehicles
and right lanes to the exiting vehicles. Overall, the roadway is divided into 3 zones,
with zone 3 closest to the exit lane. Zone 1 and zone 2 are further upstream to the exit
location. CAV lane assignment and accordingly the lane changes take place in zone 1.
Based on the CAVs movement, HDVs adjust lanes in zone 2. In such a way zone 3 is
established where minimum lane changes are expected. Similarly, strategies for weave
sections with merge and diverge at a single exit location are proposed to minimize the
lane changes in the auxiliary lane. Factors such as CAV penetration rate, Vehicle den-
sity, and exit rate are considered while assessing the feasibility of CAV lane assignment
in any of the scenarios. For diverges, an increase in throughput was observed at a low
CAV penetration rate and high exit flow. For weaves, a very minor improvement in
throughput was observed for low merge and diverge flow. With an increase in CAV
penetration rate, an increase in throughput was observed (29).

3.2 Lane Management Strategies

This section describes the techniques which are based on lane management strategies.
Section 3.2.1 states the techniques that follow analytical or numerical based approach
for the evaluation of stated scenario. Section 3.2.2 states the techniques that follow
simulation based approach for the evaluation of stated scenario.

3.2.1 Analytical or Numerical based approaches

Ghiasi et el., (12) propose an analytical capacity model for highway mixed traffic based
on Markov chain representation. This model is further used to build a lane manage-
ment model to determine the required number of dedicated lanes for CAVs considering
various traffic levels, CAV penetration rates, and CAV platooning intensities (12). The
overall traffic pattern is characterized by the percentage of CAVs in mixed traffic and
CAV platooning intensity. The simulation considers a setup with real-world stochastic-
ity and driving uncertainties in a section of the highway without any inflow or outflow
ramps. The highway section is divided into two parts: Managed lanes which are occu-
pied only by CAVs and Non-managed lanes which are occupied by both HDVs and CAVs.
The model allocated dedicated lanes for CAVs such that the total highway throughput is
maximized. The numerical analysis considers five lanes and different CAV technologies
such as aggressive, moderate, and conservative. These scenarios are simulated using
relevant headways settings. The analysis shows that when the traffic is unsaturated,
the lane management strategy is not required as the road capacity is sufficient to main-
tain the throughput. Similarly, when the CAV penetration rate of very less or very high,
the lane management strategy does not show any improvement in highway efficiency,
hence is not required. In a saturated traffic situation with CAV headways less than
mixed traffic, CAVs shall be segregated in dedicated CAV lanes and the number of ded-
icated lanes should be increased to accommodate all CAVs in traffic. The experiments
show that under certain CAV technologies and traffic demands, the lane management
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solution can increase highway efficiency. This model is based on the assumption that
the traffic flow is stationary and may not work in case traffic is very dynamic. The
author postulates that the number of dedicated lanes for CAVs can be revised based on
real-time traffic observations (12).

Ghaiasi et et., (13) further enhances the above solution by considering the width
of CAV lanes. The approach assumes that based on the CAV width, exclusive lanes for
CAVs can accommodate more than designated CAVs in such a lane. Similar to that of
the previous approach, this approach also takes varying mixed-traffic demand levels,
CAV market penetration rates, platooning intensities (13) (12), and CAV technology
scenarios into account. In mixed traffic mode along with HDVs and CAVs, this solution
also considers human-driven heavy-duty vehicles. The experiments show improvement
in traffic efficiency with a smaller width of dedicated lanes (13).

The study conducted by Xuedong et el., (22) investigates the impact of different
dedicated lanes policies on mixed traffic modes for varying traffic demands and CAV
penetration rates. The lanes are classified into three categories: CAV exclusive lane,
MV exclusive lane, and General Lane. Strategies for two-lane and three-lane highways
are proposed with the combination of the aforementioned three-lane categories. Based
on these combinations, a total of four lane strategies were proposed for two-lane high-
ways and twelve lane policies were proposed for three-lane highway. The results show
that the road capacity increases with an increase in CAV exclusive lanes when the CAV
penetration rate of more than 50 percent. For two-lane highways, when the CAV pen-
etration is low, the assignment of an exclusive lane doesn’t show any improvement in
highway capacity. If the CAV penetration rate is between 30 to 70 percent, CAV and
MV exclusive lane strategy shows the best results, whereas, for CAV penetration rates
higher than 70 percent, General Lane and CAV exclusive lane policy show the best re-
sults. For three-lane highways, when the CAV penetration rate is more than 50 percent,
two exclusive lanes for CAV and either one exclusive lane for MV or a general lane
show improvement in highway capacity. The study also concludes that setting up ex-
clusive lanes also reduces the probability of CAV reducing to AV with an increase in
CAV penetration (22).

Lanhang Ye and Toshiyuki Yamamoto (47) analyzed the impact of dedicated lanes
on traffic flow throughput. To compare the traffic throughput, the study considers
a different number of CAV dedicated lanes with a three-lane highway model. Three
dedicated lane policies with 0,1 and 2 dedicated CAV lanes are considered with two-
lane changing policies. Lane changing policies include lane-changing between identical
lane policies and lane-changing between different lane policies. Initially impact of CAV
dedicated lane is studied with a CAV penetration rate of 60 percent, vehicle density of
60 veh/km/lane constant desired net time gap of CAV with respect to the preceding
vehicle. The results show that the flow rate is similar for all the lanes with no dedicated
lane in place. With CAV dedicated lane, the flow rate increases in the dedicated lane but
a decrease in flow rate is also observed in other lanes. To further analyze this result,
simulations with a different time gap between CAV and preceding vehicle and CAV
penetration rates were performed. The results show that with an increase in vehicle
density for any penetration rate, the effect of a dedicated lane becomes prominent. As
the penetration rate reaches 50 percent the negative effect of setting up one dedicated
lane vanishes. Increasing the penetrations rate further up to 80 percent shows the
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merits of setting up two dedicated lanes. The performance of dedicated lanes also
varies with CAV penetration rates (47).

3.2.2 Simulation based approaches

Vranken and Schreckenberg (42) proposed a multi-lane model to improve traffic ef-
ficiency and highway capacity for the heterogeneous model by introducing different
lane-changing rules for HDVs and CAVs. This allowed HDVs to behave aggressively
as compared to CAV to create and simulate complex HDV and CAV interactions. For
human-driven vehicles, the lane changing agent was configured to first check if the
change in the lane would increase the speed of the vehicle. Once this is analyzed, the
agent will check if the change lane is feasible and safe. It also checks if the distance
between the following and the leading vehicle in the new lane is sufficient enough to
avoid any collision. Along with these two new rules were introduced where lane change
was allowed to take place once a second to reproduce realistic lane changes. If the lane
change was successful, the agent was not allowed to move back to the previous lane
for the next 5 seconds to avoid unnecessary back-and-forth lane changes. HDVs would
not change in the lane for small improvements in the situation due to the defined rules,
CAVs agents on the other hand are configured to switch to other lanes even for marginal
improvements. The CAV agent also makes sure that lane change is performed in such
a way that the preceding vehicle in the new lane does not need to deaccelerate. With
all the mentioned rules, different simulations for traffic scenarios such as only HDVs,
only CAVs, and both HDVs and CAVs were simulated. Traffic containing CAVs shows
that there is no need for lane changes as CAVs for a coordinated network and traffic in
both lanes work in a synchronized fashion. Heterogeneous traffic simulation observes
an increase in traffic efficiency and road capacity for more than one lane traffic. CAV
lane changes help create large platoons through lane changing which further reduces
the vehicle following time. Based on the observations, the author also concludes that
the traffic state in heterogeneous traffic depends on and can be dominated by the dis-
tribution of CAVs VRANKEN2022126629.

Xiao et el., (44) proposed a lane management model based on a Differentiated
Per-Lane Speed Limit Policy on a two-way eight-lane highway. The model consists of
passenger cars and heavy vehicles. For these vehicle types, both CACC-equipped and
Non-CACC-equipped versions are considered to establish mixed mode traffic. The study
focuses on the DPLSL policy where the maximum and minimum speed limits in each
lane can be different. This helps in creating more complex highway traffic scenarios as
the different speed limits can influence the lane-changing pattern. The study proposes
4 lane model where the inner lanes are dedicated to CACC vehicles. The distribution
of the vehicles is done in such a way that the proportion of different vehicles on lanes
with the same road management measure is identical. Simulations are performed to
validate the traffic throughput for 3 different scenarios:

• Varying market penetrations rates of CACC cars from 0 percent to 100 percent
with step size of 20 percent and keeping the heavy vehicle penetration constant
at 10 percent

• Varying market penetration rates of both CACC cars [60 and 80 percent] and
Heavy vehicles [0,5,10 percent]
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For the first scenario, the results show that the traffic throughput for inner lanes [CACC
dedicated lanes] is larger than that of outer lanes for every CACC penetration rate. An
increase in throughput with an increase in CACC penetration rate is also observed for
all four lanes. Although the increase in throughput was marginal when the CACC pene-
tration rate is below 40 percent. As the CACC market penetration rate increases beyond
60 percent, the results of the CACC dedicated lane can be observed very prominently.
For the second scenario, the CACC penetration rate is fixed at 60 and 80 percent as in
the first scenario it was observed that the CACC dedicated lane impact was prominent
at these penetration rates. The results show that the throughput of each lane reduces
with an increase in heavy vehicle penetration rate. Overall higher reduction is observed
in outer lanes where heavy vehicles are allowed as compared to inner lanes or CACC
dedicated lanes. .

Zijja Zhong et. al (49), investigates the impact of different dedicated lane strategies
on traffic flow at lane and vehicle level, Headway distribution, communication den-
sity, communication success rate, and fuel consumption by the CAVs. This study uses
Wiedemann car-following model and the enhanced intelligent driver model (E-IDM)
for HDVs and CAVs simulation respectively. The simulations are performed on a 9.3 km
4-lane hypothetical highway with two interchanges using Vissim. The author proposed
three managed lane strategies:

• No Managed Lane: Here there is no dedicated CAV lane allocated. HDVs and
CAVs simulated in mixed traffic

• One CAV lane: Left most lane of the highway is allocated to CAVs

• Two CAV lanes: leftmost and second left most lanes are allocated to CAVs

Experiments are conducted for one CAV lane strategy where the CAV penetration rate
varied from 30%-100%, whereas the penetration rate varied from 40%-100% for two
CAV lanes. The network also considers two interchanges with different entry and exit
flows. The results show improvements in roadway capacity due to the introduction of
CAV dedicated lanes. A CAV lane, with an MPR as low as 40%, can accommodate more
traffic compared to a GP lane. The analysis of related work described in this section is
summarized in the Table 3.1 with parameters such as Vehicle Type, Study Type, Traffic
Level, CAV MPR and Network considered for the work.
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Reference
Vehicle
Type

Study
Type

Traffic
Level MPR Scenario

Bile Peng (32)
HDV
CAV Simulation NA NA

Unsignalized
intersection

Tim Vranken (42)
HDV
AV

CAV
Simulation Free flow

0-100%
with

step 10%

10 km
highway
section

Amir Ghiasi (12)
HDV
CAV Analytical

Free flow
Moderate
Saturated

Over Saturated

NA

Highway
without
inflow,
outflow
ramps

Amir Ghiasi (13)
HDV
CAV
HV

Analytical

Free flow
Moderate
Saturated

Over Saturated

NA

Highway
without
inflow,
outflow
ramps

and variable
lane width

Subraveti (29)
HDV
CAV Analytical

Moderate
Saturated

with low and
high exit rate

0-100%
with

step 10%

3 lane
highway
Diverge
Weave

Xuedong Hua (22)
HDV
CAV Analytical Free flow

0-100%
with

step 20%

2,3
lane

highway

Zhe Xiao (44)

CACC
Non

CACC
Passanger

HV

Simulation Moderate

CACC
[0%-100%

with step 20%]
HDV

[0%-10%
with step 5%]

Four lane
highway

with DPSL

Lanhang Ye (47)
HDV
CAV Analytical

Free flow
Moderate
Saturated

10%-90%
with 10% step

3 lane
highway

Zijia Zhong (49)
HDV
CAV Simulation Freeflow

1 dedicated lane
30% - 100%

2 dedicated lanes:
40% - 100%

9.3 km
highway
with two

interchanges

Table 3.1: Summary of related work for traffic and lane management strategies
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3.3 Research Question

Based on the comparison in Table 3.1, it is evident that the majority of the approaches
suggested for dedicated lane methodology are based on an analytical or mathematical
simulation. These analytical models are based on macroscopic traffic flow models and
may experience difficulty in faithfully capturing the complex phenomena in transporta-
tion networks and CAV behavior. Existing work which is based on vehicular simulation
has been performed for hypothetical scenarios or highway setups. This also fails to
capture the various complex structures in highway networks.

Traffic flow is one of the major factors contributing to the overall highway and
traffic efficiency. Over the years the impact of the dedicated lane is studied by varying
the traffic flow from free flow to over-saturated situations. Although in real life we
do not expect the traffic flow to be constant and pre-deterministic. Hence this work
focuses on analyzing whether traffic efficiency can be improved using dedicated lanes
in realistic conditions:

• Realistic highway network

• Realistic and dynamic traffic flow with freeflow, saturated and congested traffic
scenarios

• CAV penetration rate 0-100% range

• Different number of dedicated lanes

• Position of dedicated lane

In addition, this work investigates whether a rule-based and learning-based ap-
proach could improve traffic efficiency by dynamically deploying and removing the
dedicated lane(s) based on the traffic level and CAV MPR.
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4 Methodology

This chapter focuses on the methodology used to investigate the research question
stated in the above Section 3.3. Simulation of mixed traffic composed of both CAV and
HDV along with the dedicated lane setup would involve network configuration, vehic-
ular simulation, and traffic simulation. All these three aspects are equally important to
conduct the experiments successfully. Vehicular simulation heavily depends on vehicle
modeling which involves various factors such as car following model, lane changing
model, vehicle dimensions, maximum speed, etc. To conduct the experiments, a sim-
ulator is needed which can accommodate all of the aforementioned configurations.
Section 4.1 explains the experiment design for this work in detail. Section 4.2 states
the selection criteria for simulator selection. Section 4.3 explains the experiment setup
in detail which includes simulator architecture, network modeling, vehicle and traffic
demand modeling, and evaluation techniques used in this work.

4.1 Experiment Design

As stated in the research question in Section 3.3, focus of this work is to evaluate
the effectiveness of dedicated lanes to improve highway efficiency on realistic road
networks. Two different road networks were used for this work. An 8.5km one-way
highway without inflow-outflow ramps was created as a dummy network to validate the
observations from existing dedicated lane work. The M50 motorway network created
by Gueriau and Dusparic (17) was further used as a real-time highway network as
stated in the research question in Section 3.3. The traffic data used is generated from
real data by averaging several months of data to generate workday traffic load. The
traffic data for the M50 motorway was generated using the data from induction loop
sensors data from the open dataset provided by the Transport Infrastructure Ireland 1.
The data consists of traffic flow per lane and direction for 346,278 vehicles aggregated
every 5 minutes up to the year 2019. As per the existing work described in Section
3.2, highway efficiency depends on factors such as the number of dedicated lanes, CAV
penetration rate, and speed limit policies. The experiments in this study are designed
to cover all the possible combinations of several aspects mentioned in the research
question. At a high level, the scenarios can be divided into four categories:

• No dedicated lane or Baseline

• One dedicated lane

• Two dedicated lanes
1https://www.nratrafficdata.ie/
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• Three dedicated lanes

The first scenario, No dedicated lane, also referred to as the Baseline scenario is con-
sidered to ensure that the dedicated lane-related experiments in this work are easily
comparable to the original work. The number of dedicated lanes is varied from one to
three as the M50 motorway is a 4-lane highway. To analyze the impact of the dedicated
lane on the variety of mixed traffic compositions, the CAV penetration rate varied from
0% to 100%. This enables us to understand the effect of dedicated lanes with pure HDV,
pure CAV, and mixed traffic modes. Table 4.1 states the HDV and CAV distribution for
the aforementioned scenarios. Each of these scenarios is executed for several config-

Lane Strategies Scenario HDV CAV

• No Dedicated Lane
• One Dedicated Lane
• Two Dedicated Lanes
• Three Dedicated Lanes

I 100% 0%
II 90% 10%
III 70% 30%
IV 50% 50%
V 30% 70%
VI 10% 90%
VII 0% 100%

Table 4.1: Simulation scenarios with CAV and HDV deployment

Configuration
Dedicated lane

position
HDV-CAV

speed policy
Traffic Scenario

I Left Constant Free-flow, Saturated, Congested
II Right Constant Free-flow, Saturated, Congested

Table 4.2: The M50 motorway Configurations based on dedicated lane position, speed
policies, and traffic scenarios

urations to validate the best-suited configuration for dedicated deployment. The Ta-
ble 4.2 summarizes these configurations. The significance of each of the configurations
is explained further in Section 4.3. Thus a total of 170 scenarios were simulated for
both validation and real highway network. Figure 4.1 shows the high-level experiment
execution workflow. Based on the analysis of these experiments using the evaluation
metrics explained in Section 4.3.7, a rule-based adaptive approach is suggested and
implemented. The rule-based approach will adapt the deployment or removal of dedi-
cated lanes based on the traffic situation and CAV MPR. The experiments are executed
for three different traffic scenarios for three-time windows: Free-flow [1PM-2PM], Sat-
urated [3PM-4PM] and Congested [7AM-8AM]. The code for this study can be found
here.

4.2 Simulation Platforms

The simulation platforms considered for this work have been mentioned and briefly
described in section . These platforms were reviewed and evaluated based on the
following requirement criteria:
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• Open source: The platform must be open source and the source code should be
publicly available for any kind of modifications required

• Software License: All the essential features of the platform should be at no charge

• Reliability and Robustness: The platform should perform required functions stably
and should work under stressful environmental conditions

• Ongoing: The platform must be well maintained and under active development

• Suitability: The platform should have built-in or external components to satisfy
the requirements mentioned in the research question in the section

• Extensibility: The platform should support integration with other tools for addi-
tional features.

Based on the above criteria, the SUMO simulator is selected for this work. SUMO
provides the below components which are used during the experiment design:

• NetConvert: Command application to import road networks from various sources
and create SUMO-compatible road networks. It supports input files from sources
such as OpenStreetMap, VISUM, Vissim, OpenDRIVE, MATsim, and Plain XML. It
also generated road networks by combining multiple network files. This tool also
handles the network components such as junctions, connections, ramps, etc.

• NETEDIT 2: Graphical User Interface network editor to create networks from the
start and modify existing road networks. It is also a powerful editor which can
be used to debug the network with the select and highlight features. Users can
also create additional road infrastructure elements such as Induction Loop Detec-
tors, Lane Area Detectors, Multi-Entry Multi-Exit Detectors, Parking stops, and Re-
routers, NETEDIT also allows specific lane and edge level configurations. Along
with the networks, it is also a useful tool to define and generate traffic demands
and relevant elements such as routes, vehicle types, etc.

• dfrouter: dfrouter is one of the SUMO tools to generate traffic demand and routes
based on real-time data. The dfrouter uses edge-based data from induction loops
to generate the routes and traffic demand.

• TraCI 3: The Traffic Control Interface is an online interactive tool provided by
SUMO. It allows users to gain access to the in-progress simulations, retrieves val-
ues and observations from the simulation objects, and modifies network and traf-
fic elements. TraCI can be used with different programming languages such as
Python, C++, .NET, and Java which allows the user the flexibility to choose a
language of his or her comfort.

4.3 Experiment Setup

This section states the experimental setup and its various components in detail. Section
4.3.1 details the overall architecture of SUMO and its components used for this work.
Section 4.3.2 , 4.3.3 and 4.3.4 details the network, vehicle level design and traffic

2NETEDIT,https://sumo.dlr.de/docs/Netedit/index.html
3TraCI,https://sumo.dlr.de/docs/TraCI.html
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demand modelling required for in this work. Section 4.3.7 states the evaluation metrics
used to analyze the traffic performance across various experiments.

4.3.1 Architecture

SUMO Simulator Architecture for microscopic simulation

(33)

• Graphical User Interface: Component that consists of various classes that encom-
pass the entire graphical user interface model that controls the micro-simulation
parameters and their deployment (33)

• MSNet: The orchestrator that handles the simulation with provided highway net-
work and stores all the micro-simulation entities (33)

• MSVehicleControl: The class that deals with build, insert, and deletion of vehicles
during the simulation. It contains the vehicle type [vtype] and vehicle statistics
data until a vehicle is removed. (33)

• MSEdgeControl: This class is responsible for storing edge data, lane data for
respective lanes and lane movements of the vehicles. This class also stores the
active lanes which have at least one vehicle on the network during the simulation
(33).

• MSEdge: Edge is a road connecting two junctions. This class stores lanes belong-
ing to the respective edge. The class contains methods that handle functions such
as retrieving current travel time for an edge, retrieving mean speed for an edge,
retrieving and set speed limit for an edge, etc (33).

• MSLane: This class acts as a representation for a single lane storing all the re-
quired information and performing some of the critical functions such as maxi-
mum lane speed, allowed/disallowed vehicles on the lane, shape/ width/length
of the lane, allow/disallow left/right lane changes, etc (33).

• MSLaneChange: This class deals with lane changes of the vehicles.

• MSSubLaneChange: This class inherits the MSLaneChange class and handles the
lane changes at the sub-lane level. SL2015 is a sub-lane level lane change model
supported by SUMO.

• MSVehicle: This class acts as a representation of a vehicle in the micro-simulation.
It allows users to define several vehicle configurations such as vehicle type, speed,
color, length, acceleration, vehicle devices, etc. This class is very useful when
simulation contains vehicles belonging to different categories and needs to be
distinguished accordingly (33).

• MSVehicleType: This class stores the details about the type of the vehicle. Vehicle
types in SUMO can be custom defined and can have any of the SUMO-supported
vehicle classes. SUMO has several built-in vehicle classes such as passenger, pri-
vate, taxi, evehicle, bus, coach, delivery, truck, trailer, emergency, motorcycle,
rail, tram, etc. Users can generate vehicles with similar vehicle types but different
vehicle performance configurations. Similarly, different types of vehicles can also
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Figure 4.2: Overview of SUMO microscopic simulation module components
(33)
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Figure 4.3: Communication between SUMO and TraCI client
(31)

be created. This class also stores the functions that use the vehicle type param-
eters for generating the car following actions. The emission class of the vehicle
can also be defined at the vehicle type level.

• MSCFModel: This is an interface for several state-of-the-art car following mod-
els supported by SUMO. Some of the car following models supported by SUMO
are ACC, CACC, Krauss, Intelligent Driving Model (IDM), Enhanced Intelligent
Driving Model (EIDM), W99, Wiedermann, etc.

SUMO-TraCI communication

Figure 4.3 shows the communication protocol between SUMO and a TraCI client. The
TCP protocol is used by TraCI client to communicate with the simulation during run-
time. This interface is used to implement an adaptive or rule-based dedicated lane
deployment approach [explained in Section 4.1]. As shown in the image, once the ini-
tial handshake is established, TraCI can start sending requests to the SUMO simulation.
The Traci commands can be of two types:

• Control command: Command to modify the vehicle behavior such as change vehi-
cle speed, forced lane change, vehicle insertion/deletion, or modify the highway
network such as block a lane, change allowed vehicle classes for a lane.

• Request command: Command to retrieve values from the simulation such as get
mean travel time, number of vehicles inserted, number of vehicles completed, etc.

Below are versions of the software/tools used:
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Figure 4.4: The M50 motorway

• SUMO: 1.13.0

• TraCI: 1.14.1

• Python: 3.9

4.3.2 Network modelling

As stated in Section 4.1, two different road networks were used for this work and dif-
ferent strategies for the deployment of dedicated lanes were adopted. Figure 4.4 shows
the M50 motorway which is a 7km 4-lane highway with two interchanges. The dummy
8.5km highway consists of 29 edges with each edge having 4 lanes and was created
using NETEDIT editor manually. This section explains in detail the how dedicated lane
is configured, and the factors considered during the dedicated lane configuration.
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Figure 4.5: Selection of allowed vehicle classes for dedicated lane

Dedicated lane deployment

The dedicated lane is the reserved lane that can only be used by CAVs. However, these
may not be the only lanes CAVs can use. CAVs can travel using other lanes which are
also called shared lanes. These lanes are used by both CAVs and HDVs. In SUMO,
the dedicated lane is configured using NETEDIT by allowing or restricting the vehicle
classes for any existing lane. This can be achieved by using the network mode and
allowing or disallowing options from the left panel. It can also be defined using the
setAllowed() or setDisallowed() method of MSLane class states in Section 4.3.1. This
restricts the usage of that lane by the allowed vehicle class. The figure 4.5 shows the
selection of a certain class of vehicles to be allowed on a lane. CAV and HDV modeling is
discussed in detail in Section 4.3.3. Figure 4.6 shows that the left-most lane is converted
to a dedicated lane and only CAVs [Green colored vehicles] are traveling via this lane.

Position of dedicated lane

When the highway network under consideration has more than two lanes, which lanes
should be converted into the dedicated lane is subject to debate. Some of the existing
work suggests that (9) if the traffic is following Right Hand Side or driving to the
right mode the dedicated lane should be the left-most lane of the network. Hence
the left-most lane results in the fastest lane. However, for a real highway network,
the position of the dedicated lane depends on the overall highway network under the
consideration. This can be illustrated with the comparison between the validation and
actual roadway network considered for this work. The 8.5km validation network has
4 lanes throughout and allows one-directional travel. It is evident that the structure
of this network is simple and has a consistent pattern. Whereas the M50 motorway
has a complex structure and does not a have consistent pattern. Referring to the figure
4.4, the M50 motorway allows bi-directional traffic. It has two major interchanges with
inflow and outflow traffic. At some instances, the motorway has more than 4 lanes
with additional ramps whereas at the interchanges and roundabouts the number of
lanes varies. Deploying a dedicated lane on the validation network is fairly simple and
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Figure 4.6: Deployment of one dedicated lane
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does not involve microscopic analysis of the network. Hence, the assignment of the
dedicated lane on this network was done from the left-most lane. In one dedicated
lane scenario, the left-most lane is configured as a dedicated lane for CAVs. In two
dedicated lane scenarios, the second left-most lane is configured as a dedicated lane.
On the other hand, the M50 network possesses challenges to follow this approach. It
can be seen that on the northbound side of the highway the outward movement of
the vehicles at the interchanges originates from the left-most lane. Also, the inflow at
the interchanges merges into the left-most lane. A similar structure is observed on the
southbound side of the highway network. Hence the configuration of the dedicated lane
from the left side lanes might result in congestion at the interchanges if the majority
of CAVs traveling through these lanes need to travel straight. This would result in
heavy lane changes just before the interchanges and will result in a decrease in mean
speed, increase in mean trip duration, and total travel time. Hence the experiments
are designed with the deployment of the dedicated lane from both left and right most
lanes. This would help understand the impact of the position of the dedicated lane on
the highway.

Location of dedicated lane

Along with the position of the dedicated lane, the location of the dedicated lane also
plays a critical role in improving traffic efficiency. Location in this context is referred
to the part of the highway where dedicated lanes are deployed. In terms of SUMO,
it can be referred to as the edge ids and respective lane ids which are configured as
dedicated lanes for CAVs. Similar to that of the previous position, the significance of
the location of the dedicated lane can also be easily explained using validation and a
real highway network. The structure of the validation network allows configuring the
dedicated lane from the start of the highway to the end of the highway. Hence the
placement of dedicated lanes is not affected by the complexity of the highway network.
On contrary, it is difficult to configure the varying number of dedicated lanes from start
to end on the M50 highway due to the interchanges and additional network elements
such as inflow, and outflow ramps. Hence the start and end of the dedicated lane had to
be analyzed. To achieve realistic outcomes, the dedicated lane was started at a certain
distance from the start of the network so that the CAVs are not directly placed on the
dedicated lane. Various aspects considered during the configuration of the dedicated
lane can be illustrated below scenarios:

• Scenario I - Deadlock at the start of the dedicated lane: During the simulation,
vehicles are inserted randomly into any lane. This could result in HDVs traveling
through prospective dedicated lanes. Hence it is required to shift such HDVs
towards shared lanes to avoid deadlock situations at the start of the dedicated
lane. A deadlock situation occurs as the dedicated lane is strictly allowed for
CAVs, hence HDVs will perform emergency breaks and will come to halt. The
start of the dedicated lane is configured in such a way that the simulator has
enough time for all the necessary lane changes required to move HDVs toward
the shared lane.

• Scenario II - Deadlock at the end of dedicated lane: The start and end of the
dedicated lane also depend on the inflow and outflow at the interchanges. It is
required to end the dedicated lane to allow the required lane changes for both
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HDVs and CAVs to continue travel using the vehicle routes.

• Scenario III - Deadlock at interchanges [inflow]: At the interchanges, the traffic
inflow merges into the main network. Here if the left-most lane is set up as
a dedicated lane at the start of the conjunction, then it will create a deadlock
situation. If the vehicle traveling on the inflow link is an HDV then it will be forced
to perform an emergency stop which will result in congestion. Hence the starting
of the dedicated lane at such instance should be configured to allow successful
merging and required lane changes.

The start and end of the dedicated for an edge are strategically placed to allow the
simulator sufficient time to perform all the required lane changes.

4.3.3 CAV-HDV modelling

The mixed traffic mode consists of both Connected Autonomous Vehicles (CAVs) and
Human Driven Vehicles (HDVs). For these types, Light Motor Vehicles (passenger cars)
and Heavy Motor vehicles (truck, bus) were considered to simulate realistic traffic com-
ponents. SUMO allows users to define vehicles with custom types. Once a vehicle type
is defined multiple vehicles belonging to that type can be created. This vehicle includes
both physical and behavioral parameters of a vehicle. The physical parameters include
length, color, speed, etc. The behavioral parameters include car following model, lane
changing model, speed factor, acceleration, deceleration, etc. The vehicle type is de-
fined using one of the existing vehicle classes mentioned in Section 4.3.1. For this
work, four different types of vehicles is created using four different vehicle classes. As
shown in figure 4.5, the dedicated lane is configured based on vehicle class. Hence to
distinguish CAVs and HDVs different classes are used for modeling purposes. Table 4.3
shows the CAV and HDV configuration and parameters considered.

The SUMO documentation provides the explanation for the car following and lane
change model parameters. 4 5. These parameters are explained briefly in context of
this work in consequent sub-sections.

Car Following Model Parameters

• tau is the minimum time headway desired by the driver. Since CAVs can travel
with minimum headway, the value is less compared to that of HDVs.

• Sigma is the driver’s imperfection factor. Higher the value, the more imperfect
the driving. Since CAVs are expected to have lower imperfection as compared to
the HDVs, the value is set to 0.05. 0 denoted perfect driving.

• Speed Deviation is the factor that defines the deviation in the vehicle per-lane
speed limits

• Minimum gap defines the desired gap (empty distance) between a leader and the
following vehicle

4Car Following Models, https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_
Types%2C_and_Routes.html#car-following_models

5Lane Changing Models,https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_
Types%2C_and_Routes.html#lane-changing_models
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Parameters Vehicle Category

HDV HDV CAV CAV

Type Passenger Long Passenger Long

Vehicle Class Passenger Bus Private Truck

Car Following Model Krauss Krauss EIDM EIDM

Tau 1.2 1.2 0.5 0.5

Sigma 0.5 0.5 0.05 0.05

Speed Dev. 0.1 0.1 0.05 0.05

Min. Gap 2.5 2.5 1 1

Lane Change Model LC2013 LC2013 LC2013 LC2013

lcStrategic 0.5 0.5 0.5 0.5

lcSpeedGain 1 1 10 10

lcCooperative 1 1 0 0

Table 4.3: CAV and HDV modelling parameters

Lane Change Model Parameters

• lcStrategic is the factor that defines the eagerness of the following vehicle for
performing strategic lane changes.

• lcSpeedGain is the factor that defines the willingness of a vehicle to change lanes
for speed gain. Value for this parameter is higher in CAVs as compared to that of
HDVs.

• lcCooperative is the factor that defines the eagerness of a vehicle to perform co-
operative lane changes. A value set to 0 means that lane changing is performed
if the target lane provides a higher speed. Lane change model parameters were
changed to make CAVs travel through the dedicated lane as it is the fastest lane
in the network.

4.3.4 Traffic Demand modelling

The aggregated traffic data used in the original work was converted into SUMO-compatible
traffic demand using dfrouter tool provided by SUMO. This same traffic data was used
for both validation and the M50 motorway networks. The dfrouter take the network
file, detector file (location and type of induction loop detectors), and traffic flow mea-
sure files as input. The same traffic flow measure file used for the original work was
used for this work. The parameters which control the insertion of vehicles during the
simulation were also defined at this stage. Below are these parameters:

• departLane: Vehicle departure lane on which the vehicle should enter the network
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during the simulation

• departPos: Position at which the vehicle should enter the network

• departSpeed: Vehicle speed when the vehicle is entering the network

• arrivalPos: Position at which the vehicle should leave the network

dfrouter generates feasible routes based on the input network file and vehicle data.
As mentioned in Section 4.1, the CAV MPR is varied from 0% to 100%. Here the
same vehicle file generated by the dfrouter is used for different scenarios and the CAV
MPR is handled by the probability parameter while defining the vehicle type. The
probability of 0.3 for CAVs and 0.7 for HDVs means that 30% of vehicles inserted during
the simulation will be CAVs and 70% HDVs.

Before using dfrouter, several methods were used to generate traffic demand. How-
ever, none of these methods could fulfill the required realistic and dynamic traffic flow.
One of the methods used was randomTrips.py. RandomTrips generates a number of
random trips based on the input network files. While generating the routes and trips,
it considers the source and destination edge information uniformly at random or based
on a distribution. The arrival rate or traffic volume was defined using both insertion
rate and insertion density parameters. To create randomness in the traffic flow between
different simulations, a randomization factor was also configured. The tool generated
the traffic data based on the given configurations. However, the traffic was not uni-
formly distributed on both southbound and northbound roads. Since the tool generates
trips randomly, the distribution of CAV MPR was not similar in all the traffic directions.

4.3.5 Rule based adaptive approach

Based on the analysis of the experiments described in the Section 4.1, a rule-based
adaptive approach is proposed and implemented. This implementation handles the
dynamic conversion of the shared lane to a dedicated lane and vice versa based on
the CAV MPR and traffic situation. These rules are created based on the observations
derived from the simulation experiments. The algorithm 1 states the pseudocode for
the dynamic dedicated lane assignment.

Algorithm 1 Rule based assignment pseudocode

1: Parse network XML file and retrieve edge ids
2: Start simulation
3: Retrieve number of vehicles running on every edge for each after every 900 simu-

lation steps [15 minutes interval]
4: Calculated total number of vehicles in the network
5: Classify traffic scenario based on number of vehicles in the network
6: Move HDVs to shared lane from probable dedicated lanes before deployment
7: Assign or remove dedicated lane based on the rules
8: End simulation

The dynamic assignment is handled by changing the allowed vehicle classes for the
eligible dedicated lanes. In this case, vehicle classes for CAV vehicle types are only al-
lowed to travel using these lanes. First, all the candidate lanes are parsed using the XML
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network file for all lane strategies, and the lane permissions are changed accordingly
using setAllowed method under the Lane module in Traci. Before dynamically deploy-
ing the dedicated lane, all the HDVs traveling on the probably dedicated lane have to
move towards the shared lane to avoid the emergency stopping of such vehicles. The
algorithm 2 states the steps taken to move the HDVs towards the shared lane. How-
ever, additional steps are taken to move the halted HDVs (if any) towards the shared
lane. The vehicle ids of the running vehicles on every edge of the dedicated lanes are
retrieved at every simulation step. Further vehicle ids with vehicles speed equal to zero
are only considered. Once these halted vehicle ids are retrieved, the best lane for these
vehicles is identified based on the dedicated lane strategy deployed at that moment.
The vehicles are then forced to change the lane to the newly identified lane and the
simulation proceeds. In case this part of the algorithm fails to capture the halted vehi-
cles, the next attempt is made using traci.simulation.getEmergencyStoppingVehiclesIDList
method. Lane ids of vehicles retrieved by this method are retrieved and the best possi-
ble lane is identified. Similar to the previous approach, the vehicles are forced to change
lanes. If any other vehicles are halted and are not processed in these two stages, such
vehicles are then teleported after 1 second.

Algorithm 2 Algorithm to move HDVs towards shared lanes

1: Parse network XML file and retrieve probable candidates for dedicated lane
2: Retrieve HDVs with probable dedicated lanes as future lanes using

traci.vehicle.getVehicleClass()
3: Force lane change for such HDVs to shared lane using traci.vehicle.changeLane()
4: Deploy dedicated lane
5: For the next 10 simulation steps:
6: Retrieve stopped vehicles by checking the condition traci.vehicle.getSpeed==0.0
7: Retrieve emergency stopped vehicles using

traci.simulation.getEmergencyStoppingVehiclesIDList()
8: Move the vehicles from the above two steps to the shared lane
9: Teleport all other stopped vehicles

4.3.6 Learning based adaptive approach

As a further extension to the rule-based approach discussed in the previous Section
4.3.5, a learning-based approach is proposed to handle the dynamic assignment of a
dedicated lane. The figure 4.7 describes the high-level design of this approach. The
learning-based approach involves two stages:

• Future traffic Prediction using existing traffic data

• No. of dedicated lane required prediction based on the traffic level

Future Traffic flow Prediction

Traffic prediction is the technique of forecasting traffic flow for traffic management.
This technique is widely used to prevent traffic congestion using techniques such as time
series forecast models, Long Short Term Memory models (1) (26), regression models
(18), (38) and Deep Leaning networks (27) (45). In this study, traffic prediction using
the stacked LSTM technique is proposed. The traffic data used for this study is a 24hrs
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Figure 4.7: High level design for learning based approach

data aggregated at 5 minutes intervals with a number of vehicles to be inserted into
the network. The M50 motorway traffic data with a similar format but for a longer
period [more than 3 months for higher accuracy] can be used for training and testing
the stacked LSTM models. Evaluation metrics such as Root Mean Square Error [RMSE]
can be used to evaluate the performance of these models. The output of these models
would be the number of vehicles that will be inserted into the network in the future
time. This output can be passed to the next component of this approach that deals with
the prediction of the number of dedicated lanes required.

Number dedicated lane to be used

Based on the existing rule-based simulations, a dataset can be created with the number
of vehicles in the network and the number of dedicated lanes configured. This dataset
further can be used to train the Convolutional Neural Network [CNN] model. The
prediction obtained from the previous component will act as input to this model and
it will predict the number of dedicated lanes required. Once the number of dedicated
lanes required has been obtained, the dynamic deployment can be handled using the
algorithm 1 implemented in this study.

4.3.7 Evaluation Metrics

To answer the research question postulated in Section 3.3, multiple scenarios were sim-
ulated on both the validation and the real network with mixed traffic. The hypothesis
is prone to rejection if the traffic efficiency is not improved for the dedicated lane sce-
narios compared to the baseline (no dedicated lane) scenarios. To compare the traffic
efficiency, the below metrics were taken into consideration:

• Average trip duration: How much time on average a vehicle takes to complete a
trip. This would help understand if the time taken for a vehicle to complete a trip
is reduced due to the dedicated lane.

• Travel Rate: How much time does it take for vehicles to travel per km.

• Congestion Index: How much congestion is reported at the edge level in the entire
network. This would help understand if the congestion is reduced or increased
due to the deployment of a dedicated lane.

To compare the traffic efficiency based on the above metrics, several types of outputs
were generated. Below output files were generated for each simulation:

• statistics output gives the overall statistics of the simulation which includes ve-
hicles, teleports, safety, persons, vehicleTripStatistics. Measures such as average
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Figure 4.8: Low level design for Network and Vehicle modelling and its integration
with SUMO

trip duration, and average trip speed generated as a part of vehicleTripStatistics
are relevant to the evaluation metrics for this work

• summary output contains simulation step-wise extract of the number of vehicles
loaded, inserted, running, waiting to be inserted, completed the simulation, mean
travel time, and mean speed for the completed vehicles.

• lane-based measures are the aggregated lane level outputs that consist of mea-
sures such as lane id, travel time, lane density, occupancy, speed, etc. These
outputs are generated as per the specified simulation time interval.

• edge-based measures are similar to that of lane-based measures aggregated on
edge level

• trip info is the aggregated output for each vehicle’s trip from start to end of the
simulation

some of these files contain a large amount of data and hence further data processing
is required to extract the required information. An xmlparse.py script was created to
parse the network XML and generate travel rate and congestion index output files at
the edge level. The algorithm 3 shows the pseudocode for the calculation of congestion
index and travel rate. The figure 4.8 shows the low-level design for various components
involved in this work and their integration with the SUMO simulator.

To represent the significance of the change in travel rate and congestion index,
heatmaps are generated using these modified edge-based data files. The heatmaps are
generated using plot_net_dumps.py tool provided by SUMO. Further plots were created
using Tableau.
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Algorithm 3 Calculation of Congestion index and travel rate pseudocode

1: Parse input XML network file and store edge_id, lane_id, lane_index, speed,
length and allowed_vehicle_classes

2: Convert edge_level_data.xml to csv file
3: Parse edge_level_data.csv file and retrieve edge level data for required simulation

interval time
4: For every edge calculate:
5: travel_rate ← 1/speed ∗ 16.667
6: actual_travel_time ← edge_length/speed
7: expected_travel_time ← edge_length/edgespeed
8: congestion_index ← (actual_travel_time − expected_travel_time)/actual_travel_time
9: Export edge level XML data file with new calculated fields

39



5 Results and Analysis

Previous studies have suggested that CAVs at a higher penetration rate lead to an im-
provement in traffic efficiency (11, 17). Thus in this study, we first analyzed if the CAVs
show signs of improvement in traffic efficiency on a validation network without any
dedicated lane. Later the impact of dedicated lanes is analyzed on the same network.
Also with a dedicated lane setup, the traffic efficiency is expected to improve at higher
CAV market penetration rates (12, 44, 47). This was also verified on the validation
network. All these experiments were then performed on the M50 motorway. During
the analysis, three different traffic scenarios were considered: Free-flow, Saturated, and
Congested. In this chapter, the results of the simulation scenarios stated in Section 4.1
are presented in detail. Section 5.1 presents the analysis of results for the validation
network. Section 5.2 presents the results for the M50 motorway. The Section 5.3 states
how results from Section 5.1 and 5.2 used to implement the rule bases approach.

5.1 The 8.5km one-way validation network

As discussed in Section 4.1, the experiments are first executed on the validation net-
work. This section describes the results of the experiments conducted on the validation
network.

5.1.1 Congested traffic scenario

Results from the simulation of baseline, one dedicated lane, two dedicated lanes, and
three dedicated lanes experiment described in Table 4.1 are discussed in this section.
Table 5.1 shows the results for each of these scenarios in terms of trip duration and
average speed. The No Dedicated Lane strategy section of the table shows the effect of
introducing CAVs in the mixed traffic mode. The average trip duration decreases and
the average speed increases as the CAV MPR increased from 0% to 100%. A similar
observation is observed for other lane strategies. This validates the conclusion from
the original work that the introduction of CAVs improves traffic efficiency in mixed
traffic mode. When the CAV MPR is either 0% or 10% the no dedicated lane strategy
yields the lowest trip duration and highest average speed. For these CAV MPRs, the
traffic efficiency decreases as the number of dedicated lanes increases. These results
are as expected and in line with the existing work since when the CAV MPR is 0% and
dedicated lane(s) are configured, the number of lanes for HDVs to travel in is reduced,
which in turn increases the time required to travel the entire network. Hence the traffic
efficiency decreases. Similarly, for scenario II where the CAV MPR is 10%, there are very
few CAVs in the traffic that could use the dedicated lane. Hence in this case also the
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traffic efficiency is less than that of the baseline scenario with the same CAV MPR. The
improvement in traffic performance with dedicated lane configuration can be seen as
the CAV MPR is increased beyond 30%. It can be seen that one dedicated lane strategy
shows improvement in traffic efficiency when the CAV MPR is between 30% and 90%.
All the dedicated lane strategies show similar performance when the traffic is purely
CAV dominated (CAV MPR 100%). The results from this section validate the results of
the dedicated lane on the validation network. Thus the dedicated lane configuration
can further be evaluated with realistic traffic conditions on the M50 motorway.

Lane Strategies Scenario CAV MPR Trip Duration

• No Dedicated Lane

I 0% 360.37
II 10% 356.91
III 30% 351.39
IV 50% 346.29
V 70% 341.94
VI 90% 338.77
VII 100% 337.48

• One Dedicated
Lane

I 0% 391.44
II 10% 365.42
III 30% 344.74
IV 50% 333.33
V 70% 328.00
VI 90% 323.80
VII 100% 322.45

• Two Dedicated
Lanes

I 0% 524.29
II 10% 496.14
III 30% 395.41
IV 50% 343.72
V 70% 331.21
VI 90% 324.31
VII 100% 322.45

• Three Dedicated
Lanes

I 0% 605.81
II 10% 588.55
III 30% 523.31
IV 50% 446.02
V 70% 344.31
VI 90% 326.64
VII 100% 322.45

Table 5.1: Average trip duration for the validation network for all dedicated lane
strategies
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Figure 5.1: Average trip duration for M50 free-flow

5.2 The M50 Motorway

As stated in the previous section, the impact of a dedicated lane was validated on the
toy network before implementing it on the realistic highway network. As discussed in
Sections 4.1 and 4.3.2, two different approaches based on the position of the dedicated
lane for the M50 motorway were followed. Section 5.2.1 presents the results from
experiments where dedicated lanes were configured starting from the left-most lane
for three traffic scenarios: Free-flow, saturated and congested. Section 5.2.2 presents
the results from experiments where dedicated lanes were configured starting from the
right-most lane for the same traffic scenarios.

5.2.1 Dedicated lane configuration: Starting from Left most lane

Free-flow traffic scenario

The figure 5.1 shows that there is no difference in average trip duration for no dedicated
and one dedicated lane strategy. For two and three dedicated lanes, the average trip
duration has increased significantly for lower MPRs. This suggests that at lower MPRs,
two and three dedicated lanes are creating congestion, and hence the traffic efficiency is
reduced. Increased congestion especially at interchanges with two and three dedicated
lanes can be seen in figure 5.2. These results are as expected, as there is not enough
CAVs to warrant several dedicated lanes. Similarly, the figure 5.3 shows an increase in
travel rate. Similarly, at higher CAV MPR there is no difference in average trip duration
is observed. This shows that one, two and three dedicated lane strategies achieve
similar results as that of the baseline scenario with no dedicated lane. These results
are expected as during the free-flow traffic scenario the number of vehicles traveling
through the network is low. Based on these results, it is evident that the dedicated lane
strategies for the M50 free-flow traffic scenario do not improve the traffic efficiency
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Figure 5.2: Congestion Index for M50 Free-flow for CAV MPR 10% with (a) No dedi-
cated lane (b) Two dedicated lane (c) Three dedicated lane

Figure 5.3: Travel rate for M50 Free-flow for CAV MPR 10% with (a) No dedicated
lane (b) Two dedicated lane (c) Three dedicated lane

compared to the no dedicated lane strategy.

Saturated traffic scenario

Figure 5.4 shows the results from all the four lane strategies. For the two dedicated
lane settings, the average trip duration are higher than that of no dedicated lane for
CAV MPR 0% to 30%. Whereas for three dedicated lanes setting, this is observed
until CAV MPR 50%. No significant difference is observed for higher CAV MPRs for
these two settings compared to baseline. There is no significant difference in these
two traffic measures for no dedicated lane and one dedicated lane strategy. However,
for CAV MPR 70% and 90%, traffic efficiency with one dedicated lane shows a slight
improvement in traffic efficiency. In terms of congestion index and travel rate, one
dedicated lane configuration shows marginal improvement. Figure 5.5 and 5.6 shows
the congestion index and travel rate for CAV MPR 70% and 90% for no dedicated lane
and one dedicated lane strategies. Table 5.2 states the mean congestion index and
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Figure 5.4: Average. trip duration for M50 saturated flow

Figure 5.5: Congestion Index for M50 Saturated flow for CAV MPR 90% with (a) No
dedicated lane (b) One dedicated lane
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Figure 5.6: Travel rate for M50 Saturated flow for CAV MPR 90% with (a) No dedi-
cated lane (b) One dedicated lane

travel rate for the above configuration. Based on these results, for CAV MPR 70% and
90% one dedicated lane improves the traffic efficiency and when the CAV MPR is below
70% there is no need to set up a dedicated lane in a saturated traffic situation as there
is no significant improvement in traffic efficiency.

CAV MPR No Dedicated Lane One Dedicated Lane

TR CI TR CI

0% 1.0000 0.2375 1.011 0.2633

10% 0.9728 0.1977 0.9774 0.2104

30% 0.9480 0.1638 0.9480 0.1661

50% 0.9263 0.1337 0.9331 0.1462

70% 0.9143 0.1193 0.9089 0.1105

90% 0.9011 0.1035 0.8975 0.1015

100% 0.8948 0.0960 0.8948 0.0960

Table 5.2: Mean Congestion Index (CI) and Travel Rate (TR) for No Dedicated Lane
and One Dedicated Lane for Saturated traffic flow

Congested traffic scenario

Figure 5.7 shows the results from all four lane strategies. It can be seen that for lower
CAV MPR, as the number of dedicated lanes is increased the average trip duration
increases, and average vehicle speed decreases. For lower CAV MPRs [0% and 10%]
the average trip increases up to 650 seconds as compared to that of 380 seconds with
no dedicated lane. This is expected because at lower CAV MPRs majority of traffic
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Figure 5.7: Average trip duration for M50 congested flow

consist of HDVs and with no dedicated lane setting all vehicles can utilize all 4 lanes of
the highway network. Due to the increase in a number of dedicated lanes, the number
of lanes for HDVs is reduced. This creates congestion and long vehicle queues at the
interchanges. For CAV MPR 30% to 70%, the one dedicated lane configuration show
improvement in traffic efficiency. Average trip duration decreases as compared to that
of the baseline scenario. For CAV MPR 90%, a motorway with two dedicated lanes
show improvements in these traffic measures.

The figures 5.8, 5.9 and 5.10 show the congestion index heat-map for CAV MPR
30%, 50% and 70% respectively for no dedicated lane and one dedicated lane. The
figures 5.12, 5.13, 5.14 shows the travel rate heat-map for CAV MPR 30%, 50% and
70% respectively for no dedicated lane and one dedicated lane. Improvement in both
congestion index and travel rate can be seen from no dedicated lane to one dedicated
lane. The figures 5.11, 5.15 show the congestion index and travel heat-map for CAV
MPR 90% for one dedicated lane and two dedicated lanes. The effect of improvement
in the average trip duration can be seen in both the congestion index and travel rate.
These changes are more significantly observed at the interchanges, and inflow and
outflow links at the interchanges. For fully CAV traffic [CAV MPR 100%], the dedicated
lane setting does not show any improvement in traffic efficiency.

5.2.2 Dedicated lane configuration: Right most lane

This section states the results from the experiments where the dedicated lane assign-
ment is started from right-most lane for all three traffic scenarios.
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(a) (b)

Figure 5.8: Congestion index for M50 congested flow for CAV MPR 30% with (a) No
dedicated lane (b) One dedicated lane

(a) (b)

Figure 5.9: Congestion index for M50 congested flow for CAV MPR 50% with (a) No
dedicated lane (b) One dedicated lane
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(a) (b)

Figure 5.10: Congestion index for M50 congested flow for CAV MPR 70% with (a) No
dedicated lane (b) One dedicated lane

(a) (b)

Figure 5.11: Congestion index for M50 congested flow for CAV MPR 90% with (a)
One dedicated lane (b) Two dedicated lanes
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(a) (b)

Figure 5.12: Travel Rate for M50 congested flow for CAV MPR 30% with (a) No dedi-
cated lane (b) One dedicated lane

(a) (b)

Figure 5.13: Travel Rate for M50 congested flow for CAV MPR 50% with (a) No dedi-
cated lane (b) One dedicated lane
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(a) (b)

Figure 5.14: Travel Rate for M50 congested flow for CAV MPR 70% with (a) No dedi-
cated lane (b) One dedicated lane

(a) (b)

Figure 5.15: Travel Rate for M50 congested flow for CAV MPR 90% with (a) One ded-
icated lane (b) Two dedicated lanes
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Figure 5.16: Average trip duration for M50 free-flow with right dedicated lane

Free-flow traffic scenario

Based on figure 5.1 and 5.16, it can be seen that the traffic performance is very much
similar to that of left side dedicated lane configuration and does not show any im-
provement in the considered traffic measures with the introduction of dedicated lanes.
Overall, the average speed has decreased and the average trip duration has increased
for every scenario as compared to that of the left-side dedicated lane configuration. Due
to these results, the congestion index and travel rate for this scenario are not discussed
further in this section.

Saturated traffic scenario

Similar to that of the left side dedicated lane configuration, this configuration shows
improvement in traffic efficiency with one dedicated lane when the CAV MPR is 70%
and 90%. When the CAV MPR is below 70% traffic performance is higher with no
dedicated lane. For CAV MPR 100% all the lane strategies yield similar performance.
However, based on 5.4 and 5.17 it can be seen that the traffic performance with left
side dedicated lane configuration is better than that of right side dedicated lane.

Congested traffic scenario

Similar to that of the left side dedicated lane configuration, this configuration shows
improvement in traffic efficiency with one dedicated lane when the CAV MPR is be-
tween 30% and 70%. For CAV MPR between 70% and 90% setting up two dedicated
lanes improved the traffic efficiency as compared to that of other lane strategies. When
the CAV MPR is below 30% traffic performance is higher with no dedicated lane. For
CAV MPR 100% all the lane strategies yield similar performance. However, based on
5.7 and 5.18 it can be seen that the traffic performance with left side dedicated lane
configuration is better than that of right side dedicated lane.
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Figure 5.17: Average trip duration for M50 saturated flow with right dedicated lane

Figure 5.18: Average. trip duration for M50 congested flow with right dedicated lane
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5.3 Rule-Based adaptive approach

As discussed in Section 4.1, a rule based approach is designed to dynamically convert a
shared lane to a dedicated lane and vice versa based on the traffic level and CAV MPR.
The Table 5.3 states the dedicated lane deployment configuration suggested based on
this study.

Traffic Scenario CAV MPR Dedicated Lane Strategy

Free-flow 0% to 100% No Dedicated Lane

Saturated
0% to 70% No Dedicated Lane
70% to 90% One Dedicated Lane

100% No Dedicated Lane

Congested

0% to 30% No Dedicated Lane
30% to 70% One Dedicated Lane
70% to 90% Two Dedicated Lanes

100% No Dedicated Lane

Table 5.3: Suggested dedicated lane deployment based on the experiment results

The algorithm 4 describes the steps and parameters using which the algorithm is
designed. The rule based approach was executed over 24 hour realistic traffic data for

Algorithm 4 Rule based dedicated lane assignment algorithm
TrafficScenario ← Freeflow , Saturated ,Congested
CAVMPR ← 0%, 10%, 30%, 50%, 70%, 90%, 100%
noDedicatedLanes ← 0
if TrafficScenario = Freeflow then

noDedicatedLanes ← 0
else if TrafficScenario = Saturated then

if CAVMPR ≤ 70 then
noDedicatedLanes ← 0

else
noDedicatedLanes ← 1

end if
else if TrafficScenario = Congested then

if CAVMPR ≤ 30 then
noDedicatedLanes ← 0

else if CAVMPR ≥ 30 & CAVMPR ≤ 70 then
noDedicatedLanes ← 1

else if CAVMPR ≥ 70 & CAVMPR ≤ 90 then
noDedicatedLanes ← 2

end if
end if

MPR 50% and 70%. The performance of rule based approach is compared with baseline
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and all three dedicated lane strategies. Table 5.4 shows the comparison of average trip
duration for these strategies.

CAV MPR Lane Strategy Average Trip Duration

50%

No Dedicated lane 255.20
One Dedicated Lane 255.69
Two Dedicated Lanes 261.72

Three Dedicated Lanes 271.56
Rule Based dynamic assignment 252.33

70%

No Dedicated lane 247.81
One Dedicated Lane 245.24
Two Dedicated Lanes 246.87

Three Dedicated Lanes 252.06
Rule Based dynamic assignment 243.79

Table 5.4: Average trip duration for 24 hour simulation for all dedicated lane strate-
gies

Based on the Table 5.4, it can be seen that the rule-based dynamic assignment
strategy achieves the lowest average trip duration amongst all the strategies. Hence it
shows that the dynamic assignment approach slightly outperforms all other strategies.

5.4 Discussion

Based on the results and analysis in the previous Sections 5.1, 5.2, it can be said the
dedicated lane strategy shows improvement in the traffic efficiency but is dependent
on the factors such as traffic level and CAV MPR. This is observed for both scenarios
where a dedicated lane is configured starting from the left-most most and right-most
lane. The dedicated lane configuration from the left-most lane yields better traffic
performance in terms of average trip duration, congestion index, and travel rate for
all traffic levels and CAV penetration rates. Overall irrespective of the traffic flow for
low MPRs (0% - 10%) it is observed the average trip duration and congestion index
significantly increase with two and three dedicated lane strategies. This is due to the
imbalance between lanes reserved for CAVs and the number of CAVs in the traffic. Due
to the low volume of CAVs, the dedicated lanes are not utilized to their full capacity.
On the other hand, due to the high volume of HDVs and fewer shared lanes, shared
lanes fail to accommodate the HDVs and result in congestion. For free-flow traffic level,
no dedicated lane strategy outperforms the baseline scenario with no dedicated lane.
This is expected as the overall vehicle volume during the free flow is low and all the
vehicles can travel without any reports of congestion. For saturated traffic flow, one
dedicated lane strategy shows the improvement in traffic efficiency when the CAV MPR
is between 70% to 90%. Two and three dedicated lane strategies yield almost similar
traffic performance as compared to that of one dedicated lane at higher MPR but do not
outperform one dedicated lane strategy. When the CAV MPR is between 0% to 70%,
the baseline strategy with no dedicated lane performs better as compared to all other
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dedicated lane strategies. When the traffic flow is purely CAV with MPR 100%, all the
lane strategies yield similar traffic efficiency.

For congested traffic flow, the one dedicated lane strategy improves traffic efficiency
when the CAV MPR is between 30% and 70%. When the CAV MPR is below 30%,
the baseline strategy outperforms all other strategies. Here the two dedicated lane
strategy shows improvement in traffic efficiency when the CAV MPR is between 70%
and 90%. Similar to that of saturated flow, for purely CAV traffic all the lane strategies
yield similar traffic performance. Based on these results, it is evident that no single
dedicated lane strategy outperforms the traffic performance for all traffic levels and
CAV penetration rates as compared to that of the baseline strategy with no dedicated
lane. Hence deploying a uniform dedicated lane strategy to the M50 motorway network
will not yield the desired result in terms of traffic efficiency. As the traffic scenario and
CAV MPR vary, the number of dedicated lanes required to improve traffic efficiency also
changes.

The experiment results are in line with the trend observed in the existing work
where the impact of the dedicated lane is significantly observed with increasing CAV
MPR. However, the results of the experiments are not generic in terms of the number
of dedicated lanes required for improvement in traffic efficiency. Thus, these results
may not be applied to other networks. The number of dedicated lanes can change with
the complexity of the highway network, traffic levels, CAV penetration rate, types of
vehicles in traffic, and modeling of Human Driven and Connected Autonomous vehi-
cles. As the complexity of the highway network changes, the location of the dedicated
can change. In a simple highway network with no interchanges, the dedicated lane can
be configured throughout the highway. The same may not be possible on a complex
highway with one or more interchanges. The consistency of the highway network also
impacts the decision on the number of dedicated lanes required. The traffic flow at
different sections on the highway will be different for highways with a consistent num-
ber of lanes and highways with a varying number of lanes. The modeling of HDVs and
CAVs controls their behavior in terms of vehicle speed, the minimum distance between
vehicles, lane changing behavior, etc. Hence, a change in these parameters may change
the required number of dedicated lanes.
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6 Conclusion

This chapter encapsulates the findings of the study undertaken in Section 6.1, chal-
lenges faced during the implementation and execution of the simulation experiments
in Section 6.2 and possible extensions to this study in Section 6.3.

6.1 Summary

As a part of this work, observations from previous studies of the impact of CAVs to
improve traffic efficiency were evaluated with different CAV penetration rates on both
validation and realistic highway networks. The realistic M50 motorway traffic data
were considered for this study. The dedicated lane experiments designed under this
study focused on analyzing the impact of dedicated lanes by considering factors such
as the number of dedicated lanes, traffic scenarios, position and location of the dedi-
cated lane, and CAV penetration rate. Further, a rule-based approach is implemented to
accommodate the dynamic dedicated lane deployment based on the experimental ob-
servations. Traffic efficiency was measured in terms of average trip duration, average
speed, congestion index, and travel rate.

The experiments showed that the configuration of the dedicated lane for CAVs im-
proves traffic performance. However, the number of dedicated lanes required varies
per the traffic situation and CAV penetration rate. On the M50 network, one dedicated
lane shows improvement in traffic efficiency in saturated and congested traffic scenar-
ios for CAV MPR between 70%-90% and 30%-70% respectively. Two dedicated lanes
show improvement in traffic efficiency only for congested traffic scenarios for CAV MPR
between 70% - 90%. The rest of the scenarios do not show any requirement for a ded-
icated lane. Hence a uniform dedicated lane strategy would not be a plausible solution
to improve traffic efficiency. The rule-based approach to dynamically assign dedicated
lanes implemented in this study slightly outperforms the baseline and all three dedi-
cated lane strategies. The evaluation of the assignment of a dedicated lane from the
left-most lane and right-most lane shows that the location of the dedicated lane has
equal importance along with other parameters.

Based on the experiment design, it can be said that a thorough analysis of the high-
way under consideration is required for dedicated lane deployment. Also, the decisive
factors for the number of dedicated lanes required can vary with the complexity of the
highway network. The number of dedicated lanes can also change based on CAV pen-
etration rate, traffic levels, parameters used for Connected Autonomous Vehicle and
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Human Driven Vehicle modelling. Hence generic rules for the deployment of a num-
ber of dedicated lanes can not be applied to every network. The rule based approach
implemented in this work to dynamically allocate the dedicated lane outperforms the
other lane strategies. During the experiment setup, several issues were identified which
are included in the future scope of this work 6.3.

6.2 Challenges

• Due to the complexity of the M50 motorway, thorough analysis, and multiple
simulation attempts were required to identify the location of the dedicated lane
on the network.

• The HDV and CAV modeling involves a large number of parameters that if not
carefully chosen can result in adverse behavior. The documentation of some of
the parameters is also limited and required source code analysis to understand
the significance.

• The documentation lacks the support for custom scenarios and thus required anal-
ysis of related archive queries raised by SUMO users posted on the forum. The
forum also did not resolve the issue directly. Thus several simulation attempts
were made to understand the exact behavior due to the attempted configuration.

• The experiments designed for the M50 network were enormously resource ex-
tensive. The integration of SUMO with Traci further slowed the execution due
to a number of commands executed during one simulation step. Execution of
rule-based scenario for CAV MPR 50% took approximately 10 hours to complete.

• A total of 170 scenarios were executed multiple times which increased the amount
of time required for execution. Also, a large amount of data was generated for ev-
ery scenario which had to be processed and analyzed to obtain insights. Analyzing
such a high amount of data is a time-consuming and error-prone process.

• The documentation for Traci lacks the technical description required by a begin-
ner and thus requires the analysis of source code. Not all required values can be
obtained with existing methods and thus requires a custom function to be imple-
mented, The execution of such functions is time-consuming and thus increases
the simulation time.

• The lack of simulation-based studies and implementation methodology in the
published work made the implementation difficult during the initial phase of the
study.

6.3 Future Scope

Due to time constraint, some part of the research question was not implemented and
is identified as possible extension of this work:

• The impact of the dedicated lane in current work is validated under the constant
speed policy for both lanes and vehicles. This can further be extended to see if
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the application of different speed limit policies such as Differential Speed Limit
Policy, and Variable Speed Limit Policy further improves traffic efficiency.

• The location of deployment of a dedicated lane in this work was decided by man-
ual analysis of the network. A more technical approach can be adopted to decide
the location of a dedicated lane over a series of edges by analyzing the impact
of a dedicated lane in terms of traffic efficiency. This would also provide a com-
prehensive approach to deciding the location of a dedicated lane on a complex
highway network.

• Three lane strategies are implemented in the current study: One, two, and three
dedicated lanes. In all of these strategies, a constant number of dedicated lanes
are configured throughout the network. However, based on the traffic flow and
diversity of the network, a flexible number of dedicated lanes can be set up to
analyze the impact on traffic efficiency.

• This work evaluates the research question from a traffic efficiency perspective.
This can further be extended by evaluating the application of a dedicated lane
with the help of safety measures.

• The learning-based approach proposed in this study can be implemented for the
dynamic assignment of dedicated lanes. The suggested approach can further be
improved by using more advanced time series forecast models to predict short-
term future traffic.
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